gdb-msvc/bfd/elf32-bfin.c

5541 lines
166 KiB
C
Raw Normal View History

2020-06-18 10:11:10 +02:00
/* ADI Blackfin BFD support for 32-bit ELF.
Copyright (C) 2005-2019 Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/bfin.h"
#include "dwarf2.h"
#include "hashtab.h"
#include "elf32-bfin.h"
/* FUNCTION : bfin_pltpc_reloc
ABSTRACT : TODO : figure out how to handle pltpc relocs. */
static bfd_reloc_status_type
bfin_pltpc_reloc (
bfd *abfd ATTRIBUTE_UNUSED,
arelent *reloc_entry ATTRIBUTE_UNUSED,
asymbol *symbol ATTRIBUTE_UNUSED,
void * data ATTRIBUTE_UNUSED,
asection *input_section ATTRIBUTE_UNUSED,
bfd *output_bfd ATTRIBUTE_UNUSED,
char **error_message ATTRIBUTE_UNUSED)
{
bfd_reloc_status_type flag = bfd_reloc_ok;
return flag;
}
static bfd_reloc_status_type
bfin_pcrel24_reloc (bfd *abfd,
arelent *reloc_entry,
asymbol *symbol,
void * data,
asection *input_section,
bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
bfd_vma relocation;
bfd_size_type addr = reloc_entry->address;
bfd_vma output_base = 0;
reloc_howto_type *howto = reloc_entry->howto;
asection *output_section;
bfd_boolean relocatable = (output_bfd != NULL);
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
return bfd_reloc_outofrange;
if (bfd_is_und_section (symbol->section)
&& (symbol->flags & BSF_WEAK) == 0
&& !relocatable)
return bfd_reloc_undefined;
if (bfd_is_com_section (symbol->section))
relocation = 0;
else
relocation = symbol->value;
output_section = symbol->section->output_section;
if (relocatable)
output_base = 0;
else
output_base = output_section->vma;
if (!relocatable || !strcmp (symbol->name, symbol->section->name))
relocation += output_base + symbol->section->output_offset;
if (!relocatable && !strcmp (symbol->name, symbol->section->name))
relocation += reloc_entry->addend;
relocation -= input_section->output_section->vma + input_section->output_offset;
relocation -= reloc_entry->address;
if (howto->complain_on_overflow != complain_overflow_dont)
{
bfd_reloc_status_type status;
status = bfd_check_overflow (howto->complain_on_overflow,
howto->bitsize,
howto->rightshift,
bfd_arch_bits_per_address(abfd),
relocation);
if (status != bfd_reloc_ok)
return status;
}
/* if rightshift is 1 and the number odd, return error. */
if (howto->rightshift && (relocation & 0x01))
{
_bfd_error_handler (_("relocation should be even number"));
return bfd_reloc_overflow;
}
relocation >>= (bfd_vma) howto->rightshift;
/* Shift everything up to where it's going to be used. */
relocation <<= (bfd_vma) howto->bitpos;
if (relocatable)
{
reloc_entry->address += input_section->output_offset;
reloc_entry->addend += symbol->section->output_offset;
}
{
short x;
/* We are getting reloc_entry->address 2 byte off from
the start of instruction. Assuming absolute postion
of the reloc data. But, following code had been written assuming
reloc address is starting at begining of instruction.
To compensate that I have increased the value of
relocation by 1 (effectively 2) and used the addr -2 instead of addr. */
relocation += 1;
x = bfd_get_16 (abfd, (bfd_byte *) data + addr - 2);
x = (x & 0xff00) | ((relocation >> 16) & 0xff);
bfd_put_16 (abfd, x, (unsigned char *) data + addr - 2);
x = bfd_get_16 (abfd, (bfd_byte *) data + addr);
x = relocation & 0xFFFF;
bfd_put_16 (abfd, x, (unsigned char *) data + addr );
}
return bfd_reloc_ok;
}
static bfd_reloc_status_type
bfin_imm16_reloc (bfd *abfd,
arelent *reloc_entry,
asymbol *symbol,
void * data,
asection *input_section,
bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
bfd_vma relocation, x;
bfd_size_type reloc_addr = reloc_entry->address;
bfd_vma output_base = 0;
reloc_howto_type *howto = reloc_entry->howto;
asection *output_section;
bfd_boolean relocatable = (output_bfd != NULL);
/* Is the address of the relocation really within the section? */
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
return bfd_reloc_outofrange;
if (bfd_is_und_section (symbol->section)
&& (symbol->flags & BSF_WEAK) == 0
&& !relocatable)
return bfd_reloc_undefined;
output_section = symbol->section->output_section;
relocation = symbol->value;
/* Convert input-section-relative symbol value to absolute. */
if (relocatable)
output_base = 0;
else
output_base = output_section->vma;
if (!relocatable || !strcmp (symbol->name, symbol->section->name))
relocation += output_base + symbol->section->output_offset;
/* Add in supplied addend. */
relocation += reloc_entry->addend;
if (relocatable)
{
reloc_entry->address += input_section->output_offset;
reloc_entry->addend += symbol->section->output_offset;
}
else
{
reloc_entry->addend = 0;
}
if (howto->complain_on_overflow != complain_overflow_dont)
{
bfd_reloc_status_type flag;
flag = bfd_check_overflow (howto->complain_on_overflow,
howto->bitsize,
howto->rightshift,
bfd_arch_bits_per_address(abfd),
relocation);
if (flag != bfd_reloc_ok)
return flag;
}
/* Here the variable relocation holds the final address of the
symbol we are relocating against, plus any addend. */
relocation >>= (bfd_vma) howto->rightshift;
x = relocation;
bfd_put_16 (abfd, x, (unsigned char *) data + reloc_addr);
return bfd_reloc_ok;
}
static bfd_reloc_status_type
bfin_byte4_reloc (bfd *abfd,
arelent *reloc_entry,
asymbol *symbol,
void * data,
asection *input_section,
bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
bfd_vma relocation, x;
bfd_size_type addr = reloc_entry->address;
bfd_vma output_base = 0;
asection *output_section;
bfd_boolean relocatable = (output_bfd != NULL);
/* Is the address of the relocation really within the section? */
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
return bfd_reloc_outofrange;
if (bfd_is_und_section (symbol->section)
&& (symbol->flags & BSF_WEAK) == 0
&& !relocatable)
return bfd_reloc_undefined;
output_section = symbol->section->output_section;
relocation = symbol->value;
/* Convert input-section-relative symbol value to absolute. */
if (relocatable)
output_base = 0;
else
output_base = output_section->vma;
if ((symbol->name
&& symbol->section->name
&& !strcmp (symbol->name, symbol->section->name))
|| !relocatable)
{
relocation += output_base + symbol->section->output_offset;
}
relocation += reloc_entry->addend;
if (relocatable)
{
/* This output will be relocatable ... like ld -r. */
reloc_entry->address += input_section->output_offset;
reloc_entry->addend += symbol->section->output_offset;
}
else
{
reloc_entry->addend = 0;
}
/* Here the variable relocation holds the final address of the
symbol we are relocating against, plus any addend. */
x = relocation & 0xFFFF0000;
x >>=16;
bfd_put_16 (abfd, x, (unsigned char *) data + addr + 2);
x = relocation & 0x0000FFFF;
bfd_put_16 (abfd, x, (unsigned char *) data + addr);
return bfd_reloc_ok;
}
/* bfin_bfd_reloc handles the blackfin arithmetic relocations.
Use this instead of bfd_perform_relocation. */
static bfd_reloc_status_type
bfin_bfd_reloc (bfd *abfd,
arelent *reloc_entry,
asymbol *symbol,
void * data,
asection *input_section,
bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
bfd_vma relocation;
bfd_size_type addr = reloc_entry->address;
bfd_vma output_base = 0;
reloc_howto_type *howto = reloc_entry->howto;
asection *output_section;
bfd_boolean relocatable = (output_bfd != NULL);
/* Is the address of the relocation really within the section? */
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
return bfd_reloc_outofrange;
if (bfd_is_und_section (symbol->section)
&& (symbol->flags & BSF_WEAK) == 0
&& !relocatable)
return bfd_reloc_undefined;
/* Get symbol value. (Common symbols are special.) */
if (bfd_is_com_section (symbol->section))
relocation = 0;
else
relocation = symbol->value;
output_section = symbol->section->output_section;
/* Convert input-section-relative symbol value to absolute. */
if (relocatable)
output_base = 0;
else
output_base = output_section->vma;
if (!relocatable || !strcmp (symbol->name, symbol->section->name))
relocation += output_base + symbol->section->output_offset;
if (!relocatable && !strcmp (symbol->name, symbol->section->name))
{
/* Add in supplied addend. */
relocation += reloc_entry->addend;
}
/* Here the variable relocation holds the final address of the
symbol we are relocating against, plus any addend. */
if (howto->pc_relative)
{
relocation -= input_section->output_section->vma + input_section->output_offset;
if (howto->pcrel_offset)
relocation -= reloc_entry->address;
}
if (relocatable)
{
reloc_entry->address += input_section->output_offset;
reloc_entry->addend += symbol->section->output_offset;
}
if (howto->complain_on_overflow != complain_overflow_dont)
{
bfd_reloc_status_type status;
status = bfd_check_overflow (howto->complain_on_overflow,
howto->bitsize,
howto->rightshift,
bfd_arch_bits_per_address(abfd),
relocation);
if (status != bfd_reloc_ok)
return status;
}
/* If rightshift is 1 and the number odd, return error. */
if (howto->rightshift && (relocation & 0x01))
{
_bfd_error_handler (_("relocation should be even number"));
return bfd_reloc_overflow;
}
relocation >>= (bfd_vma) howto->rightshift;
/* Shift everything up to where it's going to be used. */
relocation <<= (bfd_vma) howto->bitpos;
#define DOIT(x) \
x = ( (x & ~howto->dst_mask) | (relocation & howto->dst_mask))
/* handle 8 and 16 bit relocations here. */
switch (howto->size)
{
case 0:
{
char x = bfd_get_8 (abfd, (char *) data + addr);
DOIT (x);
bfd_put_8 (abfd, x, (unsigned char *) data + addr);
}
break;
case 1:
{
unsigned short x = bfd_get_16 (abfd, (bfd_byte *) data + addr);
DOIT (x);
bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + addr);
}
break;
default:
return bfd_reloc_other;
}
return bfd_reloc_ok;
}
/* HOWTO Table for blackfin.
Blackfin relocations are fairly complicated.
Some of the salient features are
a. Even numbered offsets. A number of (not all) relocations are
even numbered. This means that the rightmost bit is not stored.
Needs to right shift by 1 and check to see if value is not odd
b. A relocation can be an expression. An expression takes on
a variety of relocations arranged in a stack.
As a result, we cannot use the standard generic function as special
function. We will have our own, which is very similar to the standard
generic function except that it understands how to get the value from
the relocation stack. . */
#define BFIN_RELOC_MIN 0
#define BFIN_RELOC_MAX 0x21
#define BFIN_GNUEXT_RELOC_MIN 0x40
#define BFIN_GNUEXT_RELOC_MAX 0x43
#define BFIN_ARELOC_MIN 0xE0
#define BFIN_ARELOC_MAX 0xF3
static reloc_howto_type bfin_howto_table [] =
{
/* This reloc does nothing. . */
HOWTO (R_BFIN_UNUSED0, /* type. */
0, /* rightshift. */
3, /* size (0 = byte, 1 = short, 2 = long). */
0, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_dont, /* complain_on_overflow. */
bfd_elf_generic_reloc, /* special_function. */
"R_BFIN_UNUSED0", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0, /* dst_mask. */
FALSE), /* pcrel_offset. */
HOWTO (R_BFIN_PCREL5M2, /* type. */
1, /* rightshift. */
1, /* size (0 = byte, 1 = short, 2 = long).. */
4, /* bitsize. */
TRUE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_unsigned, /* complain_on_overflow. */
bfin_bfd_reloc, /* special_function. */
"R_BFIN_PCREL5M2", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0x0000000F, /* dst_mask. */
FALSE), /* pcrel_offset. */
HOWTO (R_BFIN_UNUSED1, /* type. */
0, /* rightshift. */
3, /* size (0 = byte, 1 = short, 2 = long). */
0, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_dont, /* complain_on_overflow. */
bfd_elf_generic_reloc, /* special_function. */
"R_BFIN_UNUSED1", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0, /* dst_mask. */
FALSE), /* pcrel_offset. */
HOWTO (R_BFIN_PCREL10, /* type. */
1, /* rightshift. */
1, /* size (0 = byte, 1 = short, 2 = long). */
10, /* bitsize. */
TRUE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_signed, /* complain_on_overflow. */
bfin_bfd_reloc, /* special_function. */
"R_BFIN_PCREL10", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0x000003FF, /* dst_mask. */
TRUE), /* pcrel_offset. */
HOWTO (R_BFIN_PCREL12_JUMP, /* type. */
1, /* rightshift. */
/* the offset is actually 13 bit
aligned on a word boundary so
only 12 bits have to be used.
Right shift the rightmost bit.. */
1, /* size (0 = byte, 1 = short, 2 = long). */
12, /* bitsize. */
TRUE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_signed, /* complain_on_overflow. */
bfin_bfd_reloc, /* special_function. */
"R_BFIN_PCREL12_JUMP", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0x0FFF, /* dst_mask. */
TRUE), /* pcrel_offset. */
HOWTO (R_BFIN_RIMM16, /* type. */
0, /* rightshift. */
1, /* size (0 = byte, 1 = short, 2 = long). */
16, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_signed, /* complain_on_overflow. */
bfin_imm16_reloc, /* special_function. */
"R_BFIN_RIMM16", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0x0000FFFF, /* dst_mask. */
TRUE), /* pcrel_offset. */
HOWTO (R_BFIN_LUIMM16, /* type. */
0, /* rightshift. */
1, /* size (0 = byte, 1 = short, 2 = long). */
16, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_dont, /* complain_on_overflow. */
bfin_imm16_reloc, /* special_function. */
"R_BFIN_LUIMM16", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0x0000FFFF, /* dst_mask. */
TRUE), /* pcrel_offset. */
HOWTO (R_BFIN_HUIMM16, /* type. */
16, /* rightshift. */
1, /* size (0 = byte, 1 = short, 2 = long). */
16, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_unsigned, /* complain_on_overflow. */
bfin_imm16_reloc, /* special_function. */
"R_BFIN_HUIMM16", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0x0000FFFF, /* dst_mask. */
TRUE), /* pcrel_offset. */
HOWTO (R_BFIN_PCREL12_JUMP_S, /* type. */
1, /* rightshift. */
1, /* size (0 = byte, 1 = short, 2 = long). */
12, /* bitsize. */
TRUE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_signed, /* complain_on_overflow. */
bfin_bfd_reloc, /* special_function. */
"R_BFIN_PCREL12_JUMP_S", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0x00000FFF, /* dst_mask. */
TRUE), /* pcrel_offset. */
HOWTO (R_BFIN_PCREL24_JUMP_X, /* type. */
1, /* rightshift. */
2, /* size (0 = byte, 1 = short, 2 = long). */
24, /* bitsize. */
TRUE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_signed, /* complain_on_overflow. */
bfin_pcrel24_reloc, /* special_function. */
"R_BFIN_PCREL24_JUMP_X", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0x00FFFFFF, /* dst_mask. */
TRUE), /* pcrel_offset. */
HOWTO (R_BFIN_PCREL24, /* type. */
1, /* rightshift. */
2, /* size (0 = byte, 1 = short, 2 = long). */
24, /* bitsize. */
TRUE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_signed, /* complain_on_overflow. */
bfin_pcrel24_reloc, /* special_function. */
"R_BFIN_PCREL24", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0x00FFFFFF, /* dst_mask. */
TRUE), /* pcrel_offset. */
HOWTO (R_BFIN_UNUSEDB, /* type. */
0, /* rightshift. */
3, /* size (0 = byte, 1 = short, 2 = long). */
0, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_dont, /* complain_on_overflow. */
bfd_elf_generic_reloc, /* special_function. */
"R_BFIN_UNUSEDB", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0, /* dst_mask. */
FALSE), /* pcrel_offset. */
HOWTO (R_BFIN_UNUSEDC, /* type. */
0, /* rightshift. */
3, /* size (0 = byte, 1 = short, 2 = long). */
0, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_dont, /* complain_on_overflow. */
bfd_elf_generic_reloc, /* special_function. */
"R_BFIN_UNUSEDC", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0, /* dst_mask. */
FALSE), /* pcrel_offset. */
HOWTO (R_BFIN_PCREL24_JUMP_L, /* type. */
1, /* rightshift. */
2, /* size (0 = byte, 1 = short, 2 = long). */
24, /* bitsize. */
TRUE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_signed, /* complain_on_overflow. */
bfin_pcrel24_reloc, /* special_function. */
"R_BFIN_PCREL24_JUMP_L", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0x00FFFFFF, /* dst_mask. */
TRUE), /* pcrel_offset. */
HOWTO (R_BFIN_PCREL24_CALL_X, /* type. */
1, /* rightshift. */
2, /* size (0 = byte, 1 = short, 2 = long). */
24, /* bitsize. */
TRUE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_signed, /* complain_on_overflow. */
bfin_pcrel24_reloc, /* special_function. */
"R_BFIN_PCREL24_CALL_X", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0x00FFFFFF, /* dst_mask. */
TRUE), /* pcrel_offset. */
HOWTO (R_BFIN_VAR_EQ_SYMB, /* type. */
0, /* rightshift. */
2, /* size (0 = byte, 1 = short, 2 = long). */
32, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_bitfield, /* complain_on_overflow. */
bfin_bfd_reloc, /* special_function. */
"R_BFIN_VAR_EQ_SYMB", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0, /* dst_mask. */
FALSE), /* pcrel_offset. */
HOWTO (R_BFIN_BYTE_DATA, /* type. */
0, /* rightshift. */
0, /* size (0 = byte, 1 = short, 2 = long). */
8, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_unsigned, /* complain_on_overflow. */
bfin_bfd_reloc, /* special_function. */
"R_BFIN_BYTE_DATA", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0xFF, /* dst_mask. */
TRUE), /* pcrel_offset. */
HOWTO (R_BFIN_BYTE2_DATA, /* type. */
0, /* rightshift. */
1, /* size (0 = byte, 1 = short, 2 = long). */
16, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_signed, /* complain_on_overflow. */
bfin_bfd_reloc, /* special_function. */
"R_BFIN_BYTE2_DATA", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0xFFFF, /* dst_mask. */
TRUE), /* pcrel_offset. */
HOWTO (R_BFIN_BYTE4_DATA, /* type. */
0, /* rightshift. */
2, /* size (0 = byte, 1 = short, 2 = long). */
32, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_unsigned, /* complain_on_overflow. */
bfin_byte4_reloc, /* special_function. */
"R_BFIN_BYTE4_DATA", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0xFFFFFFFF, /* dst_mask. */
TRUE), /* pcrel_offset. */
HOWTO (R_BFIN_PCREL11, /* type. */
1, /* rightshift. */
1, /* size (0 = byte, 1 = short, 2 = long). */
