From 81e32986ca6dd4bc6bba6cccaa0738020ee10d3c Mon Sep 17 00:00:00 2001 From: Anuj Verma Date: Tue, 18 Aug 2020 17:49:56 +0530 Subject: [PATCH] [sdf] Add shortest distance finding functions. * src/sdf/ftsdf.c (get_min_distance_line, get_min_distance_conic, get_min_distance_cubic): New functions. Note that `get_min_distance_conic` comes with two implementations (using an analytical and an iterative method, to be controlled with the `USE_NEWTON_FOR_CONIC` macro). --- ChangeLog | 10 + src/sdf/ftsdf.c | 1082 ++++++++++++++++++++++++++++++++++++++++++++++- 2 files changed, 1091 insertions(+), 1 deletion(-) diff --git a/ChangeLog b/ChangeLog index c64b5f16e..60fad2f9e 100644 --- a/ChangeLog +++ b/ChangeLog @@ -1,3 +1,13 @@ +2020-08-18 Anuj Verma + + [sdf] Add shortest distance finding functions. + + * src/sdf/ftsdf.c (get_min_distance_line, get_min_distance_conic, + get_min_distance_cubic): New functions. Note that + `get_min_distance_conic` comes with two implementations (using an + analytical and an iterative method, to be controlled with the + `USE_NEWTON_FOR_CONIC` macro). + 2020-08-18 Anuj Verma [sdf] Add function to resolve corner distances. diff --git a/src/sdf/ftsdf.c b/src/sdf/ftsdf.c index 251215530..9f7f57d82 100644 --- a/src/sdf/ftsdf.c +++ b/src/sdf/ftsdf.c @@ -1631,7 +1631,7 @@ * * The orthogonality is simply the sinus of the two vectors (i.e., * x - o) and the corresponding direction. We efficiently pre-compute - * the orthogonality with the corresponding `get_min_distance_` + * the orthogonality with the corresponding `get_min_distance_*` * functions. * * @Input: @@ -1660,4 +1660,1084 @@ return FT_ABS( sdf1.cross ) > FT_ABS( sdf2.cross ) ? sdf1 : sdf2; } + + /************************************************************************** + * + * @Function: + * get_min_distance_line + * + * @Description: + * Find the shortest distance from the `line` segment to a given `point` + * and assign it to `out`. Use it for line segments only. + * + * @Input: + * line :: + * The line segment to which the shortest distance is to be computed. + * + * point :: + * Point from which the shortest distance is to be computed. + * + * @Output: + * out :: + * Signed distance from `point` to `line`. + * + * @Return: + * FreeType error, 0 means success. + * + * @Note: + * The `line' parameter must have an edge type of `SDF_EDGE_LINE`. + * + */ + static FT_Error + get_min_distance_line( SDF_Edge* line, + FT_26D6_Vec point, + SDF_Signed_Distance* out ) + { + /* + * In order to calculate the shortest distance from a point to + * a line segment, we do the following. Let's assume that + * + * ``` + * a = start point of the line segment + * b = end point of the line segment + * p = point from which shortest distance is to be calculated + * ``` + * + * (1) Write the parametric equation of the line. + * + * ``` + * point_on_line = a + (b - a) * t (t is the factor) + * ``` + * + * (2) Find the projection of point `p` on the line. The projection + * will be perpendicular to the line, which allows us to get the + * solution by making the dot product zero. + * + * ``` + * (point_on_line - a) . (p - point_on_line) = 0 + * + * (point_on_line) + * (a) x-------o----------------x (b) + * |_| + * | + * | + * (p) + * ``` + * + * (3) Simplification of the above equation yields the factor of + * `point_on_line`: + * + * ``` + * t = ((p - a) . (b - a)) / |b - a|^2 + * ``` + * + * (4) We clamp factor `t` between [0.0f, 1.0f] because `point_on_line` + * can be outside of the line segment: + * + * ``` + * (point_on_line) + * (a) x------------------------x (b) -----o--- + * |_| + * | + * | + * (p) + * ``` + * + * (5) Finally, the distance we are interested in is + * + * ``` + * |point_on_line - p| + * ``` + */ + + FT_Error error = FT_Err_Ok; + + FT_Vector a; /* start position */ + FT_Vector b; /* end position */ + FT_Vector p; /* current point */ + + FT_26D6_Vec line_segment; /* `b` - `a` */ + FT_26D6_Vec p_sub_a; /* `p` - `a` */ + + FT_26D6 sq_line_length; /* squared length of `line_segment` */ + FT_16D16 factor; /* factor of the nearest point */ + FT_26D6 cross; /* used to determine sign */ + + FT_16D16_Vec nearest_point; /* `point_on_line` */ + FT_16D16_Vec nearest_vector; /* `p` - `nearest_point` */ + + + if ( !line || !out ) + { + error = FT_THROW( Invalid_Argument ); + goto Exit; + } + + if ( line->edge_type != SDF_EDGE_LINE ) + { + error = FT_THROW( Invalid_Argument ); + goto Exit; + } + + a = line->start_pos; + b = line->end_pos; + p = point; + + line_segment.x = b.x - a.x; + line_segment.y = b.y - a.y; + + p_sub_a.x = p.x - a.x; + p_sub_a.y = p.y - a.y; + + sq_line_length = ( line_segment.x * line_segment.x ) / 64 + + ( line_segment.y * line_segment.y ) / 64; + + /* currently factor is 26.6 */ + factor = ( p_sub_a.x * line_segment.x ) / 64 + + ( p_sub_a.y * line_segment.y ) / 64; + + /* now factor is 16.16 */ + factor = FT_DivFix( factor, sq_line_length ); + + /* clamp the factor between 0.0 and 1.0 in fixed point */ + if ( factor > FT_INT_16D16( 1 ) ) + factor = FT_INT_16D16( 1 ); + if ( factor < 0 ) + factor = 0; + + nearest_point.x = FT_MulFix( FT_26D6_16D16( line_segment.x ), + factor ); + nearest_point.y = FT_MulFix( FT_26D6_16D16( line_segment.y ), + factor ); + + nearest_point.x = FT_26D6_16D16( a.x ) + nearest_point.x; + nearest_point.y = FT_26D6_16D16( a.y ) + nearest_point.y; + + nearest_vector.x = nearest_point.x - FT_26D6_16D16( p.x ); + nearest_vector.y = nearest_point.y - FT_26D6_16D16( p.y ); + + cross = FT_MulFix( nearest_vector.x, line_segment.y ) - + FT_MulFix( nearest_vector.y, line_segment.x ); + + /* assign the output */ + out->sign = cross < 0 ? 1 : -1; + out->distance = VECTOR_LENGTH_16D16( nearest_vector ); + + /* Instead of finding `cross` for checking corner we */ + /* directly set it here. This is more efficient */ + /* because if the distance is perpendicular we can */ + /* directly set it to 1. */ + if ( factor != 0 && factor != FT_INT_16D16( 1 ) ) + out->cross = FT_INT_16D16( 1 ); + else + { + /* [OPTIMIZATION]: Pre-compute this direction. */ + /* If not perpendicular then compute `cross`. */ + FT_Vector_NormLen( &line_segment ); + FT_Vector_NormLen( &nearest_vector ); + + out->cross = FT_MulFix( line_segment.x, nearest_vector.y ) - + FT_MulFix( line_segment.y, nearest_vector.x ); + } + + Exit: + return error; + } + + + /************************************************************************** + * + * @Function: + * get_min_distance_conic + * + * @Description: + * Find the shortest distance from the `conic` Bezier curve to a given + * `point` and assign it to `out`. Use it for conic/quadratic curves + * only. + * + * @Input: + * conic :: + * The conic Bezier curve to which the shortest distance is to be + * computed. + * + * point :: + * Point from which the shortest distance is to be computed. + * + * @Output: + * out :: + * Signed distance from `point` to `conic`. + * + * @Return: + * FreeType error, 0 means success. + * + * @Note: + * The `conic` parameter must have an edge type of `SDF_EDGE_CONIC`. + * + */ + +#if !USE_NEWTON_FOR_CONIC + + /* + * The function uses an analytical