[dense] Add drawing functions to rasterizer
* src/dense/ftdense.c: (dense_render_line, dense_render_quadratic, dense_render_cubic, dense_render_glyph, dense_raster_render, Lerp): New Functions
This commit is contained in:
parent
f2ff1dc37e
commit
5e681678f6
|
@ -32,6 +32,15 @@ typedef struct dense_TRaster_
|
|||
|
||||
} dense_TRaster, *dense_PRaster;
|
||||
|
||||
/* Linear interpolation between P0 and P1 */
|
||||
static FT_Vector
|
||||
Lerp( float T, FT_Vector P0, FT_Vector P1 )
|
||||
{
|
||||
FT_Vector p;
|
||||
p.x = P0.x + T * ( P1.x - P0.x );
|
||||
p.y = P0.y + T * ( P1.y - P0.y );
|
||||
return p;
|
||||
}
|
||||
|
||||
static int
|
||||
dense_move_to( const FT_Vector* to, dense_worker* worker )
|
||||
|
@ -54,11 +63,112 @@ dense_line_to( const FT_Vector* to, dense_worker* worker )
|
|||
}
|
||||
|
||||
void
|
||||
dense_render_line( dense_worker* worker, TPos tox, TPos toy )
|
||||
dense_render_line( dense_worker* worker, FT_Pos tox, FT_Pos toy )
|
||||
{
|
||||
return;
|
||||
float from_x = worker->prev_x;
|
||||
float from_y = worker->prev_y;
|
||||
if ( from_y == toy )
|
||||
return;
|
||||
|
||||
|
||||
from_x /= 256.0;
|
||||
from_y /= 256.0;
|
||||
float to_x = tox / 256.0;
|
||||
float to_y = toy / 256.0;
|
||||
|
||||
|
||||
float dir;
|
||||
if ( from_y < to_y )
|
||||
dir = 1;
|
||||
else
|
||||
{
|
||||
dir = -1;
|
||||
FT_SWAP(from_x, to_x );
|
||||
FT_SWAP(from_y, to_y );
|
||||
}
|
||||
|
||||
// Clip to the height.
|
||||
if ( from_y >= worker->m_h || to_y <= 0 )
|
||||
return;
|
||||
|
||||
float dxdy = ( to_x - from_x ) / (float)( to_y - from_y );
|
||||
if ( from_y < 0 )
|
||||
{
|
||||
from_x -= from_y * dxdy;
|
||||
from_y = 0;
|
||||
}
|
||||
if ( to_y > worker->m_h )
|
||||
{
|
||||
to_x -= ( to_y - worker->m_h ) * dxdy;
|
||||
to_y = (float)worker->m_h;
|
||||
}
|
||||
|
||||
float x = from_x;
|
||||
int y0 = (int)from_y;
|
||||
int y_limit = (int)ceil( to_y );
|
||||
float* m_a = worker->m_a;
|
||||
|
||||
for ( int y = y0; y < y_limit; y++ )
|
||||
{
|
||||
int linestart = y * worker->m_w;
|
||||
float dy = fmin( y + 1.0f, to_y ) - fmax( (float)y, from_y );
|
||||
float xnext = x + dxdy * dy;
|
||||
float d = dy * dir;
|
||||
|
||||
float x0, x1;
|
||||
if ( x < xnext )
|
||||
{
|
||||
x0 = x;
|
||||
x1 = xnext;
|
||||
}
|
||||
else
|
||||
{
|
||||
x0 = xnext;
|
||||
x1 = x;
|
||||
}
|
||||
|
||||
/*
|
||||
It's possible for x0 to be negative on the last scanline because of
|
||||
floating-point inaccuracy That would cause an out-of-bounds array access at
|
||||
index -1.