10, /* bitsize. */
TRUE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_unsigned, /* complain_on_overflow. */
bfin_bfd_reloc, /* special_function. */
"R_BFIN_PCREL11", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0x000003FF, /* dst_mask. */
FALSE), /* pcrel_offset. */
/* A 18-bit signed operand with the GOT offset for the address of
the symbol. */
HOWTO (R_BFIN_GOT17M4, /* type */
2, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_BFIN_GOT17M4", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The upper 16 bits of the GOT offset for the address of the
symbol. */
HOWTO (R_BFIN_GOTHI, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_BFIN_GOTHI", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The lower 16 bits of the GOT offset for the address of the
symbol. */
HOWTO (R_BFIN_GOTLO, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_BFIN_GOTLO", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The 32-bit address of the canonical descriptor of a function. */
HOWTO (R_BFIN_FUNCDESC, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_BFIN_FUNCDESC", /* name */
FALSE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 12-bit signed operand with the GOT offset for the address of
canonical descriptor of a function. */
HOWTO (R_BFIN_FUNCDESC_GOT17M4, /* type */
2, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_BFIN_FUNCDESC_GOT17M4", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The upper 16 bits of the GOT offset for the address of the
canonical descriptor of a function. */
HOWTO (R_BFIN_FUNCDESC_GOTHI, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_BFIN_FUNCDESC_GOTHI", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The lower 16 bits of the GOT offset for the address of the
canonical descriptor of a function. */
HOWTO (R_BFIN_FUNCDESC_GOTLO, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_BFIN_FUNCDESC_GOTLO", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The 32-bit address of the canonical descriptor of a function. */
HOWTO (R_BFIN_FUNCDESC_VALUE, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_BFIN_FUNCDESC_VALUE", /* name */
FALSE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 12-bit signed operand with the GOT offset for the address of
canonical descriptor of a function. */
HOWTO (R_BFIN_FUNCDESC_GOTOFF17M4, /* type */
2, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_BFIN_FUNCDESC_GOTOFF17M4", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The upper 16 bits of the GOT offset for the address of the
canonical descriptor of a function. */
HOWTO (R_BFIN_FUNCDESC_GOTOFFHI, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_BFIN_FUNCDESC_GOTOFFHI", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The lower 16 bits of the GOT offset for the address of the
canonical descriptor of a function. */
HOWTO (R_BFIN_FUNCDESC_GOTOFFLO, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_BFIN_FUNCDESC_GOTOFFLO", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 12-bit signed operand with the GOT offset for the address of
the symbol. */
HOWTO (R_BFIN_GOTOFF17M4, /* type */
2, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_BFIN_GOTOFF17M4", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The upper 16 bits of the GOT offset for the address of the
symbol. */
HOWTO (R_BFIN_GOTOFFHI, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_BFIN_GOTOFFHI", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The lower 16 bits of the GOT offset for the address of the
symbol. */
HOWTO (R_BFIN_GOTOFFLO, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_BFIN_GOTOFFLO", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
};
static reloc_howto_type bfin_gnuext_howto_table [] =
{
HOWTO (R_BFIN_PLTPC, /* type. */
0, /* rightshift. */
1, /* size (0 = byte, 1 = short, 2 = long). */
16, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_bitfield, /* complain_on_overflow. */
bfin_pltpc_reloc, /* special_function. */
"R_BFIN_PLTPC", /* name. */
FALSE, /* partial_inplace. */
0xffff, /* src_mask. */
0xffff, /* dst_mask. */
FALSE), /* pcrel_offset. */
HOWTO (R_BFIN_GOT, /* type. */
0, /* rightshift. */
1, /* size (0 = byte, 1 = short, 2 = long). */
16, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_bitfield, /* complain_on_overflow. */
bfd_elf_generic_reloc, /* special_function. */
"R_BFIN_GOT", /* name. */
FALSE, /* partial_inplace. */
0x7fff, /* src_mask. */
0x7fff, /* dst_mask. */
FALSE), /* pcrel_offset. */
/* GNU extension to record C++ vtable hierarchy. */
HOWTO (R_BFIN_GNU_VTINHERIT, /* type. */
0, /* rightshift. */
2, /* size (0 = byte, 1 = short, 2 = long). */
0, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_dont, /* complain_on_overflow. */
NULL, /* special_function. */
"R_BFIN_GNU_VTINHERIT", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0, /* dst_mask. */
FALSE), /* pcrel_offset. */
/* GNU extension to record C++ vtable member usage. */
HOWTO (R_BFIN_GNU_VTENTRY, /* type. */
0, /* rightshift. */
2, /* size (0 = byte, 1 = short, 2 = long). */
0, /* bitsize. */
FALSE, /* pc_relative. */
0, /* bitpos. */
complain_overflow_dont, /* complain_on_overflow. */
_bfd_elf_rel_vtable_reloc_fn, /* special_function. */
"R_BFIN_GNU_VTENTRY", /* name. */
FALSE, /* partial_inplace. */
0, /* src_mask. */
0, /* dst_mask. */
FALSE) /* pcrel_offset. */
};
struct bfin_reloc_map
{
bfd_reloc_code_real_type bfd_reloc_val;
unsigned int bfin_reloc_val;
};
static const struct bfin_reloc_map bfin_reloc_map [] =
{
{ BFD_RELOC_NONE, R_BFIN_UNUSED0 },
{ BFD_RELOC_BFIN_5_PCREL, R_BFIN_PCREL5M2 },
{ BFD_RELOC_NONE, R_BFIN_UNUSED1 },
{ BFD_RELOC_BFIN_10_PCREL, R_BFIN_PCREL10 },
{ BFD_RELOC_BFIN_12_PCREL_JUMP, R_BFIN_PCREL12_JUMP },
{ BFD_RELOC_BFIN_16_IMM, R_BFIN_RIMM16 },
{ BFD_RELOC_BFIN_16_LOW, R_BFIN_LUIMM16 },
{ BFD_RELOC_BFIN_16_HIGH, R_BFIN_HUIMM16 },
{ BFD_RELOC_BFIN_12_PCREL_JUMP_S, R_BFIN_PCREL12_JUMP_S },
{ BFD_RELOC_24_PCREL, R_BFIN_PCREL24 },
{ BFD_RELOC_24_PCREL, R_BFIN_PCREL24 },
{ BFD_RELOC_BFIN_24_PCREL_JUMP_L, R_BFIN_PCREL24_JUMP_L },
{ BFD_RELOC_NONE, R_BFIN_UNUSEDB },
{ BFD_RELOC_NONE, R_BFIN_UNUSEDC },
{ BFD_RELOC_BFIN_24_PCREL_CALL_X, R_BFIN_PCREL24_CALL_X },
{ BFD_RELOC_8, R_BFIN_BYTE_DATA },
{ BFD_RELOC_16, R_BFIN_BYTE2_DATA },
{ BFD_RELOC_32, R_BFIN_BYTE4_DATA },
{ BFD_RELOC_BFIN_11_PCREL, R_BFIN_PCREL11 },
{ BFD_RELOC_BFIN_GOT, R_BFIN_GOT },
{ BFD_RELOC_BFIN_PLTPC, R_BFIN_PLTPC },
{ BFD_RELOC_BFIN_GOT17M4, R_BFIN_GOT17M4 },
{ BFD_RELOC_BFIN_GOTHI, R_BFIN_GOTHI },
{ BFD_RELOC_BFIN_GOTLO, R_BFIN_GOTLO },
{ BFD_RELOC_BFIN_FUNCDESC, R_BFIN_FUNCDESC },
{ BFD_RELOC_BFIN_FUNCDESC_GOT17M4, R_BFIN_FUNCDESC_GOT17M4 },
{ BFD_RELOC_BFIN_FUNCDESC_GOTHI, R_BFIN_FUNCDESC_GOTHI },
{ BFD_RELOC_BFIN_FUNCDESC_GOTLO, R_BFIN_FUNCDESC_GOTLO },
{ BFD_RELOC_BFIN_FUNCDESC_VALUE, R_BFIN_FUNCDESC_VALUE },
{ BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4, R_BFIN_FUNCDESC_GOTOFF17M4 },
{ BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI, R_BFIN_FUNCDESC_GOTOFFHI },
{ BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO, R_BFIN_FUNCDESC_GOTOFFLO },
{ BFD_RELOC_BFIN_GOTOFF17M4, R_BFIN_GOTOFF17M4 },
{ BFD_RELOC_BFIN_GOTOFFHI, R_BFIN_GOTOFFHI },
{ BFD_RELOC_BFIN_GOTOFFLO, R_BFIN_GOTOFFLO },
{ BFD_RELOC_VTABLE_INHERIT, R_BFIN_GNU_VTINHERIT },
{ BFD_RELOC_VTABLE_ENTRY, R_BFIN_GNU_VTENTRY },
};
static bfd_boolean
bfin_info_to_howto (bfd *abfd,
arelent *cache_ptr,
Elf_Internal_Rela *dst)
{
unsigned int r_type;
r_type = ELF32_R_TYPE (dst->r_info);
if (r_type <= BFIN_RELOC_MAX)
cache_ptr->howto = &bfin_howto_table [r_type];
else if (r_type >= BFIN_GNUEXT_RELOC_MIN && r_type <= BFIN_GNUEXT_RELOC_MAX)
cache_ptr->howto = &bfin_gnuext_howto_table [r_type - BFIN_GNUEXT_RELOC_MIN];
else
{
/* xgettext:c-format */
_bfd_error_handler (_("%pB: unsupported relocation type %#x"),
abfd, r_type);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
return TRUE;
}
/* Given a BFD reloc type, return the howto. */
static reloc_howto_type *
bfin_bfd_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
bfd_reloc_code_real_type code)
{
unsigned int i;
unsigned int r_type = (unsigned int) -1;
for (i = sizeof (bfin_reloc_map) / sizeof (bfin_reloc_map[0]); i--;)
if (bfin_reloc_map[i].bfd_reloc_val == code)
r_type = bfin_reloc_map[i].bfin_reloc_val;
if (r_type <= BFIN_RELOC_MAX)
return &bfin_howto_table [r_type];
else if (r_type >= BFIN_GNUEXT_RELOC_MIN && r_type <= BFIN_GNUEXT_RELOC_MAX)
return &bfin_gnuext_howto_table [r_type - BFIN_GNUEXT_RELOC_MIN];
return (reloc_howto_type *) NULL;
}
static reloc_howto_type *
bfin_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
const char *r_name)
{
unsigned int i;
for (i = 0;
i < (sizeof (bfin_howto_table)
/ sizeof (bfin_howto_table[0]));
i++)
if (bfin_howto_table[i].name != NULL
&& strcasecmp (bfin_howto_table[i].name, r_name) == 0)
return &bfin_howto_table[i];
for (i = 0;
i < (sizeof (bfin_gnuext_howto_table)
/ sizeof (bfin_gnuext_howto_table[0]));
i++)
if (bfin_gnuext_howto_table[i].name != NULL
&& strcasecmp (bfin_gnuext_howto_table[i].name, r_name) == 0)
return &bfin_gnuext_howto_table[i];
return NULL;
}
/* Given a bfin relocation type, return the howto. */
static reloc_howto_type *
bfin_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
unsigned int r_type)
{
if (r_type <= BFIN_RELOC_MAX)
return &bfin_howto_table [r_type];
else if (r_type >= BFIN_GNUEXT_RELOC_MIN && r_type <= BFIN_GNUEXT_RELOC_MAX)
return &bfin_gnuext_howto_table [r_type - BFIN_GNUEXT_RELOC_MIN];
return (reloc_howto_type *) NULL;
}
/* Set by ld emulation if --code-in-l1. */
bfd_boolean elf32_bfin_code_in_l1 = 0;
/* Set by ld emulation if --data-in-l1. */
bfd_boolean elf32_bfin_data_in_l1 = 0;
static bfd_boolean
elf32_bfin_final_write_processing (bfd *abfd)
{
if (elf32_bfin_code_in_l1)
elf_elfheader (abfd)->e_flags |= EF_BFIN_CODE_IN_L1;
if (elf32_bfin_data_in_l1)
elf_elfheader (abfd)->e_flags |= EF_BFIN_DATA_IN_L1;
return _bfd_elf_final_write_processing (abfd);
}
/* Return TRUE if the name is a local label.
bfin local labels begin with L$. */
static bfd_boolean
bfin_is_local_label_name (bfd *abfd, const char *label)
{
if (label[0] == 'L' && label[1] == '$' )
return TRUE;
return _bfd_elf_is_local_label_name (abfd, label);
}
/* Look through the relocs for a section during the first phase, and
allocate space in the global offset table or procedure linkage
table. */
static bfd_boolean
bfin_check_relocs (bfd * abfd,
struct bfd_link_info *info,
asection *sec,
const Elf_Internal_Rela *relocs)
{
bfd *dynobj;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
bfd_signed_vma *local_got_refcounts;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
asection *sgot;
asection *srelgot;
if (bfd_link_relocatable (info))
return TRUE;
dynobj = elf_hash_table (info)->dynobj;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
local_got_refcounts = elf_local_got_refcounts (abfd);
sgot = NULL;
srelgot = NULL;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
unsigned long r_symndx;
struct elf_link_hash_entry *h;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
}
switch (ELF32_R_TYPE (rel->r_info))
{
/* This relocation describes the C++ object vtable hierarchy.
Reconstruct it for later use during GC. */
case R_BFIN_GNU_VTINHERIT:
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
return FALSE;
break;
/* This relocation describes which C++ vtable entries
are actually used. Record for later use during GC. */
case R_BFIN_GNU_VTENTRY:
if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
return FALSE;
break;
case R_BFIN_GOT:
if (h != NULL
&& strcmp (h->root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0)
break;
/* Fall through. */
if (dynobj == NULL)
{
/* Create the .got section. */
elf_hash_table (info)->dynobj = dynobj = abfd;
if (!_bfd_elf_create_got_section (dynobj, info))
return FALSE;
}
sgot = elf_hash_table (info)->sgot;
srelgot = elf_hash_table (info)->srelgot;
BFD_ASSERT (sgot != NULL);
if (h != NULL)
{
if (h->got.refcount == 0)
{
/* Make sure this symbol is output as a dynamic symbol. */
if (h->dynindx == -1 && !h->forced_local)
{
if (!bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
}
/* Allocate space in the .got section. */
sgot->size += 4;
/* Allocate relocation space. */
srelgot->size += sizeof (Elf32_External_Rela);
}
h->got.refcount++;
}
else
{
/* This is a global offset table entry for a local symbol. */
if (local_got_refcounts == NULL)
{
bfd_size_type size;
size = symtab_hdr->sh_info;
size *= sizeof (bfd_signed_vma);
local_got_refcounts = ((bfd_signed_vma *)
bfd_zalloc (abfd, size));
if (local_got_refcounts == NULL)
return FALSE;
elf_local_got_refcounts (abfd) = local_got_refcounts;
}
if (local_got_refcounts[r_symndx] == 0)
{
sgot->size += 4;
if (bfd_link_pic (info))
{
/* If we are generating a shared object, we need to
output a R_68K_RELATIVE reloc so that the dynamic
linker can adjust this GOT entry. */
srelgot->size += sizeof (Elf32_External_Rela);
}
}
local_got_refcounts[r_symndx]++;
}
break;
default:
break;
}
}
return TRUE;
}
static enum elf_reloc_type_class
elf32_bfin_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
const asection *rel_sec ATTRIBUTE_UNUSED,
const Elf_Internal_Rela * rela)
{
switch ((int) ELF32_R_TYPE (rela->r_info))
{
default:
return reloc_class_normal;
}
}
static bfd_reloc_status_type
bfin_final_link_relocate (Elf_Internal_Rela *rel, reloc_howto_type *howto,
bfd *input_bfd, asection *input_section,
bfd_byte *contents, bfd_vma address,
bfd_vma value, bfd_vma addend)
{
int r_type = ELF32_R_TYPE (rel->r_info);
if (r_type == R_BFIN_PCREL24 || r_type == R_BFIN_PCREL24_JUMP_L)
{
bfd_reloc_status_type r = bfd_reloc_ok;
bfd_vma x;
if (address > bfd_get_section_limit (input_bfd, input_section))
return bfd_reloc_outofrange;
value += addend;
/* Perform usual pc-relative correction. */
value -= input_section->output_section->vma + input_section->output_offset;
value -= address;
/* We are getting reloc_entry->address 2 byte off from
the start of instruction. Assuming absolute postion
of the reloc data. But, following code had been written assuming
reloc address is starting at begining of instruction.
To compensate that I have increased the value of
relocation by 1 (effectively 2) and used the addr -2 instead of addr. */
value += 2;
address -= 2;
if ((value & 0xFF000000) != 0
&& (value & 0xFF000000) != 0xFF000000)
r = bfd_reloc_overflow;
value >>= 1;
x = bfd_get_16 (input_bfd, contents + address);
x = (x & 0xff00) | ((value >> 16) & 0xff);
bfd_put_16 (input_bfd, x, contents + address);
x = bfd_get_16 (input_bfd, contents + address + 2);
x = value & 0xFFFF;
bfd_put_16 (input_bfd, x, contents + address + 2);
return r;
}
return _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
rel->r_offset, value, addend);
}
static bfd_boolean
bfin_relocate_section (bfd * output_bfd,
struct bfd_link_info *info,
bfd * input_bfd,
asection * input_section,
bfd_byte * contents,
Elf_Internal_Rela * relocs,
Elf_Internal_Sym * local_syms,
asection ** local_sections)
{
bfd *dynobj;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
bfd_vma *local_got_offsets;
asection *sgot;
Elf_Internal_Rela *rel;
Elf_Internal_Rela *relend;
int i = 0;
dynobj = elf_hash_table (info)->dynobj;
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (input_bfd);
local_got_offsets = elf_local_got_offsets (input_bfd);
sgot = NULL;
rel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; rel++, i++)
{
int r_type;
reloc_howto_type *howto;
unsigned long r_symndx;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
asection *sec;
bfd_vma relocation = 0;
bfd_boolean unresolved_reloc;
bfd_reloc_status_type r;
bfd_vma address;
r_type = ELF32_R_TYPE (rel->r_info);
if (r_type < 0 || r_type >= 243)
{
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
if (r_type == R_BFIN_GNU_VTENTRY
|| r_type == R_BFIN_GNU_VTINHERIT)
continue;
howto = bfin_reloc_type_lookup (input_bfd, r_type);
if (howto == NULL)
{
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
r_symndx = ELF32_R_SYM (rel->r_info);
h = NULL;
sym = NULL;
sec = NULL;
unresolved_reloc = FALSE;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
}
else
{
bfd_boolean warned, ignored;
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
r_symndx, symtab_hdr, sym_hashes,
h, sec, relocation,
unresolved_reloc, warned, ignored);
}
if (sec != NULL && discarded_section (sec))
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
rel, 1, relend, howto, 0, contents);
if (bfd_link_relocatable (info))
continue;
address = rel->r_offset;
/* Then, process normally. */
switch (r_type)
{
case R_BFIN_GNU_VTINHERIT:
case R_BFIN_GNU_VTENTRY:
return bfd_reloc_ok;
case R_BFIN_GOT:
/* Relocation is to the address of the entry for this symbol
in the global offset table. */
if (h != NULL
&& strcmp (h->root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0)
goto do_default;
/* Fall through. */
/* Relocation is the offset of the entry for this symbol in
the global offset table. */
{
bfd_vma off;
if (dynobj == NULL)
{
/* Create the .got section. */
elf_hash_table (info)->dynobj = dynobj = output_bfd;
if (!_bfd_elf_create_got_section (dynobj, info))
return FALSE;
}
sgot = elf_hash_table (info)->sgot;
BFD_ASSERT (sgot != NULL);
if (h != NULL)
{
bfd_boolean dyn;
off = h->got.offset;
BFD_ASSERT (off != (bfd_vma) - 1);
dyn = elf_hash_table (info)->dynamic_sections_created;
if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
bfd_link_pic (info),
h)
|| (bfd_link_pic (info)
&& (info->symbolic
|| h->dynindx == -1
|| h->forced_local)
&& h->def_regular))
{
/* This is actually a static link, or it is a
-Bsymbolic link and the symbol is defined
locally, or the symbol was forced to be local
because of a version file.. We must initialize
this entry in the global offset table. Since
the offset must always be a multiple of 4, we
use the least significant bit to record whether
we have initialized it already.
