Aegisub/libaegisub/include/libaegisub/signal.h

302 lines
10 KiB
C++

// Copyright (c) 2010, Thomas Goyne <plorkyeran@aegisub.org>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
/// @file signal.h
/// @brief
/// @ingroup libaegisub
#pragma once
#include <boost/container/map.hpp>
#include <functional>
#include <memory>
namespace agi {
namespace signal {
using namespace std::placeholders;
class Connection;
/// Implementation details; nothing outside this file should directly touch
/// anything in the detail namespace
namespace detail {
class SignalBase;
class ConnectionToken {
friend class agi::signal::Connection;
friend class SignalBase;
SignalBase *signal;
bool blocked;
bool claimed;
ConnectionToken(SignalBase *signal) : signal(signal), blocked(false), claimed(false) { }
inline void Disconnect();
public:
~ConnectionToken() { Disconnect(); }
};
}
/// @class Connection
/// @brief Object representing a connection to a signal
class Connection {
std::unique_ptr<detail::ConnectionToken> token;
public:
Connection() { }
Connection(Connection&& that) : token(std::move(that.token)) { }
Connection(detail::ConnectionToken *token) : token(token) { token->claimed = true; }
Connection& operator=(Connection&& that) { token = std::move(that.token); return *this; }
/// @brief End this connection
///
/// This normally does not need to be manually called, as a connection is
/// automatically closed when all Connection objects referring to it are
/// gone. To temporarily enable or disable a connection, use Block/Unblock
/// instead
void Disconnect() { if (token) token->Disconnect(); }
/// @brief Disable this connection until Unblock is called
void Block() { if (token) token->blocked = true; }
/// @brief Reenable this connection after it was disabled by Block
void Unblock() { if (token) token->blocked = false; }
};
/// @class UnscopedConnection
/// @brief A connection which is not automatically closed
///
/// Connections initially start out owned by the signal. If a slot knows that it
/// will outlive a signal and does not need to be able to block a connection, it
/// can simply ignore the return value of Connect.
///
/// If a slot needs to be able to disconnect from a signal, it should store the
/// returned connection in a Connection, which transfers ownership of the
/// connection to the slot. If there is any chance that the signal will outlive
/// the slot, this must be done.
class UnscopedConnection {
detail::ConnectionToken *token;
public:
UnscopedConnection(detail::ConnectionToken *token) : token(token) { }
operator Connection() { return Connection(token); }
};
namespace detail {
/// @brief Polymorphic base class for slots
///
/// This class has two purposes: to avoid having to make Connection
/// templated on what type of connection it is controlling, and to avoid
/// some messiness with templated friend classes
class SignalBase {
friend class ConnectionToken;
/// @brief Disconnect the passed slot from the signal
/// @param tok Token to disconnect
virtual void Disconnect(ConnectionToken *tok)=0;
/// Signals can't be copied
SignalBase(SignalBase const&);
SignalBase& operator=(SignalBase const&);
protected:
SignalBase() { }
/// @brief Notify a slot that it has been disconnected
/// @param tok Token to disconnect
///
/// Used by the signal when the signal wishes to end a connection (such
/// as if the signal is being destroyed while slots are still connected
/// to it)
void DisconnectToken(ConnectionToken *tok) { tok->signal = nullptr; }
/// @brief Has a token been claimed by a scoped connection object?
bool TokenClaimed(ConnectionToken *tok) { return tok->claimed; }
/// @brief Create a new connection to this slot
ConnectionToken *MakeToken() { return new ConnectionToken(this); }
/// @brief Check if a connection currently wants to receive signals
bool Blocked(ConnectionToken *tok) { return tok->blocked; }
};
inline void ConnectionToken::Disconnect() {
if (signal) signal->Disconnect(this);
signal = nullptr;
}
/// @brief Templated common code for signals
template<class Slot>
class SignalBaseImpl final : public SignalBase {
protected:
typedef boost::container::map<ConnectionToken*, Slot> SlotMap;
SlotMap slots; /// Signals currently connected to this slot
void Disconnect(ConnectionToken *tok) override {
slots.erase(tok);
}
/// Protected destructor so that we don't need a virtual destructor
~SignalBaseImpl() {
for (auto& slot : slots) {
DisconnectToken(slot.first);
if (!TokenClaimed(slot.first)) delete slot.first;
}
}
public:
/// @brief Connect a signal to this slot
/// @param sig Signal to connect
/// @return The connection object
UnscopedConnection Connect(Slot sig) {
ConnectionToken *token = MakeToken();
slots.insert(std::make_pair(token, sig));
