Aegisub/subprojects/luajit/src/vm_ppc.dasc

5161 lines
135 KiB
Plaintext

|// Low-level VM code for PowerPC CPUs.
|// Bytecode interpreter, fast functions and helper functions.
|// Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h
|
|.arch ppc
|.section code_op, code_sub
|
|.actionlist build_actionlist
|.globals GLOB_
|.globalnames globnames
|.externnames extnames
|
|// Note: The ragged indentation of the instructions is intentional.
|// The starting columns indicate data dependencies.
|
|//-----------------------------------------------------------------------
|
|// DynASM defines used by the PPC port:
|//
|// P64 64 bit pointers (only for GPR64 testing).
|// Note: a full PPC64 _LP64 port is not planned.
|// GPR64 64 bit registers (but possibly 32 bit pointers, e.g. PS3).
|// Affects reg saves, stack layout, carry/overflow/dot flags etc.
|// FRAME32 Use 32 bit frame layout, even with GPR64 (Xbox 360).
|// TOC Need table of contents (64 bit or 32 bit variant, e.g. PS3).
|// Function pointers are really a struct: code, TOC, env (optional).
|// TOCENV Function pointers have an environment pointer, too (not on PS3).
|// PPE Power Processor Element of Cell (PS3) or Xenon (Xbox 360).
|// Must avoid (slow) micro-coded instructions.
|
|.if P64
|.define TOC, 1
|.define TOCENV, 1
|.macro lpx, a, b, c; ldx a, b, c; .endmacro
|.macro lp, a, b; ld a, b; .endmacro
|.macro stp, a, b; std a, b; .endmacro
|.define decode_OPP, decode_OP8
|.if FFI
|// Missing: Calling conventions, 64 bit regs, TOC.
|.error lib_ffi not yet implemented for PPC64
|.endif
|.else
|.macro lpx, a, b, c; lwzx a, b, c; .endmacro
|.macro lp, a, b; lwz a, b; .endmacro
|.macro stp, a, b; stw a, b; .endmacro
|.define decode_OPP, decode_OP4
|.endif
|
|// Convenience macros for TOC handling.
|.if TOC
|// Linker needs a TOC patch area for every external call relocation.
|.macro blex, target; bl extern target@plt; nop; .endmacro
|.macro .toc, a, b; a, b; .endmacro
|.if P64
|.define TOC_OFS, 8
|.define ENV_OFS, 16
|.else
|.define TOC_OFS, 4
|.define ENV_OFS, 8
|.endif
|.else // No TOC.
|.macro blex, target; bl extern target@plt; .endmacro
|.macro .toc, a, b; .endmacro
|.endif
|.macro .tocenv, a, b; .if TOCENV; a, b; .endif; .endmacro
|
|.macro .gpr64, a, b; .if GPR64; a, b; .endif; .endmacro
|
|.macro andix., y, a, i
|.if PPE
| rlwinm y, a, 0, 31-lj_fls(i), 31-lj_ffs(i)
| cmpwi y, 0
|.else
| andi. y, a, i
|.endif
|.endmacro
|
|.macro clrso, reg
|.if PPE
| li reg, 0
| mtxer reg
|.else
| mcrxr cr0
|.endif
|.endmacro
|
|.macro checkov, reg, noov
|.if PPE
| mfxer reg
| add reg, reg, reg
| cmpwi reg, 0
| li reg, 0
| mtxer reg
| bgey noov
|.else
| mcrxr cr0
| bley noov
|.endif
|.endmacro
|
|//-----------------------------------------------------------------------
|
|// Fixed register assignments for the interpreter.
|// Don't use: r1 = sp, r2 and r13 = reserved (TOC, TLS or SDATA)
|
|// The following must be C callee-save (but BASE is often refetched).
|.define BASE, r14 // Base of current Lua stack frame.
|.define KBASE, r15 // Constants of current Lua function.
|.define PC, r16 // Next PC.
|.define DISPATCH, r17 // Opcode dispatch table.
|.define LREG, r18 // Register holding lua_State (also in SAVE_L).
|.define MULTRES, r19 // Size of multi-result: (nresults+1)*8.
|.define JGL, r31 // On-trace: global_State + 32768.
|
|// Constants for type-comparisons, stores and conversions. C callee-save.
|.define TISNUM, r22
|.define TISNIL, r23
|.define ZERO, r24
|.define TOBIT, f30 // 2^52 + 2^51.