When doing a dynamic link, we create a .rela.got
relocation entry to initialize the value. This
is done in the finish_dynamic_symbol routine. */
if ((off & 1) != 0)
off &= ~1;
else
{
bfd_put_32 (output_bfd, relocation,
sgot->contents + off);
h->got.offset |= 1;
}
}
else
unresolved_reloc = FALSE;
}
else
{
BFD_ASSERT (local_got_offsets != NULL);
off = local_got_offsets[r_symndx];
BFD_ASSERT (off != (bfd_vma) - 1);
/* The offset must always be a multiple of 4. We use
the least significant bit to record whether we have
already generated the necessary reloc. */
if ((off & 1) != 0)
off &= ~1;
else
{
bfd_put_32 (output_bfd, relocation, sgot->contents + off);
if (bfd_link_pic (info))
{
asection *s;
Elf_Internal_Rela outrel;
bfd_byte *loc;
s = elf_hash_table (info)->srelgot;
BFD_ASSERT (s != NULL);
outrel.r_offset = (sgot->output_section->vma
+ sgot->output_offset + off);
outrel.r_info =
ELF32_R_INFO (0, R_BFIN_PCREL24);
outrel.r_addend = relocation;
loc = s->contents;
loc +=
s->reloc_count++ * sizeof (Elf32_External_Rela);
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
}
local_got_offsets[r_symndx] |= 1;
}
}
relocation = sgot->output_offset + off;
rel->r_addend = 0;
/* bfin : preg = [preg + 17bitdiv4offset] relocation is div by 4. */
relocation /= 4;
}
goto do_default;
default:
do_default:
r = bfin_final_link_relocate (rel, howto, input_bfd, input_section,
contents, address,
relocation, rel->r_addend);
break;
}
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
because such sections are not SEC_ALLOC and thus ld.so will
not process them. */
if (unresolved_reloc
&& !((input_section->flags & SEC_DEBUGGING) != 0 && h->def_dynamic)
&& _bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset) != (bfd_vma) -1)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB(%pA+%#" PRIx64 "): "
"unresolvable relocation against symbol `%s'"),
input_bfd, input_section, (uint64_t) rel->r_offset,
h->root.root.string);
return FALSE;
}
if (r != bfd_reloc_ok)
{
const char *name;
if (h != NULL)
name = h->root.root.string;
else
{
name = bfd_elf_string_from_elf_section (input_bfd,
symtab_hdr->sh_link,
sym->st_name);
if (name == NULL)
return FALSE;
if (*name == '\0')
name = bfd_section_name (sec);
}
if (r == bfd_reloc_overflow)
(*info->callbacks->reloc_overflow)
(info, (h ? &h->root : NULL), name, howto->name,
(bfd_vma) 0, input_bfd, input_section, rel->r_offset);
else
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"),
input_bfd, input_section, (uint64_t) rel->r_offset,
name, (int) r);
return FALSE;
}
}
}
return TRUE;
}
static asection *
bfin_gc_mark_hook (asection * sec,
struct bfd_link_info *info,
Elf_Internal_Rela * rel,
struct elf_link_hash_entry *h,
Elf_Internal_Sym * sym)
{
if (h != NULL)
switch (ELF32_R_TYPE (rel->r_info))
{
case R_BFIN_GNU_VTINHERIT:
case R_BFIN_GNU_VTENTRY:
return NULL;
}
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
}
extern const bfd_target bfin_elf32_fdpic_vec;
#define IS_FDPIC(bfd) ((bfd)->xvec == &bfin_elf32_fdpic_vec)
/* An extension of the elf hash table data structure,
containing some additional Blackfin-specific data. */
struct bfinfdpic_elf_link_hash_table
{
struct elf_link_hash_table elf;
/* A pointer to the .rofixup section. */
asection *sgotfixup;
/* GOT base offset. */
bfd_vma got0;
/* Location of the first non-lazy PLT entry, i.e., the number of
bytes taken by lazy PLT entries. */
bfd_vma plt0;
/* A hash table holding information about which symbols were
referenced with which PIC-related relocations. */
struct htab *relocs_info;
/* Summary reloc information collected by
_bfinfdpic_count_got_plt_entries. */
struct _bfinfdpic_dynamic_got_info *g;
};
/* Get the Blackfin ELF linker hash table from a link_info structure. */
#define bfinfdpic_hash_table(info) \
(elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
== BFIN_ELF_DATA ? ((struct bfinfdpic_elf_link_hash_table *) ((info)->hash)) : NULL)
#define bfinfdpic_got_section(info) \
(bfinfdpic_hash_table (info)->elf.sgot)
#define bfinfdpic_gotrel_section(info) \
(bfinfdpic_hash_table (info)->elf.srelgot)
#define bfinfdpic_gotfixup_section(info) \
(bfinfdpic_hash_table (info)->sgotfixup)
#define bfinfdpic_plt_section(info) \
(bfinfdpic_hash_table (info)->elf.splt)
#define bfinfdpic_pltrel_section(info) \
(bfinfdpic_hash_table (info)->elf.srelplt)
#define bfinfdpic_relocs_info(info) \
(bfinfdpic_hash_table (info)->relocs_info)
#define bfinfdpic_got_initial_offset(info) \
(bfinfdpic_hash_table (info)->got0)
#define bfinfdpic_plt_initial_offset(info) \
(bfinfdpic_hash_table (info)->plt0)
#define bfinfdpic_dynamic_got_plt_info(info) \
(bfinfdpic_hash_table (info)->g)
/* The name of the dynamic interpreter. This is put in the .interp
section. */
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
#define DEFAULT_STACK_SIZE 0x20000
/* This structure is used to collect the number of entries present in
each addressable range of the got. */
struct _bfinfdpic_dynamic_got_info
{
/* Several bits of information about the current link. */
struct bfd_link_info *info;
/* Total size needed for GOT entries within the 18- or 32-bit
ranges. */
bfd_vma got17m4, gothilo;
/* Total size needed for function descriptor entries within the 18-
or 32-bit ranges. */
bfd_vma fd17m4, fdhilo;
/* Total size needed function descriptor entries referenced in PLT
entries, that would be profitable to place in offsets close to
the PIC register. */
bfd_vma fdplt;
/* Total size needed by lazy PLT entries. */
bfd_vma lzplt;
/* Number of relocations carried over from input object files. */
unsigned long relocs;
/* Number of fixups introduced by relocations in input object files. */
unsigned long fixups;
};
/* Create a Blackfin ELF linker hash table. */
static struct bfd_link_hash_table *
bfinfdpic_elf_link_hash_table_create (bfd *abfd)
{
struct bfinfdpic_elf_link_hash_table *ret;
bfd_size_type amt = sizeof (struct bfinfdpic_elf_link_hash_table);
ret = bfd_zmalloc (amt);
if (ret == NULL)
return NULL;
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
_bfd_elf_link_hash_newfunc,
sizeof (struct elf_link_hash_entry),
BFIN_ELF_DATA))
{
free (ret);
return NULL;
}
return &ret->elf.root;
}
/* Decide whether a reference to a symbol can be resolved locally or
not. If the symbol is protected, we want the local address, but
its function descriptor must be assigned by the dynamic linker. */
#define BFINFDPIC_SYM_LOCAL(INFO, H) \
(_bfd_elf_symbol_refs_local_p ((H), (INFO), 1) \
|| ! elf_hash_table (INFO)->dynamic_sections_created)
#define BFINFDPIC_FUNCDESC_LOCAL(INFO, H) \
((H)->dynindx == -1 || ! elf_hash_table (INFO)->dynamic_sections_created)
/* This structure collects information on what kind of GOT, PLT or
function descriptors are required by relocations that reference a
certain symbol. */
struct bfinfdpic_relocs_info
{
/* The index of the symbol, as stored in the relocation r_info, if
we have a local symbol; -1 otherwise. */
long symndx;
union
{
/* The input bfd in which the symbol is defined, if it's a local
symbol. */
bfd *abfd;
/* If symndx == -1, the hash table entry corresponding to a global
symbol (even if it turns out to bind locally, in which case it
should ideally be replaced with section's symndx + addend). */
struct elf_link_hash_entry *h;
} d;
/* The addend of the relocation that references the symbol. */
bfd_vma addend;
/* The fields above are used to identify an entry. The fields below
contain information on how an entry is used and, later on, which
locations it was assigned. */
/* The following 2 fields record whether the symbol+addend above was
ever referenced with a GOT relocation. The 17M4 suffix indicates a
GOT17M4 relocation; hilo is used for GOTLO/GOTHI pairs. */
unsigned got17m4;
unsigned gothilo;
/* Whether a FUNCDESC relocation references symbol+addend. */
unsigned fd;
/* Whether a FUNCDESC_GOT relocation references symbol+addend. */
unsigned fdgot17m4;
unsigned fdgothilo;
/* Whether a FUNCDESC_GOTOFF relocation references symbol+addend. */
unsigned fdgoff17m4;
unsigned fdgoffhilo;
/* Whether symbol+addend is referenced with GOTOFF17M4, GOTOFFLO or
GOTOFFHI relocations. The addend doesn't really matter, since we
envision that this will only be used to check whether the symbol
is mapped to the same segment as the got. */
unsigned gotoff;
/* Whether symbol+addend is referenced by a LABEL24 relocation. */
unsigned call;
/* Whether symbol+addend is referenced by a 32 or FUNCDESC_VALUE
relocation. */
unsigned sym;
/* Whether we need a PLT entry for a symbol. Should be implied by
something like:
(call && symndx == -1 && ! BFINFDPIC_SYM_LOCAL (info, d.h)) */
unsigned plt:1;
/* Whether a function descriptor should be created in this link unit
for symbol+addend. Should be implied by something like:
(plt || fdgotoff17m4 || fdgotofflohi
|| ((fd || fdgot17m4 || fdgothilo)
&& (symndx != -1 || BFINFDPIC_FUNCDESC_LOCAL (info, d.h)))) */
unsigned privfd:1;
/* Whether a lazy PLT entry is needed for this symbol+addend.
Should be implied by something like:
(privfd && symndx == -1 && ! BFINFDPIC_SYM_LOCAL (info, d.h)
&& ! (info->flags & DF_BIND_NOW)) */
unsigned lazyplt:1;
/* Whether we've already emitted GOT relocations and PLT entries as
needed for this symbol. */
unsigned done:1;
/* The number of R_BFIN_BYTE4_DATA, R_BFIN_FUNCDESC and R_BFIN_FUNCDESC_VALUE
relocations referencing the symbol. */
unsigned relocs32, relocsfd, relocsfdv;
/* The number of .rofixups entries and dynamic relocations allocated
for this symbol, minus any that might have already been used. */
unsigned fixups, dynrelocs;
/* The offsets of the GOT entries assigned to symbol+addend, to the
function descriptor's address, and to a function descriptor,
respectively. Should be zero if unassigned. The offsets are
counted from the value that will be assigned to the PIC register,
not from the beginning of the .got section. */
bfd_signed_vma got_entry, fdgot_entry, fd_entry;
/* The offsets of the PLT entries assigned to symbol+addend,
non-lazy and lazy, respectively. If unassigned, should be
(bfd_vma)-1. */
bfd_vma plt_entry, lzplt_entry;
};
/* Compute a hash with the key fields of an bfinfdpic_relocs_info entry. */
static hashval_t
bfinfdpic_relocs_info_hash (const void *entry_)
{
const struct bfinfdpic_relocs_info *entry = entry_;
return (entry->symndx == -1
? (long) entry->d.h->root.root.hash
: entry->symndx + (long) entry->d.abfd->id * 257) + entry->addend;
}
/* Test whether the key fields of two bfinfdpic_relocs_info entries are
identical. */
static int
bfinfdpic_relocs_info_eq (const void *entry1, const void *entry2)
{
const struct bfinfdpic_relocs_info *e1 = entry1;
const struct bfinfdpic_relocs_info *e2 = entry2;
return e1->symndx == e2->symndx && e1->addend == e2->addend
&& (e1->symndx == -1 ? e1->d.h == e2->d.h : e1->d.abfd == e2->d.abfd);
}
/* Find or create an entry in a hash table HT that matches the key
fields of the given ENTRY. If it's not found, memory for a new
entry is allocated in ABFD's obstack. */
static struct bfinfdpic_relocs_info *
bfinfdpic_relocs_info_find (struct htab *ht,
bfd *abfd,
const struct bfinfdpic_relocs_info *entry,
enum insert_option insert)
{
struct bfinfdpic_relocs_info **loc;
if (!ht)
return NULL;
loc = (struct bfinfdpic_relocs_info **) htab_find_slot (ht, entry, insert);
if (! loc)
return NULL;
if (*loc)
return *loc;
*loc = bfd_zalloc (abfd, sizeof (**loc));
if (! *loc)
return *loc;
(*loc)->symndx = entry->symndx;
(*loc)->d = entry->d;
(*loc)->addend = entry->addend;
(*loc)->plt_entry = (bfd_vma)-1;
(*loc)->lzplt_entry = (bfd_vma)-1;
return *loc;
}
/* Obtain the address of the entry in HT associated with H's symbol +
addend, creating a new entry if none existed. ABFD is only used
for memory allocation purposes. */
inline static struct bfinfdpic_relocs_info *
bfinfdpic_relocs_info_for_global (struct htab *ht,
bfd *abfd,
struct elf_link_hash_entry *h,
bfd_vma addend,
enum insert_option insert)
{
struct bfinfdpic_relocs_info entry;
entry.symndx = -1;
entry.d.h = h;
entry.addend = addend;
return bfinfdpic_relocs_info_find (ht, abfd, &entry, insert);
}
/* Obtain the address of the entry in HT associated with the SYMNDXth
local symbol of the input bfd ABFD, plus the addend, creating a new
entry if none existed. */
inline static struct bfinfdpic_relocs_info *
bfinfdpic_relocs_info_for_local (struct htab *ht,
bfd *abfd,
long symndx,
bfd_vma addend,
enum insert_option insert)
{
struct bfinfdpic_relocs_info entry;
entry.symndx = symndx;
entry.d.abfd = abfd;
entry.addend = addend;
return bfinfdpic_relocs_info_find (ht, abfd, &entry, insert);
}
/* Merge fields set by check_relocs() of two entries that end up being
mapped to the same (presumably global) symbol. */
inline static void
bfinfdpic_pic_merge_early_relocs_info (struct bfinfdpic_relocs_info *e2,
struct bfinfdpic_relocs_info const *e1)
{
e2->got17m4 |= e1->got17m4;
e2->gothilo |= e1->gothilo;
e2->fd |= e1->fd;
e2->fdgot17m4 |= e1->fdgot17m4;
e2->fdgothilo |= e1->fdgothilo;
e2->fdgoff17m4 |= e1->fdgoff17m4;
e2->fdgoffhilo |= e1->fdgoffhilo;
e2->gotoff |= e1->gotoff;
e2->call |= e1->call;
e2->sym |= e1->sym;
}
/* Every block of 65535 lazy PLT entries shares a single call to the
resolver, inserted in the 32768th lazy PLT entry (i.e., entry #
32767, counting from 0). All other lazy PLT entries branch to it
in a single instruction. */
#define LZPLT_RESOLVER_EXTRA 10
#define LZPLT_NORMAL_SIZE 6
#define LZPLT_ENTRIES 1362
#define BFINFDPIC_LZPLT_BLOCK_SIZE ((bfd_vma) LZPLT_NORMAL_SIZE * LZPLT_ENTRIES + LZPLT_RESOLVER_EXTRA)
#define BFINFDPIC_LZPLT_RESOLV_LOC (LZPLT_NORMAL_SIZE * LZPLT_ENTRIES / 2)
/* Add a dynamic relocation to the SRELOC section. */
inline static bfd_vma
_bfinfdpic_add_dyn_reloc (bfd *output_bfd, asection *sreloc, bfd_vma offset,
int reloc_type, long dynindx, bfd_vma addend,
struct bfinfdpic_relocs_info *entry)
{
Elf_Internal_Rela outrel;
bfd_vma reloc_offset;
outrel.r_offset = offset;
outrel.r_info = ELF32_R_INFO (dynindx, reloc_type);
outrel.r_addend = addend;
reloc_offset = sreloc->reloc_count * sizeof (Elf32_External_Rel);
BFD_ASSERT (reloc_offset < sreloc->size);
bfd_elf32_swap_reloc_out (output_bfd, &outrel,
sreloc->contents + reloc_offset);
sreloc->reloc_count++;
/* If the entry's index is zero, this relocation was probably to a
linkonce section that got discarded. We reserved a dynamic
relocation, but it was for another entry than the one we got at
the time of emitting the relocation. Unfortunately there's no
simple way for us to catch this situation, since the relocation
is cleared right before calling relocate_section, at which point
we no longer know what the relocation used to point to. */
if (entry->symndx)
{
BFD_ASSERT (entry->dynrelocs > 0);
entry->dynrelocs--;
}
return reloc_offset;
}
/* Add a fixup to the ROFIXUP section. */
static bfd_vma
_bfinfdpic_add_rofixup (bfd *output_bfd, asection *rofixup, bfd_vma offset,
struct bfinfdpic_relocs_info *entry)
{
bfd_vma fixup_offset;
if (rofixup->flags & SEC_EXCLUDE)
return -1;
fixup_offset = rofixup->reloc_count * 4;
if (rofixup->contents)
{
BFD_ASSERT (fixup_offset < rofixup->size);
bfd_put_32 (output_bfd, offset, rofixup->contents + fixup_offset);
}
rofixup->reloc_count++;
if (entry && entry->symndx)
{
/* See discussion about symndx == 0 in _bfinfdpic_add_dyn_reloc
above. */
BFD_ASSERT (entry->fixups > 0);
entry->fixups--;
}
return fixup_offset;
}
/* Find the segment number in which OSEC, and output section, is
located. */
static unsigned
_bfinfdpic_osec_to_segment (bfd *output_bfd, asection *osec)
{
Elf_Internal_Phdr *p = _bfd_elf_find_segment_containing_section (output_bfd, osec);
return (p != NULL) ? p - elf_tdata (output_bfd)->phdr : -1;
}
inline static bfd_boolean
_bfinfdpic_osec_readonly_p (bfd *output_bfd, asection *osec)
{
unsigned seg = _bfinfdpic_osec_to_segment (output_bfd, osec);
return ! (elf_tdata (output_bfd)->phdr[seg].p_flags & PF_W);
}
/* Generate relocations for GOT entries, function descriptors, and
code for PLT and lazy PLT entries. */
inline static bfd_boolean
_bfinfdpic_emit_got_relocs_plt_entries (struct bfinfdpic_relocs_info *entry,
bfd *output_bfd,
struct bfd_link_info *info,
asection *sec,
Elf_Internal_Sym *sym,
bfd_vma addend)
{
bfd_vma fd_lazy_rel_offset = (bfd_vma) -1;
int dynindx = -1;
if (entry->done)
return TRUE;
entry->done = 1;
if (entry->got_entry || entry->fdgot_entry || entry->fd_entry)
{
/* If the symbol is dynamic, consider it for dynamic
relocations, otherwise decay to section + offset. */
if (entry->symndx == -1 && entry->d.h->dynindx != -1)
dynindx = entry->d.h->dynindx;
else
{
if (sec
&& sec->output_section
&& ! bfd_is_abs_section (sec->output_section)
&& ! bfd_is_und_section (sec->output_section))
dynindx = elf_section_data (sec->output_section)->dynindx;
else
dynindx = 0;
}
}
/* Generate relocation for GOT entry pointing to the symbol. */
if (entry->got_entry)
{
int idx = dynindx;
bfd_vma ad = addend;
/* If the symbol is dynamic but binds locally, use
section+offset. */
if (sec && (entry->symndx != -1
|| BFINFDPIC_SYM_LOCAL (info, entry->d.h)))
{
if (entry->symndx == -1)
ad += entry->d.h->root.u.def.value;
else
ad += sym->st_value;
ad += sec->output_offset;
if (sec->output_section && elf_section_data (sec->output_section))
idx = elf_section_data (sec->output_section)->dynindx;
else
idx = 0;
}
/* If we're linking an executable at a fixed address, we can
omit the dynamic relocation as long as the symbol is local to
this module. */
if (bfd_link_pde (info)
&& (entry->symndx != -1
|| BFINFDPIC_SYM_LOCAL (info, entry->d.h)))
{
if (sec)
ad += sec->output_section->vma;
if (entry->symndx != -1
|| entry->d.h->root.type != bfd_link_hash_undefweak)
_bfinfdpic_add_rofixup (output_bfd,
bfinfdpic_gotfixup_section (info),
bfinfdpic_got_section (info)->output_section
->vma
+ bfinfdpic_got_section (info)->output_offset
+ bfinfdpic_got_initial_offset (info)
+ entry->got_entry, entry);
}
else
_bfinfdpic_add_dyn_reloc (output_bfd, bfinfdpic_gotrel_section (info),
_bfd_elf_section_offset
(output_bfd, info,
bfinfdpic_got_section (info),
bfinfdpic_got_initial_offset (info)
+ entry->got_entry)
+ bfinfdpic_got_section (info)
->output_section->vma
+ bfinfdpic_got_section (info)->output_offset,
R_BFIN_BYTE4_DATA, idx, ad, entry);
bfd_put_32 (output_bfd, ad,
bfinfdpic_got_section (info)->contents
+ bfinfdpic_got_initial_offset (info)
+ entry->got_entry);
}
/* Generate relocation for GOT entry pointing to a canonical
function descriptor. */
if (entry->fdgot_entry)
{
int reloc, idx;
bfd_vma ad = 0;
if (! (entry->symndx == -1
&& entry->d.h->root.type == bfd_link_hash_undefweak
&& BFINFDPIC_SYM_LOCAL (info, entry->d.h)))
{
/* If the symbol is dynamic and there may be dynamic symbol
resolution because we are, or are linked with, a shared
library, emit a FUNCDESC relocation such that the dynamic
linker will allocate the function descriptor. If the
symbol needs a non-local function descriptor but binds
locally (e.g., its visibility is protected, emit a
dynamic relocation decayed to section+offset. */
if (entry->symndx == -1
&& ! BFINFDPIC_FUNCDESC_LOCAL (info, entry->d.h)
&& BFINFDPIC_SYM_LOCAL (info, entry->d.h)
&& !bfd_link_pde (info))
{
reloc = R_BFIN_FUNCDESC;
