Aegisub/devel/OverLua/image.h

669 lines
21 KiB
C++

/*
* OverLua RGB(A) image interface
*
Copyright 2007 Niels Martin Hansen
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Contact:
E-mail: <jiifurusu@gmail.com>
IRC: jfs in #aegisub on irc.rizon.net
*/
#ifndef VIDEO_FRAME_H
#define VIDEO_FRAME_H
#include "../lua51/src/lua.h"
#include "../lua51/src/lauxlib.h"
#include "cairo_wrap.h"
#include <stddef.h>
#include <memory.h>
#include <stdint.h>
#include <omp.h>
#include <math.h>
#include <assert.h>
// Forward
class BaseImageAggregate;
// Supported pixel formats
namespace PixelFormat {
// A constant value with a fake assignment operator, taking up no space
template <class T, T v>
struct NopAssigningConstant {
operator T() const { return v; }
void operator = (const T &n) { }
};
typedef NopAssigningConstant<uint8_t,255> ROA; // "read only alpha"
typedef NopAssigningConstant<uint8_t,0> ROC; // "read only colour"
// 24 bit formats
struct RGB {
uint8_t r, g, b;
inline uint8_t &R() { return r; } inline uint8_t R() const { return r; }
inline uint8_t &G() { return g; } inline uint8_t G() const { return g; }
inline uint8_t &B() { return b; } inline uint8_t B() const { return b; }
inline ROA A() const { return ROA(); }
RGB() : r(0), g(0), b(0) { }
template <class PixFmt> RGB(const PixFmt &src) { r = src.R(); g = src.G(); b = src.B(); }
};
struct BGR {
uint8_t b, g, r;
inline uint8_t &R() { return r; } inline uint8_t R() const { return r; }
inline uint8_t &G() { return g; } inline uint8_t G() const { return g; }
inline uint8_t &B() { return b; } inline uint8_t B() const { return b; }
inline ROA A() const { return ROA(); }
BGR() : r(0), g(0), b(0) { }
template <class PixFmt> BGR(const PixFmt &src) { r = src.R(); g = src.G(); b = src.B(); }
};
// 32 bit alpha-less formats
struct RGBX {
uint8_t r, g, b, x;
inline uint8_t &R() { return r; } inline uint8_t R() const { return r; }
inline uint8_t &G() { return g; } inline uint8_t G() const { return g; }
inline uint8_t &B() { return b; } inline uint8_t B() const { return b; }
inline ROA A() const { return ROA(); }
RGBX() : r(0), g(0), b(0) { }
template <class PixFmt> RGBX(const PixFmt &src) { r = src.R(); g = src.G(); b = src.B(); }
};
struct BGRX {
uint8_t b, g, r, x;
inline uint8_t &R() { return r; } inline uint8_t R() const { return r; }
inline uint8_t &G() { return g; } inline uint8_t G() const { return g; }
inline uint8_t &B() { return b; } inline uint8_t B() const { return b; }
inline ROA A() const { return ROA(); }
BGRX() : r(0), g(0), b(0) { }
template <class PixFmt> BGRX(const PixFmt &src) { r = src.R(); g = src.G(); b = src.B(); }
};
struct XRGB {
uint8_t x, r, g, b;
inline uint8_t &R() { return r; } inline uint8_t R() const { return r; }
inline uint8_t &G() { return g; } inline uint8_t G() const { return g; }
inline uint8_t &B() { return b; } inline uint8_t B() const { return b; }
inline ROA A() const { return ROA(); }
XRGB() : r(0), g(0), b(0) { }
template <class PixFmt> XRGB(const PixFmt &src) { r = src.R(); g = src.G(); b = src.B(); }
};
struct XBGR {
uint8_t x, b, g, r;
inline uint8_t &R() { return r; } inline uint8_t R() const { return r; }
inline uint8_t &G() { return g; } inline uint8_t G() const { return g; }
