in order to ensure that the bytecode interpretation is exactly
equivalent to the one in FT 1.4, moved some code from the old version of FreeType in order to compute vector normalization a bit differently
This commit is contained in:
parent
48641d60ae
commit
b7ef2b0968
|
@ -825,6 +825,22 @@
|
|||
}
|
||||
|
||||
|
||||
#ifdef FT_CONFIG_OPTION_OLD_CALCS
|
||||
|
||||
static TT_F26Dot6 Norm( TT_F26Dot6 X, TT_F26Dot6 Y )
|
||||
{
|
||||
FT_Int64 T1, T2;
|
||||
|
||||
MUL_64( X, X, T1 );
|
||||
MUL_64( Y, Y, T2 );
|
||||
|
||||
ADD_64( T1, T2, T1 );
|
||||
|
||||
return (TT_F26Dot6)SQRT_64( T1 );
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/*************************************************************************/
|
||||
/* */
|
||||
/* Before an opcode is executed, the interpreter verifies that there are */
|
||||
|
@ -1194,7 +1210,7 @@
|
|||
else
|
||||
{
|
||||
TT_Long x, y;
|
||||
#if 0
|
||||
#ifdef FT_CONFIG_OPTION_OLD_CALCS
|
||||
x = TT_MULDIV( CUR.GS.projVector.x, CUR.tt_metrics.x_ratio, 0x4000 );
|
||||
y = TT_MULDIV( CUR.GS.projVector.y, CUR.tt_metrics.y_ratio, 0x4000 );
|
||||
CUR.tt_metrics.ratio = Norm( x, y );
|
||||
|
@ -2126,6 +2142,98 @@
|
|||
/* In case Vx and Vy are both zero, Normalize() returns SUCCESS, and */
|
||||
/* R is undefined. */
|
||||
/* */
|
||||
|
||||
#ifdef FT_CONFIG_OPTION_OLD_CALCS
|
||||
static TT_Bool Normalize( EXEC_OP_ TT_F26Dot6 Vx,
|
||||
TT_F26Dot6 Vy,
|
||||
TT_UnitVector* R )
|
||||
{
|
||||
TT_F26Dot6 W;
|
||||
TT_Bool S1, S2;
|
||||
|
||||
if ( ABS( Vx ) < 0x10000L && ABS( Vy ) < 0x10000L )
|
||||
{
|
||||
Vx *= 0x100;
|
||||
Vy *= 0x100;
|
||||
|
||||
W = Norm( Vx, Vy );
|
||||
|
||||
if ( W == 0 )
|
||||
{
|
||||
/* XXX : UNDOCUMENTED! It seems that it's possible to try */
|
||||
/* to normalize the vector (0,0). Return immediately */
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
R->x = (TT_F2Dot14)FT_MulDiv( Vx, 0x4000L, W );
|
||||
R->y = (TT_F2Dot14)FT_MulDiv( Vy, 0x4000L, W );
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
W = Norm( Vx, Vy );
|
||||
|
||||
Vx = FT_MulDiv( Vx, 0x4000L, W );
|
||||
Vy = FT_MulDiv( Vy, 0x4000L, W );
|
||||
|
||||
W = Vx * Vx + Vy * Vy;
|
||||
|
||||
/* Now, we want that Sqrt( W ) = 0x4000 */
|
||||
/* Or 0x1000000 <= W < 0x1004000 */
|
||||
|
||||
if ( Vx < 0 )
|
||||
{
|
||||
Vx = -Vx;
|
||||
S1 = TRUE;
|
||||
}
|
||||
else
|
||||
S1 = FALSE;
|
||||
|
||||
if ( Vy < 0 )
|
||||
{
|
||||
Vy = -Vy;
|
||||
S2 = TRUE;
|
||||
}
|
||||
else
|
||||
S2 = FALSE;
|
||||
|
||||
while ( W < 0x1000000L )
|
||||
{
|
||||
/* We need to increase W, by a minimal amount */
|
||||
if ( Vx < Vy )
|
||||
Vx++;
|
||||
else
|
||||
Vy++;
|
||||
|
||||
W = Vx * Vx + Vy * Vy;
|
||||
}
|
||||
|
||||
while ( W >= 0x1004000L )
|
||||
{
|
||||
/* We need to decrease W, by a minimal amount */
|
||||
if ( Vx < Vy )
|
||||
Vx--;
|
||||
else
|
||||
Vy--;
|
||||
|
||||
W = Vx * Vx + Vy * Vy;
|
||||
}
|
||||
|
||||
/* Note that in various cases, we can only */
|
||||
/* compute a Sqrt(W) of 0x3FFF, eg. Vx = Vy */
|
||||
|
||||
if ( S1 )
|
||||
Vx = -Vx;
|
||||
|
||||
if ( S2 )
|
||||
Vy = -Vy;
|
||||
|
||||
R->x = (TT_F2Dot14)Vx; /* Type conversion */
|
||||
R->y = (TT_F2Dot14)Vy; /* Type conversion */
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
#else
|
||||
static
|
||||
TT_Bool Normalize( EXEC_OP_ TT_F26Dot6 Vx,
|
||||
TT_F26Dot6 Vy,
|
||||
|
@ -2203,9 +2311,42 @@
|
|||
R->y = (TT_F2Dot14)TT_MULDIV( Vy >> shift, 0x4000, d );
|
||||
}
|
||||
|
||||
{
|
||||
TT_ULong x, y, w;
|
||||
TT_Int sx, sy;
|
||||
|
||||
sx = ( R->x >= 0 ? 1 : -1 );
|
||||
sy = ( R->y >= 0 ? 1 : -1 );
|
||||
x = (TT_ULong)sx*R->x;
|
||||
y = (TT_ULong)sy*R->y;
|
||||
|
||||
w = x*x+y*y;
|
||||
|
||||
/* we now want to adjust (x,y) in order to have sqrt(w) == 0x4000 */
|
||||
/* which means 0x1000000 <= w < 0x1004000 */
|
||||
while ( w <= 0x10000000L )
|
||||
{
|
||||
/* increment the smallest coordinate */
|
||||
if ( x < y ) x++;
|
||||
else y++;
|
||||
|
||||
w = x*x+y*y;
|
||||
}
|
||||
|
||||
while ( w >= 0x10040000L )
|
||||
{
|
||||
/* decrement the smallest coordinate */
|
||||
if ( x < y ) x--;
|
||||
else y--;
|
||||
w = x*x+y*y;
|
||||
}
|
||||
|
||||
R->x = sx*x;
|
||||
R->y = sy*y;
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/*************************************************************************/
|
||||
/* */
|
||||
|
|
Loading…
Reference in New Issue