idx = elf_section_data (entry->d.h->root.u.def.section
->output_section)->dynindx;
ad = entry->d.h->root.u.def.section->output_offset
+ entry->d.h->root.u.def.value;
}
else if (entry->symndx == -1
&& ! BFINFDPIC_FUNCDESC_LOCAL (info, entry->d.h))
{
reloc = R_BFIN_FUNCDESC;
idx = dynindx;
ad = addend;
if (ad)
return FALSE;
}
else
{
/* Otherwise, we know we have a private function descriptor,
so reference it directly. */
if (elf_hash_table (info)->dynamic_sections_created)
BFD_ASSERT (entry->privfd);
reloc = R_BFIN_BYTE4_DATA;
idx = elf_section_data (bfinfdpic_got_section (info)
->output_section)->dynindx;
ad = bfinfdpic_got_section (info)->output_offset
+ bfinfdpic_got_initial_offset (info) + entry->fd_entry;
}
/* If there is room for dynamic symbol resolution, emit the
dynamic relocation. However, if we're linking an
executable at a fixed location, we won't have emitted a
dynamic symbol entry for the got section, so idx will be
zero, which means we can and should compute the address
of the private descriptor ourselves. */
if (bfd_link_pde (info)
&& (entry->symndx != -1
|| BFINFDPIC_FUNCDESC_LOCAL (info, entry->d.h)))
{
ad += bfinfdpic_got_section (info)->output_section->vma;
_bfinfdpic_add_rofixup (output_bfd,
bfinfdpic_gotfixup_section (info),
bfinfdpic_got_section (info)
->output_section->vma
+ bfinfdpic_got_section (info)
->output_offset
+ bfinfdpic_got_initial_offset (info)
+ entry->fdgot_entry, entry);
}
else
_bfinfdpic_add_dyn_reloc (output_bfd,
bfinfdpic_gotrel_section (info),
_bfd_elf_section_offset
(output_bfd, info,
bfinfdpic_got_section (info),
bfinfdpic_got_initial_offset (info)
+ entry->fdgot_entry)
+ bfinfdpic_got_section (info)
->output_section->vma
+ bfinfdpic_got_section (info)
->output_offset,
reloc, idx, ad, entry);
}
bfd_put_32 (output_bfd, ad,
bfinfdpic_got_section (info)->contents
+ bfinfdpic_got_initial_offset (info)
+ entry->fdgot_entry);
}
/* Generate relocation to fill in a private function descriptor in
the GOT. */
if (entry->fd_entry)
{
int idx = dynindx;
bfd_vma ad = addend;
bfd_vma ofst;
long lowword, highword;
/* If the symbol is dynamic but binds locally, use
section+offset. */
if (sec && (entry->symndx != -1
|| BFINFDPIC_SYM_LOCAL (info, entry->d.h)))
{
if (entry->symndx == -1)
ad += entry->d.h->root.u.def.value;
else
ad += sym->st_value;
ad += sec->output_offset;
if (sec->output_section && elf_section_data (sec->output_section))
idx = elf_section_data (sec->output_section)->dynindx;
else
idx = 0;
}
/* If we're linking an executable at a fixed address, we can
omit the dynamic relocation as long as the symbol is local to
this module. */
if (bfd_link_pde (info)
&& (entry->symndx != -1 || BFINFDPIC_SYM_LOCAL (info, entry->d.h)))
{
if (sec)
ad += sec->output_section->vma;
ofst = 0;
if (entry->symndx != -1
|| entry->d.h->root.type != bfd_link_hash_undefweak)
{
_bfinfdpic_add_rofixup (output_bfd,
bfinfdpic_gotfixup_section (info),
bfinfdpic_got_section (info)
->output_section->vma
+ bfinfdpic_got_section (info)
->output_offset
+ bfinfdpic_got_initial_offset (info)
+ entry->fd_entry, entry);
_bfinfdpic_add_rofixup (output_bfd,
bfinfdpic_gotfixup_section (info),
bfinfdpic_got_section (info)
->output_section->vma
+ bfinfdpic_got_section (info)
->output_offset
+ bfinfdpic_got_initial_offset (info)
+ entry->fd_entry + 4, entry);
}
}
else
{
ofst
= _bfinfdpic_add_dyn_reloc (output_bfd,
entry->lazyplt
? bfinfdpic_pltrel_section (info)
: bfinfdpic_gotrel_section (info),
_bfd_elf_section_offset
(output_bfd, info,
bfinfdpic_got_section (info),
bfinfdpic_got_initial_offset (info)
+ entry->fd_entry)
+ bfinfdpic_got_section (info)
->output_section->vma
+ bfinfdpic_got_section (info)
->output_offset,
R_BFIN_FUNCDESC_VALUE, idx, ad, entry);
}
/* If we've omitted the dynamic relocation, just emit the fixed
addresses of the symbol and of the local GOT base offset. */
if (bfd_link_pde (info)
&& sec
&& sec->output_section)
{
lowword = ad;
highword = bfinfdpic_got_section (info)->output_section->vma
+ bfinfdpic_got_section (info)->output_offset
+ bfinfdpic_got_initial_offset (info);
}
else if (entry->lazyplt)
{
if (ad)
return FALSE;
fd_lazy_rel_offset = ofst;
/* A function descriptor used for lazy or local resolving is
initialized such that its high word contains the output
section index in which the PLT entries are located, and
the low word contains the address of the lazy PLT entry
entry point, that must be within the memory region
assigned to that section. */
lowword = entry->lzplt_entry + 4
+ bfinfdpic_plt_section (info)->output_offset
+ bfinfdpic_plt_section (info)->output_section->vma;
highword = _bfinfdpic_osec_to_segment
(output_bfd, bfinfdpic_plt_section (info)->output_section);
}
else
{
/* A function descriptor for a local function gets the index
of the section. For a non-local function, it's
disregarded. */
lowword = ad;
if (sec == NULL
|| (entry->symndx == -1 && entry->d.h->dynindx != -1
&& entry->d.h->dynindx == idx))
highword = 0;
else
highword = _bfinfdpic_osec_to_segment
(output_bfd, sec->output_section);
}
bfd_put_32 (output_bfd, lowword,
bfinfdpic_got_section (info)->contents
+ bfinfdpic_got_initial_offset (info)
+ entry->fd_entry);
bfd_put_32 (output_bfd, highword,
bfinfdpic_got_section (info)->contents
+ bfinfdpic_got_initial_offset (info)
+ entry->fd_entry + 4);
}
/* Generate code for the PLT entry. */
if (entry->plt_entry != (bfd_vma) -1)
{
bfd_byte *plt_code = bfinfdpic_plt_section (info)->contents
+ entry->plt_entry;
BFD_ASSERT (entry->fd_entry);
/* Figure out what kind of PLT entry we need, depending on the
location of the function descriptor within the GOT. */
if (entry->fd_entry >= -(1 << (18 - 1))
&& entry->fd_entry + 4 < (1 << (18 - 1)))
{
/* P1 = [P3 + fd_entry]; P3 = [P3 + fd_entry + 4] */
bfd_put_32 (output_bfd,
0xe519 | ((entry->fd_entry << 14) & 0xFFFF0000),
plt_code);
bfd_put_32 (output_bfd,
0xe51b | (((entry->fd_entry + 4) << 14) & 0xFFFF0000),
plt_code + 4);
plt_code += 8;
}
else
{
/* P1.L = fd_entry; P1.H = fd_entry;
P3 = P3 + P1;
P1 = [P3];
P3 = [P3 + 4]; */
bfd_put_32 (output_bfd,
0xe109 | (entry->fd_entry << 16),
plt_code);
bfd_put_32 (output_bfd,
0xe149 | (entry->fd_entry & 0xFFFF0000),
plt_code + 4);
bfd_put_16 (output_bfd, 0x5ad9, plt_code + 8);
bfd_put_16 (output_bfd, 0x9159, plt_code + 10);
bfd_put_16 (output_bfd, 0xac5b, plt_code + 12);
plt_code += 14;
}
/* JUMP (P1) */
bfd_put_16 (output_bfd, 0x0051, plt_code);
}
/* Generate code for the lazy PLT entry. */
if (entry->lzplt_entry != (bfd_vma) -1)
{
bfd_byte *lzplt_code = bfinfdpic_plt_section (info)->contents
+ entry->lzplt_entry;
bfd_vma resolverStub_addr;
bfd_put_32 (output_bfd, fd_lazy_rel_offset, lzplt_code);
lzplt_code += 4;
resolverStub_addr = entry->lzplt_entry / BFINFDPIC_LZPLT_BLOCK_SIZE
* BFINFDPIC_LZPLT_BLOCK_SIZE + BFINFDPIC_LZPLT_RESOLV_LOC;
if (resolverStub_addr >= bfinfdpic_plt_initial_offset (info))
resolverStub_addr = bfinfdpic_plt_initial_offset (info) - LZPLT_NORMAL_SIZE - LZPLT_RESOLVER_EXTRA;
if (entry->lzplt_entry == resolverStub_addr)
{
/* This is a lazy PLT entry that includes a resolver call.
P2 = [P3];
R3 = [P3 + 4];
JUMP (P2); */
bfd_put_32 (output_bfd,
0xa05b915a,
lzplt_code);
bfd_put_16 (output_bfd, 0x0052, lzplt_code + 4);
}
else
{
/* JUMP.S resolverStub */
bfd_put_16 (output_bfd,
0x2000
| (((resolverStub_addr - entry->lzplt_entry)
/ 2) & (((bfd_vma)1 << 12) - 1)),
lzplt_code);
}
}
return TRUE;
}
/* Relocate an Blackfin ELF section.
The RELOCATE_SECTION function is called by the new ELF backend linker
to handle the relocations for a section.
The relocs are always passed as Rela structures; if the section
actually uses Rel structures, the r_addend field will always be
zero.
This function is responsible for adjusting the section contents as
necessary, and (if using Rela relocs and generating a relocatable
output file) adjusting the reloc addend as necessary.
This function does not have to worry about setting the reloc
address or the reloc symbol index.
LOCAL_SYMS is a pointer to the swapped in local symbols.
LOCAL_SECTIONS is an array giving the section in the input file
corresponding to the st_shndx field of each local symbol.
The global hash table entry for the global symbols can be found
via elf_sym_hashes (input_bfd).
When generating relocatable output, this function must handle
STB_LOCAL/STT_SECTION symbols specially. The output symbol is
going to be the section symbol corresponding to the output
section, which means that the addend must be adjusted
accordingly. */
static bfd_boolean
bfinfdpic_relocate_section (bfd * output_bfd,
struct bfd_link_info *info,
bfd * input_bfd,
asection * input_section,
bfd_byte * contents,
Elf_Internal_Rela * relocs,
Elf_Internal_Sym * local_syms,
asection ** local_sections)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
Elf_Internal_Rela *rel;
Elf_Internal_Rela *relend;
unsigned isec_segment, got_segment, plt_segment,
check_segment[2];
int silence_segment_error = !bfd_link_pic (info);
symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (input_bfd);
relend = relocs + input_section->reloc_count;
isec_segment = _bfinfdpic_osec_to_segment (output_bfd,
input_section->output_section);
if (IS_FDPIC (output_bfd) && bfinfdpic_got_section (info))
got_segment = _bfinfdpic_osec_to_segment (output_bfd,
bfinfdpic_got_section (info)
->output_section);
else
got_segment = -1;
if (IS_FDPIC (output_bfd) && elf_hash_table (info)->dynamic_sections_created)
plt_segment = _bfinfdpic_osec_to_segment (output_bfd,
bfinfdpic_plt_section (info)
->output_section);
else
plt_segment = -1;
for (rel = relocs; rel < relend; rel ++)
{
reloc_howto_type *howto;
unsigned long r_symndx;
Elf_Internal_Sym *sym;
asection *sec;
struct elf_link_hash_entry *h;
bfd_vma relocation;
bfd_reloc_status_type r;
const char * name = NULL;
int r_type;
asection *osec;
struct bfinfdpic_relocs_info *picrel;
bfd_vma orig_addend = rel->r_addend;
r_type = ELF32_R_TYPE (rel->r_info);
if (r_type == R_BFIN_GNU_VTINHERIT
|| r_type == R_BFIN_GNU_VTENTRY)
continue;
r_symndx = ELF32_R_SYM (rel->r_info);
howto = bfin_reloc_type_lookup (input_bfd, r_type);
if (howto == NULL)
{
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
h = NULL;
sym = NULL;
sec = NULL;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
osec = sec = local_sections [r_symndx];
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
name = bfd_elf_string_from_elf_section
(input_bfd, symtab_hdr->sh_link, sym->st_name);
name = name == NULL ? bfd_section_name (sec) : name;
}
else
{
bfd_boolean warned, ignored;
bfd_boolean unresolved_reloc;
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
r_symndx, symtab_hdr, sym_hashes,
h, sec, relocation,
unresolved_reloc, warned, ignored);
osec = sec;
}
if (sec != NULL && discarded_section (sec))
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
rel, 1, relend, howto, 0, contents);
if (bfd_link_relocatable (info))
continue;
if (h != NULL
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& !BFINFDPIC_SYM_LOCAL (info, h))
{
osec = sec = NULL;
relocation = 0;
}
switch (r_type)
{
case R_BFIN_PCREL24:
case R_BFIN_PCREL24_JUMP_L:
case R_BFIN_BYTE4_DATA:
if (! IS_FDPIC (output_bfd))
goto non_fdpic;
/* Fall through. */
case R_BFIN_GOT17M4:
case R_BFIN_GOTHI:
case R_BFIN_GOTLO:
case R_BFIN_FUNCDESC_GOT17M4:
case R_BFIN_FUNCDESC_GOTHI:
case R_BFIN_FUNCDESC_GOTLO:
case R_BFIN_GOTOFF17M4:
case R_BFIN_GOTOFFHI:
case R_BFIN_GOTOFFLO:
case R_BFIN_FUNCDESC_GOTOFF17M4:
case R_BFIN_FUNCDESC_GOTOFFHI:
case R_BFIN_FUNCDESC_GOTOFFLO:
case R_BFIN_FUNCDESC:
case R_BFIN_FUNCDESC_VALUE:
if (h != NULL)
picrel = bfinfdpic_relocs_info_for_global (bfinfdpic_relocs_info
(info), input_bfd, h,
orig_addend, INSERT);
else
/* In order to find the entry we created before, we must
use the original addend, not the one that may have been
modified by _bfd_elf_rela_local_sym(). */
picrel = bfinfdpic_relocs_info_for_local (bfinfdpic_relocs_info
(info), input_bfd, r_symndx,
orig_addend, INSERT);
if (! picrel)
return FALSE;
if (!_bfinfdpic_emit_got_relocs_plt_entries (picrel, output_bfd, info,
osec, sym,
rel->r_addend))
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: relocation at `%pA+%#" PRIx64 "' "
"references symbol `%s' with nonzero addend"),
input_bfd, input_section, (uint64_t) rel->r_offset, name);
return FALSE;
}
break;
default:
non_fdpic:
picrel = NULL;
if (h && ! BFINFDPIC_SYM_LOCAL (info, h)
&& _bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset) != (bfd_vma) -1)
{
info->callbacks->warning
(info, _("relocation references symbol not defined in the module"),
name, input_bfd, input_section, rel->r_offset);
return FALSE;
}
break;
}
switch (r_type)
{
case R_BFIN_PCREL24:
case R_BFIN_PCREL24_JUMP_L:
check_segment[0] = isec_segment;
if (! IS_FDPIC (output_bfd))
check_segment[1] = isec_segment;
else if (picrel->plt)
{
relocation = bfinfdpic_plt_section (info)->output_section->vma
+ bfinfdpic_plt_section (info)->output_offset
+ picrel->plt_entry;
check_segment[1] = plt_segment;
}
/* We don't want to warn on calls to undefined weak symbols,
as calls to them must be protected by non-NULL tests
anyway, and unprotected calls would invoke undefined
behavior. */
else if (picrel->symndx == -1
&& picrel->d.h->root.type == bfd_link_hash_undefweak)
check_segment[1] = check_segment[0];
else
check_segment[1] = sec
? _bfinfdpic_osec_to_segment (output_bfd, sec->output_section)
: (unsigned)-1;
break;
case R_BFIN_GOT17M4:
case R_BFIN_GOTHI:
case R_BFIN_GOTLO:
relocation = picrel->got_entry;
check_segment[0] = check_segment[1] = got_segment;
break;
case R_BFIN_FUNCDESC_GOT17M4:
case R_BFIN_FUNCDESC_GOTHI:
case R_BFIN_FUNCDESC_GOTLO:
relocation = picrel->fdgot_entry;
check_segment[0] = check_segment[1] = got_segment;
break;
case R_BFIN_GOTOFFHI:
case R_BFIN_GOTOFF17M4:
case R_BFIN_GOTOFFLO:
relocation -= bfinfdpic_got_section (info)->output_section->vma
+ bfinfdpic_got_section (info)->output_offset
+ bfinfdpic_got_initial_offset (info);
check_segment[0] = got_segment;
check_segment[1] = sec
? _bfinfdpic_osec_to_segment (output_bfd, sec->output_section)
: (unsigned)-1;
break;
case R_BFIN_FUNCDESC_GOTOFF17M4:
case R_BFIN_FUNCDESC_GOTOFFHI:
case R_BFIN_FUNCDESC_GOTOFFLO:
relocation = picrel->fd_entry;
check_segment[0] = check_segment[1] = got_segment;
break;
case R_BFIN_FUNCDESC:
{
int dynindx;
bfd_vma addend = rel->r_addend;
if (! (h && h->root.type == bfd_link_hash_undefweak
&& BFINFDPIC_SYM_LOCAL (info, h)))
{
/* If the symbol is dynamic and there may be dynamic
symbol resolution because we are or are linked with a
shared library, emit a FUNCDESC relocation such that
the dynamic linker will allocate the function
descriptor. If the symbol needs a non-local function
descriptor but binds locally (e.g., its visibility is
protected, emit a dynamic relocation decayed to
section+offset. */
if (h && ! BFINFDPIC_FUNCDESC_LOCAL (info, h)
&& BFINFDPIC_SYM_LOCAL (info, h)
&& !bfd_link_pde (info))
{
dynindx = elf_section_data (h->root.u.def.section
->output_section)->dynindx;
addend += h->root.u.def.section->output_offset
+ h->root.u.def.value;
}
else if (h && ! BFINFDPIC_FUNCDESC_LOCAL (info, h))
{
if (addend)
{
info->callbacks->warning
(info, _("R_BFIN_FUNCDESC references dynamic symbol with nonzero addend"),
name, input_bfd, input_section, rel->r_offset);
return FALSE;
}
dynindx = h->dynindx;
}
else
{
/* Otherwise, we know we have a private function
descriptor, so reference it directly. */
BFD_ASSERT (picrel->privfd);
r_type = R_BFIN_BYTE4_DATA;
dynindx = elf_section_data (bfinfdpic_got_section (info)
->output_section)->dynindx;
addend = bfinfdpic_got_section (info)->output_offset
+ bfinfdpic_got_initial_offset (info)
+ picrel->fd_entry;
}
/* If there is room for dynamic symbol resolution, emit
the dynamic relocation. However, if we're linking an
executable at a fixed location, we won't have emitted a
dynamic symbol entry for the got section, so idx will
be zero, which means we can and should compute the
address of the private descriptor ourselves. */
if (bfd_link_pde (info)
&& (!h || BFINFDPIC_FUNCDESC_LOCAL (info, h)))
{
bfd_vma offset;
addend += bfinfdpic_got_section (info)->output_section->vma;
if ((bfd_section_flags (input_section->output_section)
& (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
{
if (_bfinfdpic_osec_readonly_p (output_bfd,
input_section
->output_section))
{
info->callbacks->warning
(info,
_("cannot emit fixups in read-only section"),
name, input_bfd, input_section, rel->r_offset);
return FALSE;
}
offset = _bfd_elf_section_offset
(output_bfd, info,
input_section, rel->r_offset);
if (offset != (bfd_vma)-1)
_bfinfdpic_add_rofixup (output_bfd,
bfinfdpic_gotfixup_section
(info),
offset + input_section
->output_section->vma
+ input_section->output_offset,
picrel);
}
}
else if ((bfd_section_flags (input_section->output_section)
& (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
{
bfd_vma offset;
if (_bfinfdpic_osec_readonly_p (output_bfd,
input_section
->output_section))
{
info->callbacks->warning
(info,
_("cannot emit dynamic relocations in read-only section"),
name, input_bfd, input_section, rel->r_offset);
return FALSE;
}
offset = _bfd_elf_section_offset (output_bfd, info,
input_section, rel->r_offset);
if (offset != (bfd_vma)-1)
_bfinfdpic_add_dyn_reloc (output_bfd,
bfinfdpic_gotrel_section (info),
offset + input_section
->output_section->vma
+ input_section->output_offset,
r_type,
dynindx, addend, picrel);
}
else
addend += bfinfdpic_got_section (info)->output_section->vma;
}
/* We want the addend in-place because dynamic
relocations are REL. Setting relocation to it should
arrange for it to be installed. */
relocation = addend - rel->r_addend;
}
check_segment[0] = check_segment[1] = got_segment;
break;
case R_BFIN_BYTE4_DATA:
if (! IS_FDPIC (output_bfd))
{
check_segment[0] = check_segment[1] = -1;
break;
}
/* Fall through. */
case R_BFIN_FUNCDESC_VALUE:
{
int dynindx;
bfd_vma addend = rel->r_addend;
bfd_vma offset;
offset = _bfd_elf_section_offset (output_bfd, info,
input_section, rel->r_offset);
/* If the symbol is dynamic but binds locally, use
section+offset. */
if (h && ! BFINFDPIC_SYM_LOCAL (info, h))
{
if (addend && r_type == R_BFIN_FUNCDESC_VALUE)
{
info->callbacks->warning
(info, _("R_BFIN_FUNCDESC_VALUE references dynamic symbol with nonzero addend"),
name, input_bfd, input_section, rel->r_offset);
return FALSE;
}
dynindx = h->dynindx;
}
else
{
if (h)
addend += h->root.u.def.value;
else
addend += sym->st_value;
if (osec)
addend += osec->output_offset;
if (osec && osec->output_section
&& ! bfd_is_abs_section (osec->output_section)
&& ! bfd_is_und_section (osec->output_section))
dynindx = elf_section_data (osec->output_section)->dynindx;
else
dynindx = 0;
}
/* If we're linking an executable at a fixed address, we
can omit the dynamic relocation as long as the symbol
is defined in the current link unit (which is implied
by its output section not being NULL). */
if (bfd_link_pde (info)
&& (!h || BFINFDPIC_SYM_LOCAL (info, h)))
{
if (osec)
addend += osec->output_section->vma;
if (IS_FDPIC (input_bfd)
&& (bfd_section_flags (input_section->output_section)
& (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
{
if (_bfinfdpic_osec_readonly_p (output_bfd,