inline uint8_t &B() { return b; } inline uint8_t B() const { return b; }
inline ROA A() const { return ROA(); }
XBGR() : r(0), g(0), b(0) { }
template <class PixFmt> XBGR(const PixFmt &src) { r = src.R(); g = src.G(); b = src.B(); }
};
// 32 bit with alpha
struct RGBA {
uint8_t r, g, b, a;
inline uint8_t &R() { return r; } inline uint8_t R() const { return r; }
inline uint8_t &G() { return g; } inline uint8_t G() const { return g; }
inline uint8_t &B() { return b; } inline uint8_t B() const { return b; }
inline uint8_t &A() { return a; } inline uint8_t A() const { return a; }
RGBA() : r(0), g(0), b(0), a(0) { }
template <class PixFmt> RGBA(const PixFmt &src) { a = src.a; r = src.r; g = src.g; b = src.b; }
};
struct BGRA {
uint8_t b, g, r, a;
inline uint8_t &R() { return r; } inline uint8_t R() const { return r; }
inline uint8_t &G() { return g; } inline uint8_t G() const { return g; }
inline uint8_t &B() { return b; } inline uint8_t B() const { return b; }
inline uint8_t &A() { return a; } inline uint8_t A() const { return a; }
BGRA() : r(0), g(0), b(0), a(0) { }
template <class PixFmt> BGRA(const PixFmt &src) { a = src.A(); r = src.R(); g = src.G(); b = src.B(); }
};
struct ARGB {
uint8_t a, r, g, b;
inline uint8_t &R() { return r; } inline uint8_t R() const { return r; }
inline uint8_t &G() { return g; } inline uint8_t G() const { return g; }
inline uint8_t &B() { return b; } inline uint8_t B() const { return b; }
inline uint8_t &A() { return a; } inline uint8_t A() const { return a; }
ARGB() : r(0), g(0), b(0), a(0) { }
template <class PixFmt> ARGB(const PixFmt &src) { a = src.A(); r = src.R(); g = src.G(); b = src.B(); }
};
struct ABGR {
uint8_t a, b, g, r;
inline uint8_t &R() { return r; } inline uint8_t R() const { return r; }
inline uint8_t &G() { return g; } inline uint8_t G() const { return g; }
inline uint8_t &B() { return b; } inline uint8_t B() const { return b; }
inline uint8_t &A() { return a; } inline uint8_t A() const { return a; }
ABGR() : r(0), g(0), b(0), a(0) { }
template <class PixFmt> ABGR(const PixFmt &src) { a = src.A(); r = src.R(); g = src.G(); b = src.B(); }
};
// Alpha only
struct A8 {
uint8_t a;
inline ROC R() const { return ROC(); }
inline ROC G() const { return ROC(); }
inline ROC B() const { return ROC(); }
inline uint8_t &A() { return a; } inline uint8_t A() const { return a; }
A8() : a(0) { }
template <class PixFmt> A8(const PixFmt &src) { a = src.A(); }
};
// cairo types
// These are only true for little endian architectures
// If OverLua is ever to run on big endian archs some conditional compiling should be used here
typedef BGRX cairo_rgb24;
typedef BGRA cairo_argb32;
};
// Support any interleaved RGB format with 8 bit per channel
// You usually don't want to instance this class directly,
// look at OverLuaFrameAggregate defined below
template<class PixFmt>
class BaseImage {
public:
typedef BaseImage<PixFmt> MyType;
// video properties
int width;
int height;
ptrdiff_t stride;
unsigned char *data;
// Access a pixel value
inline const PixFmt &Pixel(int x, int y) const
{
return *((PixFmt*)(data + y*stride) + x)
}
inline PixFmt &Pixel(int x, int y)
{
return *((PixFmt*)(data + y*stride) + x);
}
BaseImage(unsigned _width, unsigned _height, ptrdiff_t _stride, unsigned char *_data)
