/* Copyright (c) 2007-2018, Arvid Norberg All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libtorrent/config.hpp" #include "libtorrent/disk_buffer_pool.hpp" #include "libtorrent/assert.hpp" #include "libtorrent/aux_/session_settings.hpp" #include "libtorrent/io_service.hpp" #include "libtorrent/disk_observer.hpp" #include "libtorrent/platform_util.hpp" // for total_physical_ram #include "libtorrent/disk_interface.hpp" // for default_block_size #include "libtorrent/aux_/disable_warnings_push.hpp" #ifdef TORRENT_BSD #include #endif #ifdef TORRENT_LINUX #include #endif #include "libtorrent/aux_/disable_warnings_pop.hpp" namespace libtorrent { namespace { // this is posted to the network thread void watermark_callback(std::vector> const& cbs) { for (auto const& i : cbs) { std::shared_ptr o = i.lock(); if (o) o->on_disk(); } } } // anonymous namespace disk_buffer_pool::disk_buffer_pool(io_service& ios , std::function const& trigger_trim) : m_in_use(0) , m_max_use(64) , m_low_watermark(std::max(m_max_use - 32, 0)) , m_trigger_cache_trim(trigger_trim) , m_exceeded_max_size(false) , m_ios(ios) { #if TORRENT_USE_ASSERTS m_magic = 0x1337; m_settings_set = false; #endif } disk_buffer_pool::~disk_buffer_pool() { TORRENT_ASSERT(m_magic == 0x1337); #if TORRENT_USE_ASSERTS m_magic = 0; #endif } int disk_buffer_pool::num_to_evict(int const num_needed) { int ret = 0; std::unique_lock l(m_pool_mutex); if (m_exceeded_max_size) ret = m_in_use - std::min(m_low_watermark, m_max_use - int(m_observers.size()) * 2); if (m_in_use + num_needed > m_max_use) ret = std::max(ret, m_in_use + num_needed - m_max_use); if (ret < 0) ret = 0; else if (ret > m_in_use) ret = m_in_use; return ret; } // checks to see if we're no longer exceeding the high watermark, // and if we're in fact below the low watermark. If so, we need to // post the notification messages to the peers that are waiting for // more buffers to received data into void disk_buffer_pool::check_buffer_level(std::unique_lock& l) { TORRENT_ASSERT(l.owns_lock()); if (!m_exceeded_max_size || m_in_use > m_low_watermark) return; m_exceeded_max_size = false; std::vector> cbs; m_observers.swap(cbs); l.unlock(); m_ios.post(std::bind(&watermark_callback, std::move(cbs))); } #if TORRENT_USE_ASSERTS bool disk_buffer_pool::is_disk_buffer(char* buffer , std::unique_lock& l) const { TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(l.owns_lock()); TORRENT_UNUSED(l); #if TORRENT_USE_INVARIANT_CHECKS return m_buffers_in_use.count(buffer) == 1; #else TORRENT_UNUSED(buffer); return true; #endif } bool disk_buffer_pool::is_disk_buffer(char* buffer) const { std::unique_lock l(m_pool_mutex); return is_disk_buffer(buffer, l); } #endif char* disk_buffer_pool::allocate_buffer(char const* category) { std::unique_lock l(m_pool_mutex); return allocate_buffer_impl(l, category); } // we allow allocating more blocks even after we exceed the max size, // but communicate back to the allocator (typically the peer_connection) // that we have exceeded the limit via the out-parameter "exceeded". The // caller is expected to honor this by not allocating any more buffers // until the disk_observer object (passed in as "o") is invoked, indicating // that there's more room in the pool now. This caps the amount of over- // allocation to one block per peer connection. char* disk_buffer_pool::allocate_buffer(bool& exceeded , std::shared_ptr o, char const* category) { std::unique_lock l(m_pool_mutex); char* ret = allocate_buffer_impl(l, category); if (m_exceeded_max_size) { exceeded = true; if (o) m_observers.push_back(o); } return ret; } // this function allocates buffers and // fills in the iovec array with the buffers int disk_buffer_pool::allocate_iovec(span iov) { std::unique_lock l(m_pool_mutex); for (auto& i : iov) { i = { allocate_buffer_impl(l, "pending read"), std::size_t(default_block_size)}; if (i.data() == nullptr) { // uh oh. We failed to allocate the buffer! // we need to roll back and free all the buffers // we've already allocated for (auto