/* Copyright (c) 2014-2018, Arvid Norberg, Steven Siloti All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/receive_buffer.hpp" #include "libtorrent/invariant_check.hpp" #include "libtorrent/aux_/numeric_cast.hpp" #include "libtorrent/span.hpp" namespace libtorrent { int receive_buffer::max_receive() const { return int(m_recv_buffer.size()) - m_recv_end; } span receive_buffer::reserve(int const size) { INVARIANT_CHECK; TORRENT_ASSERT(size > 0); TORRENT_ASSERT(m_recv_pos >= 0); // normalize() must be called before receiving more data TORRENT_ASSERT(m_recv_start == 0); if (int(m_recv_buffer.size()) < m_recv_end + size) { int const new_size = std::max(m_recv_end + size, m_packet_size); buffer new_buffer(new_size, {m_recv_buffer.data(), m_recv_end}); m_recv_buffer = std::move(new_buffer); // since we just increased the size of the buffer, reset the watermark to // start at our new size (avoid flapping the buffer size) m_watermark = {}; } return span(m_recv_buffer).subspan(m_recv_end, size); } void receive_buffer::grow(int const limit) { INVARIANT_CHECK; int const current_size = int(m_recv_buffer.size()); TORRENT_ASSERT(current_size < std::numeric_limits::max() / 3); // first grow to one piece message, then grow by 50% each time int const new_size = (current_size < m_packet_size) ? m_packet_size : std::min(current_size * 3 / 2, limit); // re-allocate the buffer and copy over the part of it that's used buffer new_buffer(new_size, {m_recv_buffer.data(), m_recv_end}); m_recv_buffer = std::move(new_buffer); // since we just increased the size of the buffer, reset the watermark to // start at our new size (avoid flapping the buffer size) m_watermark = {}; } int receive_buffer::advance_pos(int const bytes) { INVARIANT_CHECK; int const limit = m_packet_size > m_recv_pos ? m_packet_size - m_recv_pos : m_packet_size; int const sub_transferred = std::min(bytes, limit); m_recv_pos += sub_transferred; return sub_transferred; } // size = the packet size to remove from the receive buffer // packet_size = the next packet size to receive in the buffer // offset = the offset into the receive buffer where to remove `size` bytes void receive_buffer::cut(int const size, int const packet_size, int const offset) { INVARIANT_CHECK; TORRENT_ASSERT(packet_size > 0); TORRENT_ASSERT(int(m_recv_buffer.size()) >= size); TORRENT_ASSERT(int(m_recv_buffer.size()) >= m_recv_pos); TORRENT_ASSERT(m_recv_pos >= size + offset); TORRENT_ASSERT(offset >= 0); TORRENT_ASSERT(int(m_recv_buffer.size()) >= m_recv_end); TORRENT_ASSERT(m_recv_start <= m_recv_end); TORRENT_ASSERT(size >= 0); if (offset > 0) { TORRENT_ASSERT(m_recv_start - size <= m_recv_end); if (size > 0) { std::memmove(&m_recv_buffer[0] + m_recv_start + offset , &m_recv_buffer[0] + m_recv_start + offset + size , aux::numeric_cast(m_recv_end - m_recv_start - size - offset)); } m_recv_pos -= size; m_recv_end -= size; #if TORRENT_USE_ASSERTS std::fill(m_recv_buffer.begin() + m_recv_end, m_recv_buffer.end(), std::uint8_t{0xcc}); #endif } else { TORRENT_ASSERT(m_recv_start + size <= m_recv_end); m_recv_start += size; m_recv_pos -= size; } m_packet_size = packet_size; } span receive_buffer::get() const { if (m_recv_buffer.empty()) { TORRENT_ASSERT(m_recv_pos == 0); return {}; } TORRENT_ASSERT(m_recv_start + m_recv_pos <= int(m_recv_buffer.size())); return span(m_recv_buffer).subspan(m_recv_start, m_recv_pos); } #if !defined TORRENT_DISABLE_ENCRYPTION span receive_buffer::mutable_buffer() { INVARIANT_CHECK; return span(m_recv_buffer).subspan(m_recv_start, m_recv_pos); } span receive_buffer::mutable_buffer(int const bytes) { INVARIANT_CHECK; // bytes is the number of bytes we just received, and m_recv_pos has // already been adjusted for these bytes. The receive pos immediately // before we received these bytes was (m_recv_pos - bytes) return span(m_recv_buffer).subspan(m_recv_start + m_recv_pos - bytes, bytes); } #endif // the purpose of this function is to free up and cut off all messages // in the receive buffer that have been parsed and processed. // it may also shrink the size of the buffer allocation if we haven't been using // enough of it lately. void receive_buffer::normalize(int const force_shrink) { INVARIANT_CHECK; TORRENT_ASSERT(m_recv_end >= m_recv_start); m_watermark.add_sample(std::max(m_recv_end, m_packet_size)); // if the running average drops below half of the current buffer size, // reallocate a smaller one. bool const shrink_buffer = std::int64_t(m_recv_buffer.size()) / 2 > m_watermark.mean() && m_watermark.mean() > (m_recv_end - m_recv_start); span bytes_to_shift(m_recv_buffer.data() + m_recv_start , m_recv_end - m_recv_start); if (force_shrink) { int const target_size = std::max(std::max(force_shrink , int(bytes_to_shift.size())), m_packet_size); buffer new_buffer(target_size, bytes_to_shift); m_recv_buffer = std::move(new_buffer); } else if (shrink_buffer) { buffer new_buffer(m_watermark.mean(), bytes_to_shift); m_recv_buffer = std::move(new_buffer); } else if (m_recv_end > m_recv_start && m_recv_start > 0) { std::memmove(m_recv_buffer.data(), bytes_to_shift.data() , std::size_t(bytes_to_shift.size())); } m_recv_end -= m_recv_start; m_recv_start = 0; #if TORRENT_USE_ASSERTS std::fill(m_recv_buffer.begin() + m_recv_end, m_recv_buffer.end(), std::uint8_t{0xcc}); #endif } void receive_buffer::reset(int const packet_size) { INVARIANT_CHECK; TORRENT_ASSERT(int(m_recv_buffer.size()) >= m_recv_end); TORRENT_ASSERT(packet_size > 0); if (m_recv_end > m_packet_size) { cut(m_packet_size, packet_size); return; } m_recv_pos = 0; m_recv_start = 0; m_recv_end = 0; m_packet_size = packet_size; } #if !defined TORRENT_DISABLE_ENCRYPTION bool crypto_receive_buffer::packet_finished() const { if (m_recv_pos == INT_MAX) return m_connection_buffer.packet_finished(); else return m_packet_size <= m_recv_pos; } int crypto_receive_buffer::packet_size() const { if (m_recv_pos == INT_MAX) return m_connection_buffer.packet_size(); else return m_packet_size; } int crypto_receive_buffer::pos() const { if (m_recv_pos == INT_MAX) return m_connection_buffer.pos(); else return m_recv_pos; } void crypto_receive_buffer::cut(int size, int packet_size, int offset) { if (m_recv_pos != INT_MAX) { TORRENT_ASSERT(size <= m_recv_pos); m_packet_size = packet_size; packet_size = m_connection_buffer.packet_size() - size; m_recv_pos -= size; } m_connection_buffer.cut(size, packet_size, offset); } void crypto_receive_buffer::reset(int packet_size) { if (m_recv_pos != INT_MAX) { if (m_connection_buffer.m_recv_end > m_packet_size) { cut(m_packet_size, packet_size); return; } m_packet_size = packet_size; packet_size = m_connection_buffer.packet_size() - m_recv_pos; m_recv_pos = 0; } m_connection_buffer.reset(packet_size); } void crypto_receive_buffer::crypto_reset(int packet_size) { TORRENT_ASSERT(packet_finished()); TORRENT_ASSERT(crypto_packet_finished()); TORRENT_ASSERT(m_recv_pos == INT_MAX || m_recv_pos == m_connection_buffer.pos()); TORRENT_ASSERT(m_recv_pos == INT_MAX || m_connection_buffer.pos_at_end()); if (packet_size == 0) { if (m_recv_pos != INT_MAX) m_connection_buffer.cut(0, m_packet_size); m_recv_pos = INT_MAX; } else { if (m_recv_pos == INT_MAX) m_packet_size = m_connection_buffer.packet_size(); m_recv_pos = m_connection_buffer.pos(); TORRENT_ASSERT(m_recv_pos >= 0); m_connection_buffer.cut(0, m_recv_pos + packet_size); } } int crypto_receive_buffer::advance_pos(int bytes) { if (m_recv_pos == INT_MAX) return bytes; int const limit = m_packet_size > m_recv_pos ? m_packet_size - m_recv_pos : m_packet_size; int const sub_transferred = std::min(bytes, limit); m_recv_pos += sub_transferred; m_connection_buffer.cut(0, m_connection_buffer.packet_size() + sub_transferred); return sub_transferred; } span crypto_receive_buffer::get() const { span recv_buffer = m_connection_buffer.get(); if (m_recv_pos < m_connection_buffer.pos()) recv_buffer = recv_buffer.first(m_recv_pos); return recv_buffer; } span crypto_receive_buffer::mutable_buffer( int const bytes) { int const pending_decryption = (m_recv_pos != INT_MAX) ? m_connection_buffer.packet_size() - m_recv_pos : bytes; return m_connection_buffer.mutable_buffer(pending_decryption); } #endif // TORRENT_DISABLE_ENCRYPTION } // namespace libtorrent