: width(_width), height(_height), stride(_stride), data(_data)
{
owndata = false;
// nothing further to init
}
BaseImage(const MyType &src, bool copydata = false)
{
width = src.width;
height = src.height;
stride = src.stride;
owndata = copydata;
if (copydata) {
data = new unsigned char[height*stride];
memcpy(data, src.data, height*stride);
} else {
data = src.data;
}
}
~BaseImage()
{
if (owndata)
delete[] data;
}
// should never be called more than once on the same C++ object
void CreateLuaObject(lua_State *L, BaseImageAggregate *aggregate = 0)
{
// create userdata object
MyType **ud = (MyType**)lua_newuserdata(L, sizeof(MyType*));
*ud = this;
// create metatable
lua_newtable(L);
lua_pushcclosure(L, lua_indexget, 0);
lua_setfield(L, -2, "__index");
lua_pushcclosure(L, lua_indexset, 0);
lua_setfield(L, -2, "__newindex");
lua_pushcclosure(L, lua_getpixel, 0);
lua_setfield(L, -2, "__call");
lua_pushcclosure(L, lua_finalize, 0);
lua_setfield(L, -2, "__gc");
if (aggregate) {
lua_pushlightuserdata(L, aggregate);
lua_setfield(L, -2, "image");
}
lua_setmetatable(L, -2);
}
private:
bool owndata;
// set a pixel colour
static int lua_indexset(lua_State *L)
{
// first arg = object
// second arg = index
// third arg = value
MyType **ud = (MyType**)lua_touserdata(L, 1);
if (lua_isnumber(L, 2)) {
if (lua_istable(L, 3)) {
int n = (int)lua_tointeger(L, 2);
int x = n % (*ud)->width;
int y = n / (*ud)->width;
if (x < 0 || y < 0 || x >= (*ud)->width || y >= (*ud)->height) return 0;
// read first three entries from table
PixFmt color;
lua_pushnil(L);
if (!lua_next(L, 3)) goto badtable;
if (!lua_isnumber(L, -1)) goto badtable;
color.r = (unsigned char)lua_tointeger(L, -1);
lua_pop(L, 1);
if (!lua_next(L, 3)) goto badtable;
if (!lua_isnumber(L, -1)) goto badtable;
color.g = (unsigned char)lua_tointeger(L, -1);
lua_pop(L, 1);
if (!lua_next(L, 3)) goto badtable;
if (!lua_isnumber(L, -1)) goto badtable;
color.b = (unsigned char)lua_tointeger(L, -1);
lua_pop(L, 2);
(*ud)->Pixel(x, y) = color;
return 0;
} else {
badtable:
lua_pushliteral(L, "Value set into image pixel must be a table with 3 entries");
lua_error(L);
return 0;
}
}
lua_pushliteral(L, "Undefined field in image");
lua_error(L);
return 0;
}
// get a pixel colour or some other property
static int lua_indexget(lua_State *L)
{
// first arg = object
// second arg = index
MyType **ud = (MyType**)lua_touserdata(L, 1);
if (lua_type(L, 2) == LUA_TSTRING) {
const char *fieldname = lua_tostring(L, 2);
if (strcmp(fieldname, "width") == 0) {
lua_pushnumber(L, (*ud)->width);
} else if (strcmp(fieldname, "height") == 0) {
lua_pushnumber(L, (*ud)->height);
} else if (strcmp(fieldname, "copy") == 0) {
lua_pushvalue(L, 1);
lua_pushcclosure(L, lua_copyfunc, 1);
} else if (strcmp(fieldname, "create_cairo_surface") == 0) {
lua_pushvalue(L, 1);
lua_pushcclosure(L, lua_create_cairo_surface, 1);
} else if (strcmp(fieldname, "overlay_cairo_surface") == 0) {
lua_pushvalue(L, 1);
lua_pushcclosure(L, lua_overlay_cairo_surface, 1);
} else {
lua_pushfstring(L, "Undefined field name in image: %s", fieldname);
lua_error(L);
}
return 1;
}
lua_pushfstring(L, "Unhandled field type indexing image: %s", lua_typename(L, lua_type(L, 2)));
lua_error(L);
return 0;
