899 lines
24 KiB
C
899 lines
24 KiB
C
|
/* Block-related functions for the GNU debugger, GDB.
|
|||
|
|
|||
|
Copyright (C) 2003-2020 Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GDB.
|
|||
|
|
|||
|
This program is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 3 of the License, or
|
|||
|
(at your option) any later version.
|
|||
|
|
|||
|
This program is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|||
|
|
|||
|
#include "defs.h"
|
|||
|
#include "block.h"
|
|||
|
#include "symtab.h"
|
|||
|
#include "symfile.h"
|
|||
|
#include "gdb_obstack.h"
|
|||
|
#include "cp-support.h"
|
|||
|
#include "addrmap.h"
|
|||
|
#include "gdbtypes.h"
|
|||
|
#include "objfiles.h"
|
|||
|
|
|||
|
/* This is used by struct block to store namespace-related info for
|
|||
|
C++ files, namely using declarations and the current namespace in
|
|||
|
scope. */
|
|||
|
|
|||
|
struct block_namespace_info : public allocate_on_obstack
|
|||
|
{
|
|||
|
const char *scope = nullptr;
|
|||
|
struct using_direct *using_decl = nullptr;
|
|||
|
};
|
|||
|
|
|||
|
static void block_initialize_namespace (struct block *block,
|
|||
|
struct obstack *obstack);
|
|||
|
|
|||
|
/* See block.h. */
|
|||
|
|
|||
|
struct objfile *
|
|||
|
block_objfile (const struct block *block)
|
|||
|
{
|
|||
|
const struct global_block *global_block;
|
|||
|
|
|||
|
if (BLOCK_FUNCTION (block) != NULL)
|
|||
|
return symbol_objfile (BLOCK_FUNCTION (block));
|
|||
|
|
|||
|
global_block = (struct global_block *) block_global_block (block);
|
|||
|
return COMPUNIT_OBJFILE (global_block->compunit_symtab);
|
|||
|
}
|
|||
|
|
|||
|
/* See block. */
|
|||
|
|
|||
|
struct gdbarch *
|
|||
|
block_gdbarch (const struct block *block)
|
|||
|
{
|
|||
|
if (BLOCK_FUNCTION (block) != NULL)
|
|||
|
return symbol_arch (BLOCK_FUNCTION (block));
|
|||
|
|
|||
|
return get_objfile_arch (block_objfile (block));
|
|||
|
}
|
|||
|
|
|||
|
/* See block.h. */
|
|||
|
|
|||
|
bool
|
|||
|
contained_in (const struct block *a, const struct block *b,
|
|||
|
bool allow_nested)
|
|||
|
{
|
|||
|
if (!a || !b)
|
|||
|
return false;
|
|||
|
|
|||
|
do
|
|||
|
{
|
|||
|
if (a == b)
|
|||
|
return true;
|
|||
|
/* If A is a function block, then A cannot be contained in B,
|
|||
|
except if A was inlined. */
|
|||
|
if (!allow_nested && BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
|
|||
|
return false;
|
|||
|
a = BLOCK_SUPERBLOCK (a);
|
|||
|
}
|
|||
|
while (a != NULL);
|
|||
|
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Return the symbol for the function which contains a specified
|
|||
|
lexical block, described by a struct block BL. The return value
|
|||
|
will not be an inlined function; the containing function will be
|
|||
|
returned instead. */
|
|||
|
|
|||
|
struct symbol *
|
|||
|
block_linkage_function (const struct block *bl)
|
|||
|
{
|
|||
|
while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
|
|||
|
&& BLOCK_SUPERBLOCK (bl) != NULL)
|
|||
|
bl = BLOCK_SUPERBLOCK (bl);
|
|||
|
|
|||
|
return BLOCK_FUNCTION (bl);
|
|||
|
}
|
|||
|
|
|||
|
/* Return the symbol for the function which contains a specified
|
|||
|
block, described by a struct block BL. The return value will be
|
|||
|
the closest enclosing function, which might be an inline
|
|||
|
function. */
|
|||
|
|
|||
|
struct symbol *
|
|||
|
block_containing_function (const struct block *bl)
|
|||
|
{
|
|||
|
while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
|
|||
|
bl = BLOCK_SUPERBLOCK (bl);
|
|||
|
|
|||
|
return BLOCK_FUNCTION (bl);
|
|||
|
}
|
|||
|
|
|||
|
/* Return one if BL represents an inlined function. */
|
|||
|
|
|||
|
int
|
|||
|
block_inlined_p (const struct block *bl)
|
|||
|
{
|
|||
|
return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
|
|||
|
}
|
|||
|
|
|||
|
/* A helper function that checks whether PC is in the blockvector BL.
