/* Copyright (c) 2008, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/ip_filter.hpp" #include "setup_transfer.hpp" // for addr() #include #include "test.hpp" #include "settings.hpp" #include "libtorrent/socket_io.hpp" #include "libtorrent/session.hpp" /* Currently this test only tests that the filter can handle IPv4 addresses. Maybe it should be extended to IPv6 as well, but the actual code is just a template, so it is probably pretty safe to assume that as long as it works for IPv4 it also works for IPv6. */ using namespace lt; template bool compare(ip_range const& lhs , ip_range const& rhs) { return lhs.first == rhs.first && lhs.last == rhs.last && lhs.flags == rhs.flags; } template void test_rules_invariant(std::vector> const& r, ip_filter const& f) { TEST_CHECK(!r.empty()); if (r.empty()) return; if (sizeof(r.front().first) == sizeof(address_v4)) { TEST_CHECK(r.front().first == addr("0.0.0.0")); TEST_CHECK(r.back().last == addr("255.255.255.255")); } else { TEST_CHECK(r.front().first == addr("::0")); TEST_CHECK(r.back().last == addr("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff")); } for (auto i(r.begin()), j(std::next(r.begin())) , end(r.end()); j != end; ++j, ++i) { TEST_EQUAL(f.access(i->last), i->flags); TEST_EQUAL(f.access(j->first), j->flags); TEST_CHECK(detail::plus_one(i->last.to_bytes()) == j->first.to_bytes()); } } TORRENT_TEST(session_get_ip_filter) { session ses(settings()); ip_filter const& ipf = ses.get_ip_filter(); TEST_EQUAL(std::get<0>(ipf.export_filter()).size(), 1); } TORRENT_TEST(ip_filter) { std::vector> range; // **** test joining of ranges at the end **** ip_range expected1[] = { {addr4("0.0.0.0"), addr4("0.255.255.255"), 0} , {addr4("1.0.0.0"), addr4("3.0.0.0"), ip_filter::blocked} , {addr4("3.0.0.1"), addr4("255.255.255.255"), 0} }; { ip_filter f; f.add_rule(addr("1.0.0.0"), addr("2.0.0.0"), ip_filter::blocked); f.add_rule(addr("2.0.0.1"), addr("3.0.0.0"), ip_filter::blocked); range = std::get<0>(f.export_filter()); test_rules_invariant(range, f); TEST_CHECK(range.size() == 3); TEST_CHECK(std::equal(range.begin(), range.end(), expected1, &compare)); } // **** test joining of ranges at the start **** { ip_filter f; f.add_rule(addr("2.0.0.1"), addr("3.0.0.0"), ip_filter::blocked); f.add_rule(addr("1.0.0.0"), addr("2.0.0.0"), ip_filter::blocked); range = std::get<0>(f.export_filter()); test_rules_invariant(range, f); TEST_CHECK(range.size() == 3); TEST_CHECK(std::equal(range.begin(), range.end(), expected1, &compare)); } // **** test joining of overlapping ranges at the start **** { ip_filter f; f.add_rule(addr("2.0.0.1"), addr("3.0.0.0"), ip_filter::blocked); f.add_rule(addr("1.0.0.0"), addr("2.4.0.0"), ip_filter::blocked); range = std::get<0>(f.export_filter()); test_rules_invariant(range, f); TEST_CHECK(range.size() == 3); TEST_CHECK(std::equal(range.begin(), range.end(), expected1, &compare)); } // **** test joining of overlapping ranges at the end **** { ip_filter f; f.add_rule(addr("1.0.0.0"), addr("2.4.0.0"), ip_filter::blocked); f.add_rule(addr("2.0.0.1"), addr("3.0.0.0"), ip_filter::blocked); range = std::get<0>(f.export_filter()); test_rules_invariant(range, f); TEST_CHECK(range.size() == 3); TEST_CHECK(std::equal(range.begin(), range.end(), expected1, &compare)); } // **** test joining of multiple overlapping ranges 1 **** { ip_filter f; f.add_rule(addr("1.0.0.0"), addr("2.0.0.0"), ip_filter::blocked); f.add_rule(addr("3.0.0.0"), addr("4.0.0.0"), ip_filter::blocked); f.add_rule(addr("5.0.0.0"), addr("6.0.0.0"), ip_filter::blocked); f.add_rule(addr("7.0.0.0"), addr("8.0.0.0"), ip_filter::blocked); f.add_rule(addr("1.0.1.0"), addr("9.0.0.0"), ip_filter::blocked); range = std::get<0>(f.export_filter()); test_rules_invariant(range, f); TEST_CHECK(range.size() == 3); ip_range expected[] = { {addr4("0.0.0.0"), addr4("0.255.255.255"), 0} , {addr4("1.0.0.0"), addr4("9.0.0.0"), ip_filter::blocked} , {addr4("9.0.0.1"), addr4("255.255.255.255"), 0} }; TEST_CHECK(std::equal(range.begin(), range.end(), expected, &compare)); } // **** test joining of multiple overlapping ranges 2 **** { ip_filter f; f.add_rule(addr("1.0.0.0"), addr("2.0.0.0"), ip_filter::blocked); f.add_rule(addr("3.0.0.0"), addr("4.0.0.0"), ip_filter::blocked); f.add_rule(addr("5.0.0.0"), addr("6.0.0.0"), ip_filter::blocked); f.add_rule(addr("7.0.0.0"), addr("8.0.0.0"), ip_filter::blocked); f.add_rule(addr("0.0.1.0"), addr("7.0.4.0"), ip_filter::blocked); range = std::get<0>(f.export_filter()); test_rules_invariant(range, f); TEST_CHECK(range.size() == 3); ip_range expected[] = { {addr4("0.0.0.0"), addr4("0.0.0.255"), 0} , {addr4("0.0.1.0"), addr4("8.0.0.0"), ip_filter::blocked} , {addr4("8.0.0.1"), addr4("255.255.255.255"), 0} }; TEST_CHECK(std::equal(range.begin(), range.end(), expected, &compare)); } // **** test IPv6 **** ip_range expected2[] = { {addr6("::0"), addr6("0:ffff:ffff:ffff:ffff:ffff:ffff:ffff"), 0} , {addr6("1::"), addr6("3::"), ip_filter::blocked} , {addr6("3::1"), addr6("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff"), 0} }; { ip_filter f; f.add_rule(addr("2::1"), addr("3::"), ip_filter::blocked); f.add_rule(addr("1::"), addr("2::"), ip_filter::blocked); std::vector> rangev6; rangev6 = std::get<1>(f.export_filter()); test_rules_invariant(rangev6, f); TEST_EQUAL(rangev6.size(), 3); TEST_CHECK(std::equal(rangev6.begin(), rangev6.end(), expected2, &compare)); } port_filter pf; // default constructed port filter should allow any port TEST_CHECK(pf.access(0) == 0); TEST_CHECK(pf.access(65535) == 0); TEST_CHECK(pf.access(6881) == 0); // block port 100 - 300 pf.add_rule(100, 300, port_filter::blocked); TEST_CHECK(pf.access(0) == 0); TEST_CHECK(pf.access(99) == 0); TEST_CHECK(pf.access(100) == port_filter::blocked); TEST_CHECK(pf.access(150) == port_filter::blocked); TEST_CHECK(pf.access(300) == port_filter::blocked); TEST_CHECK(pf.access(301) == 0); TEST_CHECK(pf.access(6881) == 0); TEST_CHECK(pf.access(65535) == 0); }