/* crypto/bn/bn.h */ /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the Eric Young open source * license provided above. * * The binary polynomial arithmetic software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories. * */ module deimos.openssl.bn; import deimos.openssl._d_util; public import deimos.openssl.e_os2; version(OPENSSL_NO_FP_API) {} else { import core.stdc.stdio; /* FILE */ } public import deimos.openssl.ossl_typ; public import deimos.openssl.crypto; extern (C): nothrow: /+ Not ported, internal only. /* These preprocessor symbols control various aspects of the bignum headers and * library code. They're not defined by any "normal" configuration, as they are * intended for development and testing purposes. NB: defining all three can be * useful for debugging application code as well as openssl itself. * * BN_DEBUG - turn on various debugging alterations to the bignum code * BN_DEBUG_RAND - uses random poisoning of unused words to trip up * mismanagement of bignum internals. You must also define BN_DEBUG. */ /* #define BN_DEBUG */ /* #define BN_DEBUG_RAND */ // #ifndef OPENSSL_SMALL_FOOTPRINT // #define BN_MUL_COMBA // #define BN_SQR_COMBA // #define BN_RECURSION // #endif /* This next option uses the C libraries (2 word)/(1 word) function. * If it is not defined, I use my C version (which is slower). * The reason for this flag is that when the particular C compiler * library routine is used, and the library is linked with a different * compiler, the library is missing. This mostly happens when the * library is built with gcc and then linked using normal cc. This would * be a common occurrence because gcc normally produces code that is * 2 times faster than system compilers for the big number stuff. * For machines with only one compiler (or shared libraries), this should * be on. Again this in only really a problem on machines * using "long long's", are 32bit, and are not using my assembler code. */ #if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \ defined(OPENSSL_SYS_WIN32) || defined(linux) # ifndef BN_DIV2W # define BN_DIV2W # endif #endif /* assuming c_long is 64bit - this is the DEC Alpha * c_ulong c_long is only 64 bits :-(, don't define * BN_LLONG for the DEC Alpha */ #ifdef SIXTY_FOUR_BIT_LONG alias c_ulong BN_ULLONG; c_long alias c_ulong BN_ULONG; alias c_long BN_LONG; enum BN_BITS = 128; enum BN_BYTES = 8; enum BN_BITS2 = 64; enum BN_BITS4 = 32; #define BN_MASK (0xffffffffffffffffffffffffffffffffLL) #define BN_MASK2 (0xffffffffffffffffL) #define BN_MASK2l (0xffffffffL) #define BN_MASK2h (0xffffffff00000000L) #define BN_MASK2h1 (0xffffffff80000000L) #define BN_TBIT (0x8000000000000000L) enum BN_DEC_CONV = (10000000000000000000UL); enum BN_DEC_FMT1 = "%lu"; enum BN_DEC_FMT2 = "%019lu"; enum BN_DEC_NUM = 19; enum BN_HEX_FMT1 = "%lX"; enum BN_HEX_FMT2 = "%016lX"; #endif /* This is where the c_long long data type is 64 bits, but c_long is 32. * For machines where there are 64bit registers, this is the mode to use. * IRIX, on R4000 and above should use this mode, along with the relevant * assembler code :-). Do NOT define BN_LLONG. */ #ifdef SIXTY_FOUR_BIT #undef BN_LLONG #undef BN_ULLONG alias c_ulong BN_ULONG; c_long alias c_long BN_LONG; long enum BN_BITS = 128; enum BN_BYTES = 8; enum BN_BITS2 = 64; enum BN_BITS4 = 32; #define BN_MASK2 (0xffffffffffffffffLL) #define BN_MASK2l (0xffffffffL) #define BN_MASK2h (0xffffffff00000000LL) #define BN_MASK2h1 (0xffffffff80000000LL) #define BN_TBIT (0x8000000000000000LL) enum BN_DEC_CONV = (10000000000000000000ULL); enum BN_DEC_FMT1 = "%llu"; enum BN_DEC_FMT2 = "%019llu"; enum BN_DEC_NUM = 19; enum BN_HEX_FMT1 = "%llX"; enum BN_HEX_FMT2 = "%016llX"; #endif #ifdef THIRTY_TWO_BIT+/ // #ifdef BN_LLONG // # if defined(_WIN32) && !defined(__GNUC__) // # define BN_ULLONG unsigned __int64 // # define BN_MASK (0xffffffffffffffffI64) // # else // # define BN_ULLONG c_ulong c_long // # define BN_MASK (0xffffffffffffffffLL) // # endif // #endif // FIXME: Is this correct? alias ulong BN_ULLONG; alias uint BN_ULONG; alias int BN_LONG; enum BN_BITS = 64; enum BN_BYTES = 4; enum BN_BITS2 = 32; enum BN_BITS4 = 16; enum BN_MASK2 = 0xffffffff; enum BN_MASK2l = 0xffff; enum BN_MASK2h1 = 0xffff8000; enum BN_MASK2h = 0xffff0000; enum BN_TBIT = 0x80000000; enum BN_DEC_CONV = 1000000000; enum BN_DEC_FMT1 = "%u"; enum BN_DEC_FMT2 = "%09u"; enum BN_DEC_NUM = 9; enum BN_HEX_FMT1 = "%X"; enum BN_HEX_FMT2 = "%08X"; /+#endif /* 2011-02-22 SMS. * In various places, a size_t variable or a type cast to size_t was * used to perform integer-only operations on pointers. This failed on * VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t is * still only 32 bits. What's needed in these cases is an integer type * with the same size as a pointer, which size_t is not certain to be. * The only fix here is VMS-specific. */ #if defined(OPENSSL_SYS_VMS) # if __INITIAL_POINTER_SIZE == 64 # define PTR_SIZE_INT c_long long # else /* __INITIAL_POINTER_SIZE == 64 */ # define PTR_SIZE_INT int # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ #else /* defined(OPENSSL_SYS_VMS) */ # define PTR_SIZE_INT size_t #endif /* defined(OPENSSL_SYS_VMS) [else] */ +/ enum BN_DEFAULT_BITS = 1280; enum BN_FLG_MALLOCED = 0x01; enum BN_FLG_STATIC_DATA = 0x02; enum BN_FLG_CONSTTIME = 0x04; /* avoid leaking exponent information through timing, * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime, * BN_div() will call BN_div_no_branch, * BN_mod_inverse() will call BN_mod_inverse_no_branch. */ version(OPENSSL_NO_DEPRECATED) {} else { alias BN_FLG_CONSTTIME BN_FLG_EXP_CONSTTIME; /* deprecated name for the flag */ /* avoid leaking exponent information through timings * (BN_mod_exp_mont() will call BN_mod_exp_mont_consttime) */ } version(OPENSSL_NO_DEPRECATED) {} else { enum BN_FLG_FREE = 0x8000; /* used for debuging */ } void BN_set_flags()(BIGNUM* b, int n) { b.flags |= n; } int BN_get_flags()(const(BIGNUM)* b, int n) { return b.flags & n; } /* get a clone of a BIGNUM with changed flags, for* temporary* use only * (the two BIGNUMs cannot not be used in parallel!) */ void BN_with_flags()(BIGNUM* dest, BIGNUM* b, int n) { dest.d=b.d; dest.top=b.top; dest.dmax=b.dmax; dest.neg=b.neg; dest.flags=(dest.flags & BN_FLG_MALLOCED) | (b.flags & ~BN_FLG_MALLOCED) | BN_FLG_STATIC_DATA | n; } /* Already declared in ossl_typ.h */ version (none) { alias bignum_st BIGNUM; /* Used for temp variables (declaration hidden in bn_lcl.h) */ alias bignum_ctx BN_CTX; alias bn_blinding_st BN_BLINDING; alias bn_mont_ctx_st BN_MONT_CTX; alias bn_recp_ctx_st BN_RECP_CTX; alias bn_gencb_st BN_GENCB; } struct bignum_st { BN_ULONG* d; /* Pointer to an array of 'BN_BITS2' bit chunks. */ int top; /* Index of last used d +1. */ /* The next are internal book keeping for bn_expand. */ int dmax; /* Size of the d array. */ int neg; /* one if the number is negative */ int flags; }; /* Used for montgomery multiplication */ struct bn_mont_ctx_st { int ri; /* number of bits in R */ BIGNUM RR; /* used to convert to montgomery form */ BIGNUM N; /* The modulus */ BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 * (Ni is only stored for bignum algorithm) */ BN_ULONG[2] n0;/* least significant word(s) of Ni; (type changed with 0.9.9, was "BN_ULONG n0;" before) */ int flags; }; /* Used for reciprocal division/mod functions * It cannot be shared between threads */ struct bn_recp_ctx_st { BIGNUM N; /* the divisor */ BIGNUM Nr; /* the reciprocal */ int num_bits; int shift; int flags; }; /* Used for slow "generation" functions. */ struct bn_gencb_st { uint ver; /* To handle binary (in)compatibility */ void* arg; /* callback-specific data */ union cb_ { /* if(ver==1) - handles old style callbacks */ ExternC!