/* openssl/engine.h */ /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL * project 2000. */ /* ==================================================================== * Copyright (c) 1999-2004 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECDH support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ module deimos.openssl.engine; import deimos.openssl._d_util; public import deimos.openssl.opensslconf; version (OPENSSL_NO_ENGINE) { static assert(false, "ENGINE is disabled."); } version(OPENSSL_NO_DEPRECATED) {} else { public import deimos.openssl.bn; version(OPENSSL_NO_RSA) {} else { public import deimos.openssl.rsa; } version(OPENSSL_NO_DSA) {} else { public import deimos.openssl.dsa; } version(OPENSSL_NO_DH) {} else { public import deimos.openssl.dh; } version(OPENSSL_NO_ECDH) {} else { public import deimos.openssl.ecdh; } version(OPENSSL_NO_ECDSA) {} else { public import deimos.openssl.ecdsa; } public import deimos.openssl.rand; public import deimos.openssl.ui; public import deimos.openssl.err; } public import deimos.openssl.ossl_typ; import deimos.openssl.ssl : SSL; public import deimos.openssl.symhacks; public import deimos.openssl.x509; extern (C): nothrow: /* These flags are used to control combinations of algorithm (methods) * by bitwise "OR"ing. */ enum ENGINE_METHOD_RSA = 0x0001; enum ENGINE_METHOD_DSA = 0x0002; enum ENGINE_METHOD_DH = 0x0004; enum ENGINE_METHOD_RAND = 0x0008; enum ENGINE_METHOD_ECDH = 0x0010; enum ENGINE_METHOD_ECDSA = 0x0020; enum ENGINE_METHOD_CIPHERS = 0x0040; enum ENGINE_METHOD_DIGESTS = 0x0080; enum ENGINE_METHOD_STORE = 0x0100; enum ENGINE_METHOD_PKEY_METHS = 0x0200; enum ENGINE_METHOD_PKEY_ASN1_METHS = 0x0400; /* Obvious all-or-nothing cases. */ enum ENGINE_METHOD_ALL = 0xFFFF; enum ENGINE_METHOD_NONE = 0x0000; /* This(ese) flag(s) controls behaviour of the ENGINE_TABLE mechanism used * internally to control registration of ENGINE implementations, and can be set * by ENGINE_set_table_flags(). The "NOINIT" flag prevents attempts to * initialise registered ENGINEs if they are not already initialised. */ enum ENGINE_TABLE_FLAG_NOINIT = 0x0001; /* ENGINE flags that can be set by ENGINE_set_flags(). */ /* enum ENGINE_FLAGS_MALLOCED = 0x0001; */ /* Not used */ /* This flag is for ENGINEs that wish to handle the various 'CMD'-related * control commands on their own. Without this flag, ENGINE_ctrl() handles these * control commands on behalf of the ENGINE using their "cmd_defns" data. */ enum ENGINE_FLAGS_MANUAL_CMD_CTRL = 0x0002; /* This flag is for ENGINEs who return new duplicate structures when found via * "ENGINE_by_id()". When an ENGINE must store state (eg. if ENGINE_ctrl() * commands are called in sequence as part of some stateful process like * key-generation setup and execution), it can set this flag - then each attempt * to obtain the ENGINE will result in it being copied into a new structure. * Normally, ENGINEs don't declare this flag so ENGINE_by_id() just increments * the existing ENGINE's structural reference count. */ enum ENGINE_FLAGS_BY_ID_COPY = 0x0004; /* This flag if for an ENGINE that does not want its methods registered as * part of ENGINE_register_all_complete() for example if the methods are * not usable as default methods. */ enum ENGINE_FLAGS_NO_REGISTER_ALL = 0x0008; /* ENGINEs can support their own command types, and these flags are used in * ENGINE_CTRL_GET_CMD_FLAGS to indicate to the caller what kind of input each * command expects. Currently only numeric and string input is supported. If a * control command supports none of the _NUMERIC, _STRING, or _NO_INPUT options, * then it is regarded as an "internal" control command - and not for use in * config setting situations. As such, they're not available to the * ENGINE_ctrl_cmd_string() function, only raw ENGINE_ctrl() access. Changes to * this list of 'command types' should be reflected carefully in * ENGINE_cmd_is_executable() and ENGINE_ctrl_cmd_string(). */ /* accepts a 'long' input value (3rd parameter to ENGINE_ctrl) */ enum ENGINE_CMD_FLAG_NUMERIC = 0x0001; /* accepts string input (cast from 'void*' to 'const(char)* ', 4th parameter to * ENGINE_ctrl) */ enum ENGINE_CMD_FLAG_STRING = 0x0002; /* Indicates that the control command takes* no* input. Ie. the control command * is unparameterised. */ enum ENGINE_CMD_FLAG_NO_INPUT = 0x0004; /* Indicates that the control command is internal. This control command won't * be shown in any output, and is only usable through the ENGINE_ctrl_cmd() * function. */ enum ENGINE_CMD_FLAG_INTERNAL = 0x0008; /* NB: These 3 control commands are deprecated and should not be used. ENGINEs * relying on these commands should compile conditional support for * compatibility (eg. if these symbols are defined) but should also migrate the * same functionality to their own ENGINE-specific control functions that can be * "discovered" by calling applications. The fact these control commands * wouldn't be "executable" (ie. usable by text-based config) doesn't change the * fact that application code can find and use them without requiring per-ENGINE * hacking. */ /* These flags are used to tell the ctrl function what should be done. * All command numbers are shared between all engines, even if some don't * make sense to some engines. In such a case, they do nothing but return * the error ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED. */ enum ENGINE_CTRL_SET_LOGSTREAM = 1; enum ENGINE_CTRL_SET_PASSWORD_CALLBACK = 2; enum ENGINE_CTRL_HUP = 3; /* Close and reinitialise any handles/connections etc. */ enum ENGINE_CTRL_SET_USER_INTERFACE = 4; /* Alternative to callback */ enum ENGINE_CTRL_SET_CALLBACK_DATA = 5; /* User-specific data, used when calling the password callback and the user interface */ enum ENGINE_CTRL_LOAD_CONFIGURATION = 6; /* Load a configuration, given a string that represents a file name or so */ enum ENGINE_CTRL_LOAD_SECTION = 7; /* Load data from a given section in the already loaded configuration */ /* These control commands allow an application to deal with an arbitrary engine * in a dynamic way. Warn: Negative return values indicate errors FOR THESE * COMMANDS because zero is used to indicate 'end-of-list'. Other commands, * including ENGINE-specific command types, return zero for an error. * * An ENGINE can choose to implement these ctrl functions, and can internally * manage things however it chooses - it does so by setting the * ENGINE_FLAGS_MANUAL_CMD_CTRL flag (using ENGINE_set_flags()). Otherwise the * ENGINE_ctrl() code handles this on the ENGINE's behalf using the cmd_defns * data (set using ENGINE_set_cmd_defns()). This means an ENGINE's ctrl() * handler need only implement its own commands - the above "meta" commands will * be taken care of. */ /* Returns non-zero if the supplied ENGINE has a ctrl() handler. If "not", then * all the remaining control commands will return failure, so it is worth * checking this first if the caller is trying to "discover" the engine's * capabilities and doesn't want errors generated unnecessarily. */ enum ENGINE_CTRL_HAS_CTRL_FUNCTION = 10; /* Returns a positive command number for the first command supported by the * engine. Returns zero if no ctrl commands are supported. */ enum ENGINE_CTRL_GET_FIRST_CMD_TYPE = 11; /* The 'long' argument specifies a command implemented by the engine, and the * return value is the next command supported, or zero if there are no more. */ enum ENGINE_CTRL_GET_NEXT_CMD_TYPE = 12; /* The 'void*' argument is a command name (cast from 'const(char)* '), and the * return value is the command that corresponds to it. */ enum ENGINE_CTRL_GET_CMD_FROM_NAME = 13; /* The next two allow a command to be converted into its corresponding string * form. In each case, the 'long' argument supplies the command. In the NAME_LEN * case, the return value is the length of the command name (not counting a * trailing EOL). In the NAME case, the 'void*' argument must be a string buffer * large enough, and it will be populated with the name of the command (WITH a * trailing EOL). */ enum ENGINE_CTRL_GET_NAME_LEN_FROM_CMD = 14; enum ENGINE_CTRL_GET_NAME_FROM_CMD = 15; /* The next two are similar but give a "short description" of a command. */ enum ENGINE_CTRL_GET_DESC_LEN_FROM_CMD = 16; enum ENGINE_CTRL_GET_DESC_FROM_CMD = 17; /* With this command, the return value is the OR'd combination of * ENGINE_CMD_FLAG_*** values that indicate what kind of input a given * engine-specific ctrl command expects. */ enum ENGINE_CTRL_GET_CMD_FLAGS = 18; /* ENGINE implementations should start the numbering of their own control * commands from this value. (ie. ENGINE_CMD_BASE, ENGINE_CMD_BASE + 1, etc). */ enum ENGINE_CMD_BASE = 200; /* NB: These 2 nCipher "chil" control commands are deprecated, and their * functionality is now available through ENGINE-specific control commands * (exposed through the above-mentioned 'CMD'-handling). Code using these 2 * commands should be migrated to the more general command handling before these * are removed. */ /* Flags specific to the nCipher "chil" engine */ enum ENGINE_CTRL_CHIL_SET_FORKCHECK = 100; /* Depending on the value of the (c_long)i argument, this sets or * unsets the SimpleForkCheck flag in the CHIL API to enable or * disable checking and workarounds for applications that fork(). */ enum ENGINE_CTRL_CHIL_NO_LOCKING = 101; /* This prevents the initialisation function from providing mutex * callbacks to the nCipher library. */ /* If an ENGINE supports its own specific control commands and wishes the * framework to handle the above 'ENGINE_CMD_***'-manipulation commands on its * behalf, it should supply a null-terminated array of ENGINE_CMD_DEFN entries * to ENGINE_set_cmd_defns(). It should also implement a ctrl() handler that * supports the stated commands (ie. the "cmd_num" entries as described by the * array). NB: The array must be ordered in increasing order of cmd_num. * "null-terminated" means that the last ENGINE_CMD_DEFN element has cmd_num set * to zero and/or cmd_name set to NULL. */ struct ENGINE_CMD_DEFN_st { uint cmd_num; /* The command number */ const(char)* cmd_name; /* The command name itself */ const(char)* cmd_desc; /* A short description of the command */ uint cmd_flags; /* The input the command expects */ } alias ENGINE_CMD_DEFN_st ENGINE_CMD_DEFN; /* Generic function pointer */ alias ExternC!(int function()) ENGINE_GEN_FUNC_PTR; /* Generic function pointer taking no arguments */ alias ExternC!(int function(ENGINE*)) ENGINE_GEN_INT_FUNC_PTR; /* Specific control function pointer */ alias ExternC!(int function(ENGINE*, int, c_long, void*, ExternC!(void function()) f)) ENGINE_CTRL_FUNC_PTR; /* Generic load_key function pointer */ alias ExternC!(EVP_PKEY*function(ENGINE*, const(char)*, UI_METHOD* ui_method, void* callback_data)) ENGINE_LOAD_KEY_PTR; alias ExternC!(int function(ENGINE*, SSL* ssl, STACK_OF!(X509_NAME) *ca_dn, X509** pcert, EVP_PKEY** pkey, STACK_OF!(X509) **pother, UI_METHOD* ui_method, void* callback_data)) ENGINE_SSL_CLIENT_CERT_PTR; /* These callback types are for an ENGINE's handler for cipher and digest logic. * These handlers have these prototypes; * int foo(ENGINE* e, const(EVP_CIPHER)** cipher, const(int)** nids, int nid); * int foo(ENGINE* e, const(EVP_MD)** digest, const(int)** nids, int nid); * Looking at how to implement these handlers in the case of cipher support, if * the framework wants the EVP_CIPHER for 'nid', it will call; * foo(e, &p_evp_cipher, NULL, nid); (return zero for failure) * If the framework wants a list of supported 'nid's, it will call; * foo(e, NULL, &p_nids, 0); (returns number of 'nids' or -1 for error) */ /* Returns to a pointer to the array of supported cipher 'nid's. If the second * parameter is non-NULL it is set to the size of the returned array. */ alias ExternC!(int function(ENGINE*, const(EVP_CIPHER)**, const(int)**, int)) ENGINE_CIPHERS_PTR; alias ExternC!(int function(ENGINE*, const(EVP_MD)**, const(int)**, int)) ENGINE_DIGESTS_PTR; alias ExternC!(int function(ENGINE*, EVP_PKEY_METHOD**, const(int)**, int)) ENGINE_PKEY_METHS_PTR; alias ExternC!(int function(ENGINE*, EVP_PKEY_ASN1_METHOD**, const(int)**, int)) ENGINE_PKEY_ASN1_METHS_PTR; /* STRUCTURE functions ... all of these functions deal with pointers to ENGINE * structures where the pointers have a "structural reference". This means that * their reference is to allowed access to the structure but it does not imply * that the structure is functional. To simply increment or decrement the * structural reference count, use ENGINE_by_id and ENGINE_free. NB: This is not * required when iterating using ENGINE_get_next as it will automatically * decrement the structural reference count of the "current" ENGINE and * increment the structural reference count of the ENGINE it returns (unless it * is NULL). */ /* Get the first/last "ENGINE" type available. */ ENGINE* ENGINE_get_first(); ENGINE* ENGINE_get_last(); /* Iterate to the next/previous "ENGINE" type (NULL = end of the list). */ ENGINE* ENGINE_get_next(ENGINE* e); ENGINE* ENGINE_get_prev(ENGINE* e); /* Add another "ENGINE" type into the array. */ int ENGINE_add(ENGINE* e); /* Remove an existing "ENGINE" type from the array. */ int ENGINE_remove(ENGINE* e); /* Retrieve an engine from the list by its unique "id" value. */ ENGINE* ENGINE_by_id(const(char)* id); /* Add all the built-in engines. */ void ENGINE_load_openssl(); void ENGINE_load_dynamic(); version(OPENSSL_NO_STATIC_ENGINE) {} else { void ENGINE_load_4758cca(); void ENGINE_load_aep(); void ENGINE_load_atalla(); void ENGINE_load_chil(); void ENGINE_load_cswift(); void ENGINE_load_nuron(); void ENGINE_load_sureware(); void ENGINE_load_ubsec(); void ENGINE_load_padlock(); void ENGINE_load_capi(); version(OPENSSL_NO_GMP) {} else { void ENGINE_load_gmp(); } version(OPENSSL_NO_GOST) {} else { void ENGINE_load_gost(); } } void ENGINE_load_cryptodev(); void ENGINE_load_rsax(); void ENGINE_load_rdrand(); void ENGINE_load_builtin_engines(); /* Get and set global flags (ENGINE_TABLE_FLAG_***) for the implementation * "registry" handling. */ uint ENGINE_get_table_flags(); void ENGINE_set_table_flags(uint flags); /* Manage registration of ENGINEs per "table". For each type, there are 3 * functions; * ENGINE_register_***(e) - registers the implementation from 'e' (if it has one) * ENGINE_unregister_***(e) - unregister the implementation from 'e' * ENGINE_register_all_***() - call ENGINE_register_***() for each 'e' in the list * Cleanup is automatically registered from each table when required, so * ENGINE_cleanup() will reverse any "register" operations. */ int ENGINE_register_RSA(ENGINE* e); void ENGINE_unregister_RSA(ENGINE* e); void ENGINE_register_all_RSA(); int ENGINE_register_DSA(ENGINE* e); void ENGINE_unregister_DSA(ENGINE* e); void ENGINE_register_all_DSA(); int ENGINE_register_ECDH(ENGINE* e); void ENGINE_unregister_ECDH(ENGINE* e); void ENGINE_register_all_ECDH(); int ENGINE_register_ECDSA(ENGINE* e); void ENGINE_unregister_ECDSA(ENGINE* e); void ENGINE_register_all_ECDSA(); int ENGINE_register_DH(ENGINE* e); void ENGINE_unregister_DH(ENGINE* e); void ENGINE_register_all_DH(); int ENGINE_register_RAND(ENGINE* e); void ENGINE_unregister_RAND(ENGINE* e); void ENGINE_register_all_RAND(); int ENGINE_register_STORE(ENGINE* e); void ENGINE_unregister_STORE(ENGINE* e); void ENGINE_register_all_STORE(); int ENGINE_register_ciphers(ENGINE* e); void ENGINE_unregister_ciphers(ENGINE* e); void ENGINE_register_all_ciphers(); int ENGINE_register_digests(ENGINE* e); void ENGINE_unregister_digests(ENGINE* e); void ENGINE_register_all_digests(); int ENGINE_register_pkey_meths(ENGINE* e); void ENGINE_unregister_pkey_meths(ENGINE* e); void ENGINE_register_all_pkey_meths(); int ENGINE_register_pkey_asn1_meths(ENGINE* e); void ENGINE_unregister_pkey_asn1_meths(ENGINE* e); void ENGINE_register_all_pkey_asn1_meths(); /* These functions register all support from the above categories. Note, use of * these functions can result in static linkage of code your application may not * need. If you only need a subset of functionality, consider using more * selective initialisation. */ int ENGINE_register_complete(ENGINE* e); int ENGINE_register_all_complete(); /* Send parametrised control commands to the engine. The possibilities to send * down an integer, a pointer to data or a function pointer are provided. Any of * the parameters may or may not be NULL, depending on the command number. In * actuality, this function only requires a structural (rather than functional) * reference to an engine, but many control commands may require the engine be * functional. The caller should be aware of trying commands that require an * operational ENGINE, and only use functional references in such situations. */ int ENGINE_ctrl(ENGINE* e, int cmd, c_long i, void* p, ExternC!(void function()) f); /* This function tests if an ENGINE-specific command is usable as a "setting". * Eg. in an application's config file that gets processed through * ENGINE_ctrl_cmd_string(). If this returns zero, it is not available to * ENGINE_ctrl_cmd_string(), only ENGINE_ctrl(). */ int ENGINE_cmd_is_executable(ENGINE* e, int cmd); /* This function works like ENGINE_ctrl() with the exception of taking a * command name instead of a command number, and can handle optional commands. * See the comment on ENGINE_ctrl_cmd_string() for an explanation on how to * use the cmd_name and cmd_optional. */ int ENGINE_ctrl_cmd(ENGINE* e, const(char)* cmd_name, c_long i, void* p, ExternC!(void function()) f, int cmd_optional); /* This function passes a command-name and argument to an ENGINE. The cmd_name * is converted to a command number and the control command is called using * 'arg' as an argument (unless the ENGINE doesn't support such a command, in * which case no control command is called). The command is checked for input * flags, and if necessary the argument will be converted to a numeric value. If * cmd_optional is non-zero, then if the ENGINE doesn't support the given * cmd_name the return value will be success anyway. This function is intended * for applications to use so that users (or config files) can supply * engine-specific config data to the ENGINE at run-time to control behaviour of * specific engines. As such, it shouldn't be used for calling ENGINE_ctrl() * functions that return data, deal with binary data, or that are otherwise * supposed to be used directly through ENGINE_ctrl() in application code. Any * "return" data from an ENGINE_ctrl() operation in this function will be lost - * the return value is interpreted as failure if the return value is zero, * success otherwise, and this function returns a boolean value as a result. In * other words, vendors of 'ENGINE'-enabled devices should write ENGINE * implementations with parameterisations that work in this scheme, so that * compliant ENGINE-based applications can work consistently with the same * configuration for the same ENGINE-enabled devices, across applications. */ int ENGINE_ctrl_cmd_string(ENGINE* e, const(char)* cmd_name, const(char)* arg, int cmd_optional); /* These functions are useful for manufacturing new ENGINE structures. They * don't address reference counting at all - one uses them to populate an ENGINE * structure with personalised implementations of things prior to using it * directly or adding it to the builtin ENGINE list in OpenSSL. These are also * here so that the ENGINE structure doesn't have to be exposed and break binary * compatibility! */ ENGINE* ENGINE_new(); int ENGINE_free(ENGINE* e); int ENGINE_up_ref(ENGINE* e); int ENGINE_set_id(ENGINE* e, const(char)* id); int ENGINE_set_name(ENGINE* e, const(char)* name); int ENGINE_set_RSA(ENGINE* e, const(RSA_METHOD)* rsa_meth); int ENGINE_set_DSA(ENGINE* e, const(DSA_METHOD)* dsa_meth); int ENGINE_set_ECDH(ENGINE* e, const(ECDH_METHOD)* ecdh_meth); int ENGINE_set_ECDSA(ENGINE* e, const(ECDSA_METHOD)* ecdsa_meth); int ENGINE_set_DH(ENGINE* e, const(DH_METHOD)* dh_meth); int ENGINE_set_RAND(ENGINE* e, const(RAND_METHOD)* rand_meth); int ENGINE_set_STORE(ENGINE* e, const(STORE_METHOD)* store_meth); int ENGINE_set_destroy_function(ENGINE* e, ENGINE_GEN_INT_FUNC_PTR destroy_f); int ENGINE_set_init_function(ENGINE* e, ENGINE_GEN_INT_FUNC_PTR init_f); int ENGINE_set_finish_function(ENGINE* e, ENGINE_GEN_INT_FUNC_PTR finish_f); int ENGINE_set_ctrl_function(ENGINE* e, ENGINE_CTRL_FUNC_PTR ctrl_f); int ENGINE_set_load_privkey_function(ENGINE* e, ENGINE_LOAD_KEY_PTR loadpriv_f); int ENGINE_set_load_pubkey_function(ENGINE* e, ENGINE_LOAD_KEY_PTR loadpub_f); int ENGINE_set_load_ssl_client_cert_function(ENGINE* e, ENGINE_SSL_CLIENT_CERT_PTR loadssl_f); int ENGINE_set_ciphers(ENGINE* e, ENGINE_CIPHERS_PTR f); int ENGINE_set_digests(ENGINE* e, ENGINE_DIGESTS_PTR f); int ENGINE_set_pkey_meths(ENGINE* e, ENGINE_PKEY_METHS_PTR f); int ENGINE_set_pkey_asn1_meths(ENGINE* e, ENGINE_PKEY_ASN1_METHS_PTR f); int ENGINE_set_flags(ENGINE* e, int flags); int ENGINE_set_cmd_defns(ENGINE* e, const(ENGINE_CMD_DEFN)* defns); /* These functions allow control over any per-structure ENGINE data. */ int ENGINE_get_ex_new_index(c_long argl, void* argp, CRYPTO_EX_new* new_func, CRYPTO_EX_dup* dup_func, CRYPTO_EX_free* free_func); int ENGINE_set_ex_data(ENGINE* e, int idx, void* arg); void* ENGINE_get_ex_data(const(ENGINE)* e, int idx); /* This function cleans up anything that needs it. Eg. the ENGINE_add() function * automatically ensures the list cleanup function is registered to be called * from ENGINE_cleanup(). Similarly, all ENGINE_register_*** functions ensure * ENGINE_cleanup() will clean up after them. */ void ENGINE_cleanup(); /* These return values from within the ENGINE structure. These can be useful * with functional references as well as structural references - it depends * which you obtained. Using the result for functional purposes if you only * obtained a structural reference may be problematic! */ const(char)* ENGINE_get_id(const(ENGINE)* e); const(char)* ENGINE_get_name(const(ENGINE)* e); const(RSA_METHOD)* ENGINE_get_RSA(const(ENGINE)* e); const(DSA_METHOD)* ENGINE_get_DSA(const(ENGINE)* e); const(ECDH_METHOD)* ENGINE_get_ECDH(const(ENGINE)* e); const(ECDSA_METHOD)* ENGINE_get_ECDSA(const(ENGINE)* e); const(DH_METHOD)* ENGINE_get_DH(const(ENGINE)* e); const(RAND_METHOD)* ENGINE_get_RAND(const(ENGINE)* e); const(STORE_METHOD)* ENGINE_get_STORE(const(ENGINE)* e); ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const(ENGINE)* e); ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const(ENGINE)* e); ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const(ENGINE)* e); ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const(ENGINE)* e); ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const(ENGINE)* e); ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const(ENGINE)* e); ENGINE_SSL_CLIENT_CERT_PTR ENGINE_get_ssl_client_cert_function(const(ENGINE)* e); ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const(ENGINE)* e); ENGINE_DIGESTS_PTR ENGINE_get_digests(const(ENGINE)* e); ENGINE_PKEY_METHS_PTR ENGINE_get_pkey_meths(const(ENGINE)* e); ENGINE_PKEY_ASN1_METHS_PTR ENGINE_get_pkey_asn1_meths(const(ENGINE)* e); const(EVP_CIPHER)* ENGINE_get_cipher(ENGINE* e, int nid); const(EVP_MD)* ENGINE_get_digest(ENGINE* e, int nid); const(EVP_PKEY_METHOD)* ENGINE_get_pkey_meth(ENGINE* e, int nid); const(EVP_PKEY_ASN1_METHOD)* ENGINE_get_pkey_asn1_meth(ENGINE* e, int nid); const(EVP_PKEY_ASN1_METHOD)* ENGINE_get_pkey_asn1_meth_str(ENGINE* e, const(char)* str, int len); const(EVP_PKEY_ASN1_METHOD)* ENGINE_pkey_asn1_find_str(ENGINE** pe, const(char)* str, int len); const(ENGINE_CMD_DEFN)* ENGINE_get_cmd_defns(const(ENGINE)* e); int ENGINE_get_flags(const(ENGINE)* e); /* FUNCTIONAL functions. These functions deal with ENGINE structures * that have (or will) be initialised for use. Broadly speaking, the * structural functions are useful for iterating the list of available * engine types, creating new engine types, and other "list" operations. * These functions actually deal with ENGINEs that are to be used. As * such these functions can fail (if applicable) when particular * engines are unavailable - eg. if a hardware accelerator is not * attached or not functioning correctly. Each ENGINE has 2 reference * counts; structural and functional. Every time a functional reference * is obtained or released, a corresponding structural reference is * automatically obtained or released too. */ /* Initialise a engine type for use (or up its reference count if it's * already in use). This will fail if the engine is not currently * operational and cannot initialise. */ int ENGINE_init(ENGINE* e); /* Free a functional reference to a engine type. This does not require * a corresponding call to ENGINE_free as it also releases a structural * reference. */ int ENGINE_finish(ENGINE* e); /* The following functions handle keys that are stored in some secondary * location, handled by the engine. The storage may be on a card or * whatever. */ EVP_PKEY* ENGINE_load_private_key(ENGINE* e, const(char)* key_id, UI_METHOD* ui_method, void* callback_data); EVP_PKEY* ENGINE_load_public_key(ENGINE* e, const(char)* key_id, UI_METHOD* ui_method, void* callback_data); int ENGINE_load_ssl_client_cert(ENGINE* e, SSL* s, STACK_OF!(X509_NAME) *ca_dn, X509** pcert, EVP_PKEY** ppkey, STACK_OF!(X509) **pother, UI_METHOD* ui_method, void* callback_data); /* This returns a pointer for the current ENGINE structure that * is (by default) performing any RSA operations. The value returned * is an incremented reference, so it should be free'd (ENGINE_finish) * before it is discarded. */ ENGINE* ENGINE_get_default_RSA(); /* Same for the other "methods" */ ENGINE* ENGINE_get_default_DSA(); ENGINE* ENGINE_get_default_ECDH(); ENGINE* ENGINE_get_default_ECDSA(); ENGINE* ENGINE_get_default_DH(); ENGINE* ENGINE_get_default_RAND(); /* These functions can be used to get a functional reference to perform * ciphering or digesting corresponding to "nid". */ ENGINE* ENGINE_get_cipher_engine(int nid); ENGINE* ENGINE_get_digest_engine(int nid); ENGINE* ENGINE_get_pkey_meth_engine(int nid); ENGINE* ENGINE_get_pkey_asn1_meth_engine(int nid); /* This sets a new default ENGINE structure for performing RSA * operations. If the result is non-zero (success) then the ENGINE * structure will have had its reference count up'd so the caller * should still free their own reference 'e'. */ int ENGINE_set_default_RSA(ENGINE* e); int ENGINE_set_default_string(ENGINE* e, const(char)* def_list); /* Same for the other "methods" */ int ENGINE_set_default_DSA(ENGINE* e); int ENGINE_set_default_ECDH(ENGINE* e); int ENGINE_set_default_ECDSA(ENGINE* e); int ENGINE_set_default_DH(ENGINE* e); int ENGINE_set_default_RAND(ENGINE* e); int ENGINE_set_default_ciphers(ENGINE* e); int ENGINE_set_default_digests(ENGINE* e); int ENGINE_set_default_pkey_meths(ENGINE* e); int ENGINE_set_default_pkey_asn1_meths(ENGINE* e); /* The combination "set" - the flags are bitwise "OR"d from the * ENGINE_METHOD_*** defines above. As with the "ENGINE_register_complete()" * function, this function can result in unnecessary static linkage. If your * application requires only specific functionality, consider using more * selective functions. */ int ENGINE_set_default(ENGINE* e, uint flags); void ENGINE_add_conf_module(); /* Deprecated functions ... */ /* int ENGINE_clear_defaults(); */ /**************************/ /* DYNAMIC ENGINE SUPPORT */ /**************************/ /* Binary/behaviour compatibility levels */ enum OSSL_DYNAMIC_VERSION = 0x00020000; /* Binary versions older than this are too old for us (whether we're a loader or * a loadee) */ enum OSSL_DYNAMIC_OLDEST = 0x00020000; /* When compiling an ENGINE entirely as an external shared library, loadable by * the "dynamic" ENGINE, these types are needed. The 'dynamic_fns' structure * type provides the calling application's (or library's) error functionality * and memory management function pointers to the loaded library. These should * be used/set in the loaded library code so that the loading application's * 'state' will be used/changed in all operations. The 'static_state' pointer * allows the loaded library to know if it shares the same static data as the * calling application (or library), and thus whether these callbacks need to be * set or not. */ alias ExternC!(void*function(size_t)) dyn_MEM_malloc_cb; alias ExternC!(void*function(void*, size_t)) dyn_MEM_realloc_cb; alias ExternC!(void function(void*)) dyn_MEM_free_cb; struct st_dynamic_MEM_fns { dyn_MEM_malloc_cb malloc_cb; dyn_MEM_realloc_cb realloc_cb; dyn_MEM_free_cb free_cb; } alias st_dynamic_MEM_fns dynamic_MEM_fns; /* FIXME: Perhaps the memory and locking code (crypto.h) should declare and use * these types so we (and any other dependant code) can simplify a bit?? */ alias ExternC!(void function(int,int,const(char)*,int)) dyn_lock_locking_cb; alias ExternC!(int function(int*,int,int,const(char)*,int)) dyn_lock_add_lock_cb; alias ExternC!(CRYPTO_dynlock_value*function( const(char)*,int)) dyn_dynlock_create_cb; alias ExternC!(void function(int,CRYPTO_dynlock_value*, const(char)*,int)) dyn_dynlock_lock_cb; alias ExternC!(void function(CRYPTO_dynlock_value*, const(char)*,int)) dyn_dynlock_destroy_cb; struct st_dynamic_LOCK_fns { dyn_lock_locking_cb lock_locking_cb; dyn_lock_add_lock_cb lock_add_lock_cb; dyn_dynlock_create_cb dynlock_create_cb; dyn_dynlock_lock_cb dynlock_lock_cb; dyn_dynlock_destroy_cb dynlock_destroy_cb; } alias st_dynamic_LOCK_fns dynamic_LOCK_fns; /* The top-level structure */ struct st_dynamic_fns { void* static_state; const(ERR_FNS)* err_fns; const(CRYPTO_EX_DATA_IMPL)* ex_data_fns; dynamic_MEM_fns mem_fns; dynamic_LOCK_fns lock_fns; } alias st_dynamic_fns dynamic_fns; /* The version checking function should be of this prototype. NB: The * ossl_version value passed in is the OSSL_DYNAMIC_VERSION of the loading code. * If this function returns zero, it indicates a (potential) version * incompatibility and the loaded library doesn't believe it can proceed. * Otherwise, the returned value is the (latest) version supported by the * loading library. The loader may still decide that the loaded code's version * is unsatisfactory and could veto the load. The function is expected to * be implemented with the symbol name "v_check", and a default implementation * can be fully instantiated with IMPLEMENT_DYNAMIC_CHECK_FN(). */ alias ExternC!(c_ulong function(c_ulong ossl_version)) dynamic_v_check_fn; template IMPLEMENT_DYNAMIC_CHECK_FN() { enum IMPLEMENT_DYNAMIC_CHECK_FN = q{ extern(C) c_ulong v_check(c_ulong v); extern(C) c_ulong v_check(c_ulong v) { if(v >= OSSL_DYNAMIC_OLDEST) return OSSL_DYNAMIC_VERSION; return 0; } }; } /* This function is passed the ENGINE structure to initialise with its own * function and command settings. It should not adjust the structural or * functional reference counts. If this function returns zero, (a) the load will * be aborted, (b) the previous ENGINE state will be memcpy'd back onto the * structure, and (c) the shared library will be unloaded. So implementations * should do their own internal cleanup in failure circumstances otherwise they * could leak. The 'id' parameter, if non-NULL, represents the ENGINE id that * the loader is looking for. If this is NULL, the shared library can choose to * return failure or to initialise a 'default' ENGINE. If non-NULL, the shared * library must initialise only an ENGINE matching the passed 'id'. The function * is expected to be implemented with the symbol name "bind_engine". A standard * implementation can be instantiated with IMPLEMENT_DYNAMIC_BIND_FN(fn) where * the parameter 'fn' is a callback function that populates the ENGINE structure * and returns an int value (zero for failure). 'fn' should have prototype; * [static] int fn(ENGINE* e, const(char)* id); */ alias ExternC!(int function(ENGINE* e, const(char)* id, const(dynamic_fns)* fns)) dynamic_bind_engine; template IMPLEMENT_DYNAMIC_BIND_FN(fn) { enum IMPLEMENT_DYNAMIC_BIND_FN = " extern(C) int bind_engine(ENGINE* e, const(char)* id, const(dynamic_fns)* fns); extern(C) int bind_engine(ENGINE* e, const(char)* id, const(dynamic_fns)* fns) { if(ENGINE_get_static_state() == fns->static_state) goto skip_cbs; if(!CRYPTO_set_mem_functions(fns->mem_fns.malloc_cb, fns->mem_fns.realloc_cb, fns->mem_fns.free_cb)) return 0; CRYPTO_set_locking_callback(fns->lock_fns.lock_locking_cb); CRYPTO_set_add_lock_callback(fns->lock_fns.lock_add_lock_cb); CRYPTO_set_dynlock_create_callback(fns->lock_fns.dynlock_create_cb); CRYPTO_set_dynlock_lock_callback(fns->lock_fns.dynlock_lock_cb); CRYPTO_set_dynlock_destroy_callback(fns->lock_fns.dynlock_destroy_cb); if(!CRYPTO_set_ex_data_implementation(fns->ex_data_fns)) return 0; if(!ERR_set_implementation(fns->err_fns)) return 0; skip_cbs: if(!" ~ fn ~ "(e,id)) return 0; return 1; } "; } /* If the loading application (or library) and the loaded ENGINE library share * the same static data (eg. they're both dynamically linked to the same * libcrypto.so) we need a way to avoid trying to set system callbacks - this * would fail, and for the same reason that it's unnecessary to try. If the * loaded ENGINE has (or gets from through the loader) its own copy of the * libcrypto static data, we will need to set the callbacks. The easiest way to * detect this is to have a function that returns a pointer to some static data * and let the loading application and loaded ENGINE compare their respective * values. */ void* ENGINE_get_static_state(); version (BSD) { void ENGINE_setup_bsd_cryptodev(); } version (HAVE_CRYPTODEV) { void ENGINE_setup_bsd_cryptodev(); } /* BEGIN ERROR CODES */ /* The following lines are auto generated by the script mkerr.pl. Any changes * made after this point may be overwritten when the script is next run. */ void ERR_load_ENGINE_strings(); /* Error codes for the ENGINE functions. */ /* Function codes. */ enum ENGINE_F_DYNAMIC_CTRL = 180; enum ENGINE_F_DYNAMIC_GET_DATA_CTX = 181; enum ENGINE_F_DYNAMIC_LOAD = 182; enum ENGINE_F_DYNAMIC_SET_DATA_CTX = 183; enum ENGINE_F_ENGINE_ADD = 105; enum ENGINE_F_ENGINE_BY_ID = 106; enum ENGINE_F_ENGINE_CMD_IS_EXECUTABLE = 170; enum ENGINE_F_ENGINE_CTRL = 142; enum ENGINE_F_ENGINE_CTRL_CMD = 178; enum ENGINE_F_ENGINE_CTRL_CMD_STRING = 171; enum ENGINE_F_ENGINE_FINISH = 107; enum ENGINE_F_ENGINE_FREE_UTIL = 108; enum ENGINE_F_ENGINE_GET_CIPHER = 185; enum ENGINE_F_ENGINE_GET_DEFAULT_TYPE = 177; enum ENGINE_F_ENGINE_GET_DIGEST = 186; enum ENGINE_F_ENGINE_GET_NEXT = 115; enum ENGINE_F_ENGINE_GET_PKEY_ASN1_METH = 193; enum ENGINE_F_ENGINE_GET_PKEY_METH = 192; enum ENGINE_F_ENGINE_GET_PREV = 116; enum ENGINE_F_ENGINE_INIT = 119; enum ENGINE_F_ENGINE_LIST_ADD = 120; enum ENGINE_F_ENGINE_LIST_REMOVE = 121; enum ENGINE_F_ENGINE_LOAD_PRIVATE_KEY = 150; enum ENGINE_F_ENGINE_LOAD_PUBLIC_KEY = 151; enum ENGINE_F_ENGINE_LOAD_SSL_CLIENT_CERT = 194; enum ENGINE_F_ENGINE_NEW = 122; enum ENGINE_F_ENGINE_REMOVE = 123; enum ENGINE_F_ENGINE_SET_DEFAULT_STRING = 189; enum ENGINE_F_ENGINE_SET_DEFAULT_TYPE = 126; enum ENGINE_F_ENGINE_SET_ID = 129; enum ENGINE_F_ENGINE_SET_NAME = 130; enum ENGINE_F_ENGINE_TABLE_REGISTER = 184; enum ENGINE_F_ENGINE_UNLOAD_KEY = 152; enum ENGINE_F_ENGINE_UNLOCKED_FINISH = 191; enum ENGINE_F_ENGINE_UP_REF = 190; enum ENGINE_F_INT_CTRL_HELPER = 172; enum ENGINE_F_INT_ENGINE_CONFIGURE = 188; enum ENGINE_F_INT_ENGINE_MODULE_INIT = 187; enum ENGINE_F_LOG_MESSAGE = 141; /* Reason codes. */ enum ENGINE_R_ALREADY_LOADED = 100; enum ENGINE_R_ARGUMENT_IS_NOT_A_NUMBER = 133; enum ENGINE_R_CMD_NOT_EXECUTABLE = 134; enum ENGINE_R_COMMAND_TAKES_INPUT = 135; enum ENGINE_R_COMMAND_TAKES_NO_INPUT = 136; enum ENGINE_R_CONFLICTING_ENGINE_ID = 103; enum ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED = 119; enum ENGINE_R_DH_NOT_IMPLEMENTED = 139; enum ENGINE_R_DSA_NOT_IMPLEMENTED = 140; enum ENGINE_R_DSO_FAILURE = 104; enum ENGINE_R_DSO_NOT_FOUND = 132; enum ENGINE_R_ENGINES_SECTION_ERROR = 148; enum ENGINE_R_ENGINE_CONFIGURATION_ERROR = 102; enum ENGINE_R_ENGINE_IS_NOT_IN_LIST = 105; enum ENGINE_R_ENGINE_SECTION_ERROR = 149; enum ENGINE_R_FAILED_LOADING_PRIVATE_KEY = 128; enum ENGINE_R_FAILED_LOADING_PUBLIC_KEY = 129; enum ENGINE_R_FINISH_FAILED = 106; enum ENGINE_R_GET_HANDLE_FAILED = 107; enum ENGINE_R_ID_OR_NAME_MISSING = 108; enum ENGINE_R_INIT_FAILED = 109; enum ENGINE_R_INTERNAL_LIST_ERROR = 110; enum ENGINE_R_INVALID_ARGUMENT = 143; enum ENGINE_R_INVALID_CMD_NAME = 137; enum ENGINE_R_INVALID_CMD_NUMBER = 138; enum ENGINE_R_INVALID_INIT_VALUE = 151; enum ENGINE_R_INVALID_STRING = 150; enum ENGINE_R_NOT_INITIALISED = 117; enum ENGINE_R_NOT_LOADED = 112; enum ENGINE_R_NO_CONTROL_FUNCTION = 120; enum ENGINE_R_NO_INDEX = 144; enum ENGINE_R_NO_LOAD_FUNCTION = 125; enum ENGINE_R_NO_REFERENCE = 130; enum ENGINE_R_NO_SUCH_ENGINE = 116; enum ENGINE_R_NO_UNLOAD_FUNCTION = 126; enum ENGINE_R_PROVIDE_PARAMETERS = 113; enum ENGINE_R_RSA_NOT_IMPLEMENTED = 141; enum ENGINE_R_UNIMPLEMENTED_CIPHER = 146; enum ENGINE_R_UNIMPLEMENTED_DIGEST = 147; enum ENGINE_R_UNIMPLEMENTED_PUBLIC_KEY_METHOD = 101; enum ENGINE_R_VERSION_INCOMPATIBILITY = 145;