372 lines
9.2 KiB
C
372 lines
9.2 KiB
C
|
#include <freetype/ftsynth.h>
|
||
|
|
||
|
#define FT_BOLD_THRESHOLD 0x0100
|
||
|
|
||
|
/*************************************************************************/
|
||
|
/*************************************************************************/
|
||
|
/**** ****/
|
||
|
/**** EXPERIMENTAL OBLIQUING SUPPORT ****/
|
||
|
/**** ****/
|
||
|
/*************************************************************************/
|
||
|
/*************************************************************************/
|
||
|
|
||
|
FT_EXPORT_DEF(FT_Error) FT_Oblique_Outline( FT_GlyphSlot original,
|
||
|
FT_Outline* outline,
|
||
|
FT_Pos* advance )
|
||
|
{
|
||
|
FT_Matrix transform;
|
||
|
|
||
|
FT_UNUSED(original);
|
||
|
|
||
|
/* For italic, simply apply a shear transform, with an angle */
|
||
|
/* of about 12 degrees.. */
|
||
|
|
||
|
transform.xx = 0x10000;
|
||
|
transform.yx = 0x00000;
|
||
|
|
||
|
transform.xy = 0x06000;
|
||
|
transform.yy = 0x10000;
|
||
|
|
||
|
FT_Transform_Outline( outline, &transform );
|
||
|
|
||
|
/* we don't touch the advance width */
|
||
|
FT_UNUSED(advance);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*************************************************************************/
|
||
|
/*************************************************************************/
|
||
|
/**** ****/
|
||
|
/**** EXPERIMENTAL EMBOLDENING/OUTLINING SUPPORT ****/
|
||
|
/**** ****/
|
||
|
/*************************************************************************/
|
||
|
/*************************************************************************/
|
||
|
|
||
|
/* Compute the norm of a vector */
|
||
|
|
||
|
#ifdef FT_CONFIG_OPTION_OLD_CALCS
|
||
|
|
||
|
#include <freetype/internal/ftcalc.h>
|
||
|
|
||
|
static
|
||
|
FT_Pos ft_norm( FT_Vector* vec )
|
||
|
{
|
||
|
FT_Int64 t1, t2;
|
||
|
|
||
|
|
||
|
MUL_64( vec->x, vec->x, t1 );
|
||
|
MUL_64( vec->y, vec->y, t2 );
|
||
|
ADD_64( t1, t2, t1 );
|
||
|
|
||
|
return (FT_Pos)SQRT_64( t1 );
|
||
|
}
|
||
|
|
||
|
#else /* FT_CONFIG_OPTION_OLD_CALCS */
|
||
|
|
||
|
static
|
||
|
FT_Pos ft_norm( FT_Vector* vec )
|
||
|
{
|
||
|
FT_F26Dot6 u, v, d;
|
||
|
FT_Int shift;
|
||
|
FT_ULong H, L, L2, hi, lo, med;
|
||
|
|
||
|
|
||
|
u = vec->x; if ( u < 0 ) u = -u;
|
||
|
v = vec->y; if ( v < 0 ) v = -v;
|
||
|
|
||
|
if ( u < v )
|
||
|
{
|
||
|
d = u;
|
||
|
u = v;
|
||
|
v = d;
|
||
|
}
|
||
|
|
||
|
/* check that we are not trying to normalize zero! */
|
||
|
if ( u == 0 )
|
||
|
return 0;
|
||
|
|
||
|
/* compute (u*u + v*v) on 64 bits with two 32-bit registers [H:L] */
|
||
|
hi = (FT_ULong)u >> 16;
|
||
|
lo = (FT_ULong)u & 0xFFFF;
|
||
|
med = hi * lo;
|
||
|
|
||
|
H = hi * hi + ( med >> 15 );
|
||
|
med <<= 17;
|
||
|
L = lo * lo + med;
|
||
|
if ( L < med )
|
||
|
H++;
|
||
|
|
||
|
hi = (FT_ULong)v >> 16;
|
||
|
lo = (FT_ULong)v & 0xFFFF;
|
||
|
med = hi * lo;
|
||
|
|
||
|
H += hi * hi + ( med >> 15 );
|
||
|
med <<= 17;
|
||
|
L2 = lo * lo + med;
|
||
|
if ( L2 < med )
|
||
|
H++;
|
||
|
|
||
|
L += L2;
|
||
|
if ( L < L2 )
|
||
|
H++;
|
||
|
|
||
|
/* if the value is smaller than 32 bits */
|
||
|
shift = 0;
|
||