|.define TONUM, f31 // 2^52 + 2^51 + 2^31.
|
|// The following temporaries are not saved across C calls, except for RA.
|.define RA, r20 // Callee-save.
|.define RB, r10
|.define RC, r11
|.define RD, r12
|.define INS, r7 // Overlaps CARG5.
|
|.define TMP0, r0
|.define TMP1, r8
|.define TMP2, r9
|.define TMP3, r6 // Overlaps CARG4.
|
|// Saved temporaries.
|.define SAVE0, r21
|
|// Calling conventions.
|.define CARG1, r3
|.define CARG2, r4
|.define CARG3, r5
|.define CARG4, r6 // Overlaps TMP3.
|.define CARG5, r7 // Overlaps INS.
|
|.define FARG1, f1
|.define FARG2, f2
|
|.define CRET1, r3
|.define CRET2, r4
|
|.define TOCREG, r2 // TOC register (only used by C code).
|.define ENVREG, r11 // Environment pointer (nested C functions).
|
|// Stack layout while in interpreter. Must match with lj_frame.h.
|.if GPR64
|.if FRAME32
|
|// 456(sp) // \ 32/64 bit C frame info
|.define TONUM_LO, 452(sp) // |
|.define TONUM_HI, 448(sp) // |
|.define TMPD_LO, 444(sp) // |
|.define TMPD_HI, 440(sp) // |
|.define SAVE_CR, 432(sp) // | 64 bit CR save.
|.define SAVE_ERRF, 424(sp) // > Parameter save area.
|.define SAVE_NRES, 420(sp) // |
|.define SAVE_L, 416(sp) // |
|.define SAVE_PC, 412(sp) // |
|.define SAVE_MULTRES, 408(sp) // |
|.define SAVE_CFRAME, 400(sp) // / 64 bit C frame chain.
|// 392(sp) // Reserved.
|.define CFRAME_SPACE, 384 // Delta for sp.
|// Back chain for sp: 384(sp) <-- sp entering interpreter
|.define SAVE_LR, 376(sp) // 32 bit LR stored in hi-part.
|.define SAVE_GPR_, 232 // .. 232+18*8: 64 bit GPR saves.
|.define SAVE_FPR_, 88 // .. 88+18*8: 64 bit FPR saves.
|// 80(sp) // Needed for 16 byte stack frame alignment.
|// 16(sp) // Callee parameter save area (ABI mandated).
|// 8(sp) // Reserved
|// Back chain for sp: 0(sp) <-- sp while in interpreter
|// 32 bit sp stored in hi-part of 0(sp).
|
|.define TMPD_BLO, 447(sp)
|.define TMPD, TMPD_HI
|.define TONUM_D, TONUM_HI
|
|.else
|
|// 508(sp) // \ 32 bit C frame info.
|.define SAVE_ERRF, 472(sp) // |
|.define SAVE_NRES, 468(sp) // |
|.define SAVE_L, 464(sp) // > Parameter save area.
|.define SAVE_PC, 460(sp) // |
|.define SAVE_MULTRES, 456(sp) // |
|.define SAVE_CFRAME, 448(sp) // / 64 bit C frame chain.
|.define SAVE_LR, 416(sp)
|.define CFRAME_SPACE, 400 // Delta for sp.
|// Back chain for sp: 400(sp) <-- sp entering interpreter
|.define SAVE_FPR_, 256 // .. 256+18*8: 64 bit FPR saves.
|.define SAVE_GPR_, 112 // .. 112+18*8: 64 bit GPR saves.
|// 48(sp) // Callee parameter save area (ABI mandated).
|.define SAVE_TOC, 40(sp) // TOC save area.
|.define TMPD_LO, 36(sp) // \ Link editor temp (ABI mandated).
|.define TMPD_HI, 32(sp) // /
|.define TONUM_LO, 28(sp) // \ Compiler temp (ABI mandated).
|.define TONUM_HI, 24(sp) // /
|// Next frame lr: 16(sp)
|.define SAVE_CR, 8(sp) // 64 bit CR save.
|// Back chain for sp: 0(sp) <-- sp while in interpreter
|
|.define TMPD_BLO, 39(sp)
|.define TMPD, TMPD_HI
|.define TONUM_D, TONUM_HI
|
|.endif
|.else
|
|.define SAVE_LR, 276(sp)
|.define CFRAME_SPACE, 272 // Delta for sp.