return UnscopedConnection(token);
}
template<class F, class Arg1>
UnscopedConnection Connect(F func, Arg1 a1) {
return Connect(std::bind(func, a1));
}
template<class F, class Arg1, class Arg2>
UnscopedConnection Connect(F func, Arg1 a1, Arg2 a2) {
return Connect(std::bind(func, a1, a2));
}
template<class F, class Arg1, class Arg2, class Arg3>
UnscopedConnection Connect(F func, Arg1 a1, Arg2 a2, Arg3 a3) {
return Connect(std::bind(func, a1, a2, a3));
}
};
}
#define SIGNALS_H_FOR_EACH_SIGNAL(...) \
for (auto cur = slots.begin(); cur != slots.end();) { \
if (Blocked(cur->first)) \
++cur; \
else \
(cur++)->second(__VA_ARGS__); \
}
/// @class Signal
/// @brief Two-argument signal
/// @param Arg1 Type of first argument to pass to slots
/// @param Arg2 Type of second argument to pass to slots
template<class Arg1 = void, class Arg2 = void>
class Signal final : public detail::SignalBaseImpl<std::function<void (Arg1, Arg2)> > {
typedef detail::SignalBaseImpl<std::function<void (Arg1, Arg2)> > super;
using super::Blocked;
using super::slots;
public:
Signal() { }
/// @brief Trigger this signal
/// @param a1 First argument to the signal
/// @param a2 Second argument to the signal
///
/// The order in which connected slots are called is undefined and should
/// not be relied on
void operator()(Arg1 a1, Arg2 a2) { SIGNALS_H_FOR_EACH_SIGNAL(a1, a2) }
// Don't hide the base overloads
using super::Connect;
/// @brief Connect a member function with the correct signature to this signal
/// @param func Function to connect
/// @param a1 Object
///
/// This overload is purely for convenience so that classes can do
/// sig.Connect(&Class::Foo, this) rather than
/// sig.Connect(&Class::Foo, this, _1, _2)
template<class T>
UnscopedConnection Connect(void (T::*func)(Arg1, Arg2), T* a1) {
return Connect(std::bind(func, a1, _1, _2));
}
/// @brief Connect a member function with the correct signature to this signal
/// @param func Function to connect
/// @param a1 Object
///
/// This overload is purely for convenience so that classes can do
/// sig.Connect(&Class::Foo, this) rather than
/// sig.Connect(&Class::Foo, this, _1)
template<class T>
UnscopedConnection Connect(void (T::*func)(Arg1), T* a1) {
return Connect(std::bind(func, a1, _1));
}
};
/// @class Signal
/// @brief One-argument signal
/// @param Arg1 Type of the argument to pass to slots
template<class Arg1>
class Signal<Arg1, void> : public detail::SignalBaseImpl<std::function<void (Arg1)> > {
typedef detail::SignalBaseImpl<std::function<void (Arg1)> > super;
using super::Blocked;
using super::slots;
public:
Signal() { }
/// @brief Trigger this signal
/// @param a1 The argument to the signal
///
/// The order in which connected slots are called is undefined and should
/// not be relied on
void operator()(Arg1 a1) { SIGNALS_H_FOR_EACH_SIGNAL(a1) }
// Don't hide the base overloads
using super::Connect;
/// @brief Connect a member function with the correct signature to this signal
/// @param func Function to connect
/// @param a1 Object
///
/// This overload is purely for convenience so that classes can do
/// sig.Connect(&Class::Foo, this) rather than sig.Connect(&Class::Foo, this, _1)
template<class T>
UnscopedConnection Connect(void (T::*func)(Arg1), T* a1) {
return Connect(std::bind(func, a1, _1));
}
};
/// @class Signal
/// @brief Zero-argument signal
template<>
class Signal<void> final : public detail::SignalBaseImpl<std::function<void ()> > {
typedef detail::SignalBaseImpl<std::function<void ()> > super;
using super::Blocked;
using super::slots;
public:
Signal() { }
/// @brief Trigger this signal
///
/// The order in which connected slots are called is undefined and should
/// not be relied on
void operator()() { SIGNALS_H_FOR_EACH_SIGNAL() }
};
#undef SIGNALS_H_FOR_EACH_SIGNAL
}
}
/// @brief Define functions which forward their arguments to the connect method
/// of the named signal
/// @param sig Name of the signal
/// @param method Name of the connect method
///
/// When a signal is a member of a class, we typically want other objects to be
/// able to connect to the signal, but not to be able to trigger it. To do this,
/// make this signal private then use this macro to create public subscription
/// methods
///
/// Defines AddSignalNameListener
#define DEFINE_SIGNAL_ADDERS(sig, method) \
template<class A> agi::signal::UnscopedConnection method(A a) { return sig.Connect(a); } \
template<class A,class B> agi::signal::UnscopedConnection method(A a,B b) { return sig.Connect(a,b); } \
template<class A,class B,class C> agi::signal::UnscopedConnection method(A a,B b,C c) { return sig.Connect(a,b,c); } \
template<class A,class B,class C,class D> agi::signal::UnscopedConnection method(A a,B b,C c,D d) { return sig.Connect(a,b,c,d); }