|
|||
|
It returns the containing block if there is one, or else NULL. */
|
|||
|
|
|||
|
static const struct block *
|
|||
|
find_block_in_blockvector (const struct blockvector *bl, CORE_ADDR pc)
|
|||
|
{
|
|||
|
const struct block *b;
|
|||
|
int bot, top, half;
|
|||
|
|
|||
|
/* If we have an addrmap mapping code addresses to blocks, then use
|
|||
|
that. */
|
|||
|
if (BLOCKVECTOR_MAP (bl))
|
|||
|
return (const struct block *) addrmap_find (BLOCKVECTOR_MAP (bl), pc);
|
|||
|
|
|||
|
/* Otherwise, use binary search to find the last block that starts
|
|||
|
before PC.
|
|||
|
Note: GLOBAL_BLOCK is block 0, STATIC_BLOCK is block 1.
|
|||
|
They both have the same START,END values.
|
|||
|
Historically this code would choose STATIC_BLOCK over GLOBAL_BLOCK but the
|
|||
|
fact that this choice was made was subtle, now we make it explicit. */
|
|||
|
gdb_assert (BLOCKVECTOR_NBLOCKS (bl) >= 2);
|
|||
|
bot = STATIC_BLOCK;
|
|||
|
top = BLOCKVECTOR_NBLOCKS (bl);
|
|||
|
|
|||
|
while (top - bot > 1)
|
|||
|
{
|
|||
|
half = (top - bot + 1) >> 1;
|
|||
|
b = BLOCKVECTOR_BLOCK (bl, bot + half);
|
|||
|
if (BLOCK_START (b) <= pc)
|
|||
|
bot += half;
|
|||
|
else
|
|||
|
top = bot + half;
|
|||
|
}
|
|||
|
|
|||
|
/* Now search backward for a block that ends after PC. */
|
|||
|
|
|||
|
while (bot >= STATIC_BLOCK)
|
|||
|
{
|
|||
|
b = BLOCKVECTOR_BLOCK (bl, bot);
|
|||
|
if (BLOCK_END (b) > pc)
|
|||
|
return b;
|
|||
|
bot--;
|
|||
|
}
|
|||
|
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
/* Return the blockvector immediately containing the innermost lexical
|
|||
|
block containing the specified pc value and section, or 0 if there
|
|||
|
is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we
|
|||
|
don't pass this information back to the caller. */
|
|||
|
|
|||
|
const struct blockvector *
|
|||
|
blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
|
|||
|
const struct block **pblock,
|
|||
|
struct compunit_symtab *cust)
|
|||
|
{
|
|||
|
const struct blockvector *bl;
|
|||
|
const struct block *b;
|
|||
|
|
|||
|
if (cust == NULL)
|
|||
|
{
|
|||
|
/* First search all symtabs for one whose file contains our pc */
|
|||
|
cust = find_pc_sect_compunit_symtab (pc, section);
|
|||
|
if (cust == NULL)
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
bl = COMPUNIT_BLOCKVECTOR (cust);
|
|||
|
|
|||
|
/* Then search that symtab for the smallest block that wins. */
|
|||
|
b = find_block_in_blockvector (bl, pc);
|
|||
|
if (b == NULL)
|
|||
|
return NULL;
|
|||
|
|
|||
|
if (pblock)
|
|||
|
*pblock = b;
|
|||
|
return bl;
|
|||
|
}
|
|||
|
|
|||
|
/* Return true if the blockvector BV contains PC, false otherwise. */
|
|||
|
|
|||
|
int
|
|||
|
blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc)
|
|||
|
{
|
|||
|
return find_block_in_blockvector (bv, pc) != NULL;
|
|||
|
}
|
|||
|
|
|||
|
/* Return call_site for specified PC in GDBARCH. PC must match exactly, it
|
|||
|
must be the next instruction after call (or after tail call jump). Throw
|
|||
|
NO_ENTRY_VALUE_ERROR otherwise. This function never returns NULL. */
|
|||
|
|
|||
|
struct call_site *
|
|||
|
call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|||
|
{
|
|||
|
struct compunit_symtab *cust;
|
|||
|
void **slot = NULL;
|
|||
|
|
|||
|
/* -1 as tail call PC can be already after the compilation unit range. */
|
|||
|
cust = find_pc_compunit_symtab (pc - 1);
|
|||
|
|
|||
|
if (cust != NULL && COMPUNIT_CALL_SITE_HTAB (cust) != NULL)
|
|||
|
slot = htab_find_slot (COMPUNIT_CALL_SITE_HTAB (cust), &pc, NO_INSERT);
|
|||
|
|
|||
|
if (slot == NULL)
|
|||
|
{
|
|||
|
struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc);
|
|||
|
|
|||
|
/* DW_TAG_gnu_call_site will be missing just if GCC could not determine
|
|||
|
the call target. */
|
|||
|
throw_error (NO_ENTRY_VALUE_ERROR,
|
|||
|
_("DW_OP_entry_value resolving cannot find "
|
|||
|
"DW_TAG_call_site %s in %s"),
|
|||
|
paddress (gdbarch, pc),
|
|||
|
(msym.minsym == NULL ? "???"