|// Back chain for sp: 272(sp) <-- sp entering interpreter
|.define SAVE_FPR_, 128 // .. 128+18*8: 64 bit FPR saves.
|.define SAVE_GPR_, 56 // .. 56+18*4: 32 bit GPR saves.
|.define SAVE_CR, 52(sp) // 32 bit CR save.
|.define SAVE_ERRF, 48(sp) // 32 bit C frame info.
|.define SAVE_NRES, 44(sp)
|.define SAVE_CFRAME, 40(sp)
|.define SAVE_L, 36(sp)
|.define SAVE_PC, 32(sp)
|.define SAVE_MULTRES, 28(sp)
|.define UNUSED1, 24(sp)
|.define TMPD_LO, 20(sp)
|.define TMPD_HI, 16(sp)
|.define TONUM_LO, 12(sp)
|.define TONUM_HI, 8(sp)
|// Next frame lr: 4(sp)
|// Back chain for sp: 0(sp) <-- sp while in interpreter
|
|.define TMPD_BLO, 23(sp)
|.define TMPD, TMPD_HI
|.define TONUM_D, TONUM_HI
|
|.endif
|
|.macro save_, reg
|.if GPR64
| std r..reg, SAVE_GPR_+(reg-14)*8(sp)
|.else
| stw r..reg, SAVE_GPR_+(reg-14)*4(sp)
|.endif
| stfd f..reg, SAVE_FPR_+(reg-14)*8(sp)
|.endmacro
|.macro rest_, reg
|.if GPR64
| ld r..reg, SAVE_GPR_+(reg-14)*8(sp)
|.else
| lwz r..reg, SAVE_GPR_+(reg-14)*4(sp)
|.endif
| lfd f..reg, SAVE_FPR_+(reg-14)*8(sp)
|.endmacro
|
|.macro saveregs
|.if GPR64 and not FRAME32
| stdu sp, -CFRAME_SPACE(sp)
|.else
| stwu sp, -CFRAME_SPACE(sp)
|.endif
| save_ 14; save_ 15; save_ 16
| mflr r0
| save_ 17; save_ 18; save_ 19; save_ 20; save_ 21; save_ 22
|.if GPR64 and not FRAME32
| std r0, SAVE_LR
|.else
| stw r0, SAVE_LR
|.endif
| save_ 23; save_ 24; save_ 25
| mfcr r0
| save_ 26; save_ 27; save_ 28; save_ 29; save_ 30; save_ 31
|.if GPR64
| std r0, SAVE_CR
|.else
| stw r0, SAVE_CR
|.endif
| .toc std TOCREG, SAVE_TOC
|.endmacro
|
|.macro restoreregs
|.if GPR64 and not FRAME32
| ld r0, SAVE_LR
|.else
| lwz r0, SAVE_LR
|.endif
|.if GPR64
| ld r12, SAVE_CR
|.else
| lwz r12, SAVE_CR
|.endif
| rest_ 14; rest_ 15; rest_ 16; rest_ 17; rest_ 18; rest_ 19
| mtlr r0;
|.if PPE; mtocrf 0x20, r12; .else; mtcrf 0x38, r12; .endif
| rest_ 20; rest_ 21; rest_ 22; rest_ 23; rest_ 24; rest_ 25
|.if PPE; mtocrf 0x10, r12; .endif
| rest_ 26; rest_ 27; rest_ 28; rest_ 29; rest_ 30; rest_ 31
|.if PPE; mtocrf 0x08, r12; .endif
| addi sp, sp, CFRAME_SPACE
|.endmacro
|
|// Type definitions. Some of these are only used for documentation.
|.type L, lua_State, LREG
|.type GL, global_State
|.type TVALUE, TValue
|.type GCOBJ, GCobj
|.type STR, GCstr
|.type TAB, GCtab
|.type LFUNC, GCfuncL
|.type CFUNC, GCfuncC
|.type PROTO, GCproto
|.type UPVAL, GCupval
|.type NODE, Node
|.type NARGS8, int
|.type TRACE, GCtrace
|
|//-----------------------------------------------------------------------
|
|// These basic macros should really be part of DynASM.
|.macro srwi, rx, ry, n; rlwinm rx, ry, 32-n, n, 31; .endmacro
|.macro slwi, rx, ry, n; rlwinm rx, ry, n, 0, 31-n; .endmacro
|.macro rotlwi, rx, ry, n; rlwinm rx, ry, n, 0, 31; .endmacro
|.macro rotlw, rx, ry, rn; rlwnm rx, ry, rn, 0, 31; .endmacro
|.macro subi, rx, ry, i; addi rx, ry, -i; .endmacro
|
|// Trap for not-yet-implemented parts.