input_section
->output_section))
{
info->callbacks->warning
(info,
_("cannot emit fixups in read-only section"),
name, input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (!h || h->root.type != bfd_link_hash_undefweak)
{
if (offset != (bfd_vma)-1)
{
_bfinfdpic_add_rofixup (output_bfd,
bfinfdpic_gotfixup_section
(info),
offset + input_section
->output_section->vma
+ input_section->output_offset,
picrel);
if (r_type == R_BFIN_FUNCDESC_VALUE)
_bfinfdpic_add_rofixup
(output_bfd,
bfinfdpic_gotfixup_section (info),
offset + input_section->output_section->vma
+ input_section->output_offset + 4, picrel);
}
}
}
}
else
{
if ((bfd_section_flags (input_section->output_section)
& (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
{
if (_bfinfdpic_osec_readonly_p (output_bfd,
input_section
->output_section))
{
info->callbacks->warning
(info,
_("cannot emit dynamic relocations in read-only section"),
name, input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (offset != (bfd_vma)-1)
_bfinfdpic_add_dyn_reloc (output_bfd,
bfinfdpic_gotrel_section (info),
offset
+ input_section->output_section->vma
+ input_section->output_offset,
r_type, dynindx, addend, picrel);
}
else if (osec)
addend += osec->output_section->vma;
/* We want the addend in-place because dynamic
relocations are REL. Setting relocation to it
should arrange for it to be installed. */
relocation = addend - rel->r_addend;
}
if (r_type == R_BFIN_FUNCDESC_VALUE)
{
/* If we've omitted the dynamic relocation, just emit
the fixed addresses of the symbol and of the local
GOT base offset. */
if (bfd_link_pde (info)
&& (!h || BFINFDPIC_SYM_LOCAL (info, h)))
bfd_put_32 (output_bfd,
bfinfdpic_got_section (info)->output_section->vma
+ bfinfdpic_got_section (info)->output_offset
+ bfinfdpic_got_initial_offset (info),
contents + rel->r_offset + 4);
else
/* A function descriptor used for lazy or local
resolving is initialized such that its high word
contains the output section index in which the
PLT entries are located, and the low word
contains the offset of the lazy PLT entry entry
point into that section. */
bfd_put_32 (output_bfd,
h && ! BFINFDPIC_SYM_LOCAL (info, h)
? 0
: _bfinfdpic_osec_to_segment (output_bfd,
sec
->output_section),
contents + rel->r_offset + 4);
}
}
check_segment[0] = check_segment[1] = got_segment;
break;
default:
check_segment[0] = isec_segment;
check_segment[1] = sec
? _bfinfdpic_osec_to_segment (output_bfd, sec->output_section)
: (unsigned)-1;
break;
}
if (check_segment[0] != check_segment[1] && IS_FDPIC (output_bfd))
{
#if 1 /* If you take this out, remove the #error from fdpic-static-6.d
in the ld testsuite. */
/* This helps catch problems in GCC while we can't do more
than static linking. The idea is to test whether the
input file basename is crt0.o only once. */
if (silence_segment_error == 1)
silence_segment_error =
(strlen (input_bfd->filename) == 6
&& filename_cmp (input_bfd->filename, "crt0.o") == 0)
|| (strlen (input_bfd->filename) > 6
&& filename_cmp (input_bfd->filename
+ strlen (input_bfd->filename) - 7,
"/crt0.o") == 0)
? -1 : 0;
#endif
if (!silence_segment_error
/* We don't want duplicate errors for undefined
symbols. */
&& !(picrel && picrel->symndx == -1
&& picrel->d.h->root.type == bfd_link_hash_undefined))
info->callbacks->warning
(info,
bfd_link_pic (info)
? _("relocations between different segments are not supported")
: _("warning: relocation references a different segment"),
name, input_bfd, input_section, rel->r_offset);
if (!silence_segment_error && bfd_link_pic (info))
return FALSE;
elf_elfheader (output_bfd)->e_flags |= EF_BFIN_PIC;
}
switch (r_type)
{
case R_BFIN_GOTOFFHI:
/* We need the addend to be applied before we shift the
value right. */
relocation += rel->r_addend;
/* Fall through. */
case R_BFIN_GOTHI:
case R_BFIN_FUNCDESC_GOTHI:
case R_BFIN_FUNCDESC_GOTOFFHI:
relocation >>= 16;
/* Fall through. */
case R_BFIN_GOTLO:
case R_BFIN_FUNCDESC_GOTLO:
case R_BFIN_GOTOFFLO:
case R_BFIN_FUNCDESC_GOTOFFLO:
relocation &= 0xffff;
break;
default:
break;
}
switch (r_type)
{
case R_BFIN_PCREL24:
case R_BFIN_PCREL24_JUMP_L:
if (! IS_FDPIC (output_bfd) || ! picrel->plt)
break;
/* Fall through. */
/* When referencing a GOT entry, a function descriptor or a
PLT, we don't want the addend to apply to the reference,
but rather to the referenced symbol. The actual entry
will have already been created taking the addend into
account, so cancel it out here. */
case R_BFIN_GOT17M4:
case R_BFIN_GOTHI:
case R_BFIN_GOTLO:
case R_BFIN_FUNCDESC_GOT17M4:
case R_BFIN_FUNCDESC_GOTHI:
case R_BFIN_FUNCDESC_GOTLO:
case R_BFIN_FUNCDESC_GOTOFF17M4:
case R_BFIN_FUNCDESC_GOTOFFHI:
case R_BFIN_FUNCDESC_GOTOFFLO:
/* Note that we only want GOTOFFHI, not GOTOFFLO or GOTOFF17M4
here, since we do want to apply the addend to the others.
Note that we've applied the addend to GOTOFFHI before we
shifted it right. */
case R_BFIN_GOTOFFHI:
relocation -= rel->r_addend;
break;
default:
break;
}
r = bfin_final_link_relocate (rel, howto, input_bfd, input_section,
contents, rel->r_offset,
relocation, rel->r_addend);
if (r != bfd_reloc_ok)
{
const char * msg = (const char *) NULL;
switch (r)
{
case bfd_reloc_overflow:
(*info->callbacks->reloc_overflow)
(info, (h ? &h->root : NULL), name, howto->name,
(bfd_vma) 0, input_bfd, input_section, rel->r_offset);
break;
case bfd_reloc_undefined:
(*info->callbacks->undefined_symbol)
(info, name, input_bfd, input_section, rel->r_offset, TRUE);
break;
case bfd_reloc_outofrange:
msg = _("internal error: out of range error");
break;
case bfd_reloc_notsupported:
msg = _("internal error: unsupported relocation error");
break;
case bfd_reloc_dangerous:
msg = _("internal error: dangerous relocation");
break;
default:
msg = _("internal error: unknown error");
break;
}
if (msg)
(*info->callbacks->warning) (info, msg, name, input_bfd,
input_section, rel->r_offset);
}
}
return TRUE;
}
/* We need dynamic symbols for every section, since segments can
relocate independently. */
static bfd_boolean
_bfinfdpic_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info ATTRIBUTE_UNUSED,
asection *p)
{
switch (elf_section_data (p)->this_hdr.sh_type)
{
case SHT_PROGBITS:
case SHT_NOBITS:
/* If sh_type is yet undecided, assume it could be
SHT_PROGBITS/SHT_NOBITS. */
case SHT_NULL:
return FALSE;
/* There shouldn't be section relative relocations
against any other section. */
default:
return TRUE;
}
}
/* Create a .got section, as well as its additional info field. This
is almost entirely copied from
elflink.c:_bfd_elf_create_got_section(). */
static bfd_boolean
_bfin_create_got_section (bfd *abfd, struct bfd_link_info *info)
{
flagword flags, pltflags;
asection *s;
struct elf_link_hash_entry *h;
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
int ptralign;
/* This function may be called more than once. */
s = elf_hash_table (info)->sgot;
if (s != NULL)
return TRUE;
/* Machine specific: although pointers are 32-bits wide, we want the
GOT to be aligned to a 64-bit boundary, such that function
descriptors in it can be accessed with 64-bit loads and
stores. */
ptralign = 3;
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
| SEC_LINKER_CREATED);
pltflags = flags;
s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
elf_hash_table (info)->sgot = s;
if (s == NULL
|| !bfd_set_section_alignment (s, ptralign))
return FALSE;
if (bed->want_got_sym)
{
/* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
(or .got.plt) section. We don't do this in the linker script
because we don't want to define the symbol if we are not creating
a global offset table. */
h = _bfd_elf_define_linkage_sym (abfd, info, s, "__GLOBAL_OFFSET_TABLE_");
elf_hash_table (info)->hgot = h;
if (h == NULL)
return FALSE;
/* Machine-specific: we want the symbol for executables as
well. */
if (! bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
}
/* The first bit of the global offset table is the header. */
s->size += bed->got_header_size;
/* This is the machine-specific part. Create and initialize section
data for the got. */
if (IS_FDPIC (abfd))
{
bfinfdpic_relocs_info (info) = htab_try_create (1,
bfinfdpic_relocs_info_hash,
bfinfdpic_relocs_info_eq,
(htab_del) NULL);
if (! bfinfdpic_relocs_info (info))
return FALSE;
s = bfd_make_section_anyway_with_flags (abfd, ".rel.got",
(flags | SEC_READONLY));
if (s == NULL
|| !bfd_set_section_alignment (s, 2))
return FALSE;
bfinfdpic_gotrel_section (info) = s;
/* Machine-specific. */
s = bfd_make_section_anyway_with_flags (abfd, ".rofixup",
(flags | SEC_READONLY));
if (s == NULL
|| !bfd_set_section_alignment (s, 2))
return FALSE;
bfinfdpic_gotfixup_section (info) = s;
}
pltflags |= SEC_CODE;
if (bed->plt_not_loaded)
pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
if (bed->plt_readonly)
pltflags |= SEC_READONLY;
s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
if (s == NULL
|| !bfd_set_section_alignment (s, bed->plt_alignment))
return FALSE;
/* Blackfin-specific: remember it. */
bfinfdpic_plt_section (info) = s;
if (bed->want_plt_sym)
{
/* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
.plt section. */
struct bfd_link_hash_entry *bh = NULL;
if (! (_bfd_generic_link_add_one_symbol
(info, abfd, "__PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
FALSE, get_elf_backend_data (abfd)->collect, &bh)))
return FALSE;
h = (struct elf_link_hash_entry *) bh;
h->def_regular = 1;
h->type = STT_OBJECT;
if (! bfd_link_executable (info)
&& ! bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
}
/* Blackfin-specific: we want rel relocations for the plt. */
s = bfd_make_section_anyway_with_flags (abfd, ".rel.plt",
flags | SEC_READONLY);
if (s == NULL
|| !bfd_set_section_alignment (s, bed->s->log_file_align))
return FALSE;
/* Blackfin-specific: remember it. */
bfinfdpic_pltrel_section (info) = s;
return TRUE;
}
/* Make sure the got and plt sections exist, and that our pointers in
the link hash table point to them. */
static bfd_boolean
elf32_bfinfdpic_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
{
/* This is mostly copied from
elflink.c:_bfd_elf_create_dynamic_sections(). */
flagword flags;
asection *s;
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
| SEC_LINKER_CREATED);
/* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
.rel[a].bss sections. */
/* Blackfin-specific: we want to create the GOT in the Blackfin way. */
if (! _bfin_create_got_section (abfd, info))
return FALSE;
/* Blackfin-specific: make sure we created everything we wanted. */
BFD_ASSERT (bfinfdpic_got_section (info) && bfinfdpic_gotrel_section (info)
/* && bfinfdpic_gotfixup_section (info) */
&& bfinfdpic_plt_section (info)
&& bfinfdpic_pltrel_section (info));
if (bed->want_dynbss)
{
/* The .dynbss section is a place to put symbols which are defined
by dynamic objects, are referenced by regular objects, and are
not functions. We must allocate space for them in the process
image and use a R_*_COPY reloc to tell the dynamic linker to
initialize them at run time. The linker script puts the .dynbss
section into the .bss section of the final image. */
s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
SEC_ALLOC | SEC_LINKER_CREATED);
if (s == NULL)
return FALSE;
/* The .rel[a].bss section holds copy relocs. This section is not
normally needed. We need to create it here, though, so that the
linker will map it to an output section. We can't just create it
only if we need it, because we will not know whether we need it
until we have seen all the input files, and the first time the
main linker code calls BFD after examining all the input files
(size_dynamic_sections) the input sections have already been
mapped to the output sections. If the section turns out not to
be needed, we can discard it later. We will never need this
section when generating a shared object, since they do not use
copy relocs. */
if (! bfd_link_pic (info))
{
s = bfd_make_section_anyway_with_flags (abfd,
".rela.bss",
flags | SEC_READONLY);
if (s == NULL
|| !bfd_set_section_alignment (s, bed->s->log_file_align))
return FALSE;
}
}
return TRUE;
}
/* Compute the total GOT size required by each symbol in each range.
Symbols may require up to 4 words in the GOT: an entry pointing to
the symbol, an entry pointing to its function descriptor, and a
private function descriptors taking two words. */
static void
_bfinfdpic_count_nontls_entries (struct bfinfdpic_relocs_info *entry,
struct _bfinfdpic_dynamic_got_info *dinfo)
{
/* Allocate space for a GOT entry pointing to the symbol. */
if (entry->got17m4)
dinfo->got17m4 += 4;
else if (entry->gothilo)
dinfo->gothilo += 4;
else
entry->relocs32--;
entry->relocs32++;
/* Allocate space for a GOT entry pointing to the function
descriptor. */
if (entry->fdgot17m4)
dinfo->got17m4 += 4;
else if (entry->fdgothilo)
dinfo->gothilo += 4;
else
entry->relocsfd--;
entry->relocsfd++;
/* Decide whether we need a PLT entry, a function descriptor in the
GOT, and a lazy PLT entry for this symbol. */
entry->plt = entry->call
&& entry->symndx == -1 && ! BFINFDPIC_SYM_LOCAL (dinfo->info, entry->d.h)
&& elf_hash_table (dinfo->info)->dynamic_sections_created;
entry->privfd = entry->plt
|| entry->fdgoff17m4 || entry->fdgoffhilo
|| ((entry->fd || entry->fdgot17m4 || entry->fdgothilo)
&& (entry->symndx != -1
|| BFINFDPIC_FUNCDESC_LOCAL (dinfo->info, entry->d.h)));
entry->lazyplt = entry->privfd
&& entry->symndx == -1 && ! BFINFDPIC_SYM_LOCAL (dinfo->info, entry->d.h)
&& ! (dinfo->info->flags & DF_BIND_NOW)
&& elf_hash_table (dinfo->info)->dynamic_sections_created;
/* Allocate space for a function descriptor. */
if (entry->fdgoff17m4)
dinfo->fd17m4 += 8;
else if (entry->privfd && entry->plt)
dinfo->fdplt += 8;
else if (entry->privfd)
dinfo->fdhilo += 8;
else
entry->relocsfdv--;
entry->relocsfdv++;
if (entry->lazyplt)
dinfo->lzplt += LZPLT_NORMAL_SIZE;
}
/* Compute the number of dynamic relocations and fixups that a symbol
requires, and add (or subtract) from the grand and per-symbol
totals. */
static void
_bfinfdpic_count_relocs_fixups (struct bfinfdpic_relocs_info *entry,
struct _bfinfdpic_dynamic_got_info *dinfo,
bfd_boolean subtract)
{
bfd_vma relocs = 0, fixups = 0;
if (!bfd_link_pde (dinfo->info))
relocs = entry->relocs32 + entry->relocsfd + entry->relocsfdv;
else
{
if (entry->symndx != -1 || BFINFDPIC_SYM_LOCAL (dinfo->info, entry->d.h))
{
if (entry->symndx != -1
|| entry->d.h->root.type != bfd_link_hash_undefweak)
fixups += entry->relocs32 + 2 * entry->relocsfdv;
}
else
relocs += entry->relocs32 + entry->relocsfdv;
if (entry->symndx != -1
|| BFINFDPIC_FUNCDESC_LOCAL (dinfo->info, entry->d.h))
{
if (entry->symndx != -1
|| entry->d.h->root.type != bfd_link_hash_undefweak)
fixups += entry->relocsfd;
}
else
relocs += entry->relocsfd;
}
if (subtract)
{
relocs = - relocs;
fixups = - fixups;
}
entry->dynrelocs += relocs;
entry->fixups += fixups;
dinfo->relocs += relocs;
dinfo->fixups += fixups;
}
/* Compute the total GOT and PLT size required by each symbol in each range. *
Symbols may require up to 4 words in the GOT: an entry pointing to
the symbol, an entry pointing to its function descriptor, and a
private function descriptors taking two words. */
static int
_bfinfdpic_count_got_plt_entries (void **entryp, void *dinfo_)
{
struct bfinfdpic_relocs_info *entry = *entryp;
struct _bfinfdpic_dynamic_got_info *dinfo = dinfo_;
_bfinfdpic_count_nontls_entries (entry, dinfo);
_bfinfdpic_count_relocs_fixups (entry, dinfo, FALSE);
return 1;
}
/* This structure is used to assign offsets to got entries, function
descriptors, plt entries and lazy plt entries. */
struct _bfinfdpic_dynamic_got_plt_info
{
/* Summary information collected with _bfinfdpic_count_got_plt_entries. */
struct _bfinfdpic_dynamic_got_info g;
/* For each addressable range, we record a MAX (positive) and MIN
(negative) value. CUR is used to assign got entries, and it's
incremented from an initial positive value to MAX, then from MIN
to FDCUR (unless FDCUR wraps around first). FDCUR is used to
assign function descriptors, and it's decreased from an initial
non-positive value to MIN, then from MAX down to CUR (unless CUR
wraps around first). All of MIN, MAX, CUR and FDCUR always point
to even words. ODD, if non-zero, indicates an odd word to be
used for the next got entry, otherwise CUR is used and
incremented by a pair of words, wrapping around when it reaches
MAX. FDCUR is decremented (and wrapped) before the next function
descriptor is chosen. FDPLT indicates the number of remaining
slots that can be used for function descriptors used only by PLT
entries. */
struct _bfinfdpic_dynamic_got_alloc_data
{
bfd_signed_vma max, cur, odd, fdcur, min;
bfd_vma fdplt;
} got17m4, gothilo;
};
/* Determine the positive and negative ranges to be used by each
offset range in the GOT. FDCUR and CUR, that must be aligned to a
double-word boundary, are the minimum (negative) and maximum
(positive) GOT offsets already used by previous ranges, except for
an ODD entry that may have been left behind. GOT and FD indicate
the size of GOT entries and function descriptors that must be
placed within the range from -WRAP to WRAP. If there's room left,
up to FDPLT bytes should be reserved for additional function
descriptors. */
inline static bfd_signed_vma
_bfinfdpic_compute_got_alloc_data (struct _bfinfdpic_dynamic_got_alloc_data *gad,
bfd_signed_vma fdcur,
bfd_signed_vma odd,
bfd_signed_vma cur,
bfd_vma got,
bfd_vma fd,
bfd_vma fdplt,
bfd_vma wrap)
{
bfd_signed_vma wrapmin = -wrap;
/* Start at the given initial points. */
gad->fdcur = fdcur;
gad->cur = cur;
/* If we had an incoming odd word and we have any got entries that
are going to use it, consume it, otherwise leave gad->odd at
zero. We might force gad->odd to zero and return the incoming
odd such that it is used by the next range, but then GOT entries
might appear to be out of order and we wouldn't be able to
shorten the GOT by one word if it turns out to end with an
unpaired GOT entry. */
if (odd && got)
{
gad->odd = odd;
got -= 4;
odd = 0;
}
else
gad->odd = 0;
/* If we're left with an unpaired GOT entry, compute its location
such that we can return it. Otherwise, if got doesn't require an
odd number of words here, either odd was already zero in the
block above, or it was set to zero because got was non-zero, or
got was already zero. In the latter case, we want the value of
odd to carry over to the return statement, so we don't want to
reset odd unless the condition below is true. */
if (got & 4)
{
odd = cur + got;
got += 4;
}
/* Compute the tentative boundaries of this range. */
gad->max = cur + got;
gad->min = fdcur - fd;
gad->fdplt = 0;
/* If function descriptors took too much space, wrap some of them
around. */
if (gad->min < wrapmin)
{
gad->max += wrapmin - gad->min;
gad->min = wrapmin;
}
/* If there is space left and we have function descriptors
referenced in PLT entries that could take advantage of shorter
offsets, place them here. */
else if (fdplt && gad->min > wrapmin)
{
bfd_vma fds;
if ((bfd_vma) (gad->min - wrapmin) < fdplt)
fds = gad->min - wrapmin;
else
fds = fdplt;
fdplt -= fds;
gad->min -= fds;
gad->fdplt += fds;
}
/* If GOT entries took too much space, wrap some of them around.