method to find the shortest distance + * which is faster than the Newton-Raphson method, but has underflows at + * the moment. Use Newton's method if you can see artifacts in the SDF. + */ + static FT_Error + get_min_distance_conic( SDF_Edge* conic, + FT_26D6_Vec point, + SDF_Signed_Distance* out ) + { + /* + * The procedure to find the shortest distance from a point to a + * quadratic Bezier curve is similar to the line segment algorithm. The + * shortest distance is perpendicular to the Bezier curve; the only + * difference from line is that there can be more than one + * perpendicular, and we also have to check the endpoints, because the + * perpendicular may not be the shortest. + * + * Let's assume that + * ``` + * p0 = first endpoint + * p1 = control point + * p2 = second endpoint + * p = point from which shortest distance is to be calculated + * ``` + * + * (1) The equation of a quadratic Bezier curve can be written as + * + * ``` + * B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2 + * ``` + * + * with `t` a factor in the range [0.0f, 1.0f]. This equation can + * be rewritten as + * + * ``` + * B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0 + * ``` + * + * With + * + * ``` + * A = p0 - 2p1 + p2 + * B = p1 - p0 + * ``` + * + * we have + * + * ``` + * B(t) = t^2 * A + 2t * B + p0 + * ``` + * + * (2) The derivative of the last equation above is + * + * ``` + * B'(t) = 2 *(tA + B) + * ``` + * + * (3) To find the shortest distance from `p` to `B(t)` we find the + * point on the curve at which the shortest distance vector (i.e., + * `B(t) - p`) and the direction (i.e., `B'(t)`) make 90 degrees. + * In other words, we make the dot product zero. + * + * ``` + * (B(t) - p) . (B'(t)) = 0 + * (t^2 * A + 2t * B + p0 - p) . (2 * (tA + B)) = 0 + * ``` + * + * After simplifying we get a cubic equation + * + * ``` + * at^3 + bt^2 + ct + d = 0 + * ``` + * + * with + * + * ``` + * a = A.A + * b = 3A.B + * c = 2B.B + A.p0 - A.p + * d = p0.B - p.B + * ``` + * + * (4) Now the roots of the equation can be computed using 'Cardano's + * Cubic formula'; we clamp the roots in the range [0.0f, 1.0f]. + * + * [note]: `B` and `B(t)` are different in the above equations. + */ + + FT_Error error = FT_Err_Ok; + + FT_26D6_Vec aA, bB; /* A, B in the above comment */ + FT_26D6_Vec nearest_point; /* point on curve nearest to `point` */ + FT_26D6_Vec direction; /* direction of curve at `nearest_point` */ + + FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */ + FT_26D6_Vec p; /* `point` to which shortest distance */ + + FT_26D6 a, b, c, d; /* cubic coefficients */ + + FT_16D16 roots[3] = { 0, 0, 0 }; /* real roots of the cubic eq. */ + FT_16D16 min_factor; /* factor at `nearest_point` */ + FT_16D16 cross; /* to determine the sign */ + FT_16D16 min = FT_INT_MAX; /* shortest squared distance */ + + FT_UShort num_roots; /* number of real roots of cubic */ + FT_UShort i; + + + if ( !conic || !out ) + { + error = FT_THROW( Invalid_Argument ); + goto Exit; + } + + if ( conic->edge_type != SDF_EDGE_CONIC ) + { + error = FT_THROW( Invalid_Argument ); + goto Exit; + } + + p0 = conic->start_pos; + p1 = conic->control_a; + p2 = conic->end_pos; + p = point; + + /* compute substitution coefficients */ + aA.x = p0.x - 2 * p1.x + p2.x; + aA.y = p0.y - 2 * p1.y + p2.y; + + bB.x = p1.x - p0.x; + bB.y = p1.y - p0.y; + + /* compute cubic coefficients */ + a = VEC_26D6_DOT( aA, aA ); + + b = 3 * VEC_26D6_DOT( aA, bB ); + + c = 2 * VEC_26D6_DOT( bB, bB ) + + VEC_26D6_DOT( aA, p0 ) - + VEC_26D6_DOT( aA, p ); + + d = VEC_26D6_DOT( p0, bB ) - + VEC_26D6_DOT( p, bB ); + + /* find the roots */ + num_roots = solve_cubic_equation( a, b, c, d, roots ); + + if ( num_roots == 0 ) + { + roots[0] = 0; + roots[1] = FT_INT_16D16( 1 ); + num_roots = 2; + } + + /* [OPTIMIZATION]: Check the roots, clamp them and discard */ + /* duplicate roots. */ + + /* convert these values to 16.16 for further computation */ + aA.x = FT_26D6_16D16( aA.x ); + aA.y = FT_26D6_16D16( aA.y ); + + bB.x = FT_26D6_16D16( bB.x ); + bB.y = FT_26D6_16D16( bB.y ); + + p0.x = FT_26D6_16D16( p0.x ); + p0.y = FT_26D6_16D16( p0.y ); + + p.x = FT_26D6_16D16( p.x ); + p.y = FT_26D6_16D16( p.y ); + + for ( i = 0; i < num_roots; i++ ) + { + FT_16D16 t = roots[i]; + FT_16D16 t2 = 0; + FT_16D16 dist = 0; + + FT_16D16_Vec curve_point; + FT_16D16_Vec dist_vector; + + /* + * Ideally we should discard the roots which are outside the range + * [0.0, 1.0] and check the endpoints of the Bezier curve, but Behdad + * Esfahbod proved the following lemma. + * + * Lemma: + * + * (1) If the closest point on the curve [0, 1] is to the endpoint at + * `t` = 1 and the cubic has no real roots at `t` = 1 then the + * cubic must have a real root at some `t` > 1. + * + * (2) Similarly, if the closest point on the curve [0, 1] is to the + * endpoint at `t` = 0 and the cubic has no real roots at `t` = 0 + * then the cubic must have a real root at some `t` < 0. + * + * Now because of this lemma we only need to clamp the roots and that + * will take care of the endpoints. + * + * For more details see + * + * https://lists.nongnu.org/archive/html/freetype-devel/2020-06/msg00147.html + */ + + if ( t < 0 ) + t = 0; + if ( t > FT_INT_16D16( 1 ) ) + t = FT_INT_16D16( 1 ); + + t2 = FT_MulFix( t, t ); + + /* B(t) = t^2 * A + 2t * B + p0 - p */ + curve_point.x = FT_MulFix( aA.x, t2 ) + + 2 * FT_MulFix( bB.x, t ) + p0.x; + curve_point.y = FT_MulFix( aA.y, t2 ) + + 2 * FT_MulFix( bB.y, t ) + p0.y; + + /* `curve_point` - `p` */ + dist_vector.x = curve_point.x - p.x; + dist_vector.y = curve_point.y - p.y; + + dist = VECTOR_LENGTH_16D16( dist_vector ); + + if ( dist < min ) + { + min = dist; + nearest_point = curve_point; + min_factor = t; + } + } + + /* B'(t) = 2 * (tA + B) */ + direction.x = 2 * FT_MulFix( aA.x, min_factor ) + 2 * bB.x; + direction.y = 2 * FT_MulFix( aA.y, min_factor ) + 2 * bB.y; + + /* determine the sign */ + cross = FT_MulFix( nearest_point.x - p.x, direction.y ) - + FT_MulFix( nearest_point.y - p.y, direction.x ); + + /* assign the values */ + out->distance = min; + out->sign = cross < 0 ? 1 : -1; + + if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) ) + out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */ + else + { + /* convert to nearest vector */ + nearest_point.x -= FT_26D6_16D16( p.x ); + nearest_point.y -= FT_26D6_16D16( p.y ); + + /* compute `cross` if not perpendicular */ + FT_Vector_NormLen( &direction ); + FT_Vector_NormLen( &nearest_point ); + + out->cross = FT_MulFix( direction.x, nearest_point.y ) - + FT_MulFix( direction.y, nearest_point.x ); + } + + Exit: + return error; + } + +#else /* USE_NEWTON_FOR_CONIC */ + + /* + * The function uses Newton's approximation to find the shortest distance, + * which is a bit slower than the analytical method but doesn't cause + * underflow. + */ + static FT_Error + get_min_distance_conic( SDF_Edge* conic, + FT_26D6_Vec point, + SDF_Signed_Distance* out ) + { + /* + * This method uses Newton-Raphson's approximation to find the shortest + * distance from a point to a conic curve. It does not involve solving + * any cubic equation, that is why there is no risk of underflow. + * + * Let's assume that + * + * ``` + * p0 = first endpoint + * p1 = control point + * p3 = second endpoint + * p = point from which shortest distance is to be calculated + * ``` + * + * (1) The equation of a quadratic Bezier curve can be written as + * + * ``` + * B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2 + * ``` + * + * with `t` the factor in the range [0.0f, 1.0f]. The above + * equation can be rewritten as + * + * ``` + * B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0 + * ``` + * + * With + * + * ``` + * A = p0 - 2p1 + p2 + * B = 2 * (p1 - p0) + * ``` + * + * we have + * + * ``` + * B(t) = t^2 * A + t * B + p0 + * ``` + * + * (2) The derivative of the above equation is + * + * ``` + * B'(t) = 2t * A + B + * ``` + * + * (3) The second derivative of the above equation is + * + * ``` + * B''(t) = 2A + * ``` + * + * (4) The equation `P(t)` of the distance from point `p` to the curve + * can be written as + * + * ``` + * P(t) = t^2 * A + t^2 * B + p0 - p + * ``` + * + * With + * + * ``` + * C = p0 - p + * ``` + * + * we have + * + * ``` + * P(t) = t^2 * A + t * B + C + * ``` + * + * (5) Finally, the equation of the angle between `B(t)` and `P(t)` can + * be written as + * + * ``` + * Q(t) = P(t) . B'(t) + * ``` + * + * (6) Our task is to find a value of `t` such that the above equation + * `Q(t)` becomes zero, this is, the point-to-curve vector makes + * 90~degrees with the curve. We solve this with the Newton-Raphson + * method. + * + * (7) We first assume an arbitary value of factor `t`, which we then + * improve. + * + * ``` + * t := Q(t) / Q'(t) + * ``` + * + * Putting the value of `Q(t)` from the above equation gives + * + * ``` + * t := P(t) . B'(t) / derivative(P(t) . B'(t)) + * t := P(t) . B'(t) / + * (P'(t) . B'(t) + P(t) . B''(t)) + * ``` + * + * Note that `P'(t)` is the same as `B'(t)` because the constant is + * gone due to the derivative. + * + * (8) Finally we get the equation to improve the factor as + * + * ``` + * t := P(t) . B'(t) / + * (B'(t) . B'(t) + P(t) . B''(t)) + * ``` + * + * [note]: `B` and `B(t)` are different in the above equations. + */ + + FT_Error error = FT_Err_Ok; + + FT_26D6_Vec aA, bB, cC; /* A, B, C in the above comment */ + FT_26D6_Vec nearest_point; /* point on curve nearest to `point` */ + FT_26D6_Vec direction; /* direction of curve at `nearest_point` */ + + FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */ + FT_26D6_Vec p; /* `point` to which shortest distance */ + + FT_16D16 min_factor = 0; /* factor at `nearest_point' */ + FT_16D16 cross; /* to determine the sign */ + FT_16D16 min = FT_INT_MAX; /* shortest squared distance */ + + FT_UShort iterations; + FT_UShort steps; + + + if ( !conic || !out ) + { + error = FT_THROW( Invalid_Argument ); + goto Exit; + } + + if ( conic->edge_type != SDF_EDGE_CONIC ) + { + error = FT_THROW( Invalid_Argument ); + goto Exit; + } + + p0 = conic->start_pos; + p1 = conic->control_a; + p2 = conic->end_pos; + p = point; + + /* compute substitution coefficients */ + aA.x = p0.x - 2 * p1.x + p2.x; + aA.y = p0.y - 2 * p1.y + p2.y; + + bB.x = 2 * ( p1.x - p0.x ); + bB.y = 2 * ( p1.y - p0.y ); + + cC.x = p0.x; + cC.y = p0.y; + + /* do Newton's iterations */ + for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ ) + { + FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS; + FT_16D16 factor2; + FT_16D16 length; + + FT_16D16_Vec curve_point; /* point on the curve */ + FT_16D16_Vec dist_vector; /* `curve_point` - `p` */ + + FT_26D6_Vec d1; /* first derivative */ + FT_26D6_Vec d2; /* second derivative */ + + FT_16D16 temp1; + FT_16D16 temp2; + + + for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ ) + { + factor2 = FT_MulFix( factor, factor ); + + /* B(t) = t^2 * A + t * B + p0 */ + curve_point.x = FT_MulFix( aA.x, factor2 ) + + FT_MulFix( bB.x, factor ) + cC.x; + curve_point.y = FT_MulFix( aA.y, factor2 ) + + FT_MulFix( bB.y, factor ) + cC.y; + + /* convert to 16.16 */ + curve_point.x = FT_26D6_16D16( curve_point.x ); + curve_point.y = FT_26D6_16D16( curve_point.y ); + + /* P(t) in the comment */ + dist_vector.x = curve_point.x - FT_26D6_16D16( p.x ); + dist_vector.y = curve_point.y - FT_26D6_16D16( p.y ); + + length = VECTOR_LENGTH_16D16( dist_vector ); + + if ( length < min ) + { + min = length; + min_factor = factor; + nearest_point = curve_point; + } + + /* This is Newton's approximation. */ + /* */ + /* t := P(t) . B'(t) / */ + /* (B'(t) . B'(t) + P(t) . B''(t)) */ + + /* B'(t) = 2tA + B */ + d1.x = FT_MulFix( aA.x, 2 * factor ) + bB.x; + d1.y = FT_MulFix( aA.y, 2 * factor ) + bB.y; + + /* B''(t) = 2A */ + d2.x = 2 * aA.x; + d2.y = 2 * aA.y; + + dist_vector.x /= 1024; + dist_vector.y /= 1024; + + /* temp1 = P(t) . B'(t) */ + temp1 = VEC_26D6_DOT( dist_vector, d1 ); + + /* temp2 = B'(t) . B'(t) + P(t) . B''(t) */ + temp2 = VEC_26D6_DOT( d1, d1 ) + + VEC_26D6_DOT( dist_vector, d2 ); + + factor -= FT_DivFix( temp1, temp2 ); + + if ( factor < 0 || factor > FT_INT_16D16( 1 ) ) + break; + } + } + + /* B'(t) = 2t * A + B */ + direction.x = 2 * FT_MulFix( aA.x, min_factor ) + bB.x; + direction.y = 2 * FT_MulFix( aA.y, min_factor ) + bB.y; + + /* determine the sign */ + cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ), + direction.y ) - + FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ), + direction.x ); + + /* assign the values */ + out->distance = min; + out->sign = cross < 0 ? 1 : -1; + + if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) ) + out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */ + else + { + /* convert to nearest vector */ + nearest_point.x -= FT_26D6_16D16( p.x ); + nearest_point.y -= FT_26D6_16D16( p.y ); + + /* compute `cross` if not perpendicular */ + FT_Vector_NormLen( &direction ); + FT_Vector_NormLen( &nearest_point ); + + out->cross = FT_MulFix( direction.x, nearest_point.y ) - + FT_MulFix( direction.y, nearest_point.x ); + } + + Exit: + return error; + } + + +#endif /* USE_NEWTON_FOR_CONIC */ + + + /************************************************************************** + * + * @Function: + * get_min_distance_cubic + * + * @Description: + * Find the shortest distance from the `cubic` Bezier curve to a given + * `point` and assigns it to `out`. Use it for cubic curves only. + * + * @Input: + * cubic :: + * The cubic Bezier curve to which the shortest distance is to be + * computed. + * + * point :: + * Point from which the shortest distance is to be computed. + * + * @Output: + * out :: + * Signed distance from `point` to `cubic`. + * + * @Return: + * FreeType error, 0 means success. + * + * @Note: + * The function uses Newton's approximation to find the shortest + * distance. Another way would be to divide the cubic into conic or + * subdivide the curve into lines, but that is not implemented. + * + * The `cubic` parameter must have an edge type of `SDF_EDGE_CUBIC`. + * + */ + static FT_Error + get_min_distance_cubic( SDF_Edge* cubic, + FT_26D6_Vec point, + SDF_Signed_Distance* out ) + { + /* + * The procedure to find the shortest distance from a point