}
static int lua_getpixel(lua_State *L)
{
// first arg = object
// second arg = x
// third arg = y
MyType **ud = (MyType**)lua_touserdata(L, 1);
int x = luaL_checkint(L, 2);
int y = luaL_checkint(L, 3);
if (x < 0 || y < 0 || x >= (*ud)->width || y >= (*ud)->height) {
lua_pushinteger(L, 0);
lua_pushinteger(L, 0);
lua_pushinteger(L, 0);
} else {
const PixFmt &p = (*ud)->Pixel(x, y);
lua_pushinteger(L, p.r);
lua_pushinteger(L, p.g);
lua_pushinteger(L, p.b);
}
return 3;
}
static int lua_finalize(lua_State *L)
{
MyType **ud = (MyType**)lua_touserdata(L, 1);
delete *ud;
return 0;
}
static int lua_copyfunc(lua_State *L)
{
MyType **ud = (MyType**)lua_touserdata(L, lua_upvalueindex(1));
MyType *copy = new MyType(**ud, true);
copy->CreateLuaObject(L);
return 1;
}
static int lua_create_cairo_surface(lua_State *L)
{
MyType **ud = (MyType**)lua_touserdata(L, lua_upvalueindex(1));
// Create a new surface of same resolution
// Always RGB24 format since we don't support video with alpha
cairo_surface_t *surf = cairo_image_surface_create(CAIRO_FORMAT_RGB24, (*ud)->width, (*ud)->height);
if (!surf || cairo_surface_status(surf) != CAIRO_STATUS_SUCCESS) {
lua_pushliteral(L, "Unable to create cairo surface from image");
lua_error(L);
return 0;
}
// Prepare copying pixels from frame to surface
unsigned char *surfdata = cairo_image_surface_get_data(surf);
int surfstride = cairo_image_surface_get_stride(surf);
// Copy pixels
int height = (*ud)->height;
int width = (*ud)->width;
#pragma omp parallel for
for (int y = 0; y < height; y++) {
PixFmt *ipix = (PixFmt*)((*ud)->data + y*((*ud)->stride));
PixelFormat::cairo_rgb24 *opix = (PixelFormat::cairo_rgb24*)(surfdata + y*surfstride);
for (int x = 0; x < width; x++) {
*opix++ = *ipix++;
}
}
cairo_surface_mark_dirty(surf);
// Create Lua object
LuaCairoSurface *lsurf = new LuaCairoSurface(L, surf);
// Release our reference to the surface
cairo_surface_destroy(surf);
// Return it to Lua
return 1;
}
static int lua_overlay_cairo_surface(lua_State *L)
{
// Get inputs
MyType **ud = (MyType**)lua_touserdata(L, lua_upvalueindex(1));
LuaCairoSurface *surfwrap = LuaCairoSurface::GetObjPointer(L, 1);
if (!surfwrap) {
lua_pushliteral(L, "Argument to overlay_cairo_surface is not a cairo surface");
lua_error(L);
return 0;
}
int xpos = luaL_checkint(L, 2);
int ypos = luaL_checkint(L, 3);
// More argument checks
cairo_surface_t *surf = surfwrap->GetSurface();
if (cairo_surface_get_type(surf) != CAIRO_SURFACE_TYPE_IMAGE) {
lua_pushliteral(L, "Argument to overlay_cairo_surface is not a cairo image surface");
lua_error(L);
return 0;
}
// Prepare some data
int fwidth = (*ud)->width, fheight = (*ud)->height;
int swidth = cairo_image_surface_get_width(surf), sheight = cairo_image_surface_get_height(surf);
int sstride = cairo_image_surface_get_stride(surf);
// Prepare and get read pointer for source image
cairo_surface_flush(surf);
unsigned char *sdata = cairo_image_surface_get_data(surf);
// Check that the overlaid surface won't be entirely outside the frame
if (xpos <= -swidth || ypos <= -sheight || xpos > fwidth || ypos > fheight)
return 0;
// Pick overlay algorithm
cairo_format_t sformat = cairo_image_surface_get_format(surf);
if (sformat == CAIRO_FORMAT_ARGB32) {
// This has pre-multipled alpha
int fy = ypos; // frame y
if (fy < 0) fy = 0, sdata -= ypos, sheight -= ypos;
int slines_to_compose = sheight, flines_to_compose = fheight;
int lines_to_compose = (slines_to_compose<flines_to_compose)?slines_to_compose:flines_to_compose;
#pragma omp parallel for
for (int composition_line = 0; composition_line < lines_to_compose; composition_line++) {
PixelFormat::cairo_argb32 *sline = (PixelFormat::cairo_argb32*)(sdata + composition_line*sstride);
int fx = xpos;
int sx = 0;
if (fx < 0) fx = 0, sx = -xpos;
for ( ; sx < swidth && fx < fwidth; fx++, sx++) {
PixFmt &pix = (*ud)->Pixel(fx, fy+composition_line);
unsigned char a = 0xff - sline[sx].a;
pix.r = sline[sx].r + a*pix.r/255;
pix.g = sline[sx].g + a*pix.g/255;
pix.b = sline[sx].b + a*pix.b/255;
}
}
}
else if (sformat == CAIRO_FORMAT_RGB24) {
// Assume opaque alpha for all pixels
int fy = ypos; // frame y
if (fy < 0) fy = 0, sdata -= ypos, sheight -= ypos;
int slines_to_compose = sheight, flines_to_compose = fheight;
int lines_to_compose = (slines_to_compose<flines_to_compose)?slines_to_compose:flines_to_compose;
#pragma omp parallel for
for (int composition_line = 0; composition_line < lines_to_compose; composition_line++) {
PixelFormat::cairo_rgb24 *sline = (PixelFormat::cairo_rgb24*)(sdata + composition_line*sstride);
int fx = xpos;
int sx = 0;
if (fx < 0) fx = 0, sx = -xpos;
for ( ; sx < swidth && fx < fwidth; fx++, sx++) {
(*ud)->Pixel(fx, fy+composition_line) = sline[sx];
}
}
}
else if (sformat == CAIRO_FORMAT_A8) {
// This one is problematic - it doesn't contain any colour information
// Two primary choices would be to fill with either black or white,
// but neither would be an optimum solution.
// A third option would be to take a fourth argument to this function,
// specifying the colour to be used.
lua_pushliteral(L, "8 bpp alpha images are not (yet) supported for overlay operations");
lua_error(L);
return 0;
}
else if (sformat == CAIRO_FORMAT_A1) {
lua_pushliteral(L, "1 bpp alpha images are not supported for overlay operations");
lua_error(L);
return 0;
}
else {
lua_pushliteral(L, "Unknown source image format for overlay operation");
lua_error(L);
return 0;
}
return 0;
}
};
// Now something so we can pretend all images have the same pixel format
// and can pass around pointers to objects of one fixed base class.
class BaseImageAggregate {
public:
virtual PixelFormat::ARGB GetPixel(int x, int y) = 0;
virtual void SetPixel(int x, int y, const PixelFormat::ARGB &val) = 0;
virtual unsigned GetWidth() = 0;
virtual unsigned GetHeight() = 0;
virtual void CreateLuaObject(lua_State *L) = 0;
};
template <class PixFmt>
class BaseImageAggregateImpl : public BaseImageAggregate {
public:
typedef BaseImage<PixFmt> ImageType;
private:
ImageType *frame;
bool ownframe;
public:
BaseImageAggregateImpl(unsigned _width, unsigned _height, ptrdiff_t _stride, unsigned char *_data)
{
frame = new ImageType(_width, _height, _stride, _data);
ownframe = true;
}
BaseImageAggregateImpl(ImageType *_frame)
{
frame = _frame;
ownframe = false;
}
PixelFormat::ARGB GetPixel(int x, int y)
{
return PixelFormat::ARGB(frame->Pixel(x, y));
}
void SetPixel(int x, int y, const PixelFormat::ARGB &val)
{
frame->Pixel(x, y) = PixFmt(val);
}