j : iov) { if (j.data() == nullptr) break; char* buf = j.data(); TORRENT_ASSERT(is_disk_buffer(buf, l)); remove_buffer_in_use(buf); free_buffer_impl(buf, l); } return -1; } } return 0; } void disk_buffer_pool::free_iovec(span iov) { // TODO: perhaps we should sort the buffers here? std::unique_lock l(m_pool_mutex); for (auto i : iov) { char* buf = i.data(); TORRENT_ASSERT(is_disk_buffer(buf, l)); remove_buffer_in_use(buf); free_buffer_impl(buf, l); } check_buffer_level(l); } char* disk_buffer_pool::allocate_buffer_impl(std::unique_lock& l , char const*) { TORRENT_ASSERT(m_settings_set); TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(l.owns_lock()); TORRENT_UNUSED(l); char* ret = static_cast(std::malloc(default_block_size)); if (ret == nullptr) { m_exceeded_max_size = true; m_trigger_cache_trim(); return nullptr; } ++m_in_use; #if TORRENT_USE_INVARIANT_CHECKS try { TORRENT_ASSERT(m_buffers_in_use.count(ret) == 0); m_buffers_in_use.insert(ret); } catch (...) { free_buffer_impl(ret, l); return nullptr; } #endif if (m_in_use >= m_low_watermark + (m_max_use - m_low_watermark) / 2 && !m_exceeded_max_size) { m_exceeded_max_size = true; m_trigger_cache_trim(); } TORRENT_ASSERT(is_disk_buffer(ret, l)); return ret; } void disk_buffer_pool::free_multiple_buffers(span bufvec) { // sort the pointers in order to maximize cache hits std::sort(bufvec.begin(), bufvec.end()); std::unique_lock l(m_pool_mutex); for (char* buf : bufvec) { TORRENT_ASSERT(is_disk_buffer(buf, l)); remove_buffer_in_use(buf); free_buffer_impl(buf, l); } check_buffer_level(l); } void disk_buffer_pool::free_buffer(char* buf) { std::unique_lock l(m_pool_mutex); TORRENT_ASSERT(is_disk_buffer(buf, l)); remove_buffer_in_use(buf); free_buffer_impl(buf, l); check_buffer_level(l); } void disk_buffer_pool::set_settings(aux::session_settings const& sett) { std::unique_lock l(m_pool_mutex); int const cache_size = sett.get_int(settings_pack::cache_size); if (cache_size < 0) { std::int64_t phys_ram = total_physical_ram(); if (phys_ram == 0) m_max_use = default_int_value(settings_pack::cache_size); else { // this is the logic to calculate the automatic disk cache size // based on the amount of physical RAM. // The more physical RAM, the smaller portion of it is allocated // for the cache. // we take a 40th of everything exceeding 4 GiB // a 30th of everything exceeding 1 GiB // and a 10th of everything below a GiB constexpr std::int64_t gb = 1024 * 1024 * 1024; std::int64_t result = 0; if (phys_ram > 4 * gb) { result += (phys_ram - 4 * gb) / 40; phys_ram = 4 * gb; } if (phys_ram > 1 * gb) { result += (phys_ram - 1 * gb) / 30; phys_ram = 1 * gb; } result += phys_ram / 20; m_max_use = int(result / default_block_size); } #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4127 ) /* warning C4127: conditional expression is constant */ #endif // _MSC_VER if (sizeof(void*) == 4) #ifdef _MSC_VER #pragma warning(pop) #endif // _MSC_VER { // 32 bit builds should capped below 2 GB of memory, even // when more actual ram is available, because we're still // constrained by the 32 bit virtual address space. m_max_use = std::min(2 * 1024 * 1024 * 3 / 4 * 1024 / default_block_size, m_max_use); } } else { m_max_use = cache_size; } m_low_watermark = m_max_use - std::max(16, sett.get_int(settings_pack::max_queued_disk_bytes) / 0x4000); if (m_low_watermark < 0) m_low_watermark = 0; if (m_in_use >= m_max_use && !m_exceeded_max_size) { m_exceeded_max_size = true; m_trigger_cache_trim(); } #if TORRENT_USE_ASSERTS m_settings_set = true; #endif } void disk_buffer_pool::remove_buffer_in_use(char* buf) { TORRENT_UNUSED(buf); #if TORRENT_USE_INVARIANT_CHECKS std::set::iterator i = m_buffers_in_use.find(buf); TORRENT_ASSERT(i != m_buffers_in_use.end()); m_buffers_in_use.erase(i); #endif } void disk_buffer_pool::free_buffer_impl(char* buf, std::unique_lock& l) { TORRENT_ASSERT(buf); TORRENT_ASSERT(m_magic == 0x1337); TORRENT_ASSERT(m_settings_set); TORRENT_ASSERT(l.owns_lock()); TORRENT_UNUSED(l); std::free(buf); --m_in_use; } }