(void function(int, int, void*)) cb_1; /* if(ver==2) - new callback style */ ExternC!(int function(int, int, BN_GENCB*)) cb_2; } cb_ cb; }; /* Wrapper function to make using BN_GENCB easier, */ int BN_GENCB_call(BN_GENCB* cb, int a, int b); /* Macro to populate a BN_GENCB structure with an "old"-style callback */ void BN_GENCB_set_old()(gencb, callback, cb_arg) { BN_GENCB* tmp_gencb = (gencb); tmp_gencb.ver = 1; tmp_gencb.arg = (cb_arg); tmp_gencb.cb.cb_1 = (callback); } /* Macro to populate a BN_GENCB structure with a "new"-style callback */ void BN_GENCB_set()(gencb, callback, cb_arg) { BN_GENCB* tmp_gencb = (gencb); tmp_gencb.ver = 2; tmp_gencb.arg = (cb_arg); tmp_gencb.cb.cb_2 = (callback); } enum BN_prime_checks = 0; /* default: select number of iterations based on the size of the number */ /* number of Miller-Rabin iterations for an error rate of less than 2^-80 * for random 'b'-bit input, b >= 100 (taken from table 4.4 in the Handbook * of Applied Cryptography [Menezes, van Oorschot, Vanstone; CRC Press 1996]; * original paper: Damgaard, Landrock, Pomerance: Average case error estimates * for the strong probable prime test. -- Math. Comp. 61 (1993) 177-194) */ auto BN_prime_checks_for_size(T)(T b) { return ((b) >= 1300 ? 2 : (b) >= 850 ? 3 : (b) >= 650 ? 4 : (b) >= 550 ? 5 : (b) >= 450 ? 6 : (b) >= 400 ? 7 : (b) >= 350 ? 8 : (b) >= 300 ? 9 : (b) >= 250 ? 12 : (b) >= 200 ? 15 : (b) >= 150 ? 18 : /* b >= 100 */ 27); } auto BN_num_bytes()(const(BIGNUM)* a) { return (BN_num_bits(a)+7)/8; } /* Note that BN_abs_is_word didn't work reliably for w == 0 until 0.9.8 */ auto BN_abs_is_word()(const(BIGNUM)* a, BN_ULONG w) { return (((a.top == 1) && (a.d[0] == (w))) || (((w) == 0) && (a.top == 0))); } auto BN_is_zero()(const(BIGNUM)* a) { return (a.top == 0); } auto BN_is_one()(const(BIGNUM)* a) { return (BN_abs_is_word((a),1) && !a.neg); } auto BN_is_word()(const(BIGNUM)* a, BN_ULONG w) { return (BN_abs_is_word((a),(w)) && (!(w) || !a.neg)); } auto BN_is_odd()(const(BIGNUM)* a) { return ((a.top > 0) && (a.d[0] & 1)); } auto BN_one()(BIGNUM* a) { return BN_set_word((a),1); } auto BN_zero_ex()(BIGNUM* a) { a.top = 0; a.neg = 0; } version (OPENSSL_NO_DEPRECATED) { alias BN_zero_ex BN_zero; } else { auto BN_zero()(BIGNUM* a) { return BN_set_word(a,0); } } const(BIGNUM)* BN_value_one(); char* BN_options(); BN_CTX* BN_CTX_new(); version(OPENSSL_NO_DEPRECATED) {} else { void BN_CTX_init(BN_CTX* c); } void BN_CTX_free(BN_CTX* c); void BN_CTX_start(BN_CTX* ctx); BIGNUM* BN_CTX_get(BN_CTX* ctx); void BN_CTX_end(BN_CTX* ctx); int BN_rand(BIGNUM* rnd, int bits, int top,int bottom); int BN_pseudo_rand(BIGNUM* rnd, int bits, int top,int bottom); int BN_rand_range(BIGNUM* rnd, const(BIGNUM)* range); int BN_pseudo_rand_range(BIGNUM* rnd, const(BIGNUM)* range); int BN_num_bits(const(BIGNUM)* a); int BN_num_bits_word(BN_ULONG); BIGNUM* BN_new(); void BN_init(BIGNUM*); void BN_clear_free(BIGNUM* a); BIGNUM* BN_copy(BIGNUM* a, const(BIGNUM)* b); void BN_swap(BIGNUM* a, BIGNUM* b); BIGNUM* BN_bin2bn(const(ubyte)* s,int len,BIGNUM* ret); int BN_bn2bin(const(BIGNUM)* a, ubyte* to); BIGNUM* BN_mpi2bn(const(ubyte)* s,int len,BIGNUM* ret); int BN_bn2mpi(const(BIGNUM)* a, ubyte* to); int BN_sub(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b); int BN_usub(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b); int