|
if ( H == 0 )
|
||
|
{
|
||
|
while ( ( L & 0xC0000000UL ) == 0 )
|
||
|
{
|
||
|
L <<= 2;
|
||
|
shift++;
|
||
|
}
|
||
|
return ( FT_Sqrt32( L ) >> shift );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
while ( H )
|
||
|
{
|
||
|
L = ( L >> 2 ) | ( H << 30 );
|
||
|
H >>= 2;
|
||
|
shift++;
|
||
|
}
|
||
|
return ( FT_Sqrt32( L ) << shift );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* FT_CONFIG_OPTION_OLD_CALCS */
|
||
|
|
||
|
|
||
|
static
|
||
|
int ft_test_extrema( FT_Outline* outline,
|
||
|
int n )
|
||
|
{
|
||
|
FT_Vector *prev, *cur, *next;
|
||
|
FT_Pos product;
|
||
|
FT_Int c, first, last;
|
||
|
|
||
|
|
||
|
/* we need to compute the `previous' and `next' point */
|
||
|
/* for these extrema. */
|
||
|
cur = outline->points + n;
|
||
|
prev = cur - 1;
|
||
|
next = cur + 1;
|
||
|
|
||
|
first = 0;
|
||
|
for ( c = 0; c < outline->n_contours; c++ )
|
||
|
{
|
||
|
last = outline->contours[c];
|
||
|
|
||
|
if ( n == first )
|
||
|
prev = outline->points + last;
|
||
|
|
||
|
if ( n == last )
|
||
|
next = outline->points + first;
|
||
|
|
||
|
first = last + 1;
|
||
|
}
|
||
|
|
||
|
product = FT_MulDiv( cur->x - prev->x, /* in.x */
|
||
|
next->y - cur->y, /* out.y */
|
||
|
0x40 )
|
||
|
-
|
||
|
FT_MulDiv( cur->y - prev->y, /* in.y */
|
||
|
next->x - cur->x, /* out.x */
|
||
|
0x40 );
|
||
|
|
||
|
if ( product )
|
||
|
product = product > 0 ? 1 : -1;
|
||
|
|
||
|
return product;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Compute the orientation of path filling. It differs between TrueType */
|
||
|
/* and Type1 formats. We could use the `ft_outline_reverse_fill' flag, */
|
||
|
/* but it is better to re-compute it directly (it seems that this flag */
|
||
|
/* isn't correctly set for some weird composite glyphs currently). */
|
||
|
/* */
|
||
|
/* We do this by computing bounding box points, and computing their */
|
||
|
/* curvature. */
|
||
|
/* */
|
||
|
/* The function returns either 1 or -1. */
|
||
|
/* */
|
||
|
static
|
||
|
int ft_get_orientation( FT_Outline* outline )
|
||
|
{
|
||
|
FT_BBox box;
|
||
|
FT_BBox indices;
|
||
|
int n, last;
|
||
|
|
||
|
|
||
|
indices.xMin = -1;
|
||
|
indices.yMin = -1;
|
||
|
indices.xMax = -1;
|
||
|
indices.yMax = -1;
|
||
|
|
||
|
box.xMin = box.yMin = 32767;
|
||
|
box.xMax = box.yMax = -32768;
|
||
|
|
||
|
/* is it empty ? */
|
||
|
if ( outline->n_contours < 1 )
|
||
|
return 1;
|
||
|
|
||
|
last = outline->contours[outline->n_contours - 1];
|
||
|
|
||
|
for ( n = 0; n <= last; n++ )
|
||
|
{
|
||
|
FT_Pos x, y;
|
||
|
|
||
|
|
||
|
x = outline->points[n].x;
|
||
|
if ( x < box.xMin )
|
||
|
{
|
||
|
box.xMin = x;
|
||
|
indices.xMin = n;
|
||
|
}
|
||
|
if ( x > box.xMax )
|
||
|
{
|
||
|
box.xMax = x;
|
||
|
indices.xMax = n;
|
||
|
}
|
||
|
|
||
|
y = outline->points[n].y;
|
||
|
if ( y < box.yMin )
|
||
|
{
|
||
|
box.yMin = y;
|
||
|
indices.yMin = n;
|
||
|
}
|
||
|
if ( y > box.yMax )
|
||
|
{
|
||
|
box.yMax = y;
|
||
|
indices.yMax = n;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* test orientation of the xmin */
|
||
|
n = ft_test_extrema( outline, indices.xMin );
|
||
|
if (n)
|
||
|
goto Exit;
|
||
|
|
||
|
n = ft_test_extrema( outline, indices.yMin );
|
||
|
if (n)
|
||
|
goto Exit;
|
||
|
|
||
|
n = ft_test_extrema( outline, indices.xMax );
|
||
|
if (n)
|
||
|
goto Exit;
|
||
|
|
||
|
n = ft_test_extrema( outline, indices.yMax );
|
||
|
if (!n)
|
||
|
n = 1;
|
||
|
|
||
|
Exit:
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
|
||
|
FT_EXPORT_FUNC(FT_Error) FT_Embolden_Outline( FT_GlyphSlot original,
|
||
|
FT_Outline* outline,
|
||
|
FT_Pos* advance )
|
||
|
{
|
||
|
FT_Vector u, v;
|
||
|
FT_Vector* points;
|
||
|
FT_Vector cur, prev, next;
|
||
|
FT_Pos distance;
|
||
|
FT_Face face = FT_SLOT_FACE(original);
|
||
|
int c, n, first, orientation;
|
||
|
|
||
|
FT_UNUSED( advance );
|
||
|
|
||
|
|
||
|
/* compute control distance */
|
||
|
distance = FT_MulFix( face->units_per_EM / 60,
|
||
|
face->size->metrics.y_scale );
|
||
|
|
||
|
orientation = ft_get_orientation( &original->outline );
|
||
|
|
||
|
points = original->outline.points;
|
||
|
|
||
|
first = 0;
|
||
|
for ( c = 0; c < outline->n_contours; c++ )
|
||
|
{
|
||
|
int last = outline->contours[c];
|
||
|
|
||
|
|
||
|
prev = points[last];
|
||
|
|
||
|
for ( n = first; n <= last; n++ )
|
||
|
{
|
||
|
FT_Pos norm, delta, d;
|
||
|
FT_Vector in, out;
|
||
|
|
||
|
|
||
|
cur = points[n];
|
||
|
if ( n < last ) next = points[n + 1];
|
||
|
else next = points[first];
|
||
|
|
||
|
/* compute the in and out vectors */
|
||
|
in.x = cur.x - prev.x;
|
||
|
in.y = cur.y - prev.y;
|
||
|
|
||
|
out.x = next.x - cur.x;
|
||
|
out.y = next.y - cur.y;
|
||
|
|
||
|
/* compute U and V */
|
||
|
norm = ft_norm( &in );
|
||
|
u.x = orientation * FT_DivFix( in.y, norm );
|
||
|
u.y = orientation * -FT_DivFix( in.x, norm );
|
||
|
|
||
|
norm = ft_norm( &out );
|
||
|
v.x = orientation * FT_DivFix( out.y, norm );
|
||
|
v.y = orientation * -FT_DivFix( out.x, norm );
|
||
|
|
||
|
d = distance;
|
||
|
|
||
|
if ( ( outline->tags[n] & FT_Curve_Tag_On ) == 0 )
|
||
|
d *= 2;
|
||
|
|
||
|
/* Check discriminant for parallel vectors */
|
||
|
delta = FT_MulFix( u.x, v.y ) - FT_MulFix( u.y, v.x );
|
||
|
if ( delta > FT_BOLD_THRESHOLD || delta < -FT_BOLD_THRESHOLD )
|
||
|
{
|
||
|
/* Move point -- compute A and B */
|
||
|
FT_Pos x, y, A, B;
|
||
|
|
||
|
|
||
|
A = d + FT_MulFix( cur.x, u.x ) + FT_MulFix( cur.y, u.y );
|
||
|
B = d + FT_MulFix( cur.x, v.x ) + FT_MulFix( cur.y, v.y );
|
||
|
|
||
|
x = FT_MulFix( A, v.y ) - FT_MulFix( B, u.y );
|
||
|
y = FT_MulFix( B, u.x ) - FT_MulFix( A, v.x );
|
||
|
|
||
|
outline->points[n].x = distance + FT_DivFix( x, delta );
|
||
|
outline->points[n].y = distance + FT_DivFix( y, delta );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Vectors are nearly parallel */
|
||
|
FT_Pos x, y;
|
||
|
|
||
|
|
||
|
x = distance + cur.x + FT_MulFix( d, u.x + v.x ) / 2;
|
||
|
y = distance + cur.y + FT_MulFix( d, u.y + v.y ) / 2;
|
||
|
|
||
|
outline->points[n].x = x;
|
||
|
outline->points[n].y = y;
|
||
|
}
|
||
|
|
||
|
prev = cur;
|
||
|
}
|
||
|
|
||
|
first = last + 1;
|
||
|
}
|
||
|
|
||
|
if ( advance )
|
||
|
*advance = ( *advance + distance * 4 ) & -64;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|