|
|||
|
: msym.minsym->print_name ()));
|
|||
|
}
|
|||
|
|
|||
|
return (struct call_site *) *slot;
|
|||
|
}
|
|||
|
|
|||
|
/* Return the blockvector immediately containing the innermost lexical block
|
|||
|
containing the specified pc value, or 0 if there is none.
|
|||
|
Backward compatibility, no section. */
|
|||
|
|
|||
|
const struct blockvector *
|
|||
|
blockvector_for_pc (CORE_ADDR pc, const struct block **pblock)
|
|||
|
{
|
|||
|
return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
|
|||
|
pblock, NULL);
|
|||
|
}
|
|||
|
|
|||
|
/* Return the innermost lexical block containing the specified pc value
|
|||
|
in the specified section, or 0 if there is none. */
|
|||
|
|
|||
|
const struct block *
|
|||
|
block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
|
|||
|
{
|
|||
|
const struct blockvector *bl;
|
|||
|
const struct block *b;
|
|||
|
|
|||
|
bl = blockvector_for_pc_sect (pc, section, &b, NULL);
|
|||
|
if (bl)
|
|||
|
return b;
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Return the innermost lexical block containing the specified pc value,
|
|||
|
or 0 if there is none. Backward compatibility, no section. */
|
|||
|
|
|||
|
const struct block *
|
|||
|
block_for_pc (CORE_ADDR pc)
|
|||
|
{
|
|||
|
return block_for_pc_sect (pc, find_pc_mapped_section (pc));
|
|||
|
}
|
|||
|
|
|||
|
/* Now come some functions designed to deal with C++ namespace issues.
|
|||
|
The accessors are safe to use even in the non-C++ case. */
|
|||
|
|
|||
|
/* This returns the namespace that BLOCK is enclosed in, or "" if it
|
|||
|
isn't enclosed in a namespace at all. This travels the chain of
|
|||
|
superblocks looking for a scope, if necessary. */
|
|||
|
|
|||
|
const char *
|
|||
|
block_scope (const struct block *block)
|
|||
|
{
|
|||
|
for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
|
|||
|
{
|
|||
|
if (BLOCK_NAMESPACE (block) != NULL
|
|||
|
&& BLOCK_NAMESPACE (block)->scope != NULL)
|
|||
|
return BLOCK_NAMESPACE (block)->scope;
|
|||
|
}
|
|||
|
|
|||
|
return "";
|
|||
|
}
|
|||
|
|
|||
|
/* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
|
|||
|
OBSTACK. (It won't make a copy of SCOPE, however, so that already
|
|||
|
has to be allocated correctly.) */
|
|||
|
|
|||
|
void
|
|||
|
block_set_scope (struct block *block, const char *scope,
|
|||
|
struct obstack *obstack)
|
|||
|
{
|
|||
|
block_initialize_namespace (block, obstack);
|
|||
|
|
|||
|
BLOCK_NAMESPACE (block)->scope = scope;
|
|||
|
}
|
|||
|
|
|||
|
/* This returns the using directives list associated with BLOCK, if
|
|||
|
any. */
|
|||
|
|
|||
|
struct using_direct *
|
|||
|
block_using (const struct block *block)
|
|||
|
{
|
|||
|
if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
|
|||
|
return NULL;
|
|||
|
else
|
|||
|
return BLOCK_NAMESPACE (block)->using_decl;
|
|||
|
}
|
|||
|
|
|||
|
/* Set BLOCK's using member to USING; if needed, allocate memory via
|
|||
|
OBSTACK. (It won't make a copy of USING, however, so that already
|
|||
|
has to be allocated correctly.) */
|
|||
|
|
|||
|
void
|
|||
|
block_set_using (struct block *block,
|
|||
|
struct using_direct *using_decl,
|
|||
|
struct obstack *obstack)
|
|||
|
{
|
|||
|
block_initialize_namespace (block, obstack);
|
|||
|
|
|||
|
BLOCK_NAMESPACE (block)->using_decl = using_decl;
|
|||
|
}
|
|||
|
|
|||
|
/* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
