diff --git a/src/base/ftobjs.c b/src/base/ftobjs.c index e3b32fa7c..747d0cb1f 100644 --- a/src/base/ftobjs.c +++ b/src/base/ftobjs.c @@ -2543,6 +2543,98 @@ +static FT_Vector +Lerp( float T, FT_Vector P0, FT_Vector P1 ) +{ + FT_Vector p; + p.x = P0.x + T * ( P1.x - P0.x ); + p.y = P0.y + T * ( P1.y - P0.y ); + return p; +} + +int conic_to2(FT_GlyphSlot* slot, FT_Vector *control, FT_Vector *from, FT_Vector *to, FT_PreLine *ptr) +{ + /* + Calculate devsq as the square of four times the + distance from the control point to the midpoint of the curve. + This is the place at which the curve is furthest from the + line joining the control points. + + 4 x point on curve = p0 + 2p1 + p2 + 4 x midpoint = 4p1 + + The division by four is omitted to save time. + */ + //FT_PreLine ptr = (*slot)->prelines; + if((*slot)->glyph_index == 38) + printf("conic from %d, %d to %d, %d via %d, %d\n", from->x, from->y, to->x, to->y, control->x, control->y); + FT_Vector aP0 = { from->x , from->y}; + FT_Vector aP1 = { control->x, control->y }; + FT_Vector aP2 = { to->x, to->y }; + + float devx = aP0.x - aP1.x - aP1.x + aP2.x; + float devy = aP0.y - aP1.y - aP1.y + aP2.y; + float devsq = devx * devx + devy * devy; + + if ( devsq < 0.333f ) + { + //dense_line_to( &aP2, worker ); + FT_PreLine pl3 = malloc(sizeof(FT_PreLineRec)); + pl3->x1 = (*ptr)->x2; + pl3->y1 = (*ptr)->y2; + pl3->x2 = aP2.x; + pl3->y2 = aP2.y; + pl3->next = NULL; + pl3->ismove = 0; + (*ptr)->next = pl3; + *ptr = (*ptr)->next; + return; + } + + /* + According to Raph Levien, the reason for the subdivision by n (instead of + recursive division by the Casteljau system) is that "I expect the flatness + computation to be semi-expensive (it's done once rather than on each potential + subdivision) and also because you'll often get fewer subdivisions. Taking a + circular arc as a simplifying assumption, where I get n, a recursive approach + would get 2^ceil(lg n), which, if I haven't made any horrible mistakes, is + expected to be 33% more in the limit". + */ + + const float tol = 3.0f; + int n = (int)floor( sqrt( sqrt( tol * devsq ) ) )/8; + FT_Vector p = aP0; + float nrecip = 1.0f / ( n + 1.0f ); + float t = 0.0f; + for ( int i = 0; i < n; i++ ) + { + t += nrecip; + FT_Vector next = Lerp( t, Lerp( t, aP0, aP1 ), Lerp( t, aP1, aP2 ) ); + //dense_line_to(&next, worker ); + FT_PreLine pl4 = malloc(sizeof(FT_PreLineRec)); + pl4->x1 = (*ptr)->x2; + pl4->y1 = (*ptr)->y2; + pl4->x2 = next.x; + pl4->y2 = next.y; + pl4->next = NULL; + pl4->ismove = 0; + (*ptr)->next = pl4; + *ptr = (*ptr)->next; + p = next; + } + + //dense_line_to( &aP2, worker ); + FT_PreLine pl5 = malloc(sizeof(FT_PreLineRec)); + pl5->x1 = (*ptr)->x2; + pl5->y1 = (*ptr)->y2; + pl5->x2 = aP2.x; + pl5->y2 = aP2.y; + pl5->next = NULL; + pl5->ismove = 0; + (*ptr)->next = pl5; + *ptr = (*ptr)->next; + +} static FT_Error ft_decompose_outline(FT_GlyphSlot* slot){ @@ -2688,6 +2780,74 @@ ptr = ptr->next; continue; } + + case FT_CURVE_TAG_CONIC: /* consume conic arcs */ + // v_control.x = SCALED( point->x ); + // v_control.y = SCALED( point->y ); + + Do_Conic: + if ( point < limit ) + { + FT_Vector vec; + FT_Vector v_middle; + + + point++; + tags++; + tag = FT_CURVE_TAG( tags[0] ); + + // vec.x = SCALED( point->x ); + // vec.y = SCALED( point->y ); + vec.x = point->x; + vec.y = point->y; + + if ( tag == FT_CURVE_TAG_ON ) + { + FT_TRACE5(( " conic to (%.2f, %.2f)" + " with control (%.2f, %.2f)\n", + (double)vec.x / 64, + (double)vec.y / 64, + (double)v_control.x / 64, + (double)v_control.y / 64 )); + FT_Vector vex0 = {ptr->x2, ptr->y2}; + error = conic_to2(slot, &v_control, &vex0,&vec , &ptr); + // if ( error ) + // goto Exit; + continue; + } + + if ( tag != FT_CURVE_TAG_CONIC ) + { + FT_TRACE5( ( "Invalid Outline" ) ); + break; + } + v_middle.x = ( v_control.x + vec.x ) / 2; + v_middle.y = ( v_control.y + vec.y ) / 2; + + FT_TRACE5(( " conic to (%.2f, %.2f)" + " with control (%.2f, %.2f)\n", + (double)v_middle.x / 64, + (double)v_middle.y / 64, + (double)v_control.x / 64, + (double)v_control.y / 64 )); + FT_Vector vex = {ptr->x2, ptr->y2}; + error = conic_to2(slot, &v_control, &vex,&v_middle, &ptr); + // if ( error ) + // goto Exit; + + v_control = vec; + goto Do_Conic; + } + + FT_TRACE5(( " conic to (%.2f, %.2f)" + " with control (%.2f, %.2f)\n", + (double)v_start.x / 64, + (double)v_start.y / 64, + (double)v_control.x / 64, + (double)v_control.y / 64 )); + FT_Vector vex2 = {ptr->x2, ptr->y2}; + error = conic_to2( slot, &v_control, &vex2, &v_start, &ptr ); + //goto Close; } }