|.macro NYI; tw 4, sp, sp; .endmacro
|
|// int/FP conversions.
|.macro tonum_i, freg, reg
| xoris reg, reg, 0x8000
| stw reg, TONUM_LO
| lfd freg, TONUM_D
| fsub freg, freg, TONUM
|.endmacro
|
|.macro tonum_u, freg, reg
| stw reg, TONUM_LO
| lfd freg, TONUM_D
| fsub freg, freg, TOBIT
|.endmacro
|
|.macro toint, reg, freg, tmpfreg
| fctiwz tmpfreg, freg
| stfd tmpfreg, TMPD
| lwz reg, TMPD_LO
|.endmacro
|
|.macro toint, reg, freg
| toint reg, freg, freg
|.endmacro
|
|//-----------------------------------------------------------------------
|
|// Access to frame relative to BASE.
|.define FRAME_PC, -8
|.define FRAME_FUNC, -4
|
|// Instruction decode.
|.macro decode_OP4, dst, ins; rlwinm dst, ins, 2, 22, 29; .endmacro
|.macro decode_OP8, dst, ins; rlwinm dst, ins, 3, 21, 28; .endmacro
|.macro decode_RA8, dst, ins; rlwinm dst, ins, 27, 21, 28; .endmacro
|.macro decode_RB8, dst, ins; rlwinm dst, ins, 11, 21, 28; .endmacro
|.macro decode_RC8, dst, ins; rlwinm dst, ins, 19, 21, 28; .endmacro
|.macro decode_RD8, dst, ins; rlwinm dst, ins, 19, 13, 28; .endmacro
|
|.macro decode_OP1, dst, ins; rlwinm dst, ins, 0, 24, 31; .endmacro
|.macro decode_RD4, dst, ins; rlwinm dst, ins, 18, 14, 29; .endmacro
|
|// Instruction fetch.
|.macro ins_NEXT1
| lwz INS, 0(PC)
| addi PC, PC, 4
|.endmacro
|// Instruction decode+dispatch. Note: optimized for e300!
|.macro ins_NEXT2
| decode_OPP TMP1, INS
| lpx TMP0, DISPATCH, TMP1
| mtctr TMP0
| decode_RB8 RB, INS
| decode_RD8 RD, INS
| decode_RA8 RA, INS
| decode_RC8 RC, INS
| bctr
|.endmacro
|.macro ins_NEXT
| ins_NEXT1
| ins_NEXT2
|.endmacro
|
|// Instruction footer.
|.if 1
| // Replicated dispatch. Less unpredictable branches, but higher I-Cache use.
| .define ins_next, ins_NEXT
| .define ins_next_, ins_NEXT
| .define ins_next1, ins_NEXT1
| .define ins_next2, ins_NEXT2
|.else
| // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch.
| // Affects only certain kinds of benchmarks (and only with -j off).
| .macro ins_next
| b ->ins_next
| .endmacro
| .macro ins_next1
| .endmacro
| .macro ins_next2
| b ->ins_next
| .endmacro
| .macro ins_next_
| ->ins_next:
| ins_NEXT
| .endmacro
|.endif
|
|// Call decode and dispatch.
|.macro ins_callt
| // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC
| lwz PC, LFUNC:RB->pc
| lwz INS, 0(PC)
| addi PC, PC, 4
| decode_OPP TMP1, INS
| decode_RA8 RA, INS
| lpx TMP0, DISPATCH, TMP1
| add RA, RA, BASE
| mtctr TMP0
| bctr
|.endmacro
|
|.macro ins_call
| // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, PC = caller PC
| stw PC, FRAME_PC(BASE)
| ins_callt
|.endmacro
|
|//-----------------------------------------------------------------------
|
|// Macros to test operand types.
|.macro checknum, reg; cmplw reg, TISNUM; .endmacro
|.macro checknum, cr, reg; cmplw cr, reg, TISNUM; .endmacro
|.macro checkstr, reg; cmpwi reg, LJ_TSTR; .endmacro
|.macro checktab, reg; cmpwi reg, LJ_TTAB; .endmacro
|.macro checkfunc, reg; cmpwi reg, LJ_TFUNC; .endmacro
|.macro checknil, reg; cmpwi reg, LJ_TNIL; .endmacro
|
|.macro branch_RD
| srwi TMP0, RD, 1
| addis PC, PC, -(BCBIAS_J*4 >> 16)
| add PC, PC, TMP0
|.endmacro
|
|// Assumes DISPATCH is relative to GL.