|
|||
|
initialize its members to zero. */
|
|||
|
|
|||
|
static void
|
|||
|
block_initialize_namespace (struct block *block, struct obstack *obstack)
|
|||
|
{
|
|||
|
if (BLOCK_NAMESPACE (block) == NULL)
|
|||
|
BLOCK_NAMESPACE (block) = new (obstack) struct block_namespace_info ();
|
|||
|
}
|
|||
|
|
|||
|
/* Return the static block associated to BLOCK. Return NULL if block
|
|||
|
is NULL or if block is a global block. */
|
|||
|
|
|||
|
const struct block *
|
|||
|
block_static_block (const struct block *block)
|
|||
|
{
|
|||
|
if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
|
|||
|
return NULL;
|
|||
|
|
|||
|
while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
|
|||
|
block = BLOCK_SUPERBLOCK (block);
|
|||
|
|
|||
|
return block;
|
|||
|
}
|
|||
|
|
|||
|
/* Return the static block associated to BLOCK. Return NULL if block
|
|||
|
is NULL. */
|
|||
|
|
|||
|
const struct block *
|
|||
|
block_global_block (const struct block *block)
|
|||
|
{
|
|||
|
if (block == NULL)
|
|||
|
return NULL;
|
|||
|
|
|||
|
while (BLOCK_SUPERBLOCK (block) != NULL)
|
|||
|
block = BLOCK_SUPERBLOCK (block);
|
|||
|
|
|||
|
return block;
|
|||
|
}
|
|||
|
|
|||
|
/* Allocate a block on OBSTACK, and initialize its elements to
|
|||
|
zero/NULL. This is useful for creating "dummy" blocks that don't
|
|||
|
correspond to actual source files.
|
|||
|
|
|||
|
Warning: it sets the block's BLOCK_MULTIDICT to NULL, which isn't a
|
|||
|
valid value. If you really don't want the block to have a
|
|||
|
dictionary, then you should subsequently set its BLOCK_MULTIDICT to
|
|||
|
dict_create_linear (obstack, NULL). */
|
|||
|
|
|||
|
struct block *
|
|||
|
allocate_block (struct obstack *obstack)
|
|||
|
{
|
|||
|
struct block *bl = OBSTACK_ZALLOC (obstack, struct block);
|
|||
|
|
|||
|
return bl;
|
|||
|
}
|
|||
|
|
|||
|
/* Allocate a global block. */
|
|||
|
|
|||
|
struct block *
|
|||
|
allocate_global_block (struct obstack *obstack)
|
|||
|
{
|
|||
|
struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);
|
|||
|
|
|||
|
return &bl->block;
|
|||
|
}
|
|||
|
|
|||
|
/* Set the compunit of the global block. */
|
|||
|
|
|||
|
void
|
|||
|
set_block_compunit_symtab (struct block *block, struct compunit_symtab *cu)
|
|||
|
{
|
|||
|
struct global_block *gb;
|
|||
|
|
|||
|
gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
|
|||
|
gb = (struct global_block *) block;
|
|||
|
gdb_assert (gb->compunit_symtab == NULL);
|
|||
|
gb->compunit_symtab = cu;
|
|||
|
}
|
|||
|
|
|||
|
/* See block.h. */
|
|||
|
|
|||
|
struct dynamic_prop *
|
|||
|
block_static_link (const struct block *block)
|
|||
|
{
|
|||
|
struct objfile *objfile = block_objfile (block);
|
|||
|
|
|||
|
/* Only objfile-owned blocks that materialize top function scopes can have
|
|||
|
static links. */
|
|||
|
if (objfile == NULL || BLOCK_FUNCTION (block) == NULL)
|
|||
|
return NULL;
|
|||
|
|
|||
|
return (struct dynamic_prop *) objfile_lookup_static_link (objfile, block);
|
|||
|
}
|
|||
|
|
|||
|
/* Return the compunit of the global block. */
|
|||
|
|
|||
|
static struct compunit_symtab *
|
|||
|
get_block_compunit_symtab (const struct block *block)
|
|||
|
{
|
|||
|
struct global_block *gb;
|
|||
|
|
|||
|
gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
|
|||
|
gb = (struct global_block *) block;
|
|||
|
gdb_assert (gb->compunit_symtab != NULL);
|
|||
|
