mirror of https://github.com/odrling/Aegisub
224 lines
5.5 KiB
C++
224 lines
5.5 KiB
C++
// Copyright (c) 2005, Rodrigo Braz Monteiro
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of the Aegisub Group nor the names of its contributors
|
|
// may be used to endorse or promote products derived from this software
|
|
// without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Aegisub Project http://www.aegisub.org/
|
|
//
|
|
// $Id$
|
|
|
|
/// @file fft.cpp
|
|
/// @brief Fast Fourier-transform implementation
|
|
/// @ingroup utility
|
|
///
|
|
/// Most of this code was taken from http://www.codeproject.com/audio/waveInFFT.asp
|
|
/// And rewriten by Rodrigo Braz Monteiro
|
|
|
|
|
|
///////////
|
|
// Headers
|
|
#include "config.h"
|
|
|
|
#include "fft.h"
|
|
#include <math.h>
|
|
|
|
|
|
|
|
/// @brief Transform
|
|
/// @param n_samples
|
|
/// @param input
|
|
/// @param output_r
|
|
/// @param output_i
|
|
/// @param inverse
|
|
///
|
|
void FFT::DoTransform (size_t n_samples,float *input,float *output_r,float *output_i,bool inverse) {
|
|
// Check if it's power of two
|
|
if (!IsPowerOfTwo(n_samples)) {
|
|
throw L"FFT requires power of two input.";
|
|
}
|
|
|
|
// Inverse transform
|
|
float angle_num = 2.0f * 3.1415926535897932384626433832795f;
|
|
if (inverse) angle_num = -angle_num;
|
|
|
|
// Variables
|
|
unsigned int i, j, k, n;
|
|
float tr, ti;
|
|
|
|
// Calculate needed bits
|
|
unsigned int NumBits;
|
|
NumBits = NumberOfBitsNeeded(n_samples);
|
|
|
|
// Copy samples to output buffers
|
|
for (i=0;i<n_samples;i++) {
|
|
j = ReverseBits (i,NumBits);
|
|
output_r[j] = input[i];
|
|
output_i[j] = 0.0f;
|
|
}
|
|
|
|
unsigned int BlockEnd = 1;
|
|
unsigned int BlockSize;
|
|
for (BlockSize = 2;BlockSize<=n_samples;BlockSize<<=1) {
|
|
// Calculate variables for this iteration
|
|
float delta_angle = angle_num / (float)BlockSize;
|
|
float sm2 = sin (-2 * delta_angle);
|
|
float sm1 = sin (-delta_angle);
|
|
float cm2 = cos (-2 * delta_angle);
|
|
float cm1 = cos (-delta_angle);
|
|
float w = 2 * cm1;
|
|
float ar0, ar1, ar2, ai0, ai1, ai2;
|
|
|
|
// Apply for every sample
|
|
for(i=0;i<n_samples;i+=BlockSize) {
|
|
ar1 = cm1;
|
|
ar2 = cm2;
|
|
ai1 = sm1;
|
|
ai2 = sm2;
|
|
|
|
for (j=i,n=0;n<BlockEnd;j++,n++) {
|
|
k = j + BlockEnd;
|
|
|
|
ar0 = w*ar1 - ar2;
|
|
ai0 = w*ai1 - ai2;
|
|
ar2 = ar1;
|
|
ai2 = ai1;
|
|
ar1 = ar0;
|
|
ai1 = ai0;
|
|
|
|
tr = ar0*output_r[k] - ai0*output_i[k];
|
|
ti = ar0*output_i[k] + ai0*output_r[k];
|
|
|
|
output_r[k] = output_r[j] - tr;
|
|
output_i[k] = output_i[j] - ti;
|
|
|
|
output_r[j] += tr;
|
|
output_i[j] += ti;
|
|
}
|
|
}
|
|
|
|
// Set next block end to current size
|
|
BlockEnd = BlockSize;
|
|
}
|
|
|
|
// Divide everything by number of samples if it's an inverse transform
|
|
if (inverse) {
|
|
float denom = 1.0f/(float)n_samples;
|
|
for (i=0;i<n_samples;i++) {
|
|
output_r[i] *= denom;
|
|
output_i[i] *= denom;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// @brief Transform wrappers
|
|
/// @param n_samples
|
|
/// @param input
|
|
/// @param output_r
|
|
/// @param output_i
|
|
///
|
|
void FFT::Transform(size_t n_samples,float *input,float *output_r,float *output_i) {
|
|
DoTransform(n_samples,input,output_r,output_i,false);
|
|
}
|
|
|
|
|
|
/// @brief DOCME
|
|
/// @param n_samples
|
|
/// @param input
|
|
/// @param output_r
|
|
/// @param output_i
|
|
///
|
|
void FFT::InverseTransform(size_t n_samples,float *input,float *output_r,float *output_i) {
|
|
DoTransform(n_samples,input,output_r,output_i,true);
|
|
}
|
|
|
|
|
|
|
|
/// @brief Checks if number is a power of two
|
|
/// @param x
|
|
/// @return
|
|
///
|
|
bool FFT::IsPowerOfTwo (unsigned int x) {
|
|
if (x < 2) return false;
|
|
if (x & (x-1)) return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
/// @brief Bits needed by the FFT
|
|
/// @param n_samples
|
|
/// @return
|
|
///
|
|
unsigned int FFT::NumberOfBitsNeeded (unsigned int n_samples) {
|
|
int i;
|
|
|
|
if (n_samples < 2) {
|
|
return 0;
|
|
}
|
|
|
|
for (i=0; ;i++) {
|
|
if(n_samples & (1 << i)) return i;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// @brief Get reversed bit position
|
|
/// @param index
|
|
/// @param bits
|
|
/// @return
|
|
///
|
|
unsigned int FFT::ReverseBits (unsigned int index, unsigned int bits) {
|
|
unsigned int i, rev;
|
|
|
|
for(i=rev=0;i<bits;i++) {
|
|
rev = (rev << 1) | (index & 1);
|
|
index >>= 1;
|
|
}
|
|
|
|
return rev;
|
|
}
|
|
|
|
|
|
|
|
/// @brief Get frequency at index
|
|
/// @param baseFreq
|
|
/// @param n_samples
|
|
/// @param index
|
|
///
|
|
float FFT::FrequencyAtIndex (unsigned int baseFreq, unsigned int n_samples, unsigned int index) {
|
|
if (index >= n_samples) return 0.0;
|
|
else if (index <= n_samples/2) {
|
|
return ((float)index / (float)n_samples * baseFreq);
|
|
}
|
|
else {
|
|
return (-(float)(n_samples-index) / (float)n_samples * baseFreq);
|
|
}
|
|
}
|
|
|
|
|