This may well cause gad->min to become lower than wrapmin. This
will cause a relocation overflow later on, so we don't have to
report it here . */
if ((bfd_vma) gad->max > wrap)
{
gad->min -= gad->max - wrap;
gad->max = wrap;
}
/* If there is more space left, try to place some more function
descriptors for PLT entries. */
else if (fdplt && (bfd_vma) gad->max < wrap)
{
bfd_vma fds;
if ((bfd_vma) (wrap - gad->max) < fdplt)
fds = wrap - gad->max;
else
fds = fdplt;
fdplt -= fds;
gad->max += fds;
gad->fdplt += fds;
}
/* If odd was initially computed as an offset past the wrap point,
wrap it around. */
if (odd > gad->max)
odd = gad->min + odd - gad->max;
/* _bfinfdpic_get_got_entry() below will always wrap gad->cur if needed
before returning, so do it here too. This guarantees that,
should cur and fdcur meet at the wrap point, they'll both be
equal to min. */
if (gad->cur == gad->max)
gad->cur = gad->min;
return odd;
}
/* Compute the location of the next GOT entry, given the allocation
data for a range. */
inline static bfd_signed_vma
_bfinfdpic_get_got_entry (struct _bfinfdpic_dynamic_got_alloc_data *gad)
{
bfd_signed_vma ret;
if (gad->odd)
{
/* If there was an odd word left behind, use it. */
ret = gad->odd;
gad->odd = 0;
}
else
{
/* Otherwise, use the word pointed to by cur, reserve the next
as an odd word, and skip to the next pair of words, possibly
wrapping around. */
ret = gad->cur;
gad->odd = gad->cur + 4;
gad->cur += 8;
if (gad->cur == gad->max)
gad->cur = gad->min;
}
return ret;
}
/* Compute the location of the next function descriptor entry in the
GOT, given the allocation data for a range. */
inline static bfd_signed_vma
_bfinfdpic_get_fd_entry (struct _bfinfdpic_dynamic_got_alloc_data *gad)
{
/* If we're at the bottom, wrap around, and only then allocate the
next pair of words. */
if (gad->fdcur == gad->min)
gad->fdcur = gad->max;
return gad->fdcur -= 8;
}
/* Assign GOT offsets for every GOT entry and function descriptor.
Doing everything in a single pass is tricky. */
static int
_bfinfdpic_assign_got_entries (void **entryp, void *info_)
{
struct bfinfdpic_relocs_info *entry = *entryp;
struct _bfinfdpic_dynamic_got_plt_info *dinfo = info_;
if (entry->got17m4)
entry->got_entry = _bfinfdpic_get_got_entry (&dinfo->got17m4);
else if (entry->gothilo)
entry->got_entry = _bfinfdpic_get_got_entry (&dinfo->gothilo);
if (entry->fdgot17m4)
entry->fdgot_entry = _bfinfdpic_get_got_entry (&dinfo->got17m4);
else if (entry->fdgothilo)
entry->fdgot_entry = _bfinfdpic_get_got_entry (&dinfo->gothilo);
if (entry->fdgoff17m4)
entry->fd_entry = _bfinfdpic_get_fd_entry (&dinfo->got17m4);
else if (entry->plt && dinfo->got17m4.fdplt)
{
dinfo->got17m4.fdplt -= 8;
entry->fd_entry = _bfinfdpic_get_fd_entry (&dinfo->got17m4);
}
else if (entry->plt)
{
dinfo->gothilo.fdplt -= 8;
entry->fd_entry = _bfinfdpic_get_fd_entry (&dinfo->gothilo);
}
else if (entry->privfd)
entry->fd_entry = _bfinfdpic_get_fd_entry (&dinfo->gothilo);
return 1;
}
/* Assign GOT offsets to private function descriptors used by PLT
entries (or referenced by 32-bit offsets), as well as PLT entries
and lazy PLT entries. */
static int
_bfinfdpic_assign_plt_entries (void **entryp, void *info_)
{
struct bfinfdpic_relocs_info *entry = *entryp;
struct _bfinfdpic_dynamic_got_plt_info *dinfo = info_;
/* If this symbol requires a local function descriptor, allocate
one. */
if (entry->privfd && entry->fd_entry == 0)
{
if (dinfo->got17m4.fdplt)
{
entry->fd_entry = _bfinfdpic_get_fd_entry (&dinfo->got17m4);
dinfo->got17m4.fdplt -= 8;
}
else
{
BFD_ASSERT (dinfo->gothilo.fdplt);
entry->fd_entry = _bfinfdpic_get_fd_entry (&dinfo->gothilo);
dinfo->gothilo.fdplt -= 8;
}
}
if (entry->plt)
{
int size;
/* We use the section's raw size to mark the location of the
next PLT entry. */
entry->plt_entry = bfinfdpic_plt_section (dinfo->g.info)->size;
/* Figure out the length of this PLT entry based on the
addressing mode we need to reach the function descriptor. */
BFD_ASSERT (entry->fd_entry);
if (entry->fd_entry >= -(1 << (18 - 1))
&& entry->fd_entry + 4 < (1 << (18 - 1)))
size = 10;
else
size = 16;
bfinfdpic_plt_section (dinfo->g.info)->size += size;
}
if (entry->lazyplt)
{
entry->lzplt_entry = dinfo->g.lzplt;
dinfo->g.lzplt += LZPLT_NORMAL_SIZE;
/* If this entry is the one that gets the resolver stub, account
for the additional instruction. */
if (entry->lzplt_entry % BFINFDPIC_LZPLT_BLOCK_SIZE
== BFINFDPIC_LZPLT_RESOLV_LOC)
dinfo->g.lzplt += LZPLT_RESOLVER_EXTRA;
}
return 1;
}
/* Cancel out any effects of calling _bfinfdpic_assign_got_entries and
_bfinfdpic_assign_plt_entries. */
static int
_bfinfdpic_reset_got_plt_entries (void **entryp, void *ignore ATTRIBUTE_UNUSED)
{
struct bfinfdpic_relocs_info *entry = *entryp;
entry->got_entry = 0;
entry->fdgot_entry = 0;
entry->fd_entry = 0;
entry->plt_entry = (bfd_vma)-1;
entry->lzplt_entry = (bfd_vma)-1;
return 1;
}
/* Follow indirect and warning hash entries so that each got entry
points to the final symbol definition. P must point to a pointer
to the hash table we're traversing. Since this traversal may
modify the hash table, we set this pointer to NULL to indicate
we've made a potentially-destructive change to the hash table, so
the traversal must be restarted. */
static int
_bfinfdpic_resolve_final_relocs_info (void **entryp, void *p)
{
struct bfinfdpic_relocs_info *entry = *entryp;
htab_t *htab = p;
if (entry->symndx == -1)
{
struct elf_link_hash_entry *h = entry->d.h;
struct bfinfdpic_relocs_info *oentry;
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *)h->root.u.i.link;
if (entry->d.h == h)
return 1;
oentry = bfinfdpic_relocs_info_for_global (*htab, 0, h, entry->addend,
NO_INSERT);
if (oentry)
{
/* Merge the two entries. */
bfinfdpic_pic_merge_early_relocs_info (oentry, entry);
htab_clear_slot (*htab, entryp);
return 1;
}
entry->d.h = h;
/* If we can't find this entry with the new bfd hash, re-insert
it, and get the traversal restarted. */
if (! htab_find (*htab, entry))
{
htab_clear_slot (*htab, entryp);
entryp = htab_find_slot (*htab, entry, INSERT);
if (! *entryp)
*entryp = entry;
/* Abort the traversal, since the whole table may have
moved, and leave it up to the parent to restart the
process. */
*(htab_t *)p = NULL;
return 0;
}
}
return 1;
}
/* Compute the total size of the GOT, the PLT, the dynamic relocations
section and the rofixup section. Assign locations for GOT and PLT
entries. */
static bfd_boolean
_bfinfdpic_size_got_plt (bfd *output_bfd,
struct _bfinfdpic_dynamic_got_plt_info *gpinfop)
{
bfd_signed_vma odd;
bfd_vma limit;
struct bfd_link_info *info = gpinfop->g.info;
bfd *dynobj = elf_hash_table (info)->dynobj;
memcpy (bfinfdpic_dynamic_got_plt_info (info), &gpinfop->g,
sizeof (gpinfop->g));
odd = 12;
/* Compute the total size taken by entries in the 18-bit range,
to tell how many PLT function descriptors we can bring into it
without causing it to overflow. */
limit = odd + gpinfop->g.got17m4 + gpinfop->g.fd17m4;
if (limit < (bfd_vma)1 << 18)
limit = ((bfd_vma)1 << 18) - limit;
else
limit = 0;
if (gpinfop->g.fdplt < limit)
limit = gpinfop->g.fdplt;
/* Determine the ranges of GOT offsets that we can use for each
range of addressing modes. */
odd = _bfinfdpic_compute_got_alloc_data (&gpinfop->got17m4,
0,
odd,
16,
gpinfop->g.got17m4,
gpinfop->g.fd17m4,
limit,
(bfd_vma)1 << (18-1));
odd = _bfinfdpic_compute_got_alloc_data (&gpinfop->gothilo,
gpinfop->got17m4.min,
odd,
gpinfop->got17m4.max,
gpinfop->g.gothilo,
gpinfop->g.fdhilo,
gpinfop->g.fdplt - gpinfop->got17m4.fdplt,
(bfd_vma)1 << (32-1));
/* Now assign (most) GOT offsets. */
htab_traverse (bfinfdpic_relocs_info (info), _bfinfdpic_assign_got_entries,
gpinfop);
bfinfdpic_got_section (info)->size = gpinfop->gothilo.max
- gpinfop->gothilo.min
/* If an odd word is the last word of the GOT, we don't need this
word to be part of the GOT. */
- (odd + 4 == gpinfop->gothilo.max ? 4 : 0);
if (bfinfdpic_got_section (info)->size == 0)
bfinfdpic_got_section (info)->flags |= SEC_EXCLUDE;
else if (bfinfdpic_got_section (info)->size == 12
&& ! elf_hash_table (info)->dynamic_sections_created)
{
bfinfdpic_got_section (info)->flags |= SEC_EXCLUDE;
bfinfdpic_got_section (info)->size = 0;
}
else
{
bfinfdpic_got_section (info)->contents =
(bfd_byte *) bfd_zalloc (dynobj,
bfinfdpic_got_section (info)->size);
if (bfinfdpic_got_section (info)->contents == NULL)
return FALSE;
}
if (elf_hash_table (info)->dynamic_sections_created)
/* Subtract the number of lzplt entries, since those will generate
relocations in the pltrel section. */
bfinfdpic_gotrel_section (info)->size =
(gpinfop->g.relocs - gpinfop->g.lzplt / LZPLT_NORMAL_SIZE)
* get_elf_backend_data (output_bfd)->s->sizeof_rel;
else
BFD_ASSERT (gpinfop->g.relocs == 0);
if (bfinfdpic_gotrel_section (info)->size == 0)
bfinfdpic_gotrel_section (info)->flags |= SEC_EXCLUDE;
else
{
bfinfdpic_gotrel_section (info)->contents =
(bfd_byte *) bfd_zalloc (dynobj,
bfinfdpic_gotrel_section (info)->size);
if (bfinfdpic_gotrel_section (info)->contents == NULL)
return FALSE;
}
bfinfdpic_gotfixup_section (info)->size = (gpinfop->g.fixups + 1) * 4;
if (bfinfdpic_gotfixup_section (info)->size == 0)
bfinfdpic_gotfixup_section (info)->flags |= SEC_EXCLUDE;
else
{
bfinfdpic_gotfixup_section (info)->contents =
(bfd_byte *) bfd_zalloc (dynobj,
bfinfdpic_gotfixup_section (info)->size);
if (bfinfdpic_gotfixup_section (info)->contents == NULL)
return FALSE;
}
if (elf_hash_table (info)->dynamic_sections_created)
bfinfdpic_pltrel_section (info)->size =
gpinfop->g.lzplt / LZPLT_NORMAL_SIZE * get_elf_backend_data (output_bfd)->s->sizeof_rel;
if (bfinfdpic_pltrel_section (info)->size == 0)
bfinfdpic_pltrel_section (info)->flags |= SEC_EXCLUDE;
else
{
bfinfdpic_pltrel_section (info)->contents =
(bfd_byte *) bfd_zalloc (dynobj,
bfinfdpic_pltrel_section (info)->size);
if (bfinfdpic_pltrel_section (info)->contents == NULL)
return FALSE;
}
/* Add 4 bytes for every block of at most 65535 lazy PLT entries,
such that there's room for the additional instruction needed to
call the resolver. Since _bfinfdpic_assign_got_entries didn't
account for them, our block size is 4 bytes smaller than the real
block size. */
if (elf_hash_table (info)->dynamic_sections_created)
{
bfinfdpic_plt_section (info)->size = gpinfop->g.lzplt
+ ((gpinfop->g.lzplt + (BFINFDPIC_LZPLT_BLOCK_SIZE - 4) - LZPLT_NORMAL_SIZE)
/ (BFINFDPIC_LZPLT_BLOCK_SIZE - 4) * LZPLT_RESOLVER_EXTRA);
}
/* Reset it, such that _bfinfdpic_assign_plt_entries() can use it to
actually assign lazy PLT entries addresses. */
gpinfop->g.lzplt = 0;
/* Save information that we're going to need to generate GOT and PLT
entries. */
bfinfdpic_got_initial_offset (info) = -gpinfop->gothilo.min;
if (get_elf_backend_data (output_bfd)->want_got_sym)
elf_hash_table (info)->hgot->root.u.def.value
= bfinfdpic_got_initial_offset (info);
if (elf_hash_table (info)->dynamic_sections_created)
bfinfdpic_plt_initial_offset (info) =
bfinfdpic_plt_section (info)->size;
htab_traverse (bfinfdpic_relocs_info (info), _bfinfdpic_assign_plt_entries,
gpinfop);
/* Allocate the PLT section contents only after
_bfinfdpic_assign_plt_entries has a chance to add the size of the
non-lazy PLT entries. */
if (bfinfdpic_plt_section (info)->size == 0)
bfinfdpic_plt_section (info)->flags |= SEC_EXCLUDE;
else
{
bfinfdpic_plt_section (info)->contents =
(bfd_byte *) bfd_zalloc (dynobj,
bfinfdpic_plt_section (info)->size);
if (bfinfdpic_plt_section (info)->contents == NULL)
return FALSE;
}
return TRUE;
}
/* Set the sizes of the dynamic sections. */
static bfd_boolean
elf32_bfinfdpic_size_dynamic_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
struct elf_link_hash_table *htab;
bfd *dynobj;
asection *s;
struct _bfinfdpic_dynamic_got_plt_info gpinfo;
htab = elf_hash_table (info);
dynobj = htab->dynobj;
BFD_ASSERT (dynobj != NULL);
if (htab->dynamic_sections_created)
{
/* Set the contents of the .interp section to the interpreter. */
if (bfd_link_executable (info) && !info->nointerp)
{
s = bfd_get_linker_section (dynobj, ".interp");
BFD_ASSERT (s != NULL);
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
s->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
}
}
memset (&gpinfo, 0, sizeof (gpinfo));
gpinfo.g.info = info;
for (;;)
{
htab_t relocs = bfinfdpic_relocs_info (info);
htab_traverse (relocs, _bfinfdpic_resolve_final_relocs_info, &relocs);
if (relocs == bfinfdpic_relocs_info (info))
break;
}
htab_traverse (bfinfdpic_relocs_info (info), _bfinfdpic_count_got_plt_entries,
&gpinfo.g);
/* Allocate space to save the summary information, we're going to
use it if we're doing relaxations. */
bfinfdpic_dynamic_got_plt_info (info) = bfd_alloc (dynobj, sizeof (gpinfo.g));
if (!_bfinfdpic_size_got_plt (output_bfd, &gpinfo))
return FALSE;
if (elf_hash_table (info)->dynamic_sections_created)
{
if (bfinfdpic_got_section (info)->size)
if (!_bfd_elf_add_dynamic_entry (info, DT_PLTGOT, 0))
return FALSE;
if (bfinfdpic_pltrel_section (info)->size)
if (!_bfd_elf_add_dynamic_entry (info, DT_PLTRELSZ, 0)
|| !_bfd_elf_add_dynamic_entry (info, DT_PLTREL, DT_REL)
|| !_bfd_elf_add_dynamic_entry (info, DT_JMPREL, 0))
return FALSE;
if (bfinfdpic_gotrel_section (info)->size)
if (!_bfd_elf_add_dynamic_entry (info, DT_REL, 0)
|| !_bfd_elf_add_dynamic_entry (info, DT_RELSZ, 0)
|| !_bfd_elf_add_dynamic_entry (info, DT_RELENT,
sizeof (Elf32_External_Rel)))
return FALSE;
}
s = bfd_get_linker_section (dynobj, ".dynbss");
if (s && s->size == 0)
s->flags |= SEC_EXCLUDE;
s = bfd_get_linker_section (dynobj, ".rela.bss");
if (s && s->size == 0)
s->flags |= SEC_EXCLUDE;
return TRUE;
}
static bfd_boolean
elf32_bfinfdpic_always_size_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
if (!bfd_link_relocatable (info)
&& !bfd_elf_stack_segment_size (output_bfd, info,
"__stacksize", DEFAULT_STACK_SIZE))
return FALSE;
return TRUE;
}
/* Check whether any of the relocations was optimized away, and
subtract it from the relocation or fixup count. */
static bfd_boolean
_bfinfdpic_check_discarded_relocs (bfd *abfd, asection *sec,
struct bfd_link_info *info,
bfd_boolean *changed)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
Elf_Internal_Rela *rel, *erel;
if ((sec->flags & SEC_RELOC) == 0
|| sec->reloc_count == 0)
return TRUE;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf32_External_Sym);
if (!elf_bad_symtab (abfd))
sym_hashes_end -= symtab_hdr->sh_info;
rel = elf_section_data (sec)->relocs;
/* Now examine each relocation. */
for (erel = rel + sec->reloc_count; rel < erel; rel++)
{
struct elf_link_hash_entry *h;
unsigned long r_symndx;
struct bfinfdpic_relocs_info *picrel;
struct _bfinfdpic_dynamic_got_info *dinfo;
if (ELF32_R_TYPE (rel->r_info) != R_BFIN_BYTE4_DATA
&& ELF32_R_TYPE (rel->r_info) != R_BFIN_FUNCDESC)
continue;
if (_bfd_elf_section_offset (sec->output_section->owner,
info, sec, rel->r_offset)
!= (bfd_vma)-1)
continue;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *)h->root.u.i.link;
}
if (h != NULL)
picrel = bfinfdpic_relocs_info_for_global (bfinfdpic_relocs_info (info),
abfd, h,
rel->r_addend, NO_INSERT);
else
picrel = bfinfdpic_relocs_info_for_local (bfinfdpic_relocs_info (info),
abfd, r_symndx,
rel->r_addend, NO_INSERT);
if (! picrel)
return FALSE;
*changed = TRUE;
dinfo = bfinfdpic_dynamic_got_plt_info (info);
_bfinfdpic_count_relocs_fixups (picrel, dinfo, TRUE);
if (ELF32_R_TYPE (rel->r_info) == R_BFIN_BYTE4_DATA)
picrel->relocs32--;
else /* we know (ELF32_R_TYPE (rel->r_info) == R_BFIN_FUNCDESC) */
picrel->relocsfd--;
_bfinfdpic_count_relocs_fixups (picrel, dinfo, FALSE);
}
return TRUE;
}
static bfd_boolean
bfinfdpic_elf_discard_info (bfd *ibfd,
struct elf_reloc_cookie *cookie ATTRIBUTE_UNUSED,
struct bfd_link_info *info)
{
bfd_boolean changed = FALSE;
asection *s;
bfd *obfd = NULL;
/* Account for relaxation of .eh_frame section. */
for (s = ibfd->sections; s; s = s->next)
if (s->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
{
if (!_bfinfdpic_check_discarded_relocs (ibfd, s, info, &changed))
return FALSE;
obfd = s->output_section->owner;
}
if (changed)
{
struct _bfinfdpic_dynamic_got_plt_info gpinfo;
memset (&gpinfo, 0, sizeof (gpinfo));
memcpy (&gpinfo.g, bfinfdpic_dynamic_got_plt_info (info),
sizeof (gpinfo.g));
/* Clear GOT and PLT assignments. */
htab_traverse (bfinfdpic_relocs_info (info),
_bfinfdpic_reset_got_plt_entries,
NULL);
if (!_bfinfdpic_size_got_plt (obfd, &gpinfo))
return FALSE;
}
return TRUE;
}
static bfd_boolean
elf32_bfinfdpic_finish_dynamic_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
bfd *dynobj;
asection *sdyn;
dynobj = elf_hash_table (info)->dynobj;
if (bfinfdpic_got_section (info))
{
BFD_ASSERT (bfinfdpic_gotrel_section (info)->size
/* PR 17334: It appears that the GOT section can end up
being bigger than the number of relocs. Presumably
because some relocs have been deleted. A test case has
yet to be generated for verify this, but in the meantime
the test below has been changed from == to >= so that
applications can continue to be built. */
>= (bfinfdpic_gotrel_section (info)->reloc_count