return gb->compunit_symtab;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
|
|||
|
/* Initialize a block iterator, either to iterate over a single block,
|
|||
|
or, for static and global blocks, all the included symtabs as
|
|||
|
well. */
|
|||
|
|
|||
|
static void
|
|||
|
initialize_block_iterator (const struct block *block,
|
|||
|
struct block_iterator *iter)
|
|||
|
{
|
|||
|
enum block_enum which;
|
|||
|
struct compunit_symtab *cu;
|
|||
|
|
|||
|
iter->idx = -1;
|
|||
|
|
|||
|
if (BLOCK_SUPERBLOCK (block) == NULL)
|
|||
|
{
|
|||
|
which = GLOBAL_BLOCK;
|
|||
|
cu = get_block_compunit_symtab (block);
|
|||
|
}
|
|||
|
else if (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL)
|
|||
|
{
|
|||
|
which = STATIC_BLOCK;
|
|||
|
cu = get_block_compunit_symtab (BLOCK_SUPERBLOCK (block));
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
iter->d.block = block;
|
|||
|
/* A signal value meaning that we're iterating over a single
|
|||
|
block. */
|
|||
|
iter->which = FIRST_LOCAL_BLOCK;
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/* If this is an included symtab, find the canonical includer and
|
|||
|
use it instead. */
|
|||
|
while (cu->user != NULL)
|
|||
|
cu = cu->user;
|
|||
|
|
|||
|
/* Putting this check here simplifies the logic of the iterator
|
|||
|
functions. If there are no included symtabs, we only need to
|
|||
|
search a single block, so we might as well just do that
|
|||
|
directly. */
|
|||
|
if (cu->includes == NULL)
|
|||
|
{
|
|||
|
iter->d.block = block;
|
|||
|
/* A signal value meaning that we're iterating over a single
|
|||
|
block. */
|
|||
|
iter->which = FIRST_LOCAL_BLOCK;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
iter->d.compunit_symtab = cu;
|
|||
|
iter->which = which;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* A helper function that finds the current compunit over whose static
|
|||
|
or global block we should iterate. */
|
|||
|
|
|||
|
static struct compunit_symtab *
|
|||
|
find_iterator_compunit_symtab (struct block_iterator *iterator)
|
|||
|
{
|
|||
|
if (iterator->idx == -1)
|
|||
|
return iterator->d.compunit_symtab;
|
|||
|
return iterator->d.compunit_symtab->includes[iterator->idx];
|
|||
|
}
|
|||
|
|
|||
|
/* Perform a single step for a plain block iterator, iterating across
|
|||
|
symbol tables as needed. Returns the next symbol, or NULL when
|
|||
|
iteration is complete. */
|
|||
|
|
|||
|
static struct symbol *
|
|||
|
block_iterator_step (struct block_iterator *iterator, int first)
|
|||
|
{
|
|||
|
struct symbol *sym;
|
|||
|
|
|||
|
gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
|
|||
|
|
|||
|
while (1)
|
|||
|
{
|
|||
|
if (first)
|
|||
|
{
|
|||
|
struct compunit_symtab *cust
|
|||
|
= find_iterator_compunit_symtab (iterator);
|
|||
|
const struct block *block;
|
|||
|
|
|||
|
/* Iteration is complete. */
|
|||
|
if (cust == NULL)
|
|||
|
return NULL;
|
|||
|
|
|||
|
block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
|
|||
|
iterator->which);
|
|||
|
sym = mdict_iterator_first (BLOCK_MULTIDICT (block),
|
|||
|
&iterator->mdict_iter);
|
|||
|
}
|
|||
|
else
|
|||
|
sym = mdict_iterator_next (&iterator->mdict_iter);
|
|||
|
|
|||
|
if (sym != NULL)
|
|||
|
return sym;
|
|||
|
|
|||
|
/* We have finished iterating the appropriate block of one
|
|||
|
symtab. Now advance to the next symtab and begin iteration
|
|||
|
there. */