to a cubic + * Bezier curve is similar to quadratic curve algorithm. The only + * difference is that while calculating factor `t`, instead of a cubic + * polynomial equation we have to find the roots of a 5th degree + * polynomial equation. Solving this would require a significant amount + * of time, and still the results may not be accurate. We are thus + * going to directly approximate the value of `t` using the Newton-Raphson + * method. + * + * Let's assume that + * + * ``` + * p0 = first endpoint + * p1 = first control point + * p2 = second control point + * p3 = second endpoint + * p = point from which shortest distance is to be calculated + * ``` + * + * (1) The equation of a cubic Bezier curve can be written as + * + * ``` + * B(t) = (1 - t)^3 * p0 + 3(1 - t)^2 t * p1 + + * 3(1 - t)t^2 * p2 + t^3 * p3 + * ``` + * + * The equation can be expanded and written as + * + * ``` + * B(t) = t^3 * (-p0 + 3p1 - 3p2 + p3) + + * 3t^2 * (p0 - 2p1 + p2) + 3t * (-p0 + p1) + p0 + * ``` + * + * With + * + * ``` + * A = -p0 + 3p1 - 3p2 + p3 + * B = 3(p0 - 2p1 + p2) + * C = 3(-p0 + p1) + * ``` + * + * we have + * + * ``` + * B(t) = t^3 * A + t^2 * B + t * C + p0 + * ``` + * + * (2) The derivative of the above equation is + * + * ``` + * B'(t) = 3t^2 * A + 2t * B + C + * ``` + * + * (3) The second derivative of the above equation is + * + * ``` + * B''(t) = 6t * A + 2B + * ``` + * + * (4) The equation `P(t)` of the distance from point `p` to the curve + * can be written as + * + * ``` + * P(t) = t^3 * A + t^2 * B + t * C + p0 - p + * ``` + * + * With + * + * ``` + * D = p0 - p + * ``` + * + * we have + * + * ``` + * P(t) = t^3 * A + t^2 * B + t * C + D + * ``` + * + * (5) Finally the equation of the angle between `B(t)` and `P(t)` can + * be written as + * + * ``` + * Q(t) = P(t) . B'(t) + * ``` + * + * (6) Our task is to find a value of `t` such that the above equation + * `Q(t)` becomes zero, this is, the point-to-curve vector makes + * 90~degree with curve. We solve this with the Newton-Raphson + * method. + * + * (7) We first assume an arbitary value of factor `t`, which we then + * improve. + * + * ``` + * t := Q(t) / Q'(t) + * ``` + * + * Putting the value of `Q(t)` from the above equation gives + * + * ``` + * t := P(t) . B'(t) / derivative(P(t) . B'(t)) + * t := P(t) . B'(t) / + * (P'(t) . B'(t) + P(t) . B''(t)) + * ``` + * + * Note that `P'(t)` is the same as `B'(t)` because the constant is + * gone due to the derivative. + * + * (8) Finally we get the equation to improve the factor as + * + * ``` + * t := P(t) . B'(t) / + * (B'(t) . B'( t ) + P(t) . B''(t)) + * ``` + * + * [note]: `B` and `B(t)` are different in the above equations. + */ + + FT_Error error = FT_Err_Ok; + + FT_26D6_Vec aA, bB, cC, dD; /* A, B, C in the above comment */ + FT_16D16_Vec nearest_point; /* point on curve nearest to `point` */ + FT_16D16_Vec direction; /* direction of curve at `nearest_point` */ + + FT_26D6_Vec p0, p1, p2, p3; /* control points of a cubic curve */ + FT_26D6_Vec p; /* `point` to which shortest distance */ + + FT_16D16 min_factor = 0; /* factor at shortest distance */ + FT_16D16 min_factor_sq = 0; /* factor at shortest distance */ + FT_16D16 cross; /* to determine the sign */ + FT_16D16 min = FT_INT_MAX; /* shortest distance */ + + FT_UShort iterations; + FT_UShort steps; + + + if ( !cubic || !out ) + { + error = FT_THROW( Invalid_Argument ); + goto Exit; + } + + if ( cubic->edge_type != SDF_EDGE_CUBIC ) + { + error = FT_THROW( Invalid_Argument ); + goto Exit; + } + + p0 = cubic->start_pos; + p1 = cubic->control_a; + p2 = cubic->control_b; + p3 = cubic->end_pos; + p = point; + + /* compute substitution coefficients */ + aA.x = -p0.x + 3 * ( p1.x - p2.x ) + p3.x; + aA.y = -p0.y + 3 * ( p1.y - p2.y ) + p3.y; + + bB.x = 3 * ( p0.x - 2 * p1.x + p2.x ); + bB.y = 3 * ( p0.y - 2 * p1.y + p2.y ); + + cC.x = 3 * ( p1.x - p0.x ); + cC.y = 3 * ( p1.y - p0.y ); + + dD.x = p0.x; + dD.y = p0.y; + + for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ ) + { + FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS; + + FT_16D16 factor2; /* factor^2 */ + FT_16D16 factor3; /* factor^3 */ + FT_16D16 length; + + FT_16D16_Vec curve_point; /* point on the curve */ + FT_16D16_Vec dist_vector; /* `curve_point' - `p' */ + + FT_26D6_Vec d1; /* first derivative */ + FT_26D6_Vec d2; /* second derivative */ + + FT_16D16 temp1; + FT_16D16 temp2; + + + for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ ) + { + factor2 = FT_MulFix( factor, factor ); + factor3 = FT_MulFix( factor2, factor ); + + /* B(t) = t^3 * A + t^2 * B + t * C + D */ + curve_point.x = FT_MulFix( aA.x, factor3 ) + + FT_MulFix( bB.x, factor2 ) + + FT_MulFix( cC.x, factor ) + dD.x; + curve_point.y = FT_MulFix( aA.y, factor3 ) + + FT_MulFix( bB.y, factor2 ) + + FT_MulFix( cC.y, factor ) + dD.y; + + /* convert to 16.16 */ + curve_point.x = FT_26D6_16D16( curve_point.x ); + curve_point.y = FT_26D6_16D16( curve_point.y ); + + /* P(t) in the comment */ + dist_vector.x = curve_point.x - FT_26D6_16D16( p.x ); + dist_vector.y = curve_point.y - FT_26D6_16D16( p.y ); + + length = VECTOR_LENGTH_16D16( dist_vector ); + + if ( length < min ) + { + min = length; + min_factor = factor; + min_factor_sq = factor2; + nearest_point = curve_point; + } + + /* This the Newton's approximation. */ + /* */ + /* t := P(t) . B'(t) / */ + /* (B'(t) . B'(t) + P(t) . B''(t)) */ + + /* B'(t) = 3t^2 * A + 2t * B + C */ + d1.x = FT_MulFix( aA.x, 3 * factor2 ) + + FT_MulFix( bB.x, 2 * factor ) + cC.x; + d1.y = FT_MulFix( aA.y, 3 * factor2 ) + + FT_MulFix( bB.y, 2 * factor ) + cC.y; + + /* B''(t) = 6t * A + 2B */ + d2.x = FT_MulFix( aA.x, 6 * factor ) + 2 * bB.x; + d2.y = FT_MulFix( aA.y, 6 * factor ) + 2 * bB.y; + + dist_vector.x /= 1024; + dist_vector.y /= 1024; + + /* temp1 = P(t) . B'(t) */ + temp1 = VEC_26D6_DOT( dist_vector, d1 ); + + /* temp2 = B'(t) . B'(t) + P(t) . B''(t) */ + temp2 = VEC_26D6_DOT( d1, d1 ) + + VEC_26D6_DOT( dist_vector, d2 ); + + factor -= FT_DivFix( temp1, temp2 ); + + if ( factor < 0 || factor > FT_INT_16D16( 1 ) ) + break; + } + } + + /* B'(t) = 3t^2 * A + 2t * B + C */ + direction.x = FT_MulFix( aA.x, 3 * min_factor_sq ) + + FT_MulFix( bB.x, 2 * min_factor ) + cC.x; + direction.y = FT_MulFix( aA.y, 3 * min_factor_sq ) + + FT_MulFix( bB.y, 2 * min_factor ) + cC.y; + + /* determine the sign */ + cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ), + direction.y ) - + FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ), + direction.x ); + + /* assign the values */ + out->distance = min; + out->sign = cross < 0 ? 1 : -1; + + if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) ) + out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */ + else + { + /* convert to nearest vector */ + nearest_point.x -= FT_26D6_16D16( p.x ); + nearest_point.y -= FT_26D6_16D16( p.y ); + + /* compute `cross` if not perpendicular */ + FT_Vector_NormLen( &direction ); + FT_Vector_NormLen( &nearest_point ); + + out->cross = FT_MulFix( direction.x, nearest_point.y ) - + FT_MulFix( direction.y, nearest_point.x ); + } + Exit: + return error; + } + + /* END */