* sizeof (Elf32_External_Rel)));
if (bfinfdpic_gotfixup_section (info))
{
struct elf_link_hash_entry *hgot = elf_hash_table (info)->hgot;
bfd_vma got_value = hgot->root.u.def.value
+ hgot->root.u.def.section->output_section->vma
+ hgot->root.u.def.section->output_offset;
_bfinfdpic_add_rofixup (output_bfd, bfinfdpic_gotfixup_section (info),
got_value, 0);
if (bfinfdpic_gotfixup_section (info)->size
!= (bfinfdpic_gotfixup_section (info)->reloc_count * 4))
{
_bfd_error_handler
("LINKER BUG: .rofixup section size mismatch");
return FALSE;
}
}
}
if (elf_hash_table (info)->dynamic_sections_created)
{
BFD_ASSERT (bfinfdpic_pltrel_section (info)->size
== (bfinfdpic_pltrel_section (info)->reloc_count
* sizeof (Elf32_External_Rel)));
}
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
if (elf_hash_table (info)->dynamic_sections_created)
{
Elf32_External_Dyn * dyncon;
Elf32_External_Dyn * dynconend;
BFD_ASSERT (sdyn != NULL);
dyncon = (Elf32_External_Dyn *) sdyn->contents;
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
for (; dyncon < dynconend; dyncon++)
{
Elf_Internal_Dyn dyn;
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
switch (dyn.d_tag)
{
default:
break;
case DT_PLTGOT:
dyn.d_un.d_ptr = bfinfdpic_got_section (info)->output_section->vma
+ bfinfdpic_got_section (info)->output_offset
+ bfinfdpic_got_initial_offset (info);
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
case DT_JMPREL:
dyn.d_un.d_ptr = bfinfdpic_pltrel_section (info)
->output_section->vma
+ bfinfdpic_pltrel_section (info)->output_offset;
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
case DT_PLTRELSZ:
dyn.d_un.d_val = bfinfdpic_pltrel_section (info)->size;
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
}
}
}
return TRUE;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. */
static bfd_boolean
elf32_bfinfdpic_adjust_dynamic_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *h)
{
bfd * dynobj;
dynobj = elf_hash_table (info)->dynobj;
/* Make sure we know what is going on here. */
BFD_ASSERT (dynobj != NULL
&& (h->is_weakalias
|| (h->def_dynamic
&& h->ref_regular
&& !h->def_regular)));
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->is_weakalias)
{
struct elf_link_hash_entry *def = weakdef (h);
BFD_ASSERT (def->root.type == bfd_link_hash_defined);
h->root.u.def.section = def->root.u.def.section;
h->root.u.def.value = def->root.u.def.value;
}
return TRUE;
}
/* Perform any actions needed for dynamic symbols. */
static bfd_boolean
elf32_bfinfdpic_finish_dynamic_symbol
(bfd *output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info ATTRIBUTE_UNUSED,
struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
{
return TRUE;
}
/* Decide whether to attempt to turn absptr or lsda encodings in
shared libraries into pcrel within the given input section. */
static bfd_boolean
bfinfdpic_elf_use_relative_eh_frame
(bfd *input_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info ATTRIBUTE_UNUSED,
asection *eh_frame_section ATTRIBUTE_UNUSED)
{
/* We can't use PC-relative encodings in FDPIC binaries, in general. */
return FALSE;
}
/* Adjust the contents of an eh_frame_hdr section before they're output. */
static bfd_byte
bfinfdpic_elf_encode_eh_address (bfd *abfd,
struct bfd_link_info *info,
asection *osec, bfd_vma offset,
asection *loc_sec, bfd_vma loc_offset,
bfd_vma *encoded)
{
struct elf_link_hash_entry *h;
h = elf_hash_table (info)->hgot;
BFD_ASSERT (h && h->root.type == bfd_link_hash_defined);
if (! h || (_bfinfdpic_osec_to_segment (abfd, osec)
== _bfinfdpic_osec_to_segment (abfd, loc_sec->output_section)))
return _bfd_elf_encode_eh_address (abfd, info, osec, offset,
loc_sec, loc_offset, encoded);
BFD_ASSERT (_bfinfdpic_osec_to_segment (abfd, osec)
== (_bfinfdpic_osec_to_segment
(abfd, h->root.u.def.section->output_section)));
*encoded = osec->vma + offset
- (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
return DW_EH_PE_datarel | DW_EH_PE_sdata4;
}
/* Look through the relocs for a section during the first phase.
Besides handling virtual table relocs for gc, we have to deal with
all sorts of PIC-related relocations. We describe below the
general plan on how to handle such relocations, even though we only
collect information at this point, storing them in hash tables for
perusal of later passes.
32 relocations are propagated to the linker output when creating
position-independent output. LO16 and HI16 relocations are not
supposed to be encountered in this case.
LABEL16 should always be resolvable by the linker, since it's only
used by branches.
LABEL24, on the other hand, is used by calls. If it turns out that
the target of a call is a dynamic symbol, a PLT entry must be
created for it, which triggers the creation of a private function
descriptor and, unless lazy binding is disabled, a lazy PLT entry.
GPREL relocations require the referenced symbol to be in the same
segment as _gp, but this can only be checked later.
All GOT, GOTOFF and FUNCDESC relocations require a .got section to
exist. LABEL24 might as well, since it may require a PLT entry,
that will require a got.
Non-FUNCDESC GOT relocations require a GOT entry to be created
regardless of whether the symbol is dynamic. However, since a
global symbol that turns out to not be exported may have the same
address of a non-dynamic symbol, we don't assign GOT entries at
this point, such that we can share them in this case. A relocation
for the GOT entry always has to be created, be it to offset a
private symbol by the section load address, be it to get the symbol
resolved dynamically.
FUNCDESC GOT relocations require a GOT entry to be created, and
handled as if a FUNCDESC relocation was applied to the GOT entry in
an object file.
FUNCDESC relocations referencing a symbol that turns out to NOT be
dynamic cause a private function descriptor to be created. The
FUNCDESC relocation then decays to a 32 relocation that points at
the private descriptor. If the symbol is dynamic, the FUNCDESC
relocation is propagated to the linker output, such that the
dynamic linker creates the canonical descriptor, pointing to the
dynamically-resolved definition of the function.
Non-FUNCDESC GOTOFF relocations must always refer to non-dynamic
symbols that are assigned to the same segment as the GOT, but we
can only check this later, after we know the complete set of
symbols defined and/or exported.
FUNCDESC GOTOFF relocations require a function descriptor to be
created and, unless lazy binding is disabled or the symbol is not
dynamic, a lazy PLT entry. Since we can't tell at this point
whether a symbol is going to be dynamic, we have to decide later
whether to create a lazy PLT entry or bind the descriptor directly
to the private function.
FUNCDESC_VALUE relocations are not supposed to be present in object
files, but they may very well be simply propagated to the linker
output, since they have no side effect.
A function descriptor always requires a FUNCDESC_VALUE relocation.
Whether it's in .plt.rel or not depends on whether lazy binding is
enabled and on whether the referenced symbol is dynamic.
The existence of a lazy PLT requires the resolverStub lazy PLT
entry to be present.
As for assignment of GOT, PLT and lazy PLT entries, and private
descriptors, we might do them all sequentially, but we can do
better than that. For example, we can place GOT entries and
private function descriptors referenced using 12-bit operands
closer to the PIC register value, such that these relocations don't
overflow. Those that are only referenced with LO16 relocations
could come next, but we may as well place PLT-required function
descriptors in the 12-bit range to make them shorter. Symbols
referenced with LO16/HI16 may come next, but we may place
additional function descriptors in the 16-bit range if we can
reliably tell that we've already placed entries that are ever
referenced with only LO16. PLT entries are therefore generated as
small as possible, while not introducing relocation overflows in
GOT or FUNCDESC_GOTOFF relocations. Lazy PLT entries could be
generated before or after PLT entries, but not intermingled with
them, such that we can have more lazy PLT entries in range for a
branch to the resolverStub. The resolverStub should be emitted at
the most distant location from the first lazy PLT entry such that
it's still in range for a branch, or closer, if there isn't a need
for so many lazy PLT entries. Additional lazy PLT entries may be
emitted after the resolverStub, as long as branches are still in
range. If the branch goes out of range, longer lazy PLT entries
are emitted.
We could further optimize PLT and lazy PLT entries by giving them
priority in assignment to closer-to-gr17 locations depending on the
number of occurrences of references to them (assuming a function
that's called more often is more important for performance, so its
PLT entry should be faster), or taking hints from the compiler.
Given infinite time and money... :-) */
static bfd_boolean
bfinfdpic_check_relocs (bfd *abfd, struct bfd_link_info *info,
asection *sec, const Elf_Internal_Rela *relocs)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
bfd *dynobj;
struct bfinfdpic_relocs_info *picrel;
if (bfd_link_relocatable (info))
return TRUE;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
dynobj = elf_hash_table (info)->dynobj;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
struct elf_link_hash_entry *h;
unsigned long r_symndx;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
switch (ELF32_R_TYPE (rel->r_info))
{
case R_BFIN_GOT17M4:
case R_BFIN_GOTHI:
case R_BFIN_GOTLO:
case R_BFIN_FUNCDESC_GOT17M4:
case R_BFIN_FUNCDESC_GOTHI:
case R_BFIN_FUNCDESC_GOTLO:
case R_BFIN_GOTOFF17M4:
case R_BFIN_GOTOFFHI:
case R_BFIN_GOTOFFLO:
case R_BFIN_FUNCDESC_GOTOFF17M4:
case R_BFIN_FUNCDESC_GOTOFFHI:
case R_BFIN_FUNCDESC_GOTOFFLO:
case R_BFIN_FUNCDESC:
case R_BFIN_FUNCDESC_VALUE:
if (! IS_FDPIC (abfd))
goto bad_reloc;
/* Fall through. */
case R_BFIN_PCREL24:
case R_BFIN_PCREL24_JUMP_L:
case R_BFIN_BYTE4_DATA:
if (IS_FDPIC (abfd) && ! dynobj)
{
elf_hash_table (info)->dynobj = dynobj = abfd;
if (! _bfin_create_got_section (abfd, info))
return FALSE;
}
if (! IS_FDPIC (abfd))
{
picrel = NULL;
break;
}
if (h != NULL)
{
if (h->dynindx == -1)
switch (ELF_ST_VISIBILITY (h->other))
{
case STV_INTERNAL:
case STV_HIDDEN:
break;
default:
bfd_elf_link_record_dynamic_symbol (info, h);
break;
}
picrel
= bfinfdpic_relocs_info_for_global (bfinfdpic_relocs_info (info),
abfd, h,
rel->r_addend, INSERT);
}
else
picrel = bfinfdpic_relocs_info_for_local (bfinfdpic_relocs_info
(info), abfd, r_symndx,
rel->r_addend, INSERT);
if (! picrel)
return FALSE;
break;
default:
picrel = NULL;
break;
}
switch (ELF32_R_TYPE (rel->r_info))
{
case R_BFIN_PCREL24:
case R_BFIN_PCREL24_JUMP_L:
if (IS_FDPIC (abfd))
picrel->call++;
break;
case R_BFIN_FUNCDESC_VALUE:
picrel->relocsfdv++;
if (bfd_section_flags (sec) & SEC_ALLOC)
picrel->relocs32--;
/* Fall through. */
case R_BFIN_BYTE4_DATA:
if (! IS_FDPIC (abfd))
break;
picrel->sym++;
if (bfd_section_flags (sec) & SEC_ALLOC)
picrel->relocs32++;
break;
case R_BFIN_GOT17M4:
picrel->got17m4++;
break;
case R_BFIN_GOTHI:
case R_BFIN_GOTLO:
picrel->gothilo++;
break;
case R_BFIN_FUNCDESC_GOT17M4:
picrel->fdgot17m4++;
break;
case R_BFIN_FUNCDESC_GOTHI:
case R_BFIN_FUNCDESC_GOTLO:
picrel->fdgothilo++;
break;
case R_BFIN_GOTOFF17M4:
case R_BFIN_GOTOFFHI:
case R_BFIN_GOTOFFLO:
picrel->gotoff++;
break;
case R_BFIN_FUNCDESC_GOTOFF17M4:
picrel->fdgoff17m4++;
break;
case R_BFIN_FUNCDESC_GOTOFFHI:
case R_BFIN_FUNCDESC_GOTOFFLO:
picrel->fdgoffhilo++;
break;
case R_BFIN_FUNCDESC:
picrel->fd++;
picrel->relocsfd++;
break;
/* This relocation describes the C++ object vtable hierarchy.
Reconstruct it for later use during GC. */
case R_BFIN_GNU_VTINHERIT:
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
return FALSE;
break;
/* This relocation describes which C++ vtable entries are actually
used. Record for later use during GC. */
case R_BFIN_GNU_VTENTRY:
BFD_ASSERT (h != NULL);
if (h != NULL
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
return FALSE;
break;
case R_BFIN_HUIMM16:
case R_BFIN_LUIMM16:
case R_BFIN_PCREL12_JUMP_S:
case R_BFIN_PCREL10:
break;
default:
bad_reloc:
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: unsupported relocation type %#x"),
abfd, (int) ELF32_R_TYPE (rel->r_info));
return FALSE;
}
}
return TRUE;
}
/* Set the right machine number for a Blackfin ELF file. */
static bfd_boolean
elf32_bfin_object_p (bfd *abfd)
{
bfd_default_set_arch_mach (abfd, bfd_arch_bfin, 0);
return (((elf_elfheader (abfd)->e_flags & EF_BFIN_FDPIC) != 0)
== (IS_FDPIC (abfd)));
}
static bfd_boolean
elf32_bfin_set_private_flags (bfd * abfd, flagword flags)
{
elf_elfheader (abfd)->e_flags = flags;
elf_flags_init (abfd) = TRUE;
return TRUE;
}
/* Display the flags field. */
static bfd_boolean
elf32_bfin_print_private_bfd_data (bfd * abfd, void * ptr)
{
FILE *file = (FILE *) ptr;
flagword flags;
BFD_ASSERT (abfd != NULL && ptr != NULL);
/* Print normal ELF private data. */
_bfd_elf_print_private_bfd_data (abfd, ptr);
flags = elf_elfheader (abfd)->e_flags;
/* xgettext:c-format */
fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
if (flags & EF_BFIN_PIC)
fprintf (file, " -fpic");
if (flags & EF_BFIN_FDPIC)
fprintf (file, " -mfdpic");
fputc ('\n', file);
return TRUE;
}
/* Merge backend specific data from an object file to the output
object file when linking. */
static bfd_boolean
elf32_bfin_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
{
bfd *obfd = info->output_bfd;
flagword old_flags, new_flags;
bfd_boolean error = FALSE;
new_flags = elf_elfheader (ibfd)->e_flags;
old_flags = elf_elfheader (obfd)->e_flags;
if (new_flags & EF_BFIN_FDPIC)
new_flags &= ~EF_BFIN_PIC;
#ifndef DEBUG
if (0)
#endif
_bfd_error_handler
("old_flags = 0x%.8x, new_flags = 0x%.8x, init = %s, filename = %pB",
old_flags, new_flags, elf_flags_init (obfd) ? "yes" : "no", ibfd);
if (!elf_flags_init (obfd)) /* First call, no flags set. */
{
elf_flags_init (obfd) = TRUE;
elf_elfheader (obfd)->e_flags = new_flags;
}
if (((new_flags & EF_BFIN_FDPIC) == 0) != (! IS_FDPIC (obfd)))
{
error = TRUE;
if (IS_FDPIC (obfd))
_bfd_error_handler
(_("%pB: cannot link non-fdpic object file into fdpic executable"),
ibfd);
else
_bfd_error_handler
(_("%pB: cannot link fdpic object file into non-fdpic executable"),
ibfd);
}
if (error)
bfd_set_error (bfd_error_bad_value);
return !error;
}
/* bfin ELF linker hash entry. */
struct bfin_link_hash_entry
{
struct elf_link_hash_entry root;
/* Number of PC relative relocs copied for this symbol. */
struct bfin_pcrel_relocs_copied *pcrel_relocs_copied;
};
/* bfin ELF linker hash table. */
struct bfin_link_hash_table
{
struct elf_link_hash_table root;
/* Small local sym cache. */
struct sym_cache sym_cache;
};
#define bfin_hash_entry(ent) ((struct bfin_link_hash_entry *) (ent))
static struct bfd_hash_entry *
bfin_link_hash_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table, const char *string)
{
struct bfd_hash_entry *ret = entry;
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (ret == NULL)
ret = bfd_hash_allocate (table, sizeof (struct bfin_link_hash_entry));
if (ret == NULL)
return ret;
/* Call the allocation method of the superclass. */
ret = _bfd_elf_link_hash_newfunc (ret, table, string);
if (ret != NULL)
bfin_hash_entry (ret)->pcrel_relocs_copied = NULL;
return ret;
}
/* Create an bfin ELF linker hash table. */
static struct bfd_link_hash_table *
bfin_link_hash_table_create (bfd * abfd)
{
struct bfin_link_hash_table *ret;
bfd_size_type amt = sizeof (struct bfin_link_hash_table);
ret = bfd_zmalloc (amt);
if (ret == NULL)
return NULL;
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
bfin_link_hash_newfunc,
sizeof (struct elf_link_hash_entry),
BFIN_ELF_DATA))
{
free (ret);
return NULL;
}
ret->sym_cache.abfd = NULL;
return &ret->root.root;
}
/* The size in bytes of an entry in the procedure linkage table. */
/* Finish up the dynamic sections. */
static bfd_boolean
bfin_finish_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info)
{
bfd *dynobj;
asection *sdyn;
dynobj = elf_hash_table (info)->dynobj;
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
if (elf_hash_table (info)->dynamic_sections_created)
{
Elf32_External_Dyn *dyncon, *dynconend;
BFD_ASSERT (sdyn != NULL);
dyncon = (Elf32_External_Dyn *) sdyn->contents;
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
for (; dyncon < dynconend; dyncon++)
{
Elf_Internal_Dyn dyn;
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
}
}
return TRUE;
}
/* Finish up dynamic symbol handling. We set the contents of various
dynamic sections here. */
static bfd_boolean
bfin_finish_dynamic_symbol (bfd * output_bfd,
struct bfd_link_info *info,
struct elf_link_hash_entry *h,
Elf_Internal_Sym * sym)
{
if (h->got.offset != (bfd_vma) - 1)
{
asection *sgot;
asection *srela;
Elf_Internal_Rela rela;
bfd_byte *loc;
/* This symbol has an entry in the global offset table.