|
|||
|
++iterator->idx;
|
|||
|
first = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* See block.h. */
|
|||
|
|
|||
|
struct symbol *
|
|||
|
block_iterator_first (const struct block *block,
|
|||
|
struct block_iterator *iterator)
|
|||
|
{
|
|||
|
initialize_block_iterator (block, iterator);
|
|||
|
|
|||
|
if (iterator->which == FIRST_LOCAL_BLOCK)
|
|||
|
return mdict_iterator_first (block->multidict, &iterator->mdict_iter);
|
|||
|
|
|||
|
return block_iterator_step (iterator, 1);
|
|||
|
}
|
|||
|
|
|||
|
/* See block.h. */
|
|||
|
|
|||
|
struct symbol *
|
|||
|
block_iterator_next (struct block_iterator *iterator)
|
|||
|
{
|
|||
|
if (iterator->which == FIRST_LOCAL_BLOCK)
|
|||
|
return mdict_iterator_next (&iterator->mdict_iter);
|
|||
|
|
|||
|
return block_iterator_step (iterator, 0);
|
|||
|
}
|
|||
|
|
|||
|
/* Perform a single step for a "match" block iterator, iterating
|
|||
|
across symbol tables as needed. Returns the next symbol, or NULL
|
|||
|
when iteration is complete. */
|
|||
|
|
|||
|
static struct symbol *
|
|||
|
block_iter_match_step (struct block_iterator *iterator,
|
|||
|
const lookup_name_info &name,
|
|||
|
int first)
|
|||
|
{
|
|||
|
struct symbol *sym;
|
|||
|
|
|||
|
gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
|
|||
|
|
|||
|
while (1)
|
|||
|
{
|
|||
|
if (first)
|
|||
|
{
|
|||
|
struct compunit_symtab *cust
|
|||
|
= find_iterator_compunit_symtab (iterator);
|
|||
|
const struct block *block;
|
|||
|
|
|||
|
/* Iteration is complete. */
|
|||
|
if (cust == NULL)
|
|||
|
return NULL;
|
|||
|
|
|||
|
block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
|
|||
|
iterator->which);
|
|||
|
sym = mdict_iter_match_first (BLOCK_MULTIDICT (block), name,
|
|||
|
&iterator->mdict_iter);
|
|||
|
}
|
|||
|
else
|
|||
|
sym = mdict_iter_match_next (name, &iterator->mdict_iter);
|
|||
|
|
|||
|
if (sym != NULL)
|
|||
|
return sym;
|
|||
|
|
|||
|
/* We have finished iterating the appropriate block of one
|
|||
|
symtab. Now advance to the next symtab and begin iteration
|
|||
|
there. */
|
|||
|
++iterator->idx;
|
|||
|
first = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* See block.h. */
|
|||
|
|
|||
|
struct symbol *
|
|||
|
block_iter_match_first (const struct block *block,
|
|||
|
const lookup_name_info &name,
|
|||
|
struct block_iterator *iterator)
|
|||
|
{
|
|||
|
initialize_block_iterator (block, iterator);
|
|||
|
|
|||
|
if (iterator->which == FIRST_LOCAL_BLOCK)
|
|||
|
return mdict_iter_match_first (block->multidict, name,
|
|||
|
&iterator->mdict_iter);
|
|||
|
|
|||
|
return block_iter_match_step (iterator, name, 1);
|
|||
|
}
|
|||
|
|
|||
|
/* See block.h. */
|
|||
|
|
|||
|
struct symbol *
|
|||
|
block_iter_match_next (const lookup_name_info &name,
|
|||
|
struct block_iterator *iterator)
|
|||
|
{
|
|||
|
if (iterator->which == FIRST_LOCAL_BLOCK)
|
|||
|
return mdict_iter_match_next (name, &iterator->mdict_iter);
|
|||
|
|
|||
|
return block_iter_match_step (iterator, name, 0);
|
|||
|
}
|
|||
|
|
|||
|
/* Return true if symbol A is the best match possible for DOMAIN. */
|
|||
|
|
|||
|
static bool
|
|||
|
best_symbol (struct symbol *a, const domain_enum domain)
|
|||
|
{
|
|||
|
return (SYMBOL_DOMAIN (a) == domain
|
|||
|
&& SYMBOL_CLASS (a) != LOC_UNRESOLVED);
|
|||
|
}
|
|||
|
|
|||
|
/* Return symbol B if it is a better match than symbol A for DOMAIN.