BN_uadd(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b); int BN_add(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b); int BN_mul(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b, BN_CTX* ctx); int BN_sqr(BIGNUM* r, const(BIGNUM)* a,BN_CTX* ctx); /** BN_set_negative sets sign of a BIGNUM * \param b pointer to the BIGNUM object * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise */ void BN_set_negative(BIGNUM* b, int n); /** BN_is_negative returns 1 if the BIGNUM is negative * \param a pointer to the BIGNUM object * \return 1 if a < 0 and 0 otherwise */ auto BN_is_negative()(const(BIGNUM)* a) { return a.neg != 0; } int BN_div(BIGNUM* dv, BIGNUM* rem, const(BIGNUM)* m, const(BIGNUM)* d, BN_CTX* ctx); auto BN_mod()(BIGNUM* rem,const(BIGNUM)* m,const(BIGNUM)* d,BN_CTX* ctx) { return BN_div(null,(rem),(m),(d),(ctx)); } int BN_nnmod(BIGNUM* r, const(BIGNUM)* m, const(BIGNUM)* d, BN_CTX* ctx); int BN_mod_add(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b, const(BIGNUM)* m, BN_CTX* ctx); int BN_mod_add_quick(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b, const(BIGNUM)* m); int BN_mod_sub(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b, const(BIGNUM)* m, BN_CTX* ctx); int BN_mod_sub_quick(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b, const(BIGNUM)* m); int BN_mod_mul(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b, const(BIGNUM)* m, BN_CTX* ctx); int BN_mod_sqr(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* m, BN_CTX* ctx); int BN_mod_lshift1(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* m, BN_CTX* ctx); int BN_mod_lshift1_quick(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* m); int BN_mod_lshift(BIGNUM* r, const(BIGNUM)* a, int n, const(BIGNUM)* m, BN_CTX* ctx); int BN_mod_lshift_quick(BIGNUM* r, const(BIGNUM)* a, int n, const(BIGNUM)* m); BN_ULONG BN_mod_word(const(BIGNUM)* a, BN_ULONG w); BN_ULONG BN_div_word(BIGNUM* a, BN_ULONG w); int BN_mul_word(BIGNUM* a, BN_ULONG w); int BN_add_word(BIGNUM* a, BN_ULONG w); int BN_sub_word(BIGNUM* a, BN_ULONG w); int BN_set_word(BIGNUM* a, BN_ULONG w); BN_ULONG BN_get_word(const(BIGNUM)* a); int BN_cmp(const(BIGNUM)* a, const(BIGNUM)* b); void BN_free(BIGNUM* a); int BN_is_bit_set(const(BIGNUM)* a, int n); int BN_lshift(BIGNUM* r, const(BIGNUM)* a, int n); int BN_lshift1(BIGNUM* r, const(BIGNUM)* a); int BN_exp(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p,BN_CTX* ctx); int BN_mod_exp(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p, const(BIGNUM)* m,BN_CTX* ctx); int BN_mod_exp_mont(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p, const(BIGNUM)* m, BN_CTX* ctx, BN_MONT_CTX* m_ctx); int BN_mod_exp_mont_consttime(BIGNUM* rr, const(BIGNUM)* a, const(BIGNUM)* p, const(BIGNUM)* m, BN_CTX* ctx, BN_MONT_CTX* in_mont); int BN_mod_exp_mont_word(BIGNUM* r, BN_ULONG a, const(BIGNUM)* p, const(BIGNUM)* m, BN_CTX* ctx, BN_MONT_CTX* m_ctx); int BN_mod_exp2_mont(BIGNUM* r, const(BIGNUM)* a1, const(BIGNUM)* p1, const(BIGNUM)* a2, const(BIGNUM)* p2,const(BIGNUM)* m, BN_CTX* ctx,BN_MONT_CTX* m_ctx); int BN_mod_exp_simple(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p, const(BIGNUM)* m,BN_CTX* ctx); int BN_mask_bits(BIGNUM* a,int n); version(OPENSSL_NO_FP_API) {} else { int BN_print_fp(FILE* fp, const(BIGNUM)* a); } // #ifdef HEADER_BIO_H import deimos.openssl.bio; int BN_print(BIO* fp, const(BIGNUM)* a); // #else // int BN_print(void* fp, const(BIGNUM)* a); // #endif int BN_reciprocal(BIGNUM* r, const(BIGNUM)* m, int len, BN_CTX* ctx); int BN_rshift(BIGNUM* r, const(BIGNUM)* a, int n); int BN_rshift1(BIGNUM* r, const(BIGNUM)* a); void BN_clear(BIGNUM* a); BIGNUM* BN_dup(const(BIGNUM)* a); int