Set it up. */
sgot = elf_hash_table (info)->sgot;
srela = elf_hash_table (info)->srelgot;
BFD_ASSERT (sgot != NULL && srela != NULL);
rela.r_offset = (sgot->output_section->vma
+ sgot->output_offset
+ (h->got.offset & ~(bfd_vma) 1));
/* If this is a -Bsymbolic link, and the symbol is defined
locally, we just want to emit a RELATIVE reloc. Likewise if
the symbol was forced to be local because of a version file.
The entry in the global offset table will already have been
initialized in the relocate_section function. */
if (bfd_link_pic (info)
&& (info->symbolic
|| h->dynindx == -1 || h->forced_local) && h->def_regular)
{
_bfd_error_handler (_("*** check this relocation %s"),
__FUNCTION__);
rela.r_info = ELF32_R_INFO (0, R_BFIN_PCREL24);
rela.r_addend = bfd_get_signed_32 (output_bfd,
(sgot->contents
+
(h->got.
offset & ~(bfd_vma) 1)));
}
else
{
bfd_put_32 (output_bfd, (bfd_vma) 0,
sgot->contents + (h->got.offset & ~(bfd_vma) 1));
rela.r_info = ELF32_R_INFO (h->dynindx, R_BFIN_GOT);
rela.r_addend = 0;
}
loc = srela->contents;
loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
}
if (h->needs_copy)
{
BFD_ASSERT (0);
}
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
if (strcmp (h->root.root.string, "__DYNAMIC") == 0
|| h == elf_hash_table (info)->hgot)
sym->st_shndx = SHN_ABS;
return TRUE;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. The current definition is in some section of the
dynamic object, but we're not including those sections. We have to
change the definition to something the rest of the link can
understand. */
static bfd_boolean
bfin_adjust_dynamic_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *h)
{
bfd *dynobj;
asection *s;
unsigned int power_of_two;
dynobj = elf_hash_table (info)->dynobj;
/* Make sure we know what is going on here. */
BFD_ASSERT (dynobj != NULL
&& (h->needs_plt
|| h->is_weakalias
|| (h->def_dynamic && h->ref_regular && !h->def_regular)));
/* If this is a function, put it in the procedure linkage table. We
will fill in the contents of the procedure linkage table later,
when we know the address of the .got section. */
if (h->type == STT_FUNC || h->needs_plt)
{
BFD_ASSERT(0);
}
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->is_weakalias)
{
struct elf_link_hash_entry *def = weakdef (h);
BFD_ASSERT (def->root.type == bfd_link_hash_defined);
h->root.u.def.section = def->root.u.def.section;
h->root.u.def.value = def->root.u.def.value;
return TRUE;
}
/* This is a reference to a symbol defined by a dynamic object which
is not a function. */
/* If we are creating a shared library, we must presume that the
only references to the symbol are via the global offset table.
For such cases we need not do anything here; the relocations will
be handled correctly by relocate_section. */
if (bfd_link_pic (info))
return TRUE;
/* We must allocate the symbol in our .dynbss section, which will
become part of the .bss section of the executable. There will be
an entry for this symbol in the .dynsym section. The dynamic
object will contain position independent code, so all references
from the dynamic object to this symbol will go through the global
offset table. The dynamic linker will use the .dynsym entry to
determine the address it must put in the global offset table, so
both the dynamic object and the regular object will refer to the
same memory location for the variable. */
s = bfd_get_linker_section (dynobj, ".dynbss");
BFD_ASSERT (s != NULL);
#if 0 /* Bfin does not currently have a COPY reloc. */
/* We must generate a R_BFIN_COPY reloc to tell the dynamic linker to
copy the initial value out of the dynamic object and into the
runtime process image. We need to remember the offset into the
.rela.bss section we are going to use. */
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
{
asection *srel;
srel = bfd_get_linker_section (dynobj, ".rela.bss");
BFD_ASSERT (srel != NULL);
srel->size += sizeof (Elf32_External_Rela);
h->needs_copy = 1;
}
#else
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
{
_bfd_error_handler (_("the bfin target does not currently support the generation of copy relocations"));
return FALSE;
}
#endif
/* We need to figure out the alignment required for this symbol. I
have no idea how ELF linkers handle this. */
power_of_two = bfd_log2 (h->size);
if (power_of_two > 3)
power_of_two = 3;
/* Apply the required alignment. */
s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
if (power_of_two > bfd_section_alignment (s))
{
if (!bfd_set_section_alignment (s, power_of_two))
return FALSE;
}
/* Define the symbol as being at this point in the section. */
h->root.u.def.section = s;
h->root.u.def.value = s->size;
/* Increment the section size to make room for the symbol. */
s->size += h->size;
return TRUE;
}
/* The bfin linker needs to keep track of the number of relocs that it
decides to copy in check_relocs for each symbol. This is so that it
can discard PC relative relocs if it doesn't need them when linking
with -Bsymbolic. We store the information in a field extending the
regular ELF linker hash table. */
/* This structure keeps track of the number of PC relative relocs we have
copied for a given symbol. */
struct bfin_pcrel_relocs_copied
{
/* Next section. */
struct bfin_pcrel_relocs_copied *next;
/* A section in dynobj. */
asection *section;
/* Number of relocs copied in this section. */
bfd_size_type count;
};
/* This function is called via elf_link_hash_traverse if we are
creating a shared object. In the -Bsymbolic case it discards the
space allocated to copy PC relative relocs against symbols which
are defined in regular objects. For the normal shared case, it
discards space for pc-relative relocs that have become local due to
symbol visibility changes. We allocated space for them in the
check_relocs routine, but we won't fill them in in the
relocate_section routine.
We also check whether any of the remaining relocations apply
against a readonly section, and set the DF_TEXTREL flag in this
case. */
static bfd_boolean
bfin_discard_copies (struct elf_link_hash_entry *h, void * inf)
{
struct bfd_link_info *info = (struct bfd_link_info *) inf;
struct bfin_pcrel_relocs_copied *s;
if (!h->def_regular || (!info->symbolic && !h->forced_local))
{
if ((info->flags & DF_TEXTREL) == 0)
{
/* Look for relocations against read-only sections. */
for (s = bfin_hash_entry (h)->pcrel_relocs_copied;
s != NULL; s = s->next)
if ((s->section->flags & SEC_READONLY) != 0)
{
info->flags |= DF_TEXTREL;
break;
}
}
return TRUE;
}
for (s = bfin_hash_entry (h)->pcrel_relocs_copied;
s != NULL; s = s->next)
s->section->size -= s->count * sizeof (Elf32_External_Rela);
return TRUE;
}
static bfd_boolean
bfin_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info)
{
bfd *dynobj;
asection *s;
bfd_boolean relocs;
dynobj = elf_hash_table (info)->dynobj;
BFD_ASSERT (dynobj != NULL);
if (elf_hash_table (info)->dynamic_sections_created)
{
/* Set the contents of the .interp section to the interpreter. */
if (bfd_link_executable (info) && !info->nointerp)
{
s = bfd_get_linker_section (dynobj, ".interp");
BFD_ASSERT (s != NULL);
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
}
}
else
{
/* We may have created entries in the .rela.got section.
However, if we are not creating the dynamic sections, we will
not actually use these entries. Reset the size of .rela.got,
which will cause it to get stripped from the output file
below. */
s = elf_hash_table (info)->srelgot;
if (s != NULL)
s->size = 0;
}
/* If this is a -Bsymbolic shared link, then we need to discard all
PC relative relocs against symbols defined in a regular object.
For the normal shared case we discard the PC relative relocs
against symbols that have become local due to visibility changes.
We allocated space for them in the check_relocs routine, but we
will not fill them in in the relocate_section routine. */
if (bfd_link_pic (info))
elf_link_hash_traverse (elf_hash_table (info),
bfin_discard_copies, info);
/* The check_relocs and adjust_dynamic_symbol entry points have
determined the sizes of the various dynamic sections. Allocate
memory for them. */
relocs = FALSE;
for (s = dynobj->sections; s != NULL; s = s->next)
{
const char *name;
bfd_boolean strip;
if ((s->flags & SEC_LINKER_CREATED) == 0)
continue;
/* It's OK to base decisions on the section name, because none
of the dynobj section names depend upon the input files. */
name = bfd_section_name (s);
strip = FALSE;
if (CONST_STRNEQ (name, ".rela"))
{
if (s->size == 0)
{
/* If we don't need this section, strip it from the
output file. This is mostly to handle .rela.bss and
.rela.plt. We must create both sections in
create_dynamic_sections, because they must be created
before the linker maps input sections to output
sections. The linker does that before
adjust_dynamic_symbol is called, and it is that
function which decides whether anything needs to go
into these sections. */
strip = TRUE;
}
else
{
relocs = TRUE;
/* We use the reloc_count field as a counter if we need
to copy relocs into the output file. */
s->reloc_count = 0;
}
}
else if (! CONST_STRNEQ (name, ".got"))
{
/* It's not one of our sections, so don't allocate space. */
continue;
}
if (strip)
{
s->flags |= SEC_EXCLUDE;
continue;
}
/* Allocate memory for the section contents. */
/* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
Unused entries should be reclaimed before the section's contents
are written out, but at the moment this does not happen. Thus in
order to prevent writing out garbage, we initialise the section's
contents to zero. */
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
if (s->contents == NULL && s->size != 0)
return FALSE;
}
if (elf_hash_table (info)->dynamic_sections_created)
{
/* Add some entries to the .dynamic section. We fill in the
values later, in bfin_finish_dynamic_sections, but we
must add the entries now so that we get the correct size for
the .dynamic section. The DT_DEBUG entry is filled in by the
dynamic linker and used by the debugger. */
#define add_dynamic_entry(TAG, VAL) \
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
if (!bfd_link_pic (info))
{
if (!add_dynamic_entry (DT_DEBUG, 0))
return FALSE;
}
if (relocs)
{
if (!add_dynamic_entry (DT_RELA, 0)
|| !add_dynamic_entry (DT_RELASZ, 0)
|| !add_dynamic_entry (DT_RELAENT,
sizeof (Elf32_External_Rela)))
return FALSE;
}
if ((info->flags & DF_TEXTREL) != 0)
{
if (!add_dynamic_entry (DT_TEXTREL, 0))
return FALSE;
}
}
#undef add_dynamic_entry
return TRUE;
}
/* Given a .data section and a .emreloc in-memory section, store
relocation information into the .emreloc section which can be
used at runtime to relocate the section. This is called by the
linker when the --embedded-relocs switch is used. This is called
after the add_symbols entry point has been called for all the
objects, and before the final_link entry point is called. */
bfd_boolean
bfd_bfin_elf32_create_embedded_relocs (bfd *abfd,
struct bfd_link_info *info,
asection *datasec,
asection *relsec,
char **errmsg)
{
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Sym *isymbuf = NULL;
Elf_Internal_Rela *internal_relocs = NULL;
Elf_Internal_Rela *irel, *irelend;
bfd_byte *p;
bfd_size_type amt;
BFD_ASSERT (! bfd_link_relocatable (info));
*errmsg = NULL;
if (datasec->reloc_count == 0)
return TRUE;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
/* Get a copy of the native relocations. */
internal_relocs = (_bfd_elf_link_read_relocs
(abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
info->keep_memory));
if (internal_relocs == NULL)
goto error_return;
amt = (bfd_size_type) datasec->reloc_count * 12;
relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
if (relsec->contents == NULL)
goto error_return;
p = relsec->contents;
irelend = internal_relocs + datasec->reloc_count;
for (irel = internal_relocs; irel < irelend; irel++, p += 12)
{
asection *targetsec;
/* We are going to write a four byte longword into the runtime
reloc section. The longword will be the address in the data
section which must be relocated. It is followed by the name
of the target section NUL-padded or truncated to 8
characters. */
/* We can only relocate absolute longword relocs at run time. */
if (ELF32_R_TYPE (irel->r_info) != (int) R_BFIN_BYTE4_DATA)
{
*errmsg = _("unsupported relocation type");
bfd_set_error (bfd_error_bad_value);
goto error_return;
}
/* Get the target section referred to by the reloc. */
if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
{
/* A local symbol. */
Elf_Internal_Sym *isym;
/* Read this BFD's local symbols if we haven't done so already. */
if (isymbuf == NULL)
{
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
if (isymbuf == NULL)
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
symtab_hdr->sh_info, 0,
NULL, NULL, NULL);
if (isymbuf == NULL)
goto error_return;
}
isym = isymbuf + ELF32_R_SYM (irel->r_info);
targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
}
else
{
unsigned long indx;
struct elf_link_hash_entry *h;
/* An external symbol. */
indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
h = elf_sym_hashes (abfd)[indx];
BFD_ASSERT (h != NULL);
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
targetsec = h->root.u.def.section;
else
targetsec = NULL;
}
bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
memset (p + 4, 0, 8);
if (targetsec != NULL)
strncpy ((char *) p + 4, targetsec->output_section->name, 8);
}
if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
free (isymbuf);
if (internal_relocs != NULL
&& elf_section_data (datasec)->relocs != internal_relocs)
free (internal_relocs);
return TRUE;
error_return:
if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
free (isymbuf);
if (internal_relocs != NULL
&& elf_section_data (datasec)->relocs != internal_relocs)
free (internal_relocs);
return FALSE;
}
struct bfd_elf_special_section const elf32_bfin_special_sections[] =
{
{ ".l1.text", 8, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
{ ".l1.data", 8, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
{ NULL, 0, 0, 0, 0 }
};
#define TARGET_LITTLE_SYM bfin_elf32_vec
#define TARGET_LITTLE_NAME "elf32-bfin"
#define ELF_ARCH bfd_arch_bfin
#define ELF_TARGET_ID BFIN_ELF_DATA
#define ELF_MACHINE_CODE EM_BLACKFIN
#define ELF_MAXPAGESIZE 0x1000
#define elf_symbol_leading_char '_'
#define bfd_elf32_bfd_reloc_type_lookup bfin_bfd_reloc_type_lookup
#define bfd_elf32_bfd_reloc_name_lookup \
bfin_bfd_reloc_name_lookup
#define elf_info_to_howto bfin_info_to_howto
#define elf_info_to_howto_rel NULL
#define elf_backend_object_p elf32_bfin_object_p
#define bfd_elf32_bfd_is_local_label_name \
bfin_is_local_label_name
#define bfin_hash_table(p) \
((struct bfin_link_hash_table *) (p)->hash)
#define elf_backend_create_dynamic_sections \
_bfd_elf_create_dynamic_sections
#define bfd_elf32_bfd_link_hash_table_create \
bfin_link_hash_table_create
#define bfd_elf32_bfd_final_link bfd_elf_gc_common_final_link
#define elf_backend_check_relocs bfin_check_relocs
#define elf_backend_adjust_dynamic_symbol \
bfin_adjust_dynamic_symbol
#define elf_backend_size_dynamic_sections \
bfin_size_dynamic_sections
#define elf_backend_relocate_section bfin_relocate_section
#define elf_backend_finish_dynamic_symbol \
bfin_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections \
bfin_finish_dynamic_sections
#define elf_backend_gc_mark_hook bfin_gc_mark_hook
#define bfd_elf32_bfd_merge_private_bfd_data \
elf32_bfin_merge_private_bfd_data
#define bfd_elf32_bfd_set_private_flags \
elf32_bfin_set_private_flags
#define bfd_elf32_bfd_print_private_bfd_data \
elf32_bfin_print_private_bfd_data
#define elf_backend_final_write_processing \
elf32_bfin_final_write_processing
#define elf_backend_reloc_type_class elf32_bfin_reloc_type_class
#define elf_backend_stack_align 8
#define elf_backend_can_gc_sections 1
#define elf_backend_special_sections elf32_bfin_special_sections
#define elf_backend_can_refcount 1
#define elf_backend_want_got_plt 0
#define elf_backend_plt_readonly 1
#define elf_backend_want_plt_sym 0
#define elf_backend_got_header_size 12
#define elf_backend_rela_normal 1
#include "elf32-target.h"
#undef TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM bfin_elf32_fdpic_vec
#undef TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME "elf32-bfinfdpic"
#undef elf32_bed
#define elf32_bed elf32_bfinfdpic_bed
#undef elf_backend_got_header_size
#define elf_backend_got_header_size 0
#undef elf_backend_relocate_section
#define elf_backend_relocate_section bfinfdpic_relocate_section
#undef elf_backend_check_relocs
#define elf_backend_check_relocs bfinfdpic_check_relocs
#undef bfd_elf32_bfd_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_create \
bfinfdpic_elf_link_hash_table_create
#undef elf_backend_always_size_sections
#define elf_backend_always_size_sections \
elf32_bfinfdpic_always_size_sections
#undef elf_backend_create_dynamic_sections
#define elf_backend_create_dynamic_sections \
elf32_bfinfdpic_create_dynamic_sections
#undef elf_backend_adjust_dynamic_symbol
#define elf_backend_adjust_dynamic_symbol \
elf32_bfinfdpic_adjust_dynamic_symbol
#undef elf_backend_size_dynamic_sections
#define elf_backend_size_dynamic_sections \
elf32_bfinfdpic_size_dynamic_sections
#undef elf_backend_finish_dynamic_symbol
#define elf_backend_finish_dynamic_symbol \
elf32_bfinfdpic_finish_dynamic_symbol
#undef elf_backend_finish_dynamic_sections
#define elf_backend_finish_dynamic_sections \
elf32_bfinfdpic_finish_dynamic_sections
#undef elf_backend_discard_info
#define elf_backend_discard_info \
bfinfdpic_elf_discard_info
#undef elf_backend_can_make_relative_eh_frame
#define elf_backend_can_make_relative_eh_frame \
bfinfdpic_elf_use_relative_eh_frame
#undef elf_backend_can_make_lsda_relative_eh_frame
#define elf_backend_can_make_lsda_relative_eh_frame \
bfinfdpic_elf_use_relative_eh_frame
#undef elf_backend_encode_eh_address
#define elf_backend_encode_eh_address \
bfinfdpic_elf_encode_eh_address
#undef elf_backend_may_use_rel_p
#define elf_backend_may_use_rel_p 1
#undef elf_backend_may_use_rela_p
#define elf_backend_may_use_rela_p 1
/* We use REL for dynamic relocations only. */
#undef elf_backend_default_use_rela_p
#define elf_backend_default_use_rela_p 1
#undef elf_backend_omit_section_dynsym
#define elf_backend_omit_section_dynsym _bfinfdpic_link_omit_section_dynsym
#include "elf32-target.h"