|
|||
|
Otherwise return A. */
|
|||
|
|
|||
|
static struct symbol *
|
|||
|
better_symbol (struct symbol *a, struct symbol *b, const domain_enum domain)
|
|||
|
{
|
|||
|
if (a == NULL)
|
|||
|
return b;
|
|||
|
if (b == NULL)
|
|||
|
return a;
|
|||
|
|
|||
|
if (SYMBOL_DOMAIN (a) == domain
|
|||
|
&& SYMBOL_DOMAIN (b) != domain)
|
|||
|
return a;
|
|||
|
if (SYMBOL_DOMAIN (b) == domain
|
|||
|
&& SYMBOL_DOMAIN (a) != domain)
|
|||
|
return b;
|
|||
|
|
|||
|
if (SYMBOL_CLASS (a) != LOC_UNRESOLVED
|
|||
|
&& SYMBOL_CLASS (b) == LOC_UNRESOLVED)
|
|||
|
return a;
|
|||
|
if (SYMBOL_CLASS (b) != LOC_UNRESOLVED
|
|||
|
&& SYMBOL_CLASS (a) == LOC_UNRESOLVED)
|
|||
|
return b;
|
|||
|
|
|||
|
return a;
|
|||
|
}
|
|||
|
|
|||
|
/* See block.h.
|
|||
|
|
|||
|
Note that if NAME is the demangled form of a C++ symbol, we will fail
|
|||
|
to find a match during the binary search of the non-encoded names, but
|
|||
|
for now we don't worry about the slight inefficiency of looking for
|
|||
|
a match we'll never find, since it will go pretty quick. Once the
|
|||
|
binary search terminates, we drop through and do a straight linear
|
|||
|
search on the symbols. Each symbol which is marked as being a ObjC/C++
|
|||
|
symbol (language_cplus or language_objc set) has both the encoded and
|
|||
|
non-encoded names tested for a match. */
|
|||
|
|
|||
|
struct symbol *
|
|||
|
block_lookup_symbol (const struct block *block, const char *name,
|
|||
|
symbol_name_match_type match_type,
|
|||
|
const domain_enum domain)
|
|||
|
{
|
|||
|
struct block_iterator iter;
|
|||
|
struct symbol *sym;
|
|||
|
|
|||
|
lookup_name_info lookup_name (name, match_type);
|
|||
|
|
|||
|
if (!BLOCK_FUNCTION (block))
|
|||
|
{
|
|||
|
struct symbol *other = NULL;
|
|||
|
|
|||
|
ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
|
|||
|
{
|
|||
|
/* See comment related to PR gcc/debug/91507 in
|
|||
|
block_lookup_symbol_primary. */
|
|||
|
if (best_symbol (sym, domain))
|
|||
|
return sym;
|
|||
|
/* This is a bit of a hack, but symbol_matches_domain might ignore
|
|||
|
STRUCT vs VAR domain symbols. So if a matching symbol is found,
|
|||
|
make sure there is no "better" matching symbol, i.e., one with
|
|||
|
exactly the same domain. PR 16253. */
|
|||
|
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
|||
|
SYMBOL_DOMAIN (sym), domain))
|
|||
|
other = better_symbol (other, sym, domain);
|
|||
|
}
|
|||
|
return other;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Note that parameter symbols do not always show up last in the
|
|||
|
list; this loop makes sure to take anything else other than
|
|||
|
parameter symbols first; it only uses parameter symbols as a
|
|||
|
last resort. Note that this only takes up extra computation
|
|||
|
time on a match.
|
|||
|
It's hard to define types in the parameter list (at least in
|
|||
|
C/C++) so we don't do the same PR 16253 hack here that is done
|
|||
|
for the !BLOCK_FUNCTION case. */
|
|||
|
|
|||
|
struct symbol *sym_found = NULL;
|
|||
|
|
|||
|
ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
|
|||
|
{
|
|||
|
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
|||
|
SYMBOL_DOMAIN (sym), domain))
|
|||
|
{
|
|||
|
sym_found = sym;
|
|||
|
if (!SYMBOL_IS_ARGUMENT (sym))
|
|||
|
{
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
return (sym_found); /* Will be NULL if not found. */
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* See block.h. */
|
|||
|
|
|||
|
struct symbol *
|
|||
|
block_lookup_symbol_primary (const struct block *block, const char *name,
|
|||
|
const domain_enum domain)
|
|||
|
{
|
|||
|
struct symbol *sym, *other;
|
|||
|
struct mdict_iterator mdict_iter;
|
|||
|
|
|||
|
lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
|
|||
|
|
|||
|
/* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
|
|||
|
gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
|
|||
|
|| BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
|
|||
|
|
|||
|
other = NULL;
|
|||
|
for (sym
|
|||
|
= mdict_iter_match_first (block->multidict, lookup_name, &mdict_iter);
|
|||
|
sym != NULL;
|
|||
|
sym = mdict_iter_match_next (lookup_name, &mdict_iter))
|
|||
|
{
|
|||
|
/* With the fix for PR gcc/debug/91507, we get for:
|
|||
|
...
