/* LZWEncoder.js Authors Kevin Weiner (original Java version - kweiner@fmsware.com) Thibault Imbert (AS3 version - bytearray.org) Johan Nordberg (JS version - code@johan-nordberg.com) Acknowledgements GIFCOMPR.C - GIF Image compression routines Lempel-Ziv compression based on 'compress'. GIF modifications by David Rowley (mgardi@watdcsu.waterloo.edu) GIF Image compression - modified 'compress' Based on: compress.c - File compression ala IEEE Computer, June 1984. By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas) Jim McKie (decvax!mcvax!jim) Steve Davies (decvax!vax135!petsd!peora!srd) Ken Turkowski (decvax!decwrl!turtlevax!ken) James A. Woods (decvax!ihnp4!ames!jaw) Joe Orost (decvax!vax135!petsd!joe) */ // https://github.com/benjaminadk/gif-encoder-2 const LZWEncoder_EOF = -1 const LZWEncoder_BITS = 12 const LZWEncoder_HSIZE = 5003 // 80% occupancy const LZWEncoder_MASKS = [0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff] function LZWEncoder(width, height, pixels, colorDepth) { var accum = new Uint8Array(256) var htab = new Int32Array(LZWEncoder_HSIZE) var codetab = new Int32Array(LZWEncoder_HSIZE) var cur_accum, cur_bits = 0 var a_count var free_ent = 0 // first unused entry var maxcode var curPixel var remaining var n_bits // block compression parameters -- after all codes are used up, // and compression rate changes, start over. var clear_flg = false // Algorithm: use open addressing double hashing (no chaining) on the // prefix code / next character combination. We do a variant of Knuth's // algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime // secondary probe. Here, the modular division first probe is gives way // to a faster exclusive-or manipulation. Also do block compression with // an adaptive reset, whereby the code table is cleared when the compression // ratio decreases, but after the table fills. The variable-length output // codes are re-sized at this point, and a special CLEAR code is generated // for the decompressor. Late addition: construct the table according to // file size for noticeable speed improvement on small files. Please direct // questions about this implementation to ames!jaw. var g_init_bits, ClearCode, EOFCode // Add a character to the end of the current packet, and if it is 254 // characters, flush the packet to disk. function char_out(c, outs) { accum[a_count++] = c if (a_count >= 254) flush_char(outs) } // Clear out the hash table // table clear for block compress function cl_block(outs) { cl_hash(LZWEncoder_HSIZE) free_ent = ClearCode + 2 clear_flg = true output(ClearCode, outs) } // Reset code table function cl_hash(hsize) { for (var i = 0; i < hsize; ++i) htab[i] = -1 } function compress(init_bits, outs) { var fcode, c, i, ent, disp, hsize_reg, hshift // Set up the globals: g_init_bits - initial number of bits g_init_bits = init_bits // Set up the necessary values clear_flg = false n_bits = g_init_bits maxcode = MAXCODE(n_bits) ClearCode = 1 << (init_bits - 1) EOFCode = ClearCode + 1 free_ent = ClearCode + 2 a_count = 0 // clear packet ent = nextPixel() hshift = 0 for (fcode = LZWEncoder_HSIZE; fcode < 65536; fcode *= 2) ++hshift hshift = 8 - hshift // set hash code range bound hsize_reg = LZWEncoder_HSIZE cl_hash(hsize_reg) // clear hash table output(ClearCode, outs) outer_loop: while ((c = nextPixel()) != LZWEncoder_EOF) { fcode = (c << LZWEncoder_BITS) + ent i = (c << hshift) ^ ent // xor hashing if (htab[i] === fcode) { ent = codetab[i] continue } else if (htab[i] >= 0) { // non-empty slot disp = hsize_reg - i // secondary hash (after G. Knott) if (i === 0) disp = 1 do { if ((i -= disp) < 0) i += hsize_reg if (htab[i] === fcode) { ent = codetab[i] continue outer_loop } } while (htab[i] >= 0) } output(ent, outs) ent = c if (free_ent < 1 << LZWEncoder_BITS) { codetab[i] = free_ent++ // code -> hashtable htab[i] = fcode } else { cl_block(outs) } } // Put out the final code. output(ent, outs) output(EOFCode, outs) } function encode(outs) { outs.writeByte(8) // write "initial code size" byte remaining = width * height // reset navigation variables curPixel = 0 compress(8 + 1, outs) // compress and write the pixel data outs.writeByte(0) // write block terminator } // Flush the packet to disk, and reset the accumulator function flush_char(outs) { if (a_count > 0) { outs.writeByte(a_count) outs.writeBytes(accum, 0, a_count) a_count = 0 } } function MAXCODE(n_bits) { return (1 << n_bits) - 1 } // Return the next pixel from the image function nextPixel() { if (remaining === 0) return LZWEncoder_EOF --remaining var pix = pixels[curPixel++] return pix & 0xff } function output(code, outs) { cur_accum &= LZWEncoder_MASKS[cur_bits] if (cur_bits > 0) cur_accum |= code << cur_bits else cur_accum = code cur_bits += n_bits while (cur_bits >= 8) { char_out(cur_accum & 0xff, outs) cur_accum >>= 8 cur_bits -= 8 } // If the next entry is going to be too big for the code size, // then increase it, if possible. if (free_ent > maxcode || clear_flg) { if (clear_flg) { maxcode = MAXCODE((n_bits = g_init_bits)) clear_flg = false } else { ++n_bits if (n_bits == LZWEncoder_BITS) maxcode = 1 << LZWEncoder_BITS else maxcode = MAXCODE(n_bits) } } if (code == EOFCode) { // At EOF, write the rest of the buffer. while (cur_bits > 0) { char_out(cur_accum & 0xff, outs) cur_accum >>= 8 cur_bits -= 8 } flush_char(outs) } } this.encode = encode } /* NeuQuant Neural-Net Quantization Algorithm * ------------------------------------------ * * Copyright (c) 1994 Anthony Dekker * * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. * See "Kohonen neural networks for optimal colour quantization" * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. * for a discussion of the algorithm. * See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML * * Any party obtaining a copy of these files from the author, directly or * indirectly, is granted, free of charge, a full and unrestricted irrevocable, * world-wide, paid up, royalty-free, nonexclusive right and license to deal * in this software and documentation files (the "Software"), including without * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons who receive * copies from any such party to do so, with the only requirement being * that this copyright notice remain intact. * * (JavaScript port 2012 by Johan Nordberg) */ // https://github.com/benjaminadk/gif-encoder-2 const NEUQUANT_LEARNING_CYCLES = 100; // number of learning cycles const NEUQUANT_NET_SIZE = 256; // number of colors used const NEUQUANT_MAX_NET_POS = NEUQUANT_NET_SIZE - 1; // defs for freq and bias const NEUQUANT_NET_BIAS_SHIFT = 4; // bias for colour values const NEUQUANT_INT_BIAS_SHIFT = 16; // bias for fractions const NEUQUANT_INT_BIAS = 1 << NEUQUANT_INT_BIAS_SHIFT; const NEUQUANT_GAMMA_SHIFT = 10; const NEUQUANT_BETA_SHIFT = 10; const NEUQUANT_BETA = NEUQUANT_INT_BIAS >> NEUQUANT_BETA_SHIFT; /* beta = 1/1024 */ const NEUQUANT_BETA_GAMMA = NEUQUANT_INT_BIAS << (NEUQUANT_GAMMA_SHIFT - NEUQUANT_BETA_SHIFT); // defs for decreasing radius factor const NEUQUANT_INIT_RAD = NEUQUANT_NET_SIZE >> 3; // for 256 cols, radius starts const NEUQUANT_RADIUS_BIAS_SHIFT = 6; // at 32.0 biased by 6 bits const NEUQUANT_RADIUS_BIAS = 1 << NEUQUANT_RADIUS_BIAS_SHIFT; const NEUQUANT_INIT_RADIUS = NEUQUANT_INIT_RAD * NEUQUANT_RADIUS_BIAS; //and decreases by a const NEUQUANT_RADIUSDEC = 30; // factor of 1/30 each cycle // defs for decreasing alpha factor const NEUQUANT_ALPHA_BIAS_SHIFT = 10; // alpha starts at 1.0 const NEUQUANT_INIT_ALPHA = 1 << NEUQUANT_ALPHA_BIAS_SHIFT; /* radbias and alpharadbias used for radpower calculation */ const NEUQUANT_RAD_BIAS_SHIFT = 8; const NEUQUANT_RAD_BIAS = 1 << NEUQUANT_RAD_BIAS_SHIFT; const NEUQUANT_ALPHA_RADB_SHIFT = NEUQUANT_ALPHA_BIAS_SHIFT + NEUQUANT_RAD_BIAS_SHIFT; const NEUQUANT_ALPHA_RAD_BIAS = 1 << NEUQUANT_ALPHA_RADB_SHIFT; // four primes near 500 - assume no image has a length so large that it is // divisible by all four primes const NEUQUANT_PRIME_1 = 499; const NEUQUANT_PRIME_2 = 491; const NEUQUANT_PRIME_3 = 487; const NEUQUANT_PRIME_4 = 503; const NEUQUANT_MIN_PICTURE_BYTES = 3 * NEUQUANT_PRIME_4; /* Constructor: NeuQuant Arguments: pixels - array of pixels in RGB