|
||||
*/
|
||||
float x0floor = x0 <= 0.0f ? 0.0f : (float)floor( x0 );
|
||||
|
||||
int x0i = (int)x0floor;
|
||||
float x1ceil = (float)ceil( x1 );
|
||||
int x1i = (int)x1ceil;
|
||||
if ( x1i <= x0i + 1 )
|
||||
{
|
||||
float xmf = 0.5f * ( x + xnext ) - x0floor;
|
||||
m_a[linestart + x0i] += d - d * xmf;
|
||||
m_a[linestart + ( x0i + 1 )] += d * xmf;
|
||||
}
|
||||
else
|
||||
{
|
||||
float s = 1.0f / ( x1 - x0 );
|
||||
float x0f = x0 - x0floor;
|
||||
float a0 = 0.5f * s * ( 1.0f - x0f ) * ( 1.0f - x0f );
|
||||
float x1f = x1 - x1ceil + 1.0f;
|
||||
float am = 0.5f * s * x1f * x1f;
|
||||
m_a[linestart + x0i] += d * a0;
|
||||
if ( x1i == x0i + 2 )
|
||||
m_a[linestart + ( x0i + 1 )] += d * ( 1.0f - a0 - am );
|
||||
else
|
||||
{
|
||||
float a1 = s * ( 1.5f - x0f );
|
||||
m_a[linestart + ( x0i + 1 )] += d * ( a1 - a0 );
|
||||
for ( int xi = x0i + 2; xi < x1i - 1; xi++ )
|
||||
m_a[linestart + xi] += d * s;
|
||||
float a2 = a1 + ( x1i - x0i - 3 ) * s;
|
||||
m_a[linestart + ( x1i - 1 )] += d * ( 1.0f - a2 - am );
|
||||
}
|
||||
m_a[linestart + x1i] += d * am;
|
||||
}
|
||||
x = xnext;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
dense_conic_to( const FT_Vector* control,
|
||||
const FT_Vector* to,
|
||||
|
@ -73,7 +183,56 @@ dense_render_quadratic( dense_worker* worker,
|
|||
FT_Vector* control,
|
||||
FT_Vector* to )
|
||||
{
|
||||
/*
|
||||
Calculate devsq as the square of four times the
|
||||
distance from the control point to the midpoint of the curve.
|
||||
This is the place at which the curve is furthest from the
|
||||
line joining the control points.
|
||||
|
||||
4 x point on curve = p0 + 2p1 + p2
|
||||
4 x midpoint = 4p1
|
||||
|
||||
The division by four is omitted to save time.
|
||||
*/
|
||||
|
||||
FT_Vector aP0 = { DOWNSCALE( worker->prev_x ), DOWNSCALE( worker->prev_y ) };
|
||||
FT_Vector aP1 = { control->x, control->y };
|
||||
FT_Vector aP2 = { to->x, to->y };
|
||||
|
||||
float devx = aP0.x - aP1.x - aP1.x + aP2.x;
|
||||
float devy = aP0.y - aP1.y - aP1.y + aP2.y;
|
||||
float devsq = devx * devx + devy * devy;
|
||||
|
||||
if ( devsq < 0.333f )
|
||||
{
|
||||
dense_line_to( &aP2, worker );
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
According to Raph Levien, the reason for the subdivision by n (instead of
|
||||
recursive division by the Casteljau system) is that "I expect the flatness
|
||||
computation to be semi-expensive (it's done once rather than on each potential
|
||||
subdivision) and also because you'll often get fewer subdivisions. Taking a
|
||||
circular arc as a simplifying assumption, where I get n, a recursive approach
|
||||
would get 2^ceil(lg n), which, if I haven't made any horrible mistakes, is
|
||||
expected to be 33% more in the limit".
|
||||
*/
|
||||
|
||||
const float tol = 3.0f;
|
||||
int n = (int)floor( sqrt( sqrt( tol * devsq ) ) )/8;
|
||||
FT_Vector p = aP0;
|
||||
float nrecip = 1.0f / ( n + 1.0f );
|
||||
float t = 0.0f;
|
||||
for ( int i = 0; i < n; i++ )
|
||||
{
|
||||
t += nrecip;
|
||||
FT_Vector next = Lerp( t, Lerp( t, aP0, aP1 ), Lerp( t, aP1, aP2 ) );
|
||||
dense_line_to(&next, worker );
|
||||
p = next;
|
||||
}
|
||||
|
||||
dense_line_to( &aP2, worker );
|
||||
}
|
||||
|
||||
static int
|
||||
|
@ -92,7 +251,43 @@ dense_render_cubic( dense_worker* worker,
|
|||
FT_Vector* control_2,
|
||||
FT_Vector* to )
|
||||
{
|
||||
return;
|
||||
FT_Vector aP0 = { DOWNSCALE( worker->prev_x ), DOWNSCALE( worker->prev_y ) };
|
||||
FT_Vector aP1 = { control_1->x, control_1->y };
|
||||
FT_Vector aP2 = { control_2->x, control_2->y };