unsigned GetWidth()
{
return frame->width;
}
unsigned GetHeight()
{
return frame->height;
}
void CreateLuaObject(lua_State *L)
{
frame->CreateLuaObject(L, this);
}
};
// All common, sensible formats
typedef BaseImageAggregateImpl<PixelFormat::RGB> ImageRGB;
typedef BaseImageAggregateImpl<PixelFormat::BGR> ImageBGR;
typedef BaseImageAggregateImpl<PixelFormat::RGBX> ImageRGBX;
typedef BaseImageAggregateImpl<PixelFormat::BGRX> ImageBGRX;
typedef BaseImageAggregateImpl<PixelFormat::XRGB> ImageXRGB;
typedef BaseImageAggregateImpl<PixelFormat::XBGR> ImageXBGR;
typedef BaseImageAggregateImpl<PixelFormat::RGBA> ImageRGBA;
typedef BaseImageAggregateImpl<PixelFormat::BGRA> ImageBGRA;
typedef BaseImageAggregateImpl<PixelFormat::ARGB> ImageARGB;
typedef BaseImageAggregateImpl<PixelFormat::ABGR> ImageABGR;
// Access pixels with various edge conditions
namespace EdgeCondition {
template<class PixFmt>
struct Blackness {
static inline PixFmt &get(BaseImage<PixFmt> &img, int x, int y)
{
if (x < 0 || y < 0 || x >= img.width || x >= img.height) {
return PixFmt(); // all construct with all zeroes
} else {
return img.Pixel(x,y);
}
}
};
template<class PixFmt>
struct Closest {
static inline PixFmt &get(BaseImage<PixFmt> &img, int x, int y)
{
if (x < 0) x = 0;
if (y < 0) y = 0;
if (x >= img.width) x = img.width-1;
if (y >= img.height) y = img.height - 1;
return img.Pixel(x,y);
}
};
template<class PixFmt>
struct Repeat {
static inline PixFmt &get(BaseImage<PixFmt> &img, int x, int y)
{
while (x < 0) x += img.width;
while (y < 0) y += img.height;
while (x >= img.width) x -= img.width;
while (y >= img.height) y -= img.height;
return img.Pixel(x,y);
}
};
template<class PixFmt>
struct Mirror {
static inline PixFmt &get(BaseImage<PixFmt> &img, int x, int y)
{
while (x < 0) x += img.width*2;
while (y < 0) y += img.height*2;
while (x >= img.width*2) x -= img.width*2;
while (y >= img.height*2) y -= img.height*2;
if (x >= img.width) x = img.width*2 - x;
if (y >= img.height) y = img.height*2 - y;
return img.Pixel(x,y);
}
};
}
// FIXME: this is completely broken, the compiler won't accept it
// when instantiated with one of the EdgeCondition functions for EdgeCond
template<class PixFmt, typename EdgeCond>
inline PixFmt GetPixelBilinear(BaseImage<PixFmt> &img, double x, double y)
{
PixFmt res;
double xpct = x - floor(x), ypct = y - floor(y);
if (xpct == 0 && ypct == 0)
return EdgeCond::get(img, (int)x, (int)y);
const PixFmt &src11 = EdgeCond::get(img, (int)x, (int)y);
const PixFmt &src12 = EdgeCond::get(img, (int)x, 1+(int)y);
const PixFmt &src21 = EdgeCond::get(img, 1+(int)x, (int)y);
const PixFmt &src22 = EdgeCond::get(img, 1+(int)x, 1+(int)y);
res.R() = (uint8_t)((1-xpct) * (1-ypct) * src11.R() + (1-xpct) * ypct * src12.R() + xpct * (1-ypct) * src21.R() + xpct * ypct * src22.R());
res.G() = (uint8_t)((1-xpct) * (1-ypct) * src11.G() + (1-xpct) * ypct * src12.G() + xpct * (1-ypct) * src21.G() + xpct * ypct * src22.G());
res.B() = (uint8_t)((1-xpct) * (1-ypct) * src11.B() + (1-xpct) * ypct * src12.B() + xpct * (1-ypct) * src21.B() + xpct * ypct * src22.B());
res.A() = (uint8_t)((1-xpct) * (1-ypct) * src11.A() + (1-xpct) * ypct * src12.A() + xpct * (1-ypct) * src21.A() + xpct * ypct * src22.A());
return res;
}
#endif