format sampleFac - sampling factor 1 to 30 where lower is better quality > > pixels = [r, g, b, r, g, b, r, g, b, ..] > */ class NeuQuant { constructor(pixels, sampleFac) { this.pixels = pixels; this.sampleFac = sampleFac; } // sets up arrays _init() { this.network = []; this.netindex = new Int32Array(256); this.bias = new Int32Array(NEUQUANT_NET_SIZE); this.freq = new Int32Array(NEUQUANT_NET_SIZE); this.radpower = new Int32Array(NEUQUANT_NET_SIZE >> 3); for (let i = 0; i < NEUQUANT_NET_SIZE; i++) { const v = (i << (NEUQUANT_NET_BIAS_SHIFT + 8)) / NEUQUANT_NET_SIZE; this.network[i] = new Float64Array([v, v, v, 0]); //network[i] = [v, v, v, 0] this.freq[i] = NEUQUANT_INT_BIAS / NEUQUANT_NET_SIZE; this.bias[i] = 0; } } // unbiases network to give byte values 0..255 and record position i to prepare for sort _unbiasnet() { for (let i = 0; i < NEUQUANT_NET_SIZE; i++) { this.network[i][0] >>= NEUQUANT_NET_BIAS_SHIFT; this.network[i][1] >>= NEUQUANT_NET_BIAS_SHIFT; this.network[i][2] >>= NEUQUANT_NET_BIAS_SHIFT; this.network[i][3] = i; // record color number } } // moves neuron *i* towards biased (b,g,r) by factor *alpha* _altersingle(alpha, i, b, g, r) { this.network[i][0] -= (alpha * (this.network[i][0] - b)) / NEUQUANT_INIT_ALPHA; this.network[i][1] -= (alpha * (this.network[i][1] - g)) / NEUQUANT_INIT_ALPHA; this.network[i][2] -= (alpha * (this.network[i][2] - r)) / NEUQUANT_INIT_ALPHA; } // moves neurons in *radius* around index *i* towards biased (b,g,r) by factor *alpha* _alterneigh(radius, i, b, g, r) { const lo = Math.abs(i - radius); const hi = Math.min(i + radius, NEUQUANT_NET_SIZE); let j = i + 1; let k = i - 1; let m = 1; while (j < hi || k > lo) { const a = this.radpower[m++]; if (j < hi) { const p = this.network[j++]; p[0] -= (a * (p[0] - b)) / NEUQUANT_ALPHA_RAD_BIAS; p[1] -= (a * (p[1] - g)) / NEUQUANT_ALPHA_RAD_BIAS; p[2] -= (a * (p[2] - r)) / NEUQUANT_ALPHA_RAD_BIAS; } if (k > lo) { const p = this.network[k--]; p[0] -= (a * (p[0] - b)) / NEUQUANT_ALPHA_RAD_BIAS; p[1] -= (a * (p[1] - g)) / NEUQUANT_ALPHA_RAD_BIAS; p[2] -= (a * (p[2] - r)) / NEUQUANT_ALPHA_RAD_BIAS; } } } // searches for biased BGR values _contest(b, g, r) { /* finds closest neuron (min dist) and updates freq finds best neuron (min dist-bias) and returns position for frequently chosen neurons, freq[i] is high and bias[i] is negative bias[i] = gamma * ((1 / NEUQUANT_NET_SIZE) - freq[i]) */ let bestd = ~(1 << 31); let bestbiasd = bestd; let bestpos = -1; let bestbiaspos = bestpos; for (let i = 0; i < NEUQUANT_NET_SIZE; i++) { const n = this.network[i]; const dist = Math.abs(n[0] - b) + Math.abs(n[1] - g) + Math.abs(n[2] - r); if (dist < bestd) { bestd = dist; bestpos = i; } const biasdist = dist - (this.bias[i] >> (NEUQUANT_INT_BIAS_SHIFT - NEUQUANT_NET_BIAS_SHIFT)); if (biasdist < bestbiasd) { bestbiasd = biasdist; bestbiaspos = i; } const betafreq = this.freq[i] >> NEUQUANT_BETA_SHIFT; this.freq[i] -= betafreq; this.bias[i] += betafreq << NEUQUANT_GAMMA_SHIFT; } this.freq[bestpos] += NEUQUANT_BETA; this.bias[bestpos] -= NEUQUANT_BETA_GAMMA; return bestbiaspos; } // sorts network and builds netindex[0..255] _inxbuild() { let previouscol = 0; let startpos = 0; for (let i = 0; i < NEUQUANT_NET_SIZE; i++) { const p = this.network[i]; let smallpos = i; let smallval = p[1]; // index on g // find smallest in i..netsize-1 for (let j = i + 1; j < NEUQUANT_NET_SIZE; j++) { const q = this.network[j]; if (q[1] < smallval) { // index on g smallpos = j; smallval = q[1]; // index on g } } const q = this.network[smallpos]; // swap p (i) and q (smallpos) entries if (i != smallpos) { let j = q[0]; q[0] = p[0]; p[0] = j; j = q[1]; q[1] = p[1]; p[1] = j; j = q[2]; q[2] = p[2]; p[2] = j; j = q[3]; q[3] = p[3]; p[3] = j; } // smallval entry is now in position i if (smallval != previouscol) { this.netindex[previouscol] = (startpos + i) >> 1; for (let j = previouscol + 1; j < smallval; j++) this.netindex[j] = i; previouscol = smallval; startpos = i; } } this.netindex[previouscol] = (startpos + NEUQUANT_MAX_NET_POS) >> 1; for (let i = previouscol + 1; i < 256; i++) this.netindex[i] = NEUQUANT_MAX_NET_POS; // really 256 } // Main Learning Loop _learn() { const lengthcount = this.pixels.length; const alphadec = 30 + (this.sampleFac - 1) / 3; const samplepixels = lengthcount / (3 * this.sampleFac); let delta = ~~(samplepixels / NEUQUANT_LEARNING_CYCLES); let alpha = NEUQUANT_INIT_ALPHA; let radius = NEUQUANT_INIT_RADIUS; let rad = radius >> NEUQUANT_RADIUS_BIAS_SHIFT; if (rad <= 1) rad = 0; for (let i = 0; i < rad; i++) this.radpower[i] = alpha * (((rad * rad - i * i) * NEUQUANT_RAD_BIAS) / (rad * rad)); let step; if (lengthcount < NEUQUANT_MIN_PICTURE_BYTES) { this.sampleFac = 1; step = 3; } else if (lengthcount % NEUQUANT_PRIME_1 !== 0) step = 3 * NEUQUANT_PRIME_1; else if (lengthcount % NEUQUANT_PRIME_2 !== 0) step = 3 * NEUQUANT_PRIME_2; else if (lengthcount % NEUQUANT_PRIME_3 !== 0) step = 3 * NEUQUANT_PRIME_3; else step = 3 * NEUQUANT_PRIME_4; for (let i = 0, pix = 0; i < samplepixels;) { const b = (this.pixels[pix] & 0xff) << NEUQUANT_NET_BIAS_SHIFT; const g = (this.pixels[pix + 1] & 0xff) << NEUQUANT_NET_BIAS_SHIFT; const r = (this.pixels[pix + 2] & 0xff) << NEUQUANT_NET_BIAS_SHIFT; let j = this._contest(b, g, r); this._altersingle(alpha, j, b, g, r); if (rad !== 0) this._alterneigh(rad, j, b, g, r); // alter neighbours pix += step; if (pix >= lengthcount) pix -= lengthcount; i++; if (delta === 0) delta = 1; if (i % delta === 0) { alpha -= alpha / alphadec; radius -= radius / NEUQUANT_RADIUSDEC; rad = radius >> NEUQUANT_RADIUS_BIAS_SHIFT; if (rad <= 1) rad = 0; for (j = 0; j < rad; j++) this.radpower[j] = alpha * (((rad * rad - j * j) * NEUQUANT_RAD_BIAS) / (rad * rad)); } } } // searches for BGR values 0..255 and returns a color index lookupRGB(b, g, r) { let bestd = 1000 // biggest possible dist is 256*3 let best = -1 let i = this.netindex[g] // index on g let j = i - 1 // start at netindex[g] and work outwards while (i < NEUQUANT_NET_SIZE || j >= 0) { if (i < NEUQUANT_NET_SIZE) { const p = this.network[i] let dist = p[1] - g // inx key if (dist >= bestd) i = NEUQUANT_NET_SIZE // stop iter else { i++ if (dist < 0) dist = -dist let a = p[0] - b if (a < 0) a = -a dist += a if (dist < bestd) { a = p[2] - r if (a < 0) a = -a dist += a if (dist < bestd) { bestd = dist best = p[3] } } } } if (j >= 0) { const p = this.network[j] let dist = g - p[1] // inx key - reverse dif if (dist >= bestd) j = -1 // stop iter else { j-- if (dist < 0) dist = -dist let a = p[0] - b if (a < 0) a = -a dist += a if (dist < bestd) { a = p[2] - r if (a < 0) a = -a dist += a if (dist < bestd) { bestd = dist best = p[3] } } } } } return best } buildColormap() { this._init(); this._learn(); this._unbiasnet(); this._inxbuild(); } /* builds colormap from the index returns array in the format: [r, g, b, r, g, b, r, g, b, ..] */ getColormap() { const map = []; const index = []; for (let i = 0; i < NEUQUANT_NET_SIZE; i++) index[this.network[i][3]] = i; for (let l = 0, k = 0; l < NEUQUANT_NET_SIZE; l++) { const j = index[l]; map[k++] = this.network[j][0]; map[k++] = this.network[j][1]; map[k++] = this.network[j][2]; } return map } } class ByteArray { constructor() { this.data = []; } getData() { return Buffer.from(this.data); } writeByte(val) { this.data.push(val); } writeUTFBytes(str) { for (let len = str.length, i = 0; i < len; i++) this.writeByte(str.charCodeAt(i)); } writeBytes(array, offset, length) { for (let len = length || array.length, i = offset || 0; i < len; i++) this.writeByte(array[i]); } } // https://github.com/benjaminadk/gif-encoder-2 class GIFEncoder { constructor(width, height) { this.out = new ByteArray(); this.indexedPixels = null; this.transparent = null; this.firstFrame = true; this.height = ~~height; this.width = ~~width; this.colorTab = null; this.transIndex = 0; this.delay = 0; this.dispose = -1; } start() { this.out.writeUTFBytes('GIF89a'); } addFrame(input) { this.analyzePixels(input); if (this.firstFrame) { this.writeLSD(); this.writePalette(); this.writeNetscapeExt(); } this.writeGraphicCtrlExt(); this.writeImageDesc(); if (!this.firstFrame) this.writePalette(); this.writePixels(); this.firstFrame = false; } analyzePixels(image) { const w = this.width; const h = this.height; const pixels = new Uint8Array(w * h * 3); for (let i = 0, count = 0; i < h; i++) { for (let j = 0; j < w; j++) { const b = i * w * 4 + j * 4; pixels[count++] = image[b]; pixels[count++] = image[b + 1]; pixels[count++] = image[b + 2]; } } const nPix = pixels.length / 3; this.indexedPixels = new Uint8Array(nPix); this.quantizer = new NeuQuant(pixels, 10); this.quantizer.buildColormap(); this.colorTab = this.quantizer.getColormap(); for (let i = 0, k = 0; i < nPix; i++) { var index = this.quantizer.lookupRGB(pixels[k++] & 0xff, pixels[k++] & 0xff, pixels[k++] & 0xff); this.indexedPixels[i] = index; } if (this.transparent !== null) { const r = (this.transparent & 0xff0000) >> 16; const g = (this.transparent & 0x00ff00) >> 8; const b = (this.transparent & 0x0000ff); this.transIndex = this.quantizer.lookupRGB(r, g, b); for (let pixelIndex = 0; pixelIndex < nPix; pixelIndex++) if (image[pixelIndex * 4 + 3] == 0) this.indexedPixels[pixelIndex] = this.transIndex; } } setFrameRate(fps) { this.delay = Math.round(100 / fps); } setTransparent(color) { this.transparent = color; } writeLSD() { this.writeShort(this.width); this.writeShort(this.height); this.out.writeByte(0x80 | 0x70 | 0x00 | 7); this.out.writeByte(0); this.out.writeByte(0); } writeGraphicCtrlExt() { this.out.writeByte(0x21); this.out.writeByte(0xf9); this.out.writeByte(4); let transp = 1; let disp = 2; if (this.transparent === null) disp = transp = 0; if (this.dispose >= 0) disp = this.dispose & 7; disp <<= 2; this.out.writeByte(0 | disp | 0 | transp); this.writeShort(this.delay); this.out.writeByte(this.transIndex); this.out.writeByte(0); } writeNetscapeExt() { this.out.writeByte(0x21); this.out.writeByte(0xff); this.out.writeByte(11); this.out.writeUTFBytes('NETSCAPE2.0'); this.out.writeByte(3); this.out.writeByte(1); this.writeShort(0); this.out.writeByte(0); } writeImageDesc() { this.out.writeByte(0x2c); this.writeShort(0); this.writeShort(0); this.writeShort(this.width); this.writeShort(this.height); if (this.firstFrame) this.out.writeByte(0); else this.out.writeByte(0x80 | 0 | 0 | 0 | 7); } writePalette() { this.out.writeBytes(this.colorTab); const n = 3 * 256 - this.colorTab.length; for (let i = 0; i < n; i++) this.out.writeByte(0); } writeShort(pValue) { this.out.writeByte(pValue & 0xff); this.out.writeByte((pValue >> 8) & 0xff); } writePixels() { var enc = new LZWEncoder(this.width, this.height, this.indexedPixels, 8); enc.encode(this.out); } finish() { this.out.writeByte(0x3b); } } var UPNG = {}; UPNG.toRGBA8 = function (out) { var w = out.width, h = out.height; if (out.tabs.acTL == null) return [UPNG.toRGBA8.decodeImage(out.data, w, h, out).buffer]; var frms = []; if (out.frames[0].data == null) out.frames[0].data = out.data; var len = w * h * 4, img = new Uint8Array(len), empty = new Uint8Array(len), prev = new Uint8Array(len); for (var i = 0; i < out.frames.length; i++) { var frm = out.frames[i]; var fx = frm.rect.x, fy = frm.rect.y, fw = frm.rect.width, fh = frm.rect.height; var fdata = UPNG.toRGBA8.decodeImage(frm.data, fw, fh, out); if (i != 0) for (var j = 0; j < len; j++) prev[j] = img[j]; if (frm.blend == 0) UPNG._copyTile(fdata, fw, fh, img, w, h, fx, fy, 0); else if (frm.blend == 1) UPNG._copyTile(fdata, fw, fh, img, w, h, fx, fy, 1); frms.push(img.buffer.slice(0)); if (frm.dispose == 0) { } else if (frm.dispose == 1) UPNG._copyTile(empty, fw, fh, img, w, h, fx, fy, 0); else if (frm.dispose == 2) for (var j = 0; j < len; j++) img[j] = prev[j]; } return frms; } UPNG.toRGBA8.decodeImage = function (data, w, h, out) { var area = w * h, bpp = UPNG.decode._getBPP(out); var bpl = Math.ceil(w * bpp / 8); // bytes per line var bf = new Uint8Array(area * 4), bf32 = new Uint32Array(bf.buffer); var ctype = out.ctype, depth = out.depth; var rs = UPNG._bin.readUshort; //console.log(ctype, depth); var time = Date.now(); if (ctype == 6) { // RGB + alpha var qarea = area << 2; if (depth == 8) for (var i = 0; i < qarea; i += 4) { bf[i] = data[i]; bf[i + 1] = data[i + 1]; bf[i + 2] = data[i + 2]; bf[i + 3] = data[i + 3]; } if (depth == 16) for (var i = 0; i < qarea; i++) { bf[i] = data[i << 1]; } } else if (ctype == 2) { // RGB var ts = out.tabs["tRNS"]; if (ts == null) { if (depth == 8) for (var i = 0; i < area; i++) { var ti = i * 3; bf32[i] = (255 << 24) | (data[ti + 2] << 16) | (data[ti + 1] << 8) | data[ti]; } if (depth == 16) for (var i = 0; i < area; i++) { var ti = i * 6; bf32[i] = (255 << 24) | (data[ti + 4] << 16) | (data[ti + 2] << 8) | data[ti]; } } else { var tr = ts[0], tg = ts[1], tb = ts[2]; if (depth == 8) for (var i = 0; i < area; i++) { var qi = i << 2, ti = i * 3; bf32[i] = (255 << 24) | (data[ti + 2] << 16) | (data[ti + 1] << 8) | data[ti]; if (data[ti] == tr && data[ti + 1] == tg && data[ti + 2] == tb) bf[qi + 3] = 0; } if (depth == 16) for (var i = 0; i < area; i++) { var qi = i << 2, ti = i * 6; bf32[i] = (255 << 24) | (data[ti + 4] << 16) | (data[ti + 2] << 8) | data[ti]; if (rs(data, ti) == tr && rs(data, ti + 2) == tg && rs(data, ti + 4) == tb) bf[qi + 3] = 0; } } } else if (ctype == 3) { // palette var p = out.tabs["PLTE"], ap = out.tabs["tRNS"], tl = ap ? ap.length : 0; //console.log(p, ap); if (depth == 1) for (var y = 0; y < h; y++) { var s0 = y * bpl, t0 = y * w; for (var i = 0; i < w; i++) { var qi = (t0 + i) << 2, j = ((data[s0 + (i >> 3)] >> (7 - ((i & 7) << 0))) & 1), cj = 3 * j; bf[qi] = p[cj]; bf[qi + 1] = p[cj + 1]; bf[qi + 2] = p[cj + 2]; bf[qi + 3] = (j < tl) ? ap[j] : 255; } } if (depth == 2) for (var y = 0; y < h; y++) { var s0 = y * bpl, t0 = y * w; for (var i = 0; i < w; i++) { var qi = (t0 + i) << 2, j = ((data[s0 + (i >> 2)] >> (6 - ((i & 3) << 1))) & 3), cj = 3 * j; bf[qi] = p[cj]; bf[qi + 1] = p[cj + 1]; bf[qi + 2] = p[cj + 2]; bf[qi + 3] = (j < tl) ? ap[j] : 255; } } if (depth == 4) for (var y = 0; y < h; y++) { var s0 = y * bpl, t0 = y * w; for (var i = 0; i < w; i++) { var qi = (t0 + i) << 2, j = ((data[s0 + (i >> 1)] >> (4 - ((i & 1) << 2))) & 15), cj = 3 * j; bf[qi] = p[cj]; bf[qi + 1] = p[cj + 1]; bf[qi + 2] = p[cj + 2]; bf[qi + 3] = (j < tl) ? ap[j] : 255; } } if (depth == 8) for (var i = 0; i < area; i++) { var qi = i << 2, j = data[i], cj = 3 * j; bf[qi] = p[cj]; bf[qi + 1] = p[cj + 1]; bf[qi + 2] = p[cj + 2]; bf[qi + 3] = (j < tl) ? ap[j] : 255; } } else if (ctype == 4) { // gray + alpha if (depth == 8) for (var i = 0; i < area; i++) { var qi = i << 2, di = i << 1, gr = data[di]; bf[qi] = gr; bf[qi + 1] = gr; bf[qi + 2] = gr; bf[qi + 3] = data[di + 1]; } if (depth == 16) for (var i = 0; i < area; i++) { var qi = i << 2, di = i << 2, gr = data[di]; bf[qi] = gr; bf[qi + 1] = gr; bf[qi + 2] = gr; bf[qi + 3] = data[di + 2]; } } else if (ctype == 0) { // gray var tr = out.tabs["tRNS"] ? out.tabs["tRNS"] : -1; for (var y = 0; y < h; y++) { var off = y * bpl, to = y * w; if (depth == 1) for (var x = 0; x < w; x++) { var gr = 255 * ((data[off + (x >>> 3)] >>> (7 - ((x & 7)))) & 1), al = (gr == tr * 255) ? 0 : 255; bf32[to + x] = (al << 24) | (gr << 16) | (gr << 8) | gr; } else if (depth == 2) for (var x = 0; x < w; x++) { var gr = 85 * ((data[off + (x >>> 2)] >>> (6 - ((x & 3) << 1))) & 3), al = (gr == tr * 85) ? 0 : 255; bf32[to + x] = (al << 24) | (gr << 16) | (gr << 8) | gr; } else if (depth == 4) for (var x = 0; x < w; x++) { var gr = 17 * ((data[off + (x >>> 1)] >>> (4 - ((x & 1) << 2))) & 15), al = (gr == tr * 17) ? 0 : 255; bf32[to + x] = (al << 24) | (gr << 16) | (gr << 8) | gr; } else if (depth == 8) for (var x = 0; x < w; x++) { var gr = data[off + x], al = (gr == tr) ? 0 : 255; bf32[to + x] = (al << 24) | (gr << 16) | (gr << 8) | gr; } else if (depth == 16) for (var x = 0; x < w; x++) { var gr = data[off + (x << 1)], al = (rs(data, off + (x << i)) == tr) ? 