#define DISPATCH_GL(field) (GG_DISP2G + (int)offsetof(global_State, field))
#define DISPATCH_J(field) (GG_DISP2J + (int)offsetof(jit_State, field))
|
#define PC2PROTO(field) ((int)offsetof(GCproto, field)-(int)sizeof(GCproto))
|
|.macro hotcheck, delta, target
| rlwinm TMP1, PC, 31, 25, 30
| addi TMP1, TMP1, GG_DISP2HOT
| lhzx TMP2, DISPATCH, TMP1
| addic. TMP2, TMP2, -delta
| sthx TMP2, DISPATCH, TMP1
| blt target
|.endmacro
|
|.macro hotloop
| hotcheck HOTCOUNT_LOOP, ->vm_hotloop
|.endmacro
|
|.macro hotcall
| hotcheck HOTCOUNT_CALL, ->vm_hotcall
|.endmacro
|
|// Set current VM state. Uses TMP0.
|.macro li_vmstate, st; li TMP0, ~LJ_VMST_..st; .endmacro
|.macro st_vmstate; stw TMP0, DISPATCH_GL(vmstate)(DISPATCH); .endmacro
|
|// Move table write barrier back. Overwrites mark and tmp.
|.macro barrierback, tab, mark, tmp
| lwz tmp, DISPATCH_GL(gc.grayagain)(DISPATCH)
| // Assumes LJ_GC_BLACK is 0x04.
| rlwinm mark, mark, 0, 30, 28 // black2gray(tab)
| stw tab, DISPATCH_GL(gc.grayagain)(DISPATCH)
| stb mark, tab->marked
| stw tmp, tab->gclist
|.endmacro
|
|//-----------------------------------------------------------------------
/* Generate subroutines used by opcodes and other parts of the VM. */
/* The .code_sub section should be last to help static branch prediction. */
static void build_subroutines(BuildCtx *ctx)
{
|.code_sub
|
|//-----------------------------------------------------------------------
|//-- Return handling ----------------------------------------------------
|//-----------------------------------------------------------------------
|
|->vm_returnp:
| // See vm_return. Also: TMP2 = previous base.
| andix. TMP0, PC, FRAME_P
| li TMP1, LJ_TTRUE
| beq ->cont_dispatch
|
| // Return from pcall or xpcall fast func.
| lwz PC, FRAME_PC(TMP2) // Fetch PC of previous frame.
| mr BASE, TMP2 // Restore caller base.
| // Prepending may overwrite the pcall frame, so do it at the end.
| stwu TMP1, FRAME_PC(RA) // Prepend true to results.
|
|->vm_returnc:
| addi RD, RD, 8 // RD = (nresults+1)*8.
| andix. TMP0, PC, FRAME_TYPE
| cmpwi cr1, RD, 0
| li CRET1, LUA_YIELD
| beq cr1, ->vm_unwind_c_eh
| mr MULTRES, RD
| beq ->BC_RET_Z // Handle regular return to Lua.
|
|->vm_return:
| // BASE = base, RA = resultptr, RD/MULTRES = (nresults+1)*8, PC = return
| // TMP0 = PC & FRAME_TYPE
| cmpwi TMP0, FRAME_C
| rlwinm TMP2, PC, 0, 0, 28
| li_vmstate C
| sub TMP2, BASE, TMP2 // TMP2 = previous base.
| bney ->vm_returnp
|
| addic. TMP1, RD, -8
| stp TMP2, L->base
| lwz TMP2, SAVE_NRES
| subi BASE, BASE, 8
| st_vmstate
| slwi TMP2, TMP2, 3
| beq >2
|1:
| addic. TMP1, TMP1, -8
| lfd f0, 0(RA)
| addi RA, RA, 8
| stfd f0, 0(BASE)
| addi BASE, BASE, 8
| bney <1
|
|2:
| cmpw TMP2, RD // More/less results wanted?
| bne >6
|3:
| stp BASE, L->top // Store new top.
|
|->vm_leave_cp:
| lp TMP0, SAVE_CFRAME // Restore previous C frame.
| li CRET1, 0 // Ok return status for vm_pcall.