BN_ucmp(const(BIGNUM)* a, const(BIGNUM)* b); int BN_set_bit(BIGNUM* a, int n); int BN_clear_bit(BIGNUM* a, int n); char* BN_bn2hex(const(BIGNUM)* a); char* BN_bn2dec(const(BIGNUM)* a); int BN_hex2bn(BIGNUM** a, const(char)* str); int BN_dec2bn(BIGNUM** a, const(char)* str); int BN_asc2bn(BIGNUM** a, const(char)* str); int BN_gcd(BIGNUM* r,const(BIGNUM)* a,const(BIGNUM)* b,BN_CTX* ctx); int BN_kronecker(const(BIGNUM)* a,const(BIGNUM)* b,BN_CTX* ctx); /* returns -2 for error */ BIGNUM* BN_mod_inverse(BIGNUM* ret, const(BIGNUM)* a, const(BIGNUM)* n,BN_CTX* ctx); BIGNUM* BN_mod_sqrt(BIGNUM* ret, const(BIGNUM)* a, const(BIGNUM)* n,BN_CTX* ctx); void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords); /* Deprecated versions */ version(OPENSSL_NO_DEPRECATED) {} else { BIGNUM* BN_generate_prime(BIGNUM* ret,int bits,int safe, const(BIGNUM)* add, const(BIGNUM)* rem, ExternC!(void function(int,int,void*)) callback,void* cb_arg); int BN_is_prime(const(BIGNUM)* p,int nchecks, ExternC!(void function(int,int,void*)) callback, BN_CTX* ctx,void* cb_arg); int BN_is_prime_fasttest(const(BIGNUM)* p,int nchecks, ExternC!(void function(int,int,void*)) callback,BN_CTX* ctx,void* cb_arg, int do_trial_division); } /* !defined(OPENSSL_NO_DEPRECATED) */ /* Newer versions */ int BN_generate_prime_ex(BIGNUM* ret,int bits,int safe, const(BIGNUM)* add, const(BIGNUM)* rem, BN_GENCB* cb); int BN_is_prime_ex(const(BIGNUM)* p,int nchecks, BN_CTX* ctx, BN_GENCB* cb); int BN_is_prime_fasttest_ex(const(BIGNUM)* p,int nchecks, BN_CTX* ctx, int do_trial_division, BN_GENCB* cb); int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx); int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, const(BIGNUM)* Xp, const(BIGNUM)* Xp1, const(BIGNUM)* Xp2, const(BIGNUM)* e, BN_CTX *ctx, BN_GENCB *cb); int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1, BIGNUM *Xp2, const(BIGNUM)* Xp, const(BIGNUM)* e, BN_CTX *ctx, BN_GENCB *cb); BN_MONT_CTX* BN_MONT_CTX_new(); void BN_MONT_CTX_init(BN_MONT_CTX* ctx); int BN_mod_mul_montgomery(BIGNUM* r,const(BIGNUM)* a,const(BIGNUM)* b, BN_MONT_CTX* mont, BN_CTX* ctx); auto BN_to_montgomery()(BIGNUM* r,const(BIGNUM)* a,BN_MONT_CTX* mont,BN_CTX* ctx) { BN_mod_mul_montgomery((r),(a),&(mont.RR),(mont),(ctx)); } int BN_from_montgomery(BIGNUM* r,const(BIGNUM)* a, BN_MONT_CTX* mont, BN_CTX* ctx); void BN_MONT_CTX_free(BN_MONT_CTX* mont); int BN_MONT_CTX_set(BN_MONT_CTX* mont,const(BIGNUM)* mod,BN_CTX* ctx); BN_MONT_CTX* BN_MONT_CTX_copy(BN_MONT_CTX* to,BN_MONT_CTX* from); BN_MONT_CTX* BN_MONT_CTX_set_locked(BN_MONT_CTX** pmont, int lock, const(BIGNUM)* mod, BN_CTX* ctx); /* BN_BLINDING flags */ enum BN_BLINDING_NO_UPDATE = 0x00000001; enum BN_BLINDING_NO_RECREATE = 0x00000002; BN_BLINDING* BN_BLINDING_new(const(BIGNUM)* A, const(BIGNUM)* Ai, BIGNUM* mod); void BN_BLINDING_free(BN_BLINDING* b); int BN_BLINDING_update(BN_BLINDING* b,BN_CTX* ctx); int BN_BLINDING_convert(BIGNUM* n, BN_BLINDING* b, BN_CTX* ctx); int BN_BLINDING_invert(BIGNUM* n, BN_BLINDING* b, BN_CTX* ctx); int BN_BLINDING_convert_ex(BIGNUM* n, BIGNUM* r, BN_BLINDING* b, BN_CTX*); int BN_BLINDING_invert_ex(BIGNUM* n, const(BIGNUM)* r, BN_BLINDING* b, BN_CTX*); version(OPENSSL_NO_DEPRECATED) {} else { c_ulong BN_BLINDING_get_thread_id(const(BN_BLINDING)*); void BN_BLINDING_set_thread_id(BN_BLINDING*, c_ulong); } CRYPTO_THREADID* BN_BLINDING_thread_id(BN_BLINDING*); c_ulong BN_BLINDING_get_flags(const(BN_BLINDING)*); void BN_BLINDING_set_flags(BN_BLINDING*, c_ulong); BN_BLINDING* BN_BLINDING_create_param(BN_BLINDING* b, const(BIGNUM)* e, BIGNUM* m, BN_CTX* ctx, ExternC!