1031 lines
26 KiB
C
1031 lines
26 KiB
C
/***************************************************************************/
|
|
/* */
|
|
/* ftcalc.c */
|
|
/* */
|
|
/* Arithmetic computations (body). */
|
|
/* */
|
|
/* Copyright 1996-2015 by */
|
|
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
|
|
/* */
|
|
/* This file is part of the FreeType project, and may only be used, */
|
|
/* modified, and distributed under the terms of the FreeType project */
|
|
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
|
|
/* this file you indicate that you have read the license and */
|
|
/* understand and accept it fully. */
|
|
/* */
|
|
/***************************************************************************/
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* Support for 1-complement arithmetic has been totally dropped in this */
|
|
/* release. You can still write your own code if you need it. */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* Implementing basic computation routines. */
|
|
/* */
|
|
/* FT_MulDiv(), FT_MulFix(), FT_DivFix(), FT_RoundFix(), FT_CeilFix(), */
|
|
/* and FT_FloorFix() are declared in freetype.h. */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
|
|
#include <ft2build.h>
|
|
#include FT_GLYPH_H
|
|
#include FT_TRIGONOMETRY_H
|
|
#include FT_INTERNAL_CALC_H
|
|
#include FT_INTERNAL_DEBUG_H
|
|
#include FT_INTERNAL_OBJECTS_H
|
|
|
|
|
|
#ifdef FT_MULFIX_ASSEMBLER
|
|
#undef FT_MulFix
|
|
#endif
|
|
|
|
/* we need to emulate a 64-bit data type if a real one isn't available */
|
|
|
|
#ifndef FT_LONG64
|
|
|
|
typedef struct FT_Int64_
|
|
{
|
|
FT_UInt32 lo;
|
|
FT_UInt32 hi;
|
|
|
|
} FT_Int64;
|
|
|
|
#endif /* !FT_LONG64 */
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* The macro FT_COMPONENT is used in trace mode. It is an implicit */
|
|
/* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
|
|
/* messages during execution. */
|
|
/* */
|
|
#undef FT_COMPONENT
|
|
#define FT_COMPONENT trace_calc
|
|
|
|
|
|
/* transfer sign leaving a positive number */
|
|
#define FT_MOVE_SIGN( x, s ) \
|
|
FT_BEGIN_STMNT \
|
|
if ( x < 0 ) \
|
|
{ \
|
|
x = -x; \
|
|
s = -s; \
|
|
} \
|
|
FT_END_STMNT
|
|
|
|
/* The following three functions are available regardless of whether */
|
|
/* FT_LONG64 is defined. */
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Fixed )
|
|
FT_RoundFix( FT_Fixed a )
|
|
{
|
|
return a >= 0 ? ( a + 0x8000L ) & ~0xFFFFL
|
|
: -((-a + 0x8000L ) & ~0xFFFFL );
|
|
}
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Fixed )
|
|
FT_CeilFix( FT_Fixed a )
|
|
{
|
|
return a >= 0 ? ( a + 0xFFFFL ) & ~0xFFFFL
|
|
: -((-a + 0xFFFFL ) & ~0xFFFFL );
|
|
}
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Fixed )
|
|
FT_FloorFix( FT_Fixed a )
|
|
{
|
|
return a >= 0 ? a & ~0xFFFFL
|
|
: -((-a) & ~0xFFFFL );
|
|
}
|
|
|