0 : 255; bf32[to + x] = (al << 24) | (gr << 16) | (gr << 8) | gr; } } } //console.log(Date.now()-time); return bf; } UPNG.decode = function (buff) { var data = new Uint8Array(buff), offset = 8, bin = UPNG._bin, rUs = bin.readUshort, rUi = bin.readUint; var out = { tabs: {}, frames: [] }; var dd = new Uint8Array(data.length), doff = 0; // put all IDAT data into it var fd, foff = 0; // frames var mgck = [0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a]; for (var i = 0; i < 8; i++) if (data[i] != mgck[i]) throw "The input is not a PNG file!"; while (offset < data.length) { var len = bin.readUint(data, offset); offset += 4; var type = bin.readASCII(data, offset, 4); offset += 4; //console.log(type,len); if (type == "IHDR") { UPNG.decode._IHDR(data, offset, out); } else if (type == "CgBI") { out.tabs[type] = data.slice(offset, offset + 4); } else if (type == "IDAT") { for (var i = 0; i < len; i++) dd[doff + i] = data[offset + i]; doff += len; } else if (type == "acTL") { out.tabs[type] = { num_frames: rUi(data, offset), num_plays: rUi(data, offset + 4) }; fd = new Uint8Array(data.length); } else if (type == "fcTL") { if (foff != 0) { var fr = out.frames[out.frames.length - 1]; fr.data = UPNG.decode._decompress(out, fd.slice(0, foff), fr.rect.width, fr.rect.height); foff = 0; } var rct = { x: rUi(data, offset + 12), y: rUi(data, offset + 16), width: rUi(data, offset + 4), height: rUi(data, offset + 8) }; var del = rUs(data, offset + 22); del = rUs(data, offset + 20) / (del == 0 ? 100 : del); var frm = { rect: rct, delay: Math.round(del * 1000), dispose: data[offset + 24], blend: data[offset + 25] }; //console.log(frm); out.frames.push(frm); } else if (type == "fdAT") { for (var i = 0; i < len - 4; i++) fd[foff + i] = data[offset + i + 4]; foff += len - 4; } else if (type == "pHYs") { out.tabs[type] = [bin.readUint(data, offset), bin.readUint(data, offset + 4), data[offset + 8]]; } else if (type == "cHRM") { out.tabs[type] = []; for (var i = 0; i < 8; i++) out.tabs[type].push(bin.readUint(data, offset + i * 4)); } else if (type == "tEXt" || type == "zTXt") { if (out.tabs[type] == null) out.tabs[type] = {}; var nz = bin.nextZero(data, offset); var keyw = bin.readASCII(data, offset, nz - offset); var text, tl = offset + len - nz - 1; if (type == "tEXt") text = bin.readASCII(data, nz + 1, tl); else { var bfr = UPNG.decode._inflate(data.slice(nz + 2, nz + 2 + tl)); text = bin.readUTF8(bfr, 0, bfr.length); } out.tabs[type][keyw] = text; } else if (type == "iTXt") { if (out.tabs[type] == null) out.tabs[type] = {}; var nz = 0, off = offset; nz = bin.nextZero(data, off); var keyw = bin.readASCII(data, off, nz - off); off = nz + 1; var cflag = data[off], cmeth = data[off + 1]; off += 2; nz = bin.nextZero(data, off); var ltag = bin.readASCII(data, off, nz - off); off = nz + 1; nz = bin.nextZero(data, off); var tkeyw = bin.readUTF8(data, off, nz - off); off = nz + 1; var text, tl = len - (off - offset); if (cflag == 0) text = bin.readUTF8(data, off, tl); else { var bfr = UPNG.decode._inflate(data.slice(off, off + tl)); text = bin.readUTF8(bfr, 0, bfr.length); } out.tabs[type][keyw] = text; } else if (type == "PLTE") { out.tabs[type] = bin.readBytes(data, offset, len); } else if (type == "hIST") { var pl = out.tabs["PLTE"].length / 3; out.tabs[type] = []; for (var i = 0; i < pl; i++) out.tabs[type].push(rUs(data, offset + i * 2)); } else if (type == "tRNS") { if (out.ctype == 3) out.tabs[type] = bin.readBytes(data, offset, len); else if (out.ctype == 0) out.tabs[type] = rUs(data, offset); else if (out.ctype == 2) out.tabs[type] = [rUs(data, offset), rUs(data, offset + 2), rUs(data, offset + 4)]; //else console.log("tRNS for unsupported color type",out.ctype, len); } else if (type == "gAMA") out.tabs[type] = bin.readUint(data, offset) / 100000; else if (type == "sRGB") out.tabs[type] = data[offset]; else if (type == "bKGD") { if (out.ctype == 0 || out.ctype == 4) out.tabs[type] = [rUs(data, offset)]; else if (out.ctype == 2 || out.ctype == 6) out.tabs[type] = [rUs(data, offset), rUs(data, offset + 2), rUs(data, offset + 4)]; else if (out.ctype == 3) out.tabs[type] = data[offset]; } else if (type == "IEND") { break; } //else { log("unknown chunk type", type, len); } offset += len; var crc = bin.readUint(data, offset); offset += 4; } if (foff != 0) { var fr = out.frames[out.frames.length - 1]; fr.data = UPNG.decode._decompress(out, fd.slice(0, foff), fr.rect.width, fr.rect.height); foff = 0; } out.data = UPNG.decode._decompress(out, dd, out.width, out.height); delete out.compress; delete out.interlace; delete out.filter; return out; } UPNG.decode._decompress = function (out, dd, w, h) { var time = Date.now(); var bpp = UPNG.decode._getBPP(out), bpl = Math.ceil(w * bpp / 8), buff = new Uint8Array((bpl + 1 + out.interlace) * h); if (out.tabs["CgBI"]) dd = UPNG.inflateRaw(dd, buff); else dd = UPNG.decode._inflate(dd, buff); //console.log(dd.length, buff.length); //console.log(Date.now()-time); var time = Date.now(); if (out.interlace == 0) dd = UPNG.decode._filterZero(dd, out, 0, w, h); else if (out.interlace == 1) dd = UPNG.decode._readInterlace(dd, out); //console.log(Date.now()-time); return dd; } UPNG.decode._inflate = function (data, buff) { var out = UPNG["inflateRaw"](new Uint8Array(data.buffer, 2, data.length - 6), buff); return out; } UPNG.inflateRaw = function () { var H = {}; H.H = {}; H.H.N = function (N, W) { var R = Uint8Array, i = 0, m = 0, J = 0, h = 0, Q = 0, X = 0, u = 0, w = 0, d = 0, v, C; if (N[0] == 3 && N[1] == 0) return W ? W : new R(0); var V = H.H, n = V.b, A = V.e, l = V.R, M = V.n, I = V.A, e = V.Z, b = V.m, Z = W == null; if (Z) W = new R(N.length >>> 2 << 5); while (i == 0) { i = n(N, d, 1); m = n(N, d + 1, 2); d += 3; if (m == 0) { if ((d & 7) != 0) d += 8 - (d & 7); var D = (d >>> 3) + 4, q = N[D - 4] | N[D - 3] << 8; if (Z) W = H.H.W(W, w + q); W.set(new R(N.buffer, N.byteOffset + D, q), w); d = D + q << 3; w += q; continue } if (Z) W = H.H.W(W, w + (1 << 17)); if (m == 1) { v = b.J; C = b.h; X = (1 << 9) - 1; u = (1 << 5) - 1 } if (m == 2) { J = A(N, d, 5) + 257; h = A(N, d + 5, 5) + 1; Q = A(N, d + 10, 4) + 4; d += 14; var E = d, j = 1; for (var c = 0; c < 38; c += 2) { b.Q[c] = 0; b.Q[c + 1] = 0 } for (var c = 0; c < Q; c++) { var K = A(N, d + c * 3, 3); b.Q[(b.X[c] << 1) + 1] = K; if (K > j) j = K } d += 3 * Q; M(b.Q, j); I(b.Q, j, b.u); v = b.w; C = b.d; d = l(b.u, (1 << j) - 1, J + h, N, d, b.v); var r = V.V(b.v, 0, J, b.C); X = (1 << r) - 1; var S = V.V(b.v, J, h, b.D); u = (1 << S) - 1; M(b.C, r); I(b.C, r, v); M(b.D, S); I(b.D, S, C) } while (!0) { var T = v[e(N, d) & X]; d += T & 15; var p = T >>> 4; if (p >>> 8 == 0) { W[w++] = p } else if (p == 256) { break } else { var z = w + p - 254; if (p > 264) { var _ = b.q[p - 257]; z = w + (_ >>> 3) + A(N, d, _ & 7); d += _ & 7 } var $ = C[e(N, d) & u]; d += $ & 15; var s = $ >>> 4, Y = b.c[s], a = (Y >>> 4) + n(N, d, Y & 15); d += Y & 15; while (w < z) { W[w] = W[w++ - a]; W[w] = W[w++ - a]; W[w] = W[w++ - a]; W[w] = W[w++ - a] } w = z } } } return W.length == w ? W : W.slice(0, w) }; H.H.W = function (N, W) { var R = N.length; if (W <= R) return N; var V = new Uint8Array(R << 1); V.set(N, 0); return V }; H.H.R = function (N, W, R, V, n, A) { var l = H.H.e, M = H.H.Z, I = 0; while (I < R) { var e = N[M(V, n) & W]; n += e & 15; var b = e >>> 4; if (b <= 15) { A[I] = b; I++ } else { var Z = 0, m = 0; if (b == 16) { m = 3 + l(V, n, 2); n += 2; Z = A[I - 1] } else if (b == 17) { m = 3 + l(V, n, 3); n += 3 } else if (b == 18) { m = 11 + l(V, n, 7); n += 7 } var J = I + m; while (I < J) { A[I] = Z; I++ } } } return n }; H.H.V = function (N, W, R, V) { var n = 0, A = 0, l = V.length >>> 1; while (A < R) { var M = N[A + W]; V[A << 1] = 0; V[(A << 1) + 1] = M; if (M > n) n = M; A++ } while (A < l) { V[A << 1] = 0; V[(A << 1) + 1] = 0; A++ } return n }; H.H.n = function (N, W) { var R = H.H.m, V = N.length, n, A, l, M, I, e = R.j; for (var M = 0; M <= W; M++)e[M] = 0; for (M = 1; M < V; M += 2)e[N[M]]++; var b = R.K; n = 0; e[0] = 0; for (A = 1; A <= W; A++) { n = n + e[A - 1] << 1; b[A] = n } for (l = 0; l < V; l += 2) { I = N[l + 1]; if (I != 0) { N[l] = b[I]; b[I]++ } } }; H.H.A = function (N, W, R) { var V = N.length, n = H.H.m, A = n.r; for (var l = 0; l < V; l += 2)if (N[l + 1] != 0) { var M = l >> 1, I = N[l + 1], e = M << 4 | I, b = W - I, Z = N[l] << b, m = Z + (1 << b); while (Z != m) { var J = A[Z] >>> 15 - W; R[J] = e; Z++ } } }; H.H.l = function (N, W) { var R = H.H.m.r, V = 15 - W; for (var n = 0; n < N.length; n += 2) { var A = N[n] << W - N[n + 1]; N[n] = R[A] >>> V } }; H.H.M = function (N, W, R) { R = R << (W & 7); var V = W >>> 3; N[V] |= R; N[V + 1] |= R >>> 8 }; H.H.I = function (N, W, R) { R = R << (W & 7); var V = W >>> 3; N[V] |= R; N[V + 1] |= R >>> 8; N[V + 2] |= R >>> 16 }; H.H.e = function (N, W, R) { return (N[W >>> 3] | N[(W >>> 3) + 1] << 8) >>> (W & 7) & (1 << R) - 1 }; H.H.b = function (N, W, R) { return (N[W >>> 3] | N[(W >>> 3) + 1] << 8 | N[(W >>> 3) + 2] << 16) >>> (W & 7) & (1 << R) - 1 }; H.H.Z = function (N, W) { return (N[W >>> 3] | N[(W >>> 3) + 1] << 8 | N[(W >>> 3) + 2] << 16) >>> (W & 7) }; H.H.i = function (N, W) { return (N[W >>> 3] | N[(W >>> 3) + 1] << 8 | N[(W >>> 3) + 2] << 16 | N[(W >>> 3) + 3] << 24) >>> (W & 7) }; H.H.m = function () { var N = Uint16Array, W = Uint32Array; return { K: new N(16), j: new N(16), X: [16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15], S: [3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 999, 999, 999], T: [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0, 0], q: new N(32), p: [1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 65535, 65535], z: [0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 0, 0], c: new W(32), J: new N(512), _: [], h: new N(32), $: [], w: new N(32768), C: [], v: [], d: new N(32768), D: [], u: new N(512), Q: [], r: new N(1 << 15), s: new W(286), Y: new W(30), a: new W(19), t: new W(15e3), k: new N(1 << 16), g: new N(1 << 15) } }(); (function () { var N = H.H.m, W = 1 << 15; for (var R = 0; R < W; R++) { var V = R; V = (V & 2863311530) >>> 1 | (V & 1431655765) << 1; V = (V & 3435973836) >>> 2 | (V & 858993459) << 2; V = (V & 4042322160) >>> 4 | (V & 252645135) << 4; V = (V & 4278255360) >>> 8 | (V & 16711935) << 8; N.r[R] = (V >>> 16 | V << 16) >>> 17 } function n(A, l, M) { while (l-- != 0) A.push(0, M) } for (var R = 0; R < 32; R++) { N.q[R] = N.S[R] << 3 | N.T[R]; N.c[R] = N.p[R] << 4 | N.z[R] } n(N._, 144, 8); n(N._, 255 - 143, 9); n(N._, 279 - 255, 7); n(N._, 287 - 279, 8); H.H.n(N._, 9); H.H.A(N._, 9, N.J); H.H.l(N._, 9); n(N.$, 32, 5); H.H.n(N.$, 5); H.H.A(N.$, 5, N.h); H.H.l(N.$, 5); n(N.Q, 19, 0); n(N.C, 286, 0); n(N.D, 30, 0); n(N.v, 320, 0) }()); return H.H.N }() UPNG.decode._readInterlace = function (data, out) { var w = out.width, h = out.height; var bpp = UPNG.decode._getBPP(out), cbpp = bpp >> 3, bpl = Math.ceil(w * bpp / 8); var img = new Uint8Array(h * bpl); var di = 0; var starting_row = [0, 0, 4, 0, 2, 0, 1]; var starting_col = [0, 4, 0, 2, 0, 1, 0]; var row_increment = [8, 8, 8, 4, 4, 2, 2]; var col_increment = [8, 8, 4, 4, 2, 2, 1]; var pass = 0; while (pass < 7) { var ri = row_increment[pass], ci = col_increment[pass]; var sw = 0, sh = 0; var cr = starting_row[pass]; while (cr < h) { cr += ri; sh++; } var cc = starting_col[pass]; while (cc < w) { cc += ci; sw++; } var bpll = Math.ceil(sw * bpp / 8); UPNG.decode._filterZero(data, out, di, sw, sh); var y = 0, row = starting_row[pass]; while (row < h) { var col = starting_col[pass]; var cdi = (di + y * bpll) << 3; while (col < w) { if (bpp == 1) { var val = data[cdi >> 3]; val = (val >> (7 - (cdi & 7))) & 1; img[row * bpl + (col >> 3)] |= (val << (7 - ((col & 7) << 0))); } if (bpp == 2) { var val = data[cdi >> 3]; val = (val >> (6 - (cdi & 7))) & 3; img[row * bpl + (col >> 2)] |= (val << (6 - ((col & 3) << 1))); } if (bpp == 4) { var val = data[cdi >> 3]; val = (val >> (4 - (cdi & 7))) & 15; img[row * bpl + (col >> 1)] |= (val << (4 - ((col & 1) << 2))); } if (bpp >= 8) { var ii = row * bpl + col * cbpp; for (var j = 0; j < cbpp; j++) img[ii + j] = data[(cdi >> 3) + j]; } cdi += bpp; col += ci; } y++; row += ri; } if (sw * sh != 0) di += sh * (1 + bpll); pass = pass + 1; } return img; } UPNG.decode._getBPP = function (out) { var noc = [1, null, 3, 1, 2, null, 4][out.ctype]; return noc * out.depth; } UPNG.decode._filterZero = function (data, out, off, w, h) { var bpp = UPNG.decode._getBPP(out), bpl = Math.ceil(w * bpp / 8), paeth = UPNG.decode._paeth; bpp = Math.ceil(bpp / 8); var i = 0, di = 1, type = data[off], x = 0; if (type > 1) data[off] = [0, 0, 1][type - 2]; if (type == 3) for (x = bpp; x < bpl; x++) data[x + 1] = (data[x + 1] + (data[x + 1 - bpp] >>> 1)) & 255; for (var y = 0; y < h; y++) { i = off + y * bpl; di = i + y + 1; type = data[di - 1]; x = 0; if (type == 0) for (; x < bpl; x++) data[i + x] = data[di + x]; else if (type == 1) { for (; x < bpp; x++) data[i + x] = data[di + x]; for (; x < bpl; x++) data[i + x] = (data[di + x] + data[i + x - bpp]); } else if (type == 2) { for (; x < bpl; x++) data[i + x] = (data[di + x] + data[i + x - bpl]); } else if (type == 3) { for (; x < bpp; x++) data[i + x] = (data[di + x] + (data[i + x - bpl] >>> 1)); for (; x < bpl; x++) data[i + x] = (data[di + x] + ((data[i + x - bpl] + data[i + x - bpp]) >>> 1)); } else { for (; x < bpp; x++) data[i + x] = (data[di + x] + paeth(0, data[i + x - bpl], 0)); for (; x < bpl; x++) data[i + x] = (data[di + x] + paeth(data[i + x - bpp], data[i + x - bpl], data[i + x - bpp - bpl])); } } return data; } UPNG.decode._paeth = function (a, b, c) { var p = a + b - c, pa = (p - a), pb = (p - b), pc = (p - c); if (pa * pa <= pb * pb && pa * pa <= pc * pc) return a; else if (pb * pb <= pc * pc) return b; return c; } UPNG.decode._IHDR = function (data, offset, out) { var bin = UPNG._bin; out.width = bin.readUint(data, offset); offset += 4; out.height = bin.readUint(data, offset); offset += 4; out.depth = data[offset]; offset++; out.ctype = data[offset]; offset++; out.compress = data[offset]; offset++; out.filter = data[offset]; offset++; out.interlace = data[offset]; offset++; } UPNG._bin = { nextZero: function (data, p) { while (data[p] != 0) p++; return p; }, readUshort: function (buff, p) { return (buff[p] << 8) | buff[p + 1]; }, writeUshort: function (buff, p, n) { buff[p] = (n >> 8) & 255; buff[p + 1] = n & 255; }, readUint: function (buff, p) { return (buff[p] * (256 * 256 * 256)) + ((buff[p + 1] << 16) | (buff[p + 2] << 8) | buff[p + 3]); }, writeUint: function (buff, p, n) { buff[p] = (n >> 24) & 255; buff[p + 1] = (n >> 16) & 255; buff[p + 2] = (n >> 8) & 255; buff[p + 3] = n & 255; }, readASCII: function (buff, p, l) { var s = ""; for (var i = 0; i < l; i++) s += String.fromCharCode(buff[p + i]); return s; }, writeASCII: function (data, p, s) { for (var i = 0; i < s.length; i++) data[p + i] = s.charCodeAt(i); }, readBytes: function (buff, p, l) { var arr = []; for (var i = 0; i < l; i++) arr.push(buff[p + i]); return arr; }, pad: function (n) { return n.length < 2 ? "0" + n : n; }, readUTF8: function (buff, p, l) { var s = "", ns; for (var i = 0; i < l; i++) s += "%" + UPNG._bin.pad(buff[p + i].toString(16)); try { ns = decodeURIComponent(s); } catch (e) { return UPNG._bin.readASCII(buff, p, l); } return ns; } } UPNG._copyTile = function (sb, sw, sh, tb, tw, th, xoff, yoff, mode) { var w = Math.min(sw, tw), h = Math.min(sh, th); var si = 0, ti = 0; for (var y = 0; y < h; y++) for (var x = 0; x < w; x++) { if (xoff >= 0 && yoff >= 0) { si = (y * sw + x) << 2; ti = ((yoff + y) * tw + xoff + x) << 2; } else { si = ((-yoff + y) * sw - xoff + x) << 2; ti = (y * tw + x) << 2; } if (mode == 0) { tb[ti] = sb[si]; tb[ti + 1] = sb[si + 1]; tb[ti + 2] = sb[si + 2]; tb[ti + 3] = sb[si + 3]; } else if (mode == 1) { var fa = sb[si + 3] * (1 / 255), fr = sb[si] * fa, fg = sb[si + 1] * fa, fb = sb[si + 2] * fa; var ba = tb[ti + 3] * (1 / 255), br = tb[ti] * ba, bg = tb[ti + 1] * ba, bb = tb[ti + 2] * ba; var ifa = 1 - fa, oa = fa + ba * ifa, ioa = (oa == 0 ? 0 : 1 / oa); tb[ti + 3] = 255 * oa; tb[ti + 0] = (fr + br * ifa) * ioa; tb[ti + 1] = (fg + bg * ifa) * ioa; tb[ti + 2] = (fb + bb * ifa) * ioa; } else if (mode == 2) { // copy only differences, otherwise zero var fa = sb[si + 3], fr = sb[si], fg = sb[si + 1], fb = sb[si + 2]; var ba = tb[ti + 3], br = tb[ti], bg = tb[ti + 1], bb = tb[ti + 2]; if (fa == ba && fr == br && fg == bg && fb == bb) { tb[ti] = 0; tb[ti + 1] = 0; tb[ti + 2] = 0; tb[ti + 3] = 0; } else { tb[ti] = fr; tb[ti + 1] = fg; tb[ti + 2] = fb; tb[ti + 3] = fa; } } else if (mode == 3) { // check if can be blended var fa = sb[si + 3], fr = sb[si], fg = sb[si + 1], fb = sb[si + 2]; var ba = tb[ti + 3], br = tb[ti], bg = tb[ti + 1], bb = tb[ti + 2]; if (fa == ba && fr == br && fg == bg && fb == bb) continue; //if(fa!=255 && ba!=0) return false; if (fa < 220 && ba > 20) return false; } } return true; } UPNG.encode = function (bufs, w, h, ps, dels, tabs, forbidPlte) { if (ps == null) ps = 0; if (forbidPlte == null) forbidPlte = false; var nimg = UPNG.encode.compress(bufs, w, h, ps, [false, false, false, 0, forbidPlte]); UPNG.encode.compressPNG(nimg, -1); return UPNG.encode._main(nimg, w, h, dels, tabs); } UPNG.encodeLL = function (bufs, w, h, cc, ac, depth, dels, tabs) { var nimg = { ctype: 0 + (cc == 1 ? 0 : 2) + (ac == 0 ? 0 : 4), depth: depth, frames: [] }; var time = Date.now(); var bipp = (cc + ac) * depth, bipl = bipp * w; for (var i = 0; i < bufs.length; i++) nimg.frames.push({ rect: { x: 0, y: 0, width: w, height: h }, img: new Uint8Array(bufs[i]), blend: 0, dispose: 1, bpp: Math.ceil(bipp / 8), bpl: Math.ceil(bipl / 8) }); UPNG.encode.compressPNG(nimg, 0, true); var out = UPNG.encode._main(nimg, w, h, dels, tabs); return out; } UPNG.encode._main = function (nimg, w, h, dels, tabs) { if (tabs == null) tabs = {}; var crc = UPNG.crc.crc, wUi = UPNG._bin.writeUint, wUs = UPNG._bin.writeUshort, wAs = UPNG._bin.writeASCII; var offset = 8, anim = nimg.frames.length > 1, pltAlpha = false; var leng = 8 + (16 + 5 + 4) /*+ (9+4)*/ + (anim ? 20 : 0); if (tabs["sRGB"] != null) leng += 8 + 1 + 4; if (tabs["pHYs"] != null) leng += 8 + 9 + 4; if (nimg.ctype == 3) { var dl = nimg.plte.length; for (var i = 0; i < dl; i++) if ((nimg.plte[i] >>> 24) != 255) pltAlpha = true; leng += (8 + dl * 3 + 4) + (pltAlpha ? (8 + dl * 1 + 4) : 0); } for (var j = 0; j < nimg.frames.length; j++) { var fr = nimg.frames[j]; if (anim) leng += 38; leng += fr.cimg.length + 12; if (j != 0) leng += 4; } leng += 12; var data = new Uint8Array(leng); var wr = [0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a]; for (var i = 0; i < 8; i++) data[i] = wr[i]; wUi(data, offset, 13); offset += 4; wAs(data, offset, "IHDR"); offset += 4; wUi(data, offset, w); offset += 4; wUi(data, offset, h); offset += 4; data[offset] = nimg.depth; offset++; // depth data[offset] = nimg.ctype; offset++; // ctype data[offset] = 0; offset++; // compress data[offset] = 0; offset++; // filter data[offset] = 0; offset++; // interlace wUi(data, offset, crc(data, offset - 17, 17)); offset += 4; // crc // 13 bytes to say, that it is sRGB if (tabs["sRGB"] != null) { wUi(data, offset, 1); offset += 4; wAs(data, offset, "sRGB"); offset += 4; data[offset] = tabs["sRGB"]; offset++; wUi(data, offset, crc(data, offset - 5, 5)); offset += 4; // crc } if (tabs["pHYs"] != null) { wUi(data, offset, 9); offset += 4; wAs(data, offset, "pHYs"); offset += 4; wUi(data, offset, tabs["pHYs"][0]); offset += 4; wUi(data, offset, tabs["pHYs"][1]); offset += 4; data[offset] = tabs["pHYs"][2]; offset++; wUi(data, offset, crc(data, offset - 13, 13)); offset += 4; // crc } if (anim) { wUi(data, offset, 8); offset += 4; wAs(data, offset, "acTL"); offset += 4; wUi(data, offset, nimg.frames.length); offset += 4; wUi(data, offset, tabs["loop"] != null ? tabs["loop"] : 0); offset += 4; wUi(data, offset, crc(data, offset - 12, 12)); offset += 4; // crc } if (nimg.ctype == 3) { var dl = nimg.plte.length; wUi(data, offset, dl * 3); offset += 4; wAs(data, offset, "PLTE"); offset += 4; for (var i = 0; i < dl; i++) { var ti = i * 3, c = nimg.plte[i], r = (c) & 255, g = (c >>> 8) & 255, b = (c >>> 16) & 255; data[offset + ti + 0] = r; data[offset + ti + 1] = g; data[offset + ti + 2] = b; } offset += dl * 3; wUi(data, offset, crc(data, offset - dl * 3 - 4, dl * 3 + 4)); offset += 4; // crc if (pltAlpha) { wUi(data, offset, dl); offset += 4; wAs(data, offset, "tRNS"); offset += 4; for (var i = 0; i < dl; i++) data[offset + i] = (nimg.plte[i] >>> 24) & 255; offset += dl; wUi(data, offset, crc(data, offset - dl - 4, dl + 4)); offset += 4; // crc } } var fi = 0; for (var j = 0; j < nimg.frames.length; j++) { var fr = nimg.frames[j]; if (anim) { wUi(data, offset, 26); offset += 4; wAs(data, offset, "fcTL"); offset += 4; wUi(data, offset, fi++); offset += 4; wUi(data, offset, fr.rect.width); offset += 4; wUi(data, offset, fr.rect.height); offset += 4; wUi(data, offset, fr.rect.x); offset += 4; wUi(data, offset, fr.rect.y); offset += 4; wUs(data, offset, dels[j]); offset += 2; wUs(data, offset, 1000); offset += 2; data[offset] = fr.dispose; offset++; // dispose data[offset] = fr.blend; offset++; // blend wUi(data, offset, crc(data, offset - 30, 30)); offset += 4; // crc } var imgd = fr.cimg, dl = imgd.length; wUi(data, offset, dl + (j == 0 ? 0 : 4)); offset += 4; var ioff = offset; wAs(data, offset, (j == 0) ? "IDAT" : "fdAT"); offset += 4; if (j != 0) { wUi(data, offset, fi++); offset += 4; } data.set(imgd, offset); offset += dl; wUi(data, offset, crc(data, ioff, offset - ioff)); offset += 4; // crc } wUi(data, offset, 0); offset += 4; wAs(data, offset, "IEND"); offset += 4; wUi(data, offset, crc(data, offset - 4, 4)); offset += 4; // crc return data.buffer; } UPNG.encode.compressPNG = function (out, filter, levelZero) { for (var i = 0; i < out.frames.length; i++) { var frm = out.frames[i], nw = frm.rect.width, nh = frm.rect.height; var fdata = new Uint8Array(nh * frm.bpl + nh); frm.cimg = UPNG.encode._filterZero(frm.img, nh, frm.bpp, frm.bpl, fdata, filter, levelZero); } } UPNG.encode.compress = function (bufs, w, h, ps, prms) // prms: onlyBlend, minBits, forbidPlte { //var time = Date.now(); var onlyBlend = prms[0], evenCrd = prms[1], forbidPrev = prms[2], minBits = prms[3], forbidPlte = prms[4]; var ctype = 6, depth = 8, alphaAnd = 255 for (var j = 0; j < bufs.length; j++) { // when not quantized, other frames can contain colors, that are not in an initial frame var img = new Uint8Array(bufs[j]), ilen = img.length; for (var i = 0; i < ilen; i += 4) alphaAnd &= img[i + 3]; } var gotAlpha = (alphaAnd != 255); //console.log("alpha check", Date.now()-time); time = Date.now(); //var brute = gotAlpha && forGIF; // brute : frames can only be copied, not "blended" var frms = UPNG.encode.framize(bufs, w, h, onlyBlend, evenCrd, forbidPrev); //console.log("framize", Date.now()-time); time = Date.now(); var cmap = {}, plte = [], inds = []; if (ps != 0) { var nbufs = []; for (var i = 0; i < frms.length; i++) nbufs.push(frms[i].img.buffer); var abuf = UPNG.encode.concatRGBA(nbufs), qres = UPNG.quantize(abuf, ps); console.log(qres); var cof = 0, bb = new Uint8Array(qres.abuf); for (var i = 0; i < frms.length; i++) { var ti = frms[i].img, bln = ti.length; inds.push(new Uint8Array(qres.inds.buffer, cof >> 2, bln >> 2)); for (var j = 0; j < bln; j += 4) { ti[j] = bb[cof + j]; ti[j + 1] = bb[cof + j + 1]; ti[j + 2] = bb[cof + j + 2]; ti[j + 3] = bb[cof + j + 3]; } cof += bln; } for (var i = 0; i < qres.plte.length; i++) plte.push(qres.plte[i].est.rgba); //console.log("quantize", Date.now()-time); time = Date.now(); } else { // what if ps==0, but there are <=256 colors? we still need to detect, if the palette could be used for (var j = 0; j < frms.length; j++) { // when not quantized, other frames can contain colors, that are not in an initial frame var frm = frms[j], img32 = new Uint32Array(frm.img.buffer), nw = frm.rect.width, ilen = img32.length; var ind = new Uint8Array(ilen); inds.push(ind); for (var i = 0; i < ilen; i++) { var c = img32[i]; if (i != 0 && c == img32[i - 1]) ind[i] = ind[i - 1]; else if (i > nw && c == img32[i - nw]) ind[i] = ind[i - nw]; else { var cmc = cmap[c]; if (cmc == null) { cmap[c] = cmc = plte.length; plte.push(c); if (plte.length >= 300) break; } ind[i] = cmc; } } } //console.log("make palette", Date.now()-time); time = Date.now(); } var cc = plte.length; //console.log("colors:",cc); if (cc <= 256 && forbidPlte == false) { if (cc <= 2) depth = 1; else if (cc <= 4) depth = 2; else if (cc <= 16) depth = 4; else depth = 8; depth = Math.max(depth, minBits); } for (var j = 0; j < frms.length; j++) { var frm = frms[j], nx = frm.rect.x, ny = frm.rect.y, nw = frm.rect.width, nh = frm.rect.height; var cimg = frm.img, cimg32 = new Uint32Array(cimg.buffer); var bpl = 4 * nw, bpp = 4; if (cc <= 256 && forbidPlte == false) { bpl = Math.ceil(depth * nw / 8); var nimg = new Uint8Array(bpl * nh); var inj = inds[j]; for (var y = 0; y < nh; y++) { var i = y * bpl, ii = y * nw; if (depth == 8) for (var x = 0; x < nw; x++) nimg[i + (x)] = (inj[ii + x]); else if (depth == 4) for (var x = 0; x < nw; x++) nimg[i + (x >> 1)] |= (inj[ii + x] << (4 - (x & 1) * 4)); else if (depth == 2) for (var x = 0; x < nw; x++) nimg[i + (x >> 2)] |= (inj[ii + x] << (6 - (x & 3) * 2)); else if (depth == 1) for (var x = 0; x < nw; x++) nimg[i + (x >> 3)] |= (inj[ii + x] << (7 - (x & 7) * 1)); } cimg = nimg; ctype = 3; bpp = 1; } else if (gotAlpha == false && frms.length == 1) { // some next "reduced" frames may contain alpha for blending var nimg = new Uint8Array(nw * nh * 3), area = nw * nh; for (var i = 0; i < area; i++) { var ti = i * 3, qi = i * 4; nimg[ti] = cimg[qi]; nimg[ti + 1] = cimg[qi + 1]; nimg[ti + 2] = cimg[qi + 2]; } cimg = nimg; ctype = 2; bpp = 3; bpl = 3 * nw; } frm.img = cimg; frm.bpl = bpl; frm.bpp = bpp; } //console.log("colors => palette indices", Date.now()-time); time = Date.now(); return { ctype: ctype, depth: depth, plte: plte, frames: frms }; } UPNG.encode.framize = function (bufs, w, h, alwaysBlend, evenCrd, forbidPrev) { /* DISPOSE - 0 : no change - 1 : clear to transparent - 2 : retstore to content before rendering (previous frame disposed) BLEND - 0 : replace - 1 : blend */ var frms = []; for (var j = 0; j < bufs.length; j++) { var cimg = new Uint8Array(bufs[j]), cimg32 = new Uint32Array(cimg.buffer); var nimg; var nx = 0, ny = 0, nw = w, nh = h, blend = alwaysBlend ? 1 : 0; if (j != 0) { var tlim = (forbidPrev || alwaysBlend || j == 1 || frms[j - 2].dispose != 0) ? 1 : 2, tstp = 0, tarea = 1e9; for (var it = 0; it < tlim; it++) { var pimg = new Uint8Array(bufs[j - 1 - it]), p32 = new Uint32Array(bufs[j - 1 - it]); var mix = w, miy = h, max = -1, may = -1; for (var y = 0; y < h; y++) for (var x = 0; x < w; x++) { var i = y * w + x; if (cimg32[i] != p32[i]) { if (x < mix) mix = x; if (x > max) max = x; if (y < miy) miy = y; if (y > may) may = y; } } if (max == -1) mix = miy = max = may = 0; if (evenCrd) { if ((mix & 1) == 1) mix--; if ((miy & 1) == 1) miy--; } var sarea = (max - mix + 1) * (may - miy + 1); if (sarea < tarea) { tarea = sarea; tstp = it; nx = mix; ny = miy; nw = max - mix + 1; nh = may - miy + 1; } } // alwaysBlend: pokud zjistím, že blendit nelze, nastavím předchozímu snímku dispose=1. Zajistím, aby obsahoval můj obdélník. var pimg = new Uint8Array(bufs[j - 1 - tstp]); if (tstp == 1) frms[j - 1].dispose = 2; nimg = new Uint8Array(nw * nh * 4); UPNG._copyTile(pimg, w, h, nimg, nw, nh, -nx, -ny, 0); blend = UPNG._copyTile(cimg, w, h, nimg, nw, nh, -nx, -ny, 3) ? 1 : 0; if (blend == 1) UPNG.encode._prepareDiff(cimg, w, h, nimg, { x: nx, y: ny, width: nw, height: nh }); else UPNG._copyTile(cimg, w, h, nimg, nw, nh, -nx, -ny, 0); //UPNG._copyTile(cimg,w,h, nimg,nw,nh, -nx,-ny, blend==1?2:0); } else nimg = cimg.slice(0); // img may be rewritten further ... don't rewrite input frms.push({ rect: { x: nx, y: ny, width: nw, height: nh }, img: nimg, blend: blend, dispose: 0 }); } if (alwaysBlend) for (var j = 0; j < frms.length; j++) { var frm = frms[j]; if (frm.blend == 1) continue; var r0 = frm.rect, r1 = frms[j - 1].rect var miX = Math.min(r0.x, r1.x), miY = Math.min(r0.y, r1.y); var maX = Math.max(r0.x + r0.width, r1.x + r1.width), maY = Math.max(r0.y + r0.height, r1.y + r1.height); var r = { x: miX, y: miY, width: maX - miX, height: maY - miY }; frms[j - 1].dispose = 1; if (j - 1 != 0) UPNG.encode._updateFrame(bufs, w, h, frms, j - 1, r, evenCrd); UPNG.encode._updateFrame(bufs, w, h, frms, j, r, evenCrd); } var area = 0; if (bufs.length != 1) for (var i = 0; i < frms.length; i++) { var frm = frms[i]; area += frm.rect.width * frm.rect.height; //if(i==0 || frm.blend!=1) continue; //var ob = new Uint8Array( //console.log(frm.blend, frm.dispose, frm.rect); } //if(area!=0) console.log(area); return frms; } UPNG.encode._updateFrame = function (bufs, w, h, frms, i, r, evenCrd) { var U8 = Uint8Array, U32 = Uint32Array; var pimg = new U8(bufs[i - 1]), pimg32 = new U32(bufs[i - 1]), nimg = i + 1 < bufs.length ? new U8(bufs[i + 1]) : null; var cimg = new U8(bufs[i]), cimg32 = new U32(cimg.buffer); var mix = w, miy = h, max = -1, may = -1; for (var y = 0; y < r.height; y++) for (var x = 0; x < r.width; x++) { var cx = r.x + x, cy = r.y + y; var j = cy * w + cx, cc = cimg32[j]; // no need to draw transparency, or to dispose it. Or, if writing the same color and the next one does not need transparency. if (cc == 0 || (frms[i - 1].dispose == 0 && pimg32[j] == cc && (nimg == null || nimg[j * 4 + 3] != 0))/**/) { } else { if (cx < mix) mix = cx; if (cx > max) max = cx; if (cy < miy) miy = cy; if (cy > may) may = cy; } } if (max == -1) mix = miy = max = may = 0; if (evenCrd) { if ((mix & 1) == 1) mix--; if ((miy & 1) == 1) miy--; } r = { x: mix, y: miy, width: max - mix + 1, height: may - miy + 1 }; var fr = frms[i]; fr.rect = r; fr.blend = 1; fr.img = new Uint8Array(r.width * r.height * 4); if (frms[i - 1].dispose == 0) { UPNG._copyTile(pimg, w, h, fr.img, r.width, r.height, -r.x, -r.y, 0); UPNG.encode._prepareDiff(cimg, w, h, fr.img, r); //UPNG._copyTile(cimg,w,h, fr.img,r.width,r.height, -r.x,-r.y, 2); } else UPNG._copyTile(cimg, w, h, fr.img, r.width, r.height, -r.x, -r.y, 0); } UPNG.encode._prepareDiff = function (cimg, w, h, nimg, rec) { UPNG._copyTile(cimg, w, h, nimg, rec.width, rec.height, -rec.x, -rec.y, 2); /* var n32 = new Uint32Array(nimg.buffer); var og = new Uint8Array(rec.width*rec.height*4), o32 = new Uint32Array(og.buffer); UPNG._copyTile(cimg,w,h, og,rec.width,rec.height, -rec.x,-rec.y, 0); for(var i=4; i>>2]==o32[(i>>>2)-1]) { n32[i>>>2]=o32[i>>>2]; //var j = i, c=p32[(i>>>2)-1]; //while(p32[j>>>2]==c) { n32[j>>>2]=c; j+=4; } } } for(var i=nimg.length-8; i>0; i-=4) { if(nimg[i+7]!=0 && nimg[i+3]==0 && o32[i>>>2]==o32[(i>>>2)+1]) { n32[i>>>2]=o32[i>>>2]; //var j = i, c=p32[(i>>>2)-1]; //while(p32[j>>>2]==c) { n32[j>>>2]=c; j+=4; } } }*/ } UPNG.encode._filterZero = function (img, h, bpp, bpl, data, filter, levelZero) { var fls = [], ftry = [0, 1, 2, 3, 4]; if (filter != -1) ftry = [filter]; else if (h * bpl > 500000 || bpp == 1) ftry = [0]; var opts; if (levelZero) opts = { level: 0 }; var CMPR = (data.length > 10e6 && UZIP != null) ? UZIP : pako; var time = Date.now(); for (var i = 0; i < ftry.length; i++) { for (var y = 0; y < h; y++) UPNG.encode._filterLine(data, img, y, bpl, bpp, ftry[i]); //var nimg = new Uint8Array(data.length); //var sz = UZIP.F.deflate(data, nimg); fls.push(nimg.slice(0,sz)); //var dfl = pako["deflate"](data), dl=dfl.length-4; //var crc = (dfl[dl+3]<<24)|(dfl[dl+2]<<16)|(dfl[dl+1]<<8)|(dfl[dl+0]<<0); //console.log(crc, UZIP.adler(data,2,data.length-6)); fls.push(CMPR["deflate"](data, opts)); } var ti, tsize = 1e9; for (var i = 0; i < fls.length; i++) if (fls[i].length < tsize) { ti = i; tsize = fls[i].length; } return fls[ti]; } UPNG.encode._filterLine = function (data, img, y, bpl, bpp, type) { var i = y * bpl, di = i + y, paeth = UPNG.decode._paeth data[di] = type; di++; if (type == 0) { if (bpl < 500) for (var x = 0; x < bpl; x++) data[di + x] = img[i + x]; else data.set(new Uint8Array(img.buffer, i, bpl), di); } else if (type == 1) { for (var x = 0; x < bpp; x++) data[di + x] = img[i + x]; for (var x = bpp; x < bpl; x++) data[di + x] = (img[i + x] - img[i + x - bpp] + 256) & 255; } else if (y == 0) { for (var x = 0; x < bpp; x++) data[di + x] = img[i + x]; if (type == 2) for (var x = bpp; x < bpl; x++) data[di + x] = img[i + x]; if (type == 3) for (var x = bpp; x < bpl; x++) data[di + x] = (img[i + x] - (img[i + x - bpp] >> 1) + 256) & 255; if (type == 4) for (var x = bpp; x < bpl; x++) data[di + x] = (img[i + x] - paeth(img[i + x - bpp], 0, 0) + 256) & 255; } else { if (type == 2) { for (var x = 0; x < bpl; x++) data[di + x] = (img[i + x] + 256 - img[i + x - bpl]) & 255; } if (type == 3) { for (var x = 0; x < bpp; x++) data[di + x] = (img[i + x] + 256 - (img[i + x - bpl] >> 1)) & 255; for (var x = bpp; x < bpl; x++) data[di + x] = (img[i + x] + 256 - ((img[i + x - bpl] + img[i + x - bpp]) >> 1)) & 255; } if (type == 4) { for (var x = 0; x < bpp; x++) data[di + x] = (img[i + x] + 256 - paeth(0, img[i + x - bpl], 0)) & 255; for (var x = bpp; x < bpl; x++) data[di + x] = (img[i + x] + 256 - paeth(img[i + x - bpp], img[i + x - bpl], img[i + x - bpp - bpl])) & 255; } } } UPNG.crc = { table: (function () { var tab = new Uint32Array(256); for (var n = 0; n < 256; n++) { var c = n; for (var k = 0; k < 8; k++) { if (c & 1) c = 0xedb88320 ^ (c >>> 1); else c = c >>> 1; } tab[n] = c; } return tab; })(), update: function (c, buf, off, len) { for (var i = 0; i < len; i++) c = UPNG.crc.table[(c ^ buf[off + i]) & 0xff] ^ (c >>> 8); return c; }, crc: function (b, o, l) { return UPNG.crc.update(0xffffffff, b, o, l) ^ 0xffffffff; } } UPNG.quantize = function (abuf, ps) { var oimg = new Uint8Array(abuf), nimg = oimg.slice(0), nimg32 = new Uint32Array(nimg.buffer); var KD = UPNG.quantize.getKDtree(nimg, ps); var root = KD[0], leafs = KD[1]; var planeDst = UPNG.quantize.planeDst; var sb = oimg, tb = nimg32, len = sb.length; var inds = new Uint8Array(oimg.length >> 2), nd; if (oimg.length < 20e6) // precise, but slow :( for (var i = 0; i < len; i += 4) { var r = sb[i] * (1 / 255), g = sb[i + 1] * (1 / 255), b = sb[i + 2] * (1 / 255), a = sb[i + 3] * (1 / 255); nd = UPNG.quantize.getNearest(root, r, g, b, a); inds[i >> 2] = nd.ind; tb[i >> 2] = nd.est.rgba; } else for (var i = 0; i < len; i += 4) { var r = sb[i] * (1 / 255), g = sb[i + 1] * (1 / 255), b = sb[i + 2] * (1 / 255), a = sb[i + 3] * (1 / 255); nd = root; while (nd.left) nd = (planeDst(nd.est, r, g, b, a) <= 0) ? nd.left : nd.right; inds[i >> 2] = nd.ind; tb[i >> 2] = nd.est.rgba; } return { abuf: nimg.buffer, inds: inds, plte: leafs }; } UPNG.quantize.getKDtree = function (nimg, ps, err) { if (err == null) err = 0.0001; var nimg32 = new Uint32Array(nimg.buffer); var root = { i0: 0, i1: nimg.length, bst: null, est: null, tdst: 0, left: null, right: null }; // basic statistic, extra statistic root.bst = UPNG.quantize.stats(nimg, root.i0, root.i1); root.est = UPNG.quantize.estats(root.bst); var leafs = [root]; while (leafs.length < ps) { var maxL = 0, mi = 0; for (var i = 0; i < leafs.length; i++) if (leafs[i].est.L > maxL) { maxL = leafs[i].est.L; mi = i; } if (maxL < err) break; var node = leafs[mi]; var s0 = UPNG.quantize.splitPixels(nimg, nimg32, node.i0, node.i1, node.est.e, node.est.eMq255); var s0wrong = (node.i0 >= s0 || node.i1 <= s0); //console.log(maxL, leafs.length, mi); if (s0wrong) { node.est.L = 0; continue; } var ln = { i0: node.i0, i1: s0, bst: null, est: null, tdst: 0, left: null, right: null }; ln.bst = UPNG.quantize.stats(nimg, ln.i0, ln.i1); ln.est = UPNG.quantize.estats(ln.bst); var rn = { i0: s0, i1: node.i1, bst: null, est: null, tdst: 0, left: null, right: null }; rn.bst = { R: [], m: [], N: node.bst.N - ln.bst.N }; for (var i = 0; i < 16; i++) rn.bst.R[i] = node.bst.R[i] - ln.bst.R[i]; for (var i = 0; i < 4; i++) rn.bst.m[i] = node.bst.m[i] - ln.bst.m[i]; rn.est = UPNG.quantize.estats(rn.bst); node.left = ln; node.right = rn; leafs[mi] = ln; leafs.push(rn); } leafs.sort(function (a, b) { return b.bst.N - a.bst.N; }); for (var i = 0; i < leafs.length; i++) leafs[i].ind = i; return [root, leafs]; } UPNG.quantize.getNearest = function (nd, r, g, b, a) { if (nd.left == null) { nd.tdst = UPNG.quantize.dist(nd.est.q, r, g, b, a); return nd; } var planeDst = UPNG.quantize.planeDst(nd.est, r, g, b, a); var node0 = nd.left, node1 = nd.right; if (planeDst > 0) { node0 = nd.right; node1 = nd.left; } var ln = UPNG.quantize.getNearest(node0, r, g, b, a); if (ln.tdst <= planeDst * planeDst) return ln; var rn = UPNG.quantize.getNearest(node1, r, g, b, a); return rn.tdst < ln.tdst ? rn : ln; } UPNG.quantize.planeDst = function (est, r, g, b, a) { var e = est.e; return e[0] * r + e[1] * g + e[2] * b + e[3] * a - est.eMq; } UPNG.quantize.dist = function (q, r, g, b, a) { var d0 = r - q[0], d1 = g - q[1], d2 = b - q[2], d3 = a - q[3]; return d0 * d0 + d1 * d1 + d2 * d2 + d3 * d3; } UPNG.quantize.splitPixels = function (nimg, nimg32, i0, i1, e, eMq) { var vecDot = UPNG.quantize.vecDot; i1 -= 4; var shfs = 0; while (i0 < i1) { while (vecDot(nimg, i0, e) <= eMq) i0 += 4; while (vecDot(nimg, i1, e) > eMq) i1 -= 4; if (i0 >= i1) break; var t = nimg32[i0 >> 2]; nimg32[i0 >> 2] = nimg32[i1 >> 2]; nimg32[i1 >> 2] = t; i0 += 4; i1 -= 4; } while (vecDot(nimg, i0, e) > eMq) i0 -= 4; return i0 + 4; } UPNG.quantize.vecDot = function (nimg, i, e) { return nimg[i] * e[0] + nimg[i + 1] * e[1] + nimg[i + 2] * e[2] + nimg[i + 3] * e[3]; } UPNG.quantize.stats = function (nimg, i0, i1) { var R = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; var m = [0, 0, 0, 0]; var N = (i1 - i0) >> 2; for (var i = i0; i < i1; i += 4) { var r = nimg[i] * (1 / 255), g = nimg[i + 1] * (1 / 255), b = nimg[i + 2] * (1 / 255), a = nimg[i + 3] * (1 / 255); //var r = nimg[i], g = nimg[i+1], b = nimg[i+2], a = nimg[i+3]; m[0] += r; m[1] += g; m[2] += b; m[3] += a; R[0] += r * r; R[1] += r * g; R[2] += r * b; R[3] += r * a; R[5] += g * g; R[6] += g * b; R[7] += g * a; R[10] += b * b; R[11] += b * a; R[15] += a * a; } R[4] = R[1]; R[8] = R[2]; R[9] = R[6]; R[12] = R[3]; R[13] = R[7]; R[14] = R[11]; return { R: R, m: m, N: N }; } UPNG.quantize.estats = function (stats) { var R = stats.R, m = stats.m, N = stats.N; // when all samples are equal, but N is large (millions), the Rj can be non-zero ( 0.0003.... - precission error) var m0 = m[0], m1 = m[1], m2 = m[2], m3 = m[3], iN = (N == 0 ? 0 : 1 / N); var Rj = [ R[0] - m0 * m0 * iN, R[1] - m0 * m1 * iN, R[2] - m0 * m2 * iN, R[3] - m0 * m3 * iN, R[4] - m1 * m0 * iN, R[5] - m1 * m1 * iN, R[6] - m1 * m2 * iN, R[7] - m1 * m3 * iN, R[8] - m2 * m0 * iN, R[9] - m2 * m1 * iN, R[10] - m2 * m2 * iN, R[11] - m2 * m3 * iN, R[12] - m3 * m0 * iN, R[13] - m3 * m1 * iN, R[14] - m3 * m2 * iN, R[15] - m3 * m3 * iN ]; var A = Rj, M = UPNG.M4; var b = [Math.random(), Math.random(), Math.random(), Math.random()], mi = 0, tmi = 0; if (N != 0) for (var i = 0; i < 16; i++) { b = M.multVec(A, b); tmi = Math.sqrt(M.dot(b, b)); b = M.sml(1 / tmi, b); if (i != 0 && Math.abs(tmi - mi) < 1e-9) break; mi = tmi; } //b = [0,0,1,0]; mi=N; var q = [m0 * iN, m1 * iN, m2 * iN, m3 * iN]; var eMq255 = M.dot(M.sml(255, q), b); return { Cov: Rj, q: q, e: b, L: mi, eMq255: eMq255, eMq: M.dot(b, q), rgba: (((Math.round(255 * q[3]) << 24) | (Math.round(255 * q[2]) << 16) | (Math.round(255 * q[1]) << 8) | (Math.round(255 * q[0]) << 0)) >>> 0) }; } UPNG.M4 = { multVec: function (m, v) { return [ m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3] * v[3], m[4] * v[0] + m[5] * v[1] + m[6] * v[2] + m[7] * v[3], m[8] * v[0] + m[9] * v[1] + m[10] * v[2] + m[11] * v[3], m[12] * v[0] + m[13] * v[1] + m[14] * v[2] + m[15] * v[3] ]; }, dot: function (x, y) { return x[0] * y[0] + x[1] * y[1] + x[2] * y[2] + x[3] * y[3]; }, sml: function (a, y) { return [a * y[0], a * y[1], a * y[2], a * y[3]]; } } UPNG.encode.concatRGBA = function (bufs) { var tlen = 0; for (var i = 0; i < bufs.length; i++) tlen += bufs[i].byteLength; var nimg = new Uint8Array(tlen), noff = 0; for (var i = 0; i < bufs.length; i++) { var img = new Uint8Array(bufs[i]), il = img.length; for (var j = 0; j < il; j += 4) { var r = img[j], g = img[j + 1], b = img[j + 2], a = img[j + 3]; if (a == 0) r = g = b = 0; nimg[noff + j] = r; nimg[noff + j + 1] = g; nimg[noff + j + 2] = b; nimg[noff + j + 3] = a; } noff += il; } return nimg.buffer; } let encoder = null; onmessage = function ({ data: [type, data] }) { switch (type) { case 'CONVERT-APNG': const decodedPNG = UPNG.decode(data); const rgba = UPNG.toRGBA8(decodedPNG); encoder = new GIFEncoder(decodedPNG.width, decodedPNG.height); encoder.setTransparent(0x567e8a); encoder.start(); for (let i = 0; i < rgba.length; i++) { encoder.delay = (decodedPNG.frames[i].delay / 10); encoder.addFrame(new Uint8ClampedArray(rgba[i])); } postMessage('OK'); break; case 'CONVERT-FRAMES': encoder = new GIFEncoder(data.width, data.height); encoder.setFrameRate(data.framerate); encoder.setTransparent(0x567e8a); encoder.start(); for (let i = 0; i < data.frames.length; i++) encoder.addFrame(new Uint8ClampedArray(data.frames[i])); postMessage('OK'); break; case 'DONE': encoder.finish(); postMessage(encoder.out.data); break; } }