(int function(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p, const(BIGNUM)* m, BN_CTX* ctx, BN_MONT_CTX* m_ctx)) bn_mod_exp, BN_MONT_CTX* m_ctx); version(OPENSSL_NO_DEPRECATED) {} else { void BN_set_params(int mul,int high,int low,int mont); int BN_get_params(int which); /* 0, mul, 1 high, 2 low, 3 mont */ } void BN_RECP_CTX_init(BN_RECP_CTX* recp); BN_RECP_CTX* BN_RECP_CTX_new(); void BN_RECP_CTX_free(BN_RECP_CTX* recp); int BN_RECP_CTX_set(BN_RECP_CTX* recp,const(BIGNUM)* rdiv,BN_CTX* ctx); int BN_mod_mul_reciprocal(BIGNUM* r, const(BIGNUM)* x, const(BIGNUM)* y, BN_RECP_CTX* recp,BN_CTX* ctx); int BN_mod_exp_recp(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p, const(BIGNUM)* m, BN_CTX* ctx); int BN_div_recp(BIGNUM* dv, BIGNUM* rem, const(BIGNUM)* m, BN_RECP_CTX* recp, BN_CTX* ctx); version(OPENSSL_NO_EC2M) {} else { /* Functions for arithmetic over binary polynomials represented by BIGNUMs. * * The BIGNUM::neg property of BIGNUMs representing binary polynomials is * ignored. * * Note that input arguments are not const so that their bit arrays can * be expanded to the appropriate size if needed. */ int BN_GF2m_add(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b); /*r = a + b*/ alias BN_GF2m_add BN_GF2m_sub; int BN_GF2m_mod(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p); /*r=a mod p*/ int BN_GF2m_mod_mul(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b, const(BIGNUM)* p, BN_CTX* ctx); /* r = (a* b) mod p */ int BN_GF2m_mod_sqr(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p, BN_CTX* ctx); /* r = (a* a) mod p */ int BN_GF2m_mod_inv(BIGNUM* r, const(BIGNUM)* b, const(BIGNUM)* p, BN_CTX* ctx); /* r = (1 / b) mod p */ int BN_GF2m_mod_div(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b, const(BIGNUM)* p, BN_CTX* ctx); /* r = (a / b) mod p */ int BN_GF2m_mod_exp(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b, const(BIGNUM)* p, BN_CTX* ctx); /* r = (a ^ b) mod p */ int BN_GF2m_mod_sqrt(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p, BN_CTX* ctx); /* r = sqrt(a) mod p */ int BN_GF2m_mod_solve_quad(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p, BN_CTX* ctx); /* r^2 + r = a mod p */ alias BN_ucmp BN_GF2m_cmp; /* Some functions allow for representation of the irreducible polynomials * as an uint[], say p. The irreducible f(t) is then of the form: * t^p[0] + t^p[1] + ... + t^p[k] * where m = p[0] > p[1] > ... > p[k] = 0. */ int BN_GF2m_mod_arr(BIGNUM* r, const(BIGNUM)* a, const int[] p); /* r = a mod p */ int BN_GF2m_mod_mul_arr(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b, const int[] p, BN_CTX* ctx); /* r = (a* b) mod p */ int BN_GF2m_mod_sqr_arr(BIGNUM* r, const(BIGNUM)* a, const int[] p, BN_CTX* ctx); /* r = (a* a) mod p */ int BN_GF2m_mod_inv_arr(BIGNUM* r, const(BIGNUM)* b, const int[] p, BN_CTX* ctx); /* r = (1 / b) mod p */ int BN_GF2m_mod_div_arr(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b, const int[] p, BN_CTX* ctx); /* r = (a / b) mod p */ int BN_GF2m_mod_exp_arr(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* b, const int[] p, BN_CTX* ctx); /* r = (a ^ b) mod p */ int BN_GF2m_mod_sqrt_arr(BIGNUM* r, const(BIGNUM)* a, const int[] p, BN_CTX* ctx); /* r = sqrt(a) mod p */ int BN_GF2m_mod_solve_quad_arr(BIGNUM* r, const(BIGNUM)* a, const int[] p, BN_CTX* ctx); /* r^2 + r = a mod p */ int BN_GF2m_poly2arr(const(BIGNUM)* a, int[] p, int max); int BN_GF2m_arr2poly(const int[] p, BIGNUM* a); } /* faster mod functions for the 'NIST primes' * 0 <= a < p^2 */ int BN_nist_mod_192(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p, BN_CTX* ctx); int BN_nist_mod_224(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p, BN_CTX* ctx); int BN_nist_mod_256(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p, BN_CTX* ctx); int BN_nist_mod_384(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p, BN_CTX* ctx); int BN_nist_mod_521(BIGNUM* r, const(BIGNUM)* a, const(BIGNUM)* p, BN_CTX* ctx); const(BIGNUM)* BN_get0_nist_prime_192(); const(BIGNUM)* BN_get0_nist_prime_224(); const(BIGNUM)* BN_get0_nist_prime_256(); const(BIGNUM)* BN_get0_nist_prime_384(); const(BIGNUM)* BN_get0_nist_prime_521(); /* library internal functions */ auto bn_expand()(BIGNUM* a, int bits) { return ((((((bits+BN_BITS2-1))/BN_BITS2)) <= a.dmax)? (a):bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2)); } auto bn_wexpand()(BIGNUM* a, int words) { return (((words) <= a.dmax)?(a):bn_expand2((a),(words))); } BIGNUM* bn_expand2(BIGNUM* a, int words); version(OPENSSL_NO_DEPRECATED) {} else { BIGNUM* bn_dup_expand(const(BIGNUM)* a, int words); /* unused */ } /+ FIXME: Not yet ported. /* Bignum consistency macros * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from * bignum data after direct manipulations on the data. There is also an * "internal" macro, bn_check_top(), for verifying that there are no leading * zeroes. Unfortunately, some auditing is required due to the fact that * bn_fix_top() has become an overabused duct-tape because bignum data is * occasionally passed around in an inconsistent state. So the following * changes have been made to sort this out_; * - bn_fix_top()s implementation has been moved to bn_correct_top() * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and * bn_check_top() is as before. * - if BN_DEBUG* is* defined; * - bn_check_top() tries to pollute unused words even if the bignum 'top' is * consistent. (ed: only if BN_DEBUG_RAND is defined) * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything. * The idea is to have debug builds flag up inconsistent bignums when they * occur. If that occurs in a bn_fix_top(), we examine the code in question; if * the use of bn_fix_top() was appropriate (ie. it follows directly after code * that manipulates the bignum) it is converted to bn_correct_top(), and if it * was not appropriate, we convert it permanently to bn_check_top() and track * down the cause of the bug. Eventually, no internal code should be using the * bn_fix_top() macro. External applications and libraries should try this with * their own code too, both in terms of building against the openssl headers * with BN_DEBUG defined* and* linking with a version of OpenSSL built with it * defined. This not only improves external code, it provides more test * coverage for openssl's own code. */ #ifdef BN_DEBUG /* We only need assert() when debugging */ #include #ifdef BN_DEBUG_RAND /* To avoid "make update" cvs wars due to BN_DEBUG, use some tricks */ #ifndef RAND_pseudo_bytes int RAND_pseudo_bytes(ubyte* buf,int num); #define BN_DEBUG_TRIX #endif #define bn_pollute(a) \ do { \ const(BIGNUM)* _bnum1 = (a); \ if(_bnum1->top < _bnum1->dmax) { \ ubyte _tmp_char; \ /* We cast away const without the compiler knowing, any \ ** genuinely* constant variables that aren't mutable \ * wouldn't be constructed with top!=dmax. */ \ BN_ULONG* _not_const; \ memcpy(&_not_const, &_bnum1->d, sizeof(BN_ULONG*)); \ RAND_pseudo_bytes(&_tmp_char, 1); \ memset((ubyte*)(_not_const + _bnum1->top), _tmp_char, \ (_bnum1->dmax - _bnum1->top) * sizeof(BN_ULONG)); \ } \ } while(0) #ifdef BN_DEBUG_TRIX #undef RAND_pseudo_bytes #endif #else #define bn_pollute(a) #endif #define bn_check_top(a) \ do { \ const(BIGNUM)* _bnum2 = (a); \ if (_bnum2 != NULL) { \ assert((_bnum2->top == 0) || \ (_bnum2->d[_bnum2->top - 1] != 0)); \ bn_pollute(_bnum2); \ } \ } while(0) #define bn_fix_top(a) bn_check_top(a) #define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2) #define bn_wcheck_size(bn, words) \ do { \ const BIGNUM *_bnum2 = (bn); \ assert(words <= (_bnum2)->dmax && words >= (_bnum2)->top); \ } while(0) #else /* !BN_DEBUG */ +/ void bn_pollute()(BIGNUM* a) {} void bn_check_top()(BIGNUM* a) {} alias bn_correct_top bn_fix_top; void bn_check_size()(BIGNUM* bn, size_t bits) {} void bn_wcheck_size()(BIGNUM* bn, size_t words) {} // #endif auto bn_correct_top()(BIGNUM* a) { BN_ULONG* ftl; int tmp_top = a.top; if (tmp_top > 0) { for (ftl= &(a.d[tmp_top-1]); tmp_top > 0; tmp_top--) if (*(ftl--)) break; a.top = tmp_top; } bn_pollute(a); } BN_ULONG bn_mul_add_words(BN_ULONG* rp, const(BN_ULONG)* ap, int num, BN_ULONG w); BN_ULONG bn_mul_words(BN_ULONG* rp, const(BN_ULONG)* ap, int num, BN_ULONG w); void bn_sqr_words(BN_ULONG* rp, const(BN_ULONG)* ap, int num); BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); BN_ULONG bn_add_words(BN_ULONG* rp, const(BN_ULONG)* ap, const(BN_ULONG)* bp,int num); BN_ULONG bn_sub_words(BN_ULONG* rp, const(BN_ULONG)* ap, const(BN_ULONG)* bp,int num); /* Primes from RFC 2409 */ BIGNUM* get_rfc2409_prime_768(BIGNUM* bn); BIGNUM* get_rfc2409_prime_1024(BIGNUM* bn); /* Primes from RFC 3526 */ BIGNUM* get_rfc3526_prime_1536(BIGNUM* bn); BIGNUM* get_rfc3526_prime_2048(BIGNUM* bn); BIGNUM* get_rfc3526_prime_3072(BIGNUM* bn); BIGNUM* get_rfc3526_prime_4096(BIGNUM* bn); BIGNUM* get_rfc3526_prime_6144(BIGNUM* bn); BIGNUM* get_rfc3526_prime_8192(BIGNUM* bn); int BN_bntest_rand(BIGNUM* rnd, int bits, int top,int bottom); /* BEGIN ERROR CODES */ /* The following lines are auto generated by the script mkerr.pl. Any changes * made after this point may be overwritten when the script is next run. */ void ERR_load_BN_strings(); /* Error codes for the BN functions. */ /* Function codes. */ enum BN_F_BNRAND = 127; enum BN_F_BN_BLINDING_CONVERT_EX = 100; enum BN_F_BN_BLINDING_CREATE_PARAM = 128; enum BN_F_BN_BLINDING_INVERT_EX = 101; enum BN_F_BN_BLINDING_NEW = 102; enum BN_F_BN_BLINDING_UPDATE = 103; enum BN_F_BN_BN2DEC = 104; enum BN_F_BN_BN2HEX = 105; enum BN_F_BN_CTX_GET = 116; enum BN_F_BN_CTX_NEW = 106; enum BN_F_BN_CTX_START = 129; enum BN_F_BN_DIV = 107; enum BN_F_BN_DIV_NO_BRANCH = 138; enum BN_F_BN_DIV_RECP = 130; enum BN_F_BN_EXP = 123; enum BN_F_BN_EXPAND2 = 108; enum BN_F_BN_EXPAND_INTERNAL = 120; enum BN_F_BN_GF2M_MOD = 131; enum BN_F_BN_GF2M_MOD_EXP = 132; enum BN_F_BN_GF2M_MOD_MUL = 133; enum BN_F_BN_GF2M_MOD_SOLVE_QUAD = 134; enum BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR = 135; enum BN_F_BN_GF2M_MOD_SQR = 136; enum BN_F_BN_GF2M_MOD_SQRT = 137; enum BN_F_BN_MOD_EXP2_MONT = 118; enum BN_F_BN_MOD_EXP_MONT = 109; enum BN_F_BN_MOD_EXP_MONT_CONSTTIME = 124; enum BN_F_BN_MOD_EXP_MONT_WORD = 117; enum BN_F_BN_MOD_EXP_RECP = 125; enum BN_F_BN_MOD_EXP_SIMPLE = 126; enum BN_F_BN_MOD_INVERSE = 110; enum BN_F_BN_MOD_INVERSE_NO_BRANCH = 139; enum BN_F_BN_MOD_LSHIFT_QUICK = 119; enum BN_F_BN_MOD_MUL_RECIPROCAL = 111; enum BN_F_BN_MOD_SQRT = 121; enum BN_F_BN_MPI2BN = 112; enum BN_F_BN_NEW = 113; enum BN_F_BN_RAND = 114; enum BN_F_BN_RAND_RANGE = 122; enum BN_F_BN_USUB = 115; /* Reason codes. */ enum BN_R_ARG2_LT_ARG3 = 100; enum BN_R_BAD_RECIPROCAL = 101; enum BN_R_BIGNUM_TOO_LONG = 114; enum BN_R_CALLED_WITH_EVEN_MODULUS = 102; enum BN_R_DIV_BY_ZERO = 103; enum BN_R_ENCODING_ERROR = 104; enum BN_R_EXPAND_ON_STATIC_BIGNUM_DATA = 105; enum BN_R_INPUT_NOT_REDUCED = 110; enum BN_R_INVALID_LENGTH = 106; enum BN_R_INVALID_RANGE = 115; enum BN_R_NOT_A_SQUARE = 111; enum BN_R_NOT_INITIALIZED = 107; enum BN_R_NO_INVERSE = 108; enum BN_R_NO_SOLUTION = 116; enum BN_R_P_IS_NOT_PRIME = 112; enum BN_R_TOO_MANY_ITERATIONS = 113; enum BN_R_TOO_MANY_TEMPORARY_VARIABLES = 109;