| stp TMP0, L->cframe
|
|->vm_leave_unw:
| restoreregs
| blr
|
|6:
| ble >7 // Less results wanted?
| // More results wanted. Check stack size and fill up results with nil.
| lwz TMP1, L->maxstack
| cmplw BASE, TMP1
| bge >8
| stw TISNIL, 0(BASE)
| addi RD, RD, 8
| addi BASE, BASE, 8
| b <2
|
|7: // Less results wanted.
| subfic TMP3, TMP2, 0 // LUA_MULTRET+1 case?
| sub TMP0, RD, TMP2
| subfe TMP1, TMP1, TMP1 // TMP1 = TMP2 == 0 ? 0 : -1
| and TMP0, TMP0, TMP1
| sub BASE, BASE, TMP0 // Either keep top or shrink it.
| b <3
|
|8: // Corner case: need to grow stack for filling up results.
| // This can happen if:
| // - A C function grows the stack (a lot).
| // - The GC shrinks the stack in between.
| // - A return back from a lua_call() with (high) nresults adjustment.
| stp BASE, L->top // Save current top held in BASE (yes).
| mr SAVE0, RD
| srwi CARG2, TMP2, 3
| mr CARG1, L
| bl extern lj_state_growstack // (lua_State *L, int n)
| lwz TMP2, SAVE_NRES
| mr RD, SAVE0
| slwi TMP2, TMP2, 3
| lp BASE, L->top // Need the (realloced) L->top in BASE.
| b <2
|
|->vm_unwind_c: // Unwind C stack, return from vm_pcall.
| // (void *cframe, int errcode)
| mr sp, CARG1
| mr CRET1, CARG2
|->vm_unwind_c_eh: // Landing pad for external unwinder.
| lwz L, SAVE_L
| .toc ld TOCREG, SAVE_TOC
| li TMP0, ~LJ_VMST_C
| lwz GL:TMP1, L->glref
| stw TMP0, GL:TMP1->vmstate
| b ->vm_leave_unw
|
|->vm_unwind_ff: // Unwind C stack, return from ff pcall.
| // (void *cframe)
|.if GPR64
| rldicr sp, CARG1, 0, 61
|.else
| rlwinm sp, CARG1, 0, 0, 29
|.endif
|->vm_unwind_ff_eh: // Landing pad for external unwinder.
| lwz L, SAVE_L
| .toc ld TOCREG, SAVE_TOC
| li TISNUM, LJ_TISNUM // Setup type comparison constants.
| lp BASE, L->base
| lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float).
| lwz DISPATCH, L->glref // Setup pointer to dispatch table.
| li ZERO, 0
| stw TMP3, TMPD
| li TMP1, LJ_TFALSE
| ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float).
| li TISNIL, LJ_TNIL
| li_vmstate INTERP
| lfs TOBIT, TMPD
| lwz PC, FRAME_PC(BASE) // Fetch PC of previous frame.
| la RA, -8(BASE) // Results start at BASE-8.
| stw TMP3, TMPD
| addi DISPATCH, DISPATCH, GG_G2DISP
| stw TMP1, 0(RA) // Prepend false to error message.
| li RD, 16 // 2 results: false + error message.
| st_vmstate
| lfs TONUM, TMPD
| b ->vm_returnc
|
|//-----------------------------------------------------------------------
|//-- Grow stack for calls -----------------------------------------------
|//-----------------------------------------------------------------------
|
|->vm_growstack_c: // Grow stack for C function.
| li CARG2, LUA_MINSTACK
| b >2
|
|->vm_growstack_l: // Grow stack for Lua function.
| // BASE = new base, RA = BASE+framesize*8, RC = nargs*8, PC = first PC
| add RC, BASE, RC
| sub RA, RA, BASE
| stp BASE, L->base
| addi PC, PC, 4 // Must point after first instruction.
| stp RC, L->top
| srwi CARG2, RA, 3
|2:
| // L->base = new base, L->top = top
| stw PC, SAVE_PC
| mr CARG1, L
| bl extern lj_state_growstack // (lua_State *L, int n)
| lp BASE, L->base
| lp RC, L->top
| lwz LFUNC:RB, FRAME_FUNC(BASE)
| sub RC, RC, BASE
| // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC
| ins_callt // Just retry the call.
|
|//-----------------------------------------------------------------------
|//-- Entry points into the assembler VM ---------------------------------
|//-----------------------------------------------------------------------
|
|->vm_resume: // Setup C frame and resume thread.
| // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0)
| saveregs
| mr L, CARG1
| lwz DISPATCH, L->glref // Setup pointer to dispatch table.
| mr BASE, CARG2
| lbz TMP1, L->status
| stw L, SAVE_L
| li PC, FRAME_CP
| addi TMP0, sp, CFRAME_RESUME
| addi DISPATCH, DISPATCH, GG_G2DISP
| stw CARG3, SAVE_NRES
| cmplwi TMP1, 0
| stw CARG3, SAVE_ERRF
| stp TMP0, L->cframe
| stp CARG3, SAVE_CFRAME
| stw CARG1, SAVE_PC // Any value outside of bytecode is ok.
| beq >3
|
| // Resume after yield (like a return).
| mr RA, BASE
| lp BASE, L->base
| li TISNUM, LJ_TISNUM // Setup type comparison constants.
| lp TMP1, L->top
| lwz PC, FRAME_PC(BASE)
| lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float).
| stb CARG3, L->status
| stw TMP3, TMPD
| ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float).
| lfs TOBIT, TMPD
| sub RD, TMP1, BASE
| stw TMP3, TMPD
| lus TMP0, 0x4338 // Hiword of 2^52 + 2^51 (double)
| addi RD, RD, 8
| stw TMP0, TONUM_HI
| li_vmstate INTERP
| li ZERO, 0
| st_vmstate
| andix. TMP0, PC, FRAME_TYPE
| mr MULTRES, RD
| lfs TONUM, TMPD
| li TISNIL, LJ_TNIL
| beq ->BC_RET_Z
| b ->vm_return
|
|->vm_pcall: // Setup protected C frame and enter VM.
| // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef)
| saveregs
| li PC, FRAME_CP
| stw CARG4, SAVE_ERRF
| b >1
|
|->vm_call: // Setup C frame and enter VM.
| // (lua_State *L, TValue *base, int nres1)
| saveregs
| li PC, FRAME_C
|
|1: // Entry point for vm_pcall above (PC = ftype).
| lp TMP1, L:CARG1->cframe
| stw CARG3, SAVE_NRES
| mr L, CARG1
| stw CARG1, SAVE_L
| mr BASE, CARG2
| stp sp, L->cframe // Add our C frame to cframe chain.
| lwz DISPATCH, L->glref // Setup pointer to dispatch table.
| stw CARG1, SAVE_PC // Any value outside of bytecode is ok.
| stp TMP1, SAVE_CFRAME
| addi DISPATCH, DISPATCH, GG_G2DISP
|
|3: // Entry point for vm_cpcall/vm_resume (BASE = base, PC = ftype).
| lp TMP2, L->base // TMP2 = old base (used in vmeta_call).
| li TISNUM, LJ_TISNUM // Setup type comparison constants.
| lp TMP1, L->top
| lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float).
| add PC, PC, BASE
| stw TMP3, TMPD
| li ZERO, 0
| ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float).
| lfs TOBIT, TMPD
| sub PC, PC, TMP2 // PC = frame delta + frame type
| stw TMP3, TMPD
| lus TMP0, 0x4338 // Hiword of 2^52 + 2^51 (double)
| sub NARGS8:RC, TMP1, BASE
| stw TMP0, TONUM_HI
| li_vmstate INTERP
| lfs TONUM, TMPD
| li TISNIL, LJ_TNIL
| st_vmstate
|
|->vm_call_dispatch:
| // TMP2 = old base, BASE = new base, RC = nargs*8, PC = caller PC
| lwz TMP0, FRAME_PC(BASE)
| lwz LFUNC:RB, FRAME_FUNC(BASE)
| checkfunc TMP0; bne ->vmeta_call
|
|->vm_call_dispatch_f:
| ins_call
| // BASE = new base, RB = func, RC = nargs*8, PC = caller PC
|
|->vm_cpcall: // Setup protected C frame, call C.
| // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp)
| saveregs
| mr L, CARG1
| lwz TMP0, L:CARG1->stack
| stw CARG1, SAVE_L
| lp TMP1, L->top
| stw CARG1, SAVE_PC // Any value outside of bytecode is ok.
| sub TMP0, TMP0, TMP1 // Compute -savestack(L, L->top).
| lp TMP1, L->cframe
| stp sp, L->cframe // Add our C frame to cframe chain.
| .toc lp CARG4, 0(CARG4)
| li TMP2, 0
| stw TMP0, SAVE_NRES // Neg. delta means cframe w/o frame.