|
#ifndef FT_MSB
|
|
|
|
FT_BASE_DEF ( FT_Int )
|
|
FT_MSB( FT_UInt32 z )
|
|
{
|
|
FT_Int shift = 0;
|
|
|
|
|
|
/* determine msb bit index in `shift' */
|
|
if ( z & 0xFFFF0000UL )
|
|
{
|
|
z >>= 16;
|
|
shift += 16;
|
|
}
|
|
if ( z & 0x0000FF00UL )
|
|
{
|
|
z >>= 8;
|
|
shift += 8;
|
|
}
|
|
if ( z & 0x000000F0UL )
|
|
{
|
|
z >>= 4;
|
|
shift += 4;
|
|
}
|
|
if ( z & 0x0000000CUL )
|
|
{
|
|
z >>= 2;
|
|
shift += 2;
|
|
}
|
|
if ( z & 0x00000002UL )
|
|
{
|
|
/* z >>= 1; */
|
|
shift += 1;
|
|
}
|
|
|
|
return shift;
|
|
}
|
|
|
|
#endif /* !FT_MSB */
|
|
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_BASE_DEF( FT_Fixed )
|
|
FT_Hypot( FT_Fixed x,
|
|
FT_Fixed y )
|
|
{
|
|
FT_Vector v;
|
|
|
|
|
|
v.x = x;
|
|
v.y = y;
|
|
|
|
return FT_Vector_Length( &v );
|
|
}
|
|
|
|
|
|
#ifdef FT_LONG64
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Long )
|
|
FT_MulDiv( FT_Long a_,
|
|
FT_Long b_,
|
|
FT_Long c_ )
|
|
{
|
|
FT_Int s = 1;
|
|
FT_UInt64 a, b, c, d;
|
|
FT_Long d_;
|
|
|
|
|
|
FT_MOVE_SIGN( a_, s );
|
|
FT_MOVE_SIGN( b_, s );
|
|
FT_MOVE_SIGN( c_, s );
|
|
|
|
a = (FT_UInt64)a_;
|
|
b = (FT_UInt64)b_;
|
|
c = (FT_UInt64)c_;
|
|
|
|
d = c > 0 ? ( a * b + ( c >> 1 ) ) / c
|
|
: 0x7FFFFFFFUL;
|
|
|
|
d_ = (FT_Long)d;
|
|
|
|
return s < 0 ? -d_ : d_;
|
|
}
|
|
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_BASE_DEF( FT_Long )
|
|
FT_MulDiv_No_Round( FT_Long a_,
|
|
FT_Long b_,
|
|
FT_Long c_ )
|
|
{
|
|
FT_Int s = 1;
|
|
FT_UInt64 a, b, c, d;
|
|
FT_Long d_;
|
|
|
|
|
|
FT_MOVE_SIGN( a_, s );
|
|
FT_MOVE_SIGN( b_, s );
|
|
FT_MOVE_SIGN( c_, s );
|
|
|
|
a = (FT_UInt64)a_;
|
|
b = (FT_UInt64)b_;
|
|
c = (FT_UInt64)c_;
|
|
|
|
d = c > 0 ? a * b / c
|
|
: 0x7FFFFFFFUL;
|
|
|
|
d_ = (FT_Long)d;
|
|
|
|
return s < 0 ? -d_ : d_;
|
|
}
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Long )
|
|
FT_MulFix( FT_Long a_,
|
|
FT_Long b_ )
|
|
{
|
|
#ifdef FT_MULFIX_ASSEMBLER
|
|
|
|
return FT_MULFIX_ASSEMBLER( a_, b_ );
|
|
|
|
#else
|
|
|
|
FT_Int s = 1;
|
|
FT_UInt64 a, b, c;
|
|
FT_Long c_;
|
|
|
|
|
|
FT_MOVE_SIGN( a_, s );
|
|
FT_MOVE_SIGN( b_, s );
|
|
|
|
a = (FT_UInt64)a_;
|
|
b = (FT_UInt64)b_;
|
|
|
|
c = ( a * b + 0x8000UL ) >> 16;
|
|
|
|
c_ = (FT_Long)c;
|
|
|
|
return s < 0 ? -c_ : c_;
|
|
|
|
#endif /* FT_MULFIX_ASSEMBLER */
|
|
}
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Long )
|
|
FT_DivFix( FT_Long a_,
|
|
FT_Long b_ )
|
|
{
|
|
FT_Int s = 1;
|
|
FT_UInt64 a, b, q;
|
|
FT_Long q_;
|
|
|
|
|
|
FT_MOVE_SIGN( a_, s );
|
|
FT_MOVE_SIGN( b_, s );
|
|
|
|
a = (FT_UInt64)a_;
|
|
b = (FT_UInt64)b_;
|
|
|
|
q = b > 0 ? ( ( a << 16 ) + ( b >> 1 ) ) / b
|
|
: 0x7FFFFFFFUL;
|
|
|
|
q_ = (FT_Long)q;
|
|
|
|
return s < 0 ? -q_ : q_;
|
|
}
|
|
|
|
|
|
#else /* !FT_LONG64 */
|
|
|
|
|
|
static void
|
|
ft_multo64( FT_UInt32 x,
|
|
FT_UInt32 y,
|
|
FT_Int64 *z )