|
|||
|
extern char *zzz[];
|
|||
|
char *zzz[ ] = {
|
|||
|
"abc",
|
|||
|
"cde"
|
|||
|
};
|
|||
|
...
|
|||
|
DWARF which will result in two entries in the symbol table, a decl
|
|||
|
with type char *[] and a def with type char *[2].
|
|||
|
|
|||
|
If we return the decl here, we don't get the value of zzz:
|
|||
|
...
|
|||
|
$ gdb a.spec.out -batch -ex "p zzz"
|
|||
|
$1 = 0x601030 <zzz>
|
|||
|
...
|
|||
|
because we're returning the symbol without location information, and
|
|||
|
because the fallback that uses the address from the minimal symbols
|
|||
|
doesn't work either because the type of the decl does not specify a
|
|||
|
size.
|
|||
|
|
|||
|
To fix this, we prefer def over decl in best_symbol and
|
|||
|
better_symbol.
|
|||
|
|
|||
|
In absence of the gcc fix, both def and decl have type char *[], so
|
|||
|
the only option to make this work is improve the fallback to use the
|
|||
|
size of the minimal symbol. Filed as PR exp/24989. */
|
|||
|
if (best_symbol (sym, domain))
|
|||
|
return sym;
|
|||
|
|
|||
|
/* This is a bit of a hack, but symbol_matches_domain might ignore
|
|||
|
STRUCT vs VAR domain symbols. So if a matching symbol is found,
|
|||
|
make sure there is no "better" matching symbol, i.e., one with
|
|||
|
exactly the same domain. PR 16253. */
|
|||
|
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
|||
|
SYMBOL_DOMAIN (sym), domain))
|
|||
|
other = better_symbol (other, sym, domain);
|
|||
|
}
|
|||
|
|
|||
|
return other;
|
|||
|
}
|
|||
|
|
|||
|
/* See block.h. */
|
|||
|
|
|||
|
struct symbol *
|
|||
|
block_find_symbol (const struct block *block, const char *name,
|
|||
|
const domain_enum domain,
|
|||
|
block_symbol_matcher_ftype *matcher, void *data)
|
|||
|
{
|
|||
|
struct block_iterator iter;
|
|||
|
struct symbol *sym;
|
|||
|
|
|||
|
lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
|
|||
|
|
|||
|
/* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
|
|||
|
gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
|
|||
|
|| BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
|
|||
|
|
|||
|
ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
|
|||
|
{
|
|||
|
/* MATCHER is deliberately called second here so that it never sees
|
|||
|
a non-domain-matching symbol. */
|
|||
|
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
|||
|
SYMBOL_DOMAIN (sym), domain)
|
|||
|
&& matcher (sym, data))
|
|||
|
return sym;
|
|||
|
}
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
/* See block.h. */
|
|||
|
|
|||
|
int
|
|||
|
block_find_non_opaque_type (struct symbol *sym, void *data)
|
|||
|
{
|
|||
|
return !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym));
|
|||
|
}
|
|||
|
|
|||
|
/* See block.h. */
|
|||
|
|
|||
|
int
|
|||
|
block_find_non_opaque_type_preferred (struct symbol *sym, void *data)
|
|||
|
{
|
|||
|
struct symbol **best = (struct symbol **) data;
|
|||
|
|
|||
|
if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
|
|||
|
return 1;
|
|||
|
*best = sym;
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* See block.h. */
|
|||
|
|
|||
|
struct blockranges *
|
|||
|
make_blockranges (struct objfile *objfile,
|
|||
|
const std::vector<blockrange> &rangevec)
|
|||
|
{
|
|||
|
struct blockranges *blr;
|
|||
|
size_t n = rangevec.size();
|
|||
|
|
|||
|
blr = (struct blockranges *)
|
|||
|
obstack_alloc (&objfile->objfile_obstack,
|
|||
|
sizeof (struct blockranges)
|
|||
|
+ (n - 1) * sizeof (struct blockrange));
|
|||
|
|
|||
|
blr->nranges = n;
|
|||
|
for (int i = 0; i < n; i++)
|
|||
|
blr->range[i] = rangevec[i];
|
|||
|
return blr;
|
|||
|
}
|
|||
|
|