| stw TMP2, SAVE_ERRF // No error function.
| stp TMP1, SAVE_CFRAME
| mtctr CARG4
| bctrl // (lua_State *L, lua_CFunction func, void *ud)
|.if PPE
| mr BASE, CRET1
| cmpwi CRET1, 0
|.else
| mr. BASE, CRET1
|.endif
| lwz DISPATCH, L->glref // Setup pointer to dispatch table.
| li PC, FRAME_CP
| addi DISPATCH, DISPATCH, GG_G2DISP
| bne <3 // Else continue with the call.
| b ->vm_leave_cp // No base? Just remove C frame.
|
|//-----------------------------------------------------------------------
|//-- Metamethod handling ------------------------------------------------
|//-----------------------------------------------------------------------
|
|// The lj_meta_* functions (except for lj_meta_cat) don't reallocate the
|// stack, so BASE doesn't need to be reloaded across these calls.
|
|//-- Continuation dispatch ----------------------------------------------
|
|->cont_dispatch:
| // BASE = meta base, RA = resultptr, RD = (nresults+1)*8
| lwz TMP0, -12(BASE) // Continuation.
| mr RB, BASE
| mr BASE, TMP2 // Restore caller BASE.
| lwz LFUNC:TMP1, FRAME_FUNC(TMP2)
|.if FFI
| cmplwi TMP0, 1
|.endif
| lwz PC, -16(RB) // Restore PC from [cont|PC].
| subi TMP2, RD, 8
| lwz TMP1, LFUNC:TMP1->pc
| stwx TISNIL, RA, TMP2 // Ensure one valid arg.
|.if FFI
| ble >1
|.endif
| lwz KBASE, PC2PROTO(k)(TMP1)
| // BASE = base, RA = resultptr, RB = meta base
| mtctr TMP0
| bctr // Jump to continuation.
|
|.if FFI
|1:
| beq ->cont_ffi_callback // cont = 1: return from FFI callback.
| // cont = 0: tailcall from C function.
| subi TMP1, RB, 16
| sub RC, TMP1, BASE
| b ->vm_call_tail
|.endif
|
|->cont_cat: // RA = resultptr, RB = meta base
| lwz INS, -4(PC)
| subi CARG2, RB, 16
| decode_RB8 SAVE0, INS
| lfd f0, 0(RA)
| add TMP1, BASE, SAVE0
| stp BASE, L->base
| cmplw TMP1, CARG2
| sub CARG3, CARG2, TMP1
| decode_RA8 RA, INS
| stfd f0, 0(CARG2)
| bney ->BC_CAT_Z
| stfdx f0, BASE, RA
| b ->cont_nop
|
|//-- Table indexing metamethods -----------------------------------------
|
|->vmeta_tgets1:
| la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
| li TMP0, LJ_TSTR
| decode_RB8 RB, INS
| stw STR:RC, 4(CARG3)
| add CARG2, BASE, RB
| stw TMP0, 0(CARG3)
| b >1
|
|->vmeta_tgets:
| la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
| li TMP0, LJ_TTAB
| stw TAB:RB, 4(CARG2)
| la CARG3, DISPATCH_GL(tmptv2)(DISPATCH)
| stw TMP0, 0(CARG2)
| li TMP1, LJ_TSTR
| stw STR:RC, 4(CARG3)
| stw TMP1, 0(CARG3)
| b >1
|
|->vmeta_tgetb: // TMP0 = index
|.if not DUALNUM
| tonum_u f0, TMP0
|.endif
| decode_RB8 RB, INS
| la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
| add CARG2, BASE, RB
|.if DUALNUM
| stw TISNUM, 0(CARG3)
| stw TMP0, 4(CARG3)
|.else
| stfd f0, 0(CARG3)
|.endif
| b >1
|
|->vmeta_tgetv:
| decode_RB8 RB, INS
| decode_RC8 RC, INS
| add CARG2, BASE, RB
| add CARG3, BASE, RC
|1:
| stp BASE, L->base
| mr CARG1, L
| stw PC, SAVE_PC
| bl extern lj_meta_tget // (lua_State *L, TValue *o, TValue *k)
| // Returns TValue * (finished) or NULL (metamethod).
| cmplwi CRET1, 0
| beq >3
| lfd f0, 0(CRET1)
| ins_next1
| stfdx f0, BASE, RA
| ins_next2
|
|3: // Call __index metamethod.
| // BASE = base, