Aegisub/aegisub/src/fft.cpp

224 lines
5.5 KiB
C++

// Copyright (c) 2005, Rodrigo Braz Monteiro
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of the Aegisub Group nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Aegisub Project http://www.aegisub.org/
//
// $Id$
/// @file fft.cpp
/// @brief Fast Fourier-transform implementation
/// @ingroup utility
///
/// Most of this code was taken from http://www.codeproject.com/audio/waveInFFT.asp
/// And rewriten by Rodrigo Braz Monteiro
///////////
// Headers
#include "config.h"
#include "fft.h"
#include <math.h>
/// @brief Transform
/// @param n_samples
/// @param input
/// @param output_r
/// @param output_i
/// @param inverse
///
void FFT::DoTransform (size_t n_samples,float *input,float *output_r,float *output_i,bool inverse) {
// Check if it's power of two
if (!IsPowerOfTwo(n_samples)) {
throw L"FFT requires power of two input.";
}
// Inverse transform
float angle_num = 2.0f * 3.1415926535897932384626433832795f;
if (inverse) angle_num = -angle_num;
// Variables
unsigned int i, j, k, n;
float tr, ti;
// Calculate needed bits
unsigned int NumBits;
NumBits = NumberOfBitsNeeded(n_samples);
// Copy samples to output buffers
for (i=0;i<n_samples;i++) {
j = ReverseBits (i,NumBits);
output_r[j] = input[i];
output_i[j] = 0.0f;
}
unsigned int BlockEnd = 1;
unsigned int BlockSize;
for (BlockSize = 2;BlockSize<=n_samples;BlockSize<<=1) {
// Calculate variables for this iteration
float delta_angle = angle_num / (float)BlockSize;
float sm2 = sin (-2 * delta_angle);
float sm1 = sin (-delta_angle);
float cm2 = cos (-2 * delta_angle);
float cm1 = cos (-delta_angle);
float w = 2 * cm1;
float ar0, ar1, ar2, ai0, ai1, ai2;
// Apply for every sample
for(i=0;i<n_samples;i+=BlockSize) {
ar1 = cm1;
ar2 = cm2;
ai1 = sm1;
ai2 = sm2;
for (j=i,n=0;n<BlockEnd;j++,n++) {
k = j + BlockEnd;
ar0 = w*ar1 - ar2;
ai0 = w*ai1 - ai2;
ar2 = ar1;
ai2 = ai1;
ar1 = ar0;
ai1 = ai0;
tr = ar0*output_r[k] - ai0*output_i[k];
ti = ar0*output_i[k] + ai0*output_r[k];
output_r[k] = output_r[j] - tr;
output_i[k] = output_i[j] - ti;
output_r[j] += tr;
output_i[j] += ti;
}
}
// Set next block end to current size
BlockEnd = BlockSize;
}
// Divide everything by number of samples if it's an inverse transform
if (inverse) {
float denom = 1.0f/(float)n_samples;
for (i=0;i<n_samples;i++) {
output_r[i] *= denom;
output_i[i] *= denom;
}
}
}
/// @brief Transform wrappers
/// @param n_samples
/// @param input
/// @param output_r
/// @param output_i
///
void FFT::Transform(size_t n_samples,float *input,float *output_r,float *output_i) {
DoTransform(n_samples,input,output_r,output_i,false);
}
/// @brief DOCME
/// @param n_samples
/// @param input
/// @param output_r
/// @param output_i
///
void FFT::InverseTransform(size_t n_samples,float *input,float *output_r,float *output_i) {
DoTransform(n_samples,input,output_r,output_i,true);
}
/// @brief Checks if number is a power of two
/// @param x
/// @return
///
bool FFT::IsPowerOfTwo (unsigned int x) {
if (x < 2) return false;
if (x & (x-1)) return false;
return true;
}
/// @brief Bits needed by the FFT
/// @param n_samples
/// @return
///
unsigned int FFT::NumberOfBitsNeeded (unsigned int n_samples) {
int i;
if (n_samples < 2) {
return 0;
}
for (i=0; ;i++) {
if(n_samples & (1 << i)) return i;
}
}
/// @brief Get reversed bit position
/// @param index
/// @param bits
/// @return
///
unsigned int FFT::ReverseBits (unsigned int index, unsigned int bits) {
unsigned int i, rev;
for(i=rev=0;i<bits;i++) {
rev = (rev << 1) | (index & 1);
index >>= 1;
}
return rev;
}
/// @brief Get frequency at index
/// @param baseFreq
/// @param n_samples
/// @param index
///
float FFT::FrequencyAtIndex (unsigned int baseFreq, unsigned int n_samples, unsigned int index) {
if (index >= n_samples) return 0.0;
else if (index <= n_samples/2) {
return ((float)index / (float)n_samples * baseFreq);
}
else {
return (-(float)(n_samples-index) / (float)n_samples * baseFreq);
}
}