|
||||
FT_Vector aP3 = { to->x, to->y };
|
||||
|
||||
float devx = aP0.x - aP1->x - aP1->x + aP2->x;
|
||||
float devy = aP0.y - aP1->y - aP1->y + aP2->y;
|
||||
float devsq0 = devx * devx + devy * devy;
|
||||
devx = aP1->x - aP2->x - aP2->x + aP3->x;
|
||||
devy = aP1->y - aP2->y - aP2->y + aP3->y;
|
||||
float devsq1 = devx * devx + devy * devy;
|
||||
float devsq = fmax( devsq0, devsq1 );
|
||||
|
||||
if ( devsq < 0.333f )
|
||||
{
|
||||
dense_render_line( worker, aP3->x, aP3->y );
|
||||
return;
|
||||
}
|
||||
|
||||
const float tol = 3.0f;
|
||||
int n = (int)floor( sqrt( sqrt( tol * devsq ) ) ) / 8;
|
||||
FT_Vector p = aP0;
|
||||
float nrecip = 1.0f / ( n + 1.0f );
|
||||
float t = 0.0f;
|
||||
for ( int i = 0; i < n; i++ )
|
||||
{
|
||||
t += nrecip;
|
||||
FT_Vector a = Lerp( t, Lerp( t, aP0, *aP1 ), Lerp( t, *aP1, *aP2 ) );
|
||||
FT_Vector b = Lerp( t, Lerp( t, *aP1, *aP2 ), Lerp( t, *aP2, *aP3 ) );
|
||||
FT_Vector next = Lerp( t, a, b );
|
||||
dense_render_line( worker, next.x, next.y );
|
||||
worker->prev_x = next.x;
|
||||
worker->prev_y = next.y;
|
||||
p = next;
|
||||
}
|
||||
|
||||
dense_line_to( &aP3, worker );
|
||||
}
|
||||
|
||||
static int
|
||||
|
@ -152,13 +347,78 @@ dense_render_glyph( dense_worker* worker, const FT_Bitmap* target )
|
|||
{
|
||||
FT_Error error = FT_Outline_Decompose( &( worker->outline ),
|
||||
&dense_decompose_funcs, worker );
|
||||
// Render into bitmap
|
||||
const float* source = worker->m_a;
|
||||
|
||||
unsigned char* dest = target->buffer;
|
||||
unsigned char* dest_end = target->buffer + worker->m_w * worker->m_h;
|
||||
float value = 0.0f;
|
||||
while ( dest < dest_end )
|
||||
{
|
||||
value += *source++;
|
||||
if ( value > 0.0f )
|
||||
{
|
||||
int n = (int)( fabs( value ) * 255.0f + 0.5f );
|
||||
if ( n > 255 )
|
||||
n = 255;
|
||||
*dest = (unsigned char)n;
|
||||
}
|
||||
else
|
||||
*dest = 0;
|
||||
dest++;
|
||||
}
|
||||
|
||||
free(worker->m_a);
|
||||
return error;
|
||||
}
|
||||
|
||||
static int
|
||||
dense_raster_render( FT_Raster raster, const FT_Raster_Params* params )
|
||||
{
|
||||
return 0;
|
||||
const FT_Outline* outline = (const FT_Outline*)params->source;
|
||||
FT_Bitmap* target_map = params->target;
|
||||
|
||||
dense_worker worker[1];
|
||||
|
||||
if ( !raster )
|
||||
return FT_THROW( Invalid_Argument );
|
||||
|
||||
if ( !outline )
|
||||
return FT_THROW( Invalid_Outline );
|
||||
|
||||
worker->outline = *outline;
|
||||
|
||||
if ( !target_map )
|
||||
return FT_THROW( Invalid_Argument );
|
||||
|
||||
/* nothing to do */
|
||||
if ( !target_map->width || !target_map->rows )
|
||||
return 0;
|
||||
|
||||
if ( !target_map->buffer )
|
||||
return FT_THROW( Invalid_Argument );
|
||||
|
||||
worker->m_origin_x = 0;
|
||||
worker->m_origin_y = 0;
|
||||
worker->m_w = target_map->pitch;
|
||||
worker->m_h = target_map->rows;
|
||||
|
||||
int size = worker->m_w * worker->m_h + 4;
|
||||
|
||||
worker->m_a = malloc( sizeof( float ) * size );
|
||||
worker->m_a_size = size;
|
||||
|
||||
memset( worker->m_a, 0, ( sizeof( float ) * size ) );
|
||||
/* exit if nothing to do */
|
||||
if ( worker->m_w <= worker->m_origin_x || worker->m_h <= worker->m_origin_y )
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Invert the pitch to account for different +ve y-axis direction in dense array
|
||||
// (maybe temporary solution)
|
||||
target_map->pitch *= -1;
|
||||
return dense_render_glyph( worker, target_map );
|
||||
}
|
||||
|
||||
FT_DEFINE_RASTER_FUNCS(
|
||||
|
|
Loading…
Reference in New Issue