|
|
{
|
|
FT_UInt32 lo1, hi1, lo2, hi2, lo, hi, i1, i2;
|
|
|
|
|
|
lo1 = x & 0x0000FFFFU; hi1 = x >> 16;
|
|
lo2 = y & 0x0000FFFFU; hi2 = y >> 16;
|
|
|
|
lo = lo1 * lo2;
|
|
i1 = lo1 * hi2;
|
|
i2 = lo2 * hi1;
|
|
hi = hi1 * hi2;
|
|
|
|
/* Check carry overflow of i1 + i2 */
|
|
i1 += i2;
|
|
hi += (FT_UInt32)( i1 < i2 ) << 16;
|
|
|
|
hi += i1 >> 16;
|
|
i1 = i1 << 16;
|
|
|
|
/* Check carry overflow of i1 + lo */
|
|
lo += i1;
|
|
hi += ( lo < i1 );
|
|
|
|
z->lo = lo;
|
|
z->hi = hi;
|
|
}
|
|
|
|
|
|
static FT_UInt32
|
|
ft_div64by32( FT_UInt32 hi,
|
|
FT_UInt32 lo,
|
|
FT_UInt32 y )
|
|
{
|
|
FT_UInt32 r, q;
|
|
FT_Int i;
|
|
|
|
|
|
if ( hi >= y )
|
|
return (FT_UInt32)0x7FFFFFFFL;
|
|
|
|
/* We shift as many bits as we can into the high register, perform */
|
|
/* 32-bit division with modulo there, then work through the remaining */
|
|
/* bits with long division. This optimization is especially noticeable */
|
|
/* for smaller dividends that barely use the high register. */
|
|
|
|
i = 31 - FT_MSB( hi );
|
|
r = ( hi << i ) | ( lo >> ( 32 - i ) ); lo <<= i; /* left 64-bit shift */
|
|
q = r / y;
|
|
r -= q * y; /* remainder */
|
|
|
|
i = 32 - i; /* bits remaining in low register */
|
|
do
|
|
{
|
|
q <<= 1;
|
|
r = ( r << 1 ) | ( lo >> 31 ); lo <<= 1;
|
|
|
|
if ( r >= y )
|
|
{
|
|
r -= y;
|
|
q |= 1;
|
|
}
|
|
} while ( --i );
|
|
|
|
return q;
|
|
}
|
|
|
|
|
|
static void
|
|
FT_Add64( FT_Int64* x,
|
|
FT_Int64* y,
|
|
FT_Int64 *z )
|
|
{
|
|
FT_UInt32 lo, hi;
|
|
|
|
|
|
lo = x->lo + y->lo;
|
|
hi = x->hi + y->hi + ( lo < x->lo );
|
|
|
|
z->lo = lo;
|
|
z->hi = hi;
|
|
}
|
|
|
|
|
|
/* The FT_MulDiv function has been optimized thanks to ideas from */
|
|
/* Graham Asher and Alexei Podtelezhnikov. The trick is to optimize */
|
|
/* a rather common case when everything fits within 32-bits. */
|
|
/* */
|
|
/* We compute 'a*b+c/2', then divide it by 'c' (all positive values). */
|
|
/* */
|
|
/* The product of two positive numbers never exceeds the square of */
|
|
/* its mean values. Therefore, we always avoid the overflow by */
|
|
/* imposing */
|
|
/* */
|
|
/* (a + b) / 2 <= sqrt(X - c/2) , */
|
|
/* */
|
|
/* where X = 2^32 - 1, the maximum unsigned 32-bit value, and using */
|
|
/* unsigned arithmetic. Now we replace `sqrt' with a linear function */
|
|
/* that is smaller or equal for all values of c in the interval */
|
|
/* [0;X/2]; it should be equal to sqrt(X) and sqrt(3X/4) at the */
|
|
/* endpoints. Substituting the linear solution and explicit numbers */
|
|
/* we get */
|
|
/* */
|
|
/* a + b <= 131071.99 - c / 122291.84 . */
|
|
/* */
|
|
/* In practice, we should use a faster and even stronger inequality */
|
|
/* */
|
|
/* a + b <= 131071 - (c >> 16) */
|
|
/* */
|
|
/* or, alternatively, */
|
|
/* */
|
|
/* a + b <= 129894 - (c >> 17) . */
|
|
/* */
|
|
/* FT_MulFix, on the other hand, is optimized for a small value of */
|
|
/* the first argument, when the second argument can be much larger. */
|
|
/* This can be achieved by scaling the second argument and the limit */
|
|
/* in the above inequalities. For example, */
|
|
/* */
|
|
/* a + (b >> 8) <= (131071 >> 4) */
|
|
/* */
|
|
/* covers the practical range of use. The actual test below is a bit */
|
|
/* tighter to avoid the border case overflows. */
|
|
/* */
|
|
/* In the case of FT_DivFix, the exact overflow check */
|
|
/* */
|
|
/* a << 16 <= X - c/2 */
|
|
/* */
|
|
/* is scaled down by 2^16 and we use */
|
|
/* */
|
|
/* a <= 65535 - (c >> 17) . */
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Long )
|
|
FT_MulDiv( FT_Long a_,
|
|
FT_Long b_,
|
|
FT_Long c_ )
|
|
{
|
|
FT_Int s = 1;
|
|
FT_UInt32 a, b, c;
|
|
|
|
|
|
/* XXX: this function does not allow 64-bit arguments */
|
|
|
|
if ( a_ == 0 || b_ == c_ )
|
|
return a_;
|
|
|
|
FT_MOVE_SIGN( a_, s );
|
|
FT_MOVE_SIGN( b_, s );
|
|
FT_MOVE_SIGN( c_, s );
|
|
|
|
a = (FT_UInt32)a_;
|
|
b = (FT_UInt32)b_;
|
|
c = (FT_UInt32)c_;
|
|
|
|
if ( c == 0 )
|
|
a = 0x7FFFFFFFUL;
|
|
|
|
else if ( a + b <= 129894UL - ( c >> 17 ) )
|
|
a = ( a * b + ( c >> 1 ) ) / c;
|
|
|
|
else
|
|
{
|
|
FT_Int64 temp, temp2;
|
|
|
|
|
|
ft_multo64( a, b, &temp );
|
|
|
|
temp2.hi = 0;
|
|
temp2.lo = c >> 1;
|
|
|
|
FT_Add64( &temp, &temp2, &temp );
|
|
|
|
/* last attempt to ditch long division */
|
|
a = temp.hi == 0 ? temp.lo / c
|
|
: ft_div64by32( temp.hi, temp.lo, c );
|
|
}
|
|
|
|
a_ = (FT_Long)a;
|
|
|
|
return s < 0 ? -a_ : a_;
|
|
}
|
|
|
|
|
|
FT_BASE_DEF( FT_Long )
|
|
FT_MulDiv_No_Round( FT_Long a_,
|
|
FT_Long b_,
|
|
FT_Long c_ )
|
|
{
|
|
FT_Int s = 1;
|
|
FT_UInt32 a, b, c;
|
|
|
|
|
|
/* XXX: this function does not allow 64-bit arguments */
|
|
|
|
if ( a_ == 0 || b_ == c_ )
|
|
return a_;
|
|
|
|
FT_MOVE_SIGN( a_, s );
|
|
FT_MOVE_SIGN( b_, s );
|
|
FT_MOVE_SIGN( c_, s );
|
|
|
|
a = (FT_UInt32)a_;
|
|
b = (FT_UInt32)b_;
|
|
c = (FT_UInt32)c_;
|
|
|
|
if ( c == 0 )
|
|
a = 0x7FFFFFFFUL;
|
|
|
|
else if ( a + b <= 131071UL )
|
|
a = a * b / c;
|
|
|
|
else
|
|
{
|
|
FT_Int64 temp;
|
|
|
|
|
|
ft_multo64( a, b, &temp );
|
|
|
|
/* last attempt to ditch long division */
|
|
a = temp.hi == 0 ? temp.lo / c
|
|
: ft_div64by32( temp.hi, temp.lo, c );
|
|
}
|
|
|
|
a_ = (FT_Long)a;
|
|
|
|
return s < 0 ? -a_ : a_;
|
|
}
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Long )
|
|
FT_MulFix( FT_Long a_,
|
|
FT_Long b_ )
|
|
{
|
|
#ifdef FT_MULFIX_ASSEMBLER
|
|
|
|
return FT_MULFIX_ASSEMBLER( a_, b_ );
|
|
|
|
#elif 0
|
|
|
|
/*
|
|
* This code is nonportable. See comment below.
|
|
*
|
|
* However, on a platform where right-shift of a signed quantity fills
|
|
* the leftmost bits by copying the sign bit, it might be faster.
|
|
*/
|
|
|
|
FT_Long sa, sb;
|
|
FT_UInt32 a, b;
|
|
|
|
|
|
if ( a_ == 0 || b_ == 0x10000L )
|
|
return a_;
|
|
|
|
/*
|
|
* This is a clever way of converting a signed number `a' into its
|
|
* absolute value (stored back into `a') and its sign. The sign is
|
|
* stored in `sa'; 0 means `a' was positive or zero, and -1 means `a'
|
|
* was negative. (Similarly for `b' and `sb').
|
|
*
|
|
* Unfortunately, it doesn't work (at least not portably).
|
|
*
|
|
* It makes the assumption that right-shift on a negative signed value
|
|
* fills the leftmost bits by copying the sign bit. This is wrong.
|
|
* According to K&R 2nd ed, section `A7.8 Shift Operators' on page 206,
|
|
* the result of right-shift of a negative signed value is
|
|
* implementation-defined. At least one implementation fills the
|
|
* leftmost bits with 0s (i.e., it is exactly the same as an unsigned
|
|
* right shift). This means that when `a' is negative, `sa' ends up
|
|
* with the value 1 rather than -1. After that, everything else goes
|
|
* wrong.
|
|
*/
|
|
sa = ( a_ >> ( sizeof ( a_ ) * 8 - 1 ) );
|
|
a = ( a_ ^ sa ) - sa;
|
|
sb = ( b_ >> ( sizeof ( b_ ) * 8 - 1 ) );
|
|
b = ( b_ ^ sb ) - sb;
|
|
|
|
a = (FT_UInt32)a_;
|
|
b = (FT_UInt32)b_;
|
|
|
|
if ( a + ( b >> 8 ) <= 8190UL )
|
|
a = ( a * b + 0x8000U ) >> 16;
|
|
else
|
|
{
|
|
FT_UInt32 al = a & 0xFFFFUL;
|
|
|
|
|
|
a = ( a >> 16 ) * b + al * ( b >> 16 ) +
|
|
( ( al * ( b & 0xFFFFUL ) + 0x8000UL ) >> 16 );
|
|
}
|
|
|
|
sa ^= sb;
|
|
a = ( a ^ sa ) - sa;
|
|
|
|
return (FT_Long)a;
|
|
|
|
#else /* 0 */
|
|
|
|
FT_Int s = 1;
|
|
FT_UInt32 a, b;
|
|
|
|
|
|
/* XXX: this function does not allow 64-bit arguments */
|
|
|
|
if ( a_ == 0 || b_ == 0x10000L )
|
|
return a_;
|
|
|
|
FT_MOVE_SIGN( a_, s );
|
|
FT_MOVE_SIGN( b_, s );
|
|
|
|
a = (FT_UInt32)a_;
|
|
b = (FT_UInt32)b_;
|
|
|
|
if ( a + ( b >> 8 ) <= 8190UL )
|
|
a = ( a * b + 0x8000UL ) >> 16;
|
|
else
|
|
{
|
|
FT_UInt32 al = a & 0xFFFFUL;
|
|
|
|
|
|
a = ( a >> 16 ) * b + al * ( b >> 16 ) +
|
|
( ( al * ( b & 0xFFFFUL ) + 0x8000UL ) >> 16 );
|
|
}
|
|
|
|
a_ = (FT_Long)a;
|
|
|
|
return s < 0 ? -a_ : a_;
|
|
|
|
#endif /* 0 */
|
|
|
|
}
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Long )
|
|
FT_DivFix( FT_Long a_,
|
|
FT_Long b_ )
|
|
{
|
|
FT_Int s = 1;
|
|
FT_UInt32 a, b, q;
|
|
FT_Long q_;
|
|
|
|
|
|
/* XXX: this function does not allow 64-bit arguments */
|
|
|
|
FT_MOVE_SIGN( a_, s );
|
|
FT_MOVE_SIGN( b_, s );
|
|
|
|
a = (FT_UInt32)a_;
|
|
b = (FT_UInt32)b_;
|
|
|
|
if ( b == 0 )
|
|
{
|
|
/* check for division by 0 */
|
|
q = 0x7FFFFFFFUL;
|
|
}
|
|
else if ( a <= 65535UL - ( b >> 17 ) )
|
|
{
|
|
/* compute result directly */
|
|
q = ( ( a << 16 ) + ( b >> 1 ) ) / b;
|
|
}
|
|
else
|
|
{
|
|
/* we need more bits; we have to do it by hand */
|
|
FT_Int64 temp, temp2;
|
|
|
|
|
|
temp.hi = a >> 16;
|
|
temp.lo = a << 16;
|
|
temp2.hi = 0;
|
|
temp2.lo = b >> 1;
|
|
|
|
FT_Add64( &temp, &temp2, &temp );
|
|
q = ft_div64by32( temp.hi, temp.lo, b );
|
|
}
|
|
|
|
q_ = (FT_Long)q;
|
|
|
|
return s < 0 ? -q_ : q_;
|
|
}
|
|
|
|
|
|
#endif /* !FT_LONG64 */
|
|
|
|
|
|
/* documentation is in ftglyph.h */
|
|
|
|
FT_EXPORT_DEF( void )
|
|
FT_Matrix_Multiply( const FT_Matrix* a,
|
|
FT_Matrix *b )
|
|
{
|
|
FT_Fixed xx, xy, yx, yy;
|
|
|
|
|
|
if ( !a || !b )
|
|
return;
|
|
|
|
xx = FT_MulFix( a->xx, b->xx ) + FT_MulFix( a->xy, b->yx );
|
|
xy = FT_MulFix( a->xx, b->xy ) + FT_MulFix( a->xy, b->yy );
|
|
yx = FT_MulFix( a->yx, b->xx ) + FT_MulFix( a->yy, b->yx );
|
|
yy = FT_MulFix( a->yx, b->xy ) + FT_MulFix( a->yy, b->yy );
|
|
|
|
b->xx = xx; b->xy = xy;
|
|
b->yx = yx; b->yy = yy;
|
|
}
|
|
|
|
|
|
/* documentation is in ftglyph.h */
|
|
|
|
FT_EXPORT_DEF( FT_Error )
|
|
FT_Matrix_Invert( FT_Matrix* matrix )
|
|
{
|
|
FT_Pos delta, xx, yy;
|
|
|
|
|
|
if ( !matrix )
|
|
return FT_THROW( Invalid_Argument );
|
|
|
|
/* compute discriminant */
|
|
delta = FT_MulFix( matrix->xx, matrix->yy ) -
|
|
FT_MulFix( matrix->xy, matrix->yx );
|
|
|
|
if ( !delta )
|
|
return FT_THROW( Invalid_Argument ); /* matrix can't be inverted */
|
|
|
|
matrix->xy = - FT_DivFix( matrix->xy, delta );
|
|
matrix->yx = - FT_DivFix( matrix->yx, delta );
|
|
|
|
xx = matrix->xx;
|
|
yy = matrix->yy;
|
|
|
|
matrix->xx = FT_DivFix( yy, delta );
|
|
matrix->yy = FT_DivFix( xx, delta );
|
|
|
|
return FT_Err_Ok;
|
|
}
|
|
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_BASE_DEF( void )
|
|
FT_Matrix_Multiply_Scaled( const FT_Matrix* a,
|
|
FT_Matrix *b,
|
|
FT_Long scaling )
|
|
{
|
|
FT_Fixed xx, xy, yx, yy;
|
|
|
|
FT_Long val = 0x10000L * scaling;
|
|
|
|
|
|
if ( !a || !b )
|
|
return;
|
|
|
|
xx = FT_MulDiv( a->xx, b->xx, val ) + FT_MulDiv( a->xy, b->yx, val );
|
|
xy = FT_MulDiv( a->xx, b->xy, val ) + FT_MulDiv( a->xy, b->yy, val );
|
|
yx = FT_MulDiv( a->yx, b->xx, val ) + FT_MulDiv( a->yy, b->yx, val );
|
|
yy = FT_MulDiv( a->yx, b->xy, val ) + FT_MulDiv( a->yy, b->yy, val );
|
|
|
|
b->xx = xx; b->xy = xy;
|
|
b->yx = yx; b->yy = yy;
|
|
}
|
|
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_BASE_DEF( void )
|
|
FT_Vector_Transform_Scaled( FT_Vector* vector,
|
|
const FT_Matrix* matrix,
|
|
FT_Long scaling )
|
|
{
|
|
FT_Pos xz, yz;
|
|
|
|
FT_Long val = 0x10000L * scaling;
|
|
|
|
|
|
if ( !vector || !matrix )
|
|
return;
|
|
|
|
xz = FT_MulDiv( vector->x, matrix->xx, val ) +
|
|
FT_MulDiv( vector->y, matrix->xy, val );
|
|
|
|
yz = FT_MulDiv( vector->x, matrix->yx, val ) +
|
|
FT_MulDiv( vector->y, matrix->yy, val );
|
|
|
|
vector->x = xz;
|
|
vector->y = yz;
|
|
}
|
|
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_BASE_DEF( FT_UInt32 )
|
|
FT_Vector_NormLen( FT_Vector* vector )
|
|
{
|
|
FT_Int32 x_ = vector->x;
|
|
FT_Int32 y_ = vector->y;
|
|
FT_Int32 b, z;
|
|
FT_UInt32 x, y, u, v, l;
|
|
FT_Int sx = 1, sy = 1, shift;
|
|
|
|
|
|
FT_MOVE_SIGN( x_, sx );
|
|
FT_MOVE_SIGN( y_, sy );
|
|
|
|
x = (FT_UInt32)x_;
|
|
y = (FT_UInt32)y_;
|
|
|
|
/* trivial cases */
|
|
if ( x == 0 )
|
|
{
|
|
if ( y > 0 )
|
|
vector->y = sy * 0x10000;
|
|
return y;
|
|
}
|
|
else if ( y == 0 )
|
|
{
|
|
if ( x > 0 )
|
|
vector->x = sx * 0x10000;
|
|
return x;
|
|
}
|
|
|
|
/* Estimate length and prenormalize by shifting so that */
|
|
/* the new approximate length is between 2/3 and 4/3. */
|
|
/* The magic constant 0xAAAAAAAAUL (2/3 of 2^32) helps */
|
|
/* achieve this in 16.16 fixed-point representation. */
|
|
l = x > y ? x + ( y >> 1 )
|
|
: y + ( x >> 1 );
|
|
|
|
shift = 31 - FT_MSB( l );
|
|
shift -= 15 + ( l >= ( 0xAAAAAAAAUL >> shift ) );
|
|
|
|
if ( shift > 0 )
|
|
{
|
|
x <<= shift;
|
|
y <<= shift;
|
|
|
|
/* re-estimate length for tiny vectors */
|
|
l = x > y ? x + ( y >> 1 )
|
|
: y + ( x >> 1 );
|
|
}
|
|
else
|
|
{
|
|
x >>= -shift;
|
|
y >>= -shift;
|
|
l >>= -shift;
|
|
}
|
|
|
|
/* lower linear approximation for reciprocal length minus one */
|
|
b = 0x10000 - (FT_Int32)l;
|
|
|
|
x_ = (FT_Int32)x;
|
|
y_ = (FT_Int32)y;
|
|
|
|
/* Newton's iterations */
|
|
do
|
|
{
|
|
u = (FT_UInt32)( x_ + ( x_ * b >> 16 ) );
|
|
v = (FT_UInt32)( y_ + ( y_ * b >> 16 ) );
|
|
|
|
/* Normalized squared length in the parentheses approaches 2^32. */
|
|
/* On two's complement systems, converting to signed gives the */
|
|
/* difference with 2^32 even if the expression wraps around. */
|
|
z = -(FT_Int32)( u * u + v * v ) / 0x200;
|
|
z = z * ( ( 0x10000 + b ) >> 8 ) / 0x10000;
|
|
|
|
b += z;
|
|
|
|
} while ( z > 0 );
|
|
|
|
vector->x = sx < 0 ? -(FT_Pos)u : (FT_Pos)u;
|
|
vector->y = sy < 0 ? -(FT_Pos)v : (FT_Pos)v;
|
|
|
|
/* Conversion to signed helps to recover from likely wrap around */
|
|
/* in calculating the prenormalized length, because it gives the */
|
|
/* correct difference with 2^32 on two's complement systems. */
|
|
l = (FT_UInt32)( 0x10000 + (FT_Int32)( u * x + v * y ) / 0x10000 );
|
|
if ( shift > 0 )
|
|
l = ( l + ( 1 << ( shift - 1 ) ) ) >> shift;
|
|
else
|
|
l <<= -shift;
|
|
|
|
return l;
|
|
}
|
|
|
|
|
|
#if 0
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_BASE_DEF( FT_Int32 )
|
|
FT_SqrtFixed( FT_Int32 x )
|
|
{
|
|
FT_UInt32 root, rem_hi, rem_lo, test_div;
|
|
FT_Int count;
|
|
|
|
|
|
root = 0;
|
|
|
|
if ( x > 0 )
|
|
{
|
|
rem_hi = 0;
|
|
rem_lo = (FT_UInt32)x;
|
|
count = 24;
|
|
do
|
|
{
|
|
rem_hi = ( rem_hi << 2 ) | ( rem_lo >> 30 );
|
|
rem_lo <<= 2;
|
|
root <<= 1;
|
|
test_div = ( root << 1 ) + 1;
|
|
|
|
if ( rem_hi >= test_div )
|
|
{
|
|
rem_hi -= test_div;
|
|
root += 1;
|
|
}
|
|
} while ( --count );
|
|
}
|
|
|
|
return (FT_Int32)root;
|
|
}
|
|
|
|
#endif /* 0 */
|
|
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_BASE_DEF( FT_Int )
|
|
ft_corner_orientation( FT_Pos in_x,
|
|
FT_Pos in_y,
|
|
FT_Pos out_x,
|
|
FT_Pos out_y )
|
|
{
|
|
#ifdef FT_LONG64
|
|
|
|
FT_Int64 delta = (FT_Int64)in_x * out_y - (FT_Int64)in_y * out_x;
|
|
|
|
|
|
return ( delta > 0 ) - ( delta < 0 );
|
|
|
|
#else
|
|
|
|
FT_Int result;
|
|
|
|
|
|
if ( (FT_ULong)FT_ABS( in_x ) + (FT_ULong)FT_ABS( out_y ) <= 131071UL &&
|
|
(FT_ULong)FT_ABS( in_y ) + (FT_ULong)FT_ABS( out_x ) <= 131071UL )
|
|
{
|
|
FT_Long z1 = in_x * out_y;
|
|
FT_Long z2 = in_y * out_x;
|
|
|
|
|
|
if ( z1 > z2 )
|
|
result = +1;
|
|
else if ( z1 < z2 )
|
|
result = -1;
|
|
else
|
|
result = 0;
|
|
}
|
|
else /* products might overflow 32 bits */
|
|
{
|
|
FT_Int64 z1, z2;
|
|
|
|
|
|
/* XXX: this function does not allow 64-bit arguments */
|
|
ft_multo64( (FT_UInt32)in_x, (FT_UInt32)out_y, &z1 );
|
|
ft_multo64( (FT_UInt32)in_y, (FT_UInt32)out_x, &z2 );
|
|
|
|
if ( z1.hi > z2.hi )
|
|
result = +1;
|
|
else if ( z1.hi < z2.hi )
|
|
result = -1;
|
|
else if ( z1.lo > z2.lo )
|
|
result = +1;
|
|
else if ( z1.lo < z2.lo )
|
|
result = -1;
|
|
else
|
|
result = 0;
|
|
}
|
|
|
|
/* XXX: only the sign of return value, +1/0/-1 must be used */
|
|
return result;
|
|
|
|
#endif
|
|
}
|
|
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_BASE_DEF( FT_Int )
|
|
ft_corner_is_flat( FT_Pos in_x,
|
|
FT_Pos in_y,
|
|
FT_Pos out_x,
|
|
FT_Pos out_y )
|
|
{
|
|
FT_Pos ax = in_x + out_x;
|
|
FT_Pos ay = in_y + out_y;
|
|
|
|
FT_Pos d_in, d_out, d_hypot;
|
|
|
|
|
|
/* The idea of this function is to compare the length of the */
|
|
/* hypotenuse with the `in' and `out' length. The `corner' */
|
|
/* represented by `in' and `out' is flat if the hypotenuse's */
|
|
/* length isn't too large. */
|
|
/* */
|
|
/* This approach has the advantage that the angle between */
|
|
/* `in' and `out' is not checked. In case one of the two */
|
|
/* vectors is `dominant', this is, much larger than the */
|
|
/* other vector, we thus always have a flat corner. */
|
|
/* */
|
|
/* hypotenuse */
|
|
/* x---------------------------x */
|
|
/* \ / */
|
|
/* \ / */
|
|
/* in \ / out */
|
|
/* \ / */
|
|
/* o */
|
|
/* Point */
|
|
|
|
d_in = FT_HYPOT( in_x, in_y );
|
|
d_out = FT_HYPOT( out_x, out_y );
|
|
d_hypot = FT_HYPOT( ax, ay );
|
|
|
|
/* now do a simple length comparison: */
|
|
/* */
|
|
/* d_in + d_out < 17/16 d_hypot */
|
|
|
|
return ( d_in + d_out - d_hypot ) < ( d_hypot >> 4 );
|
|
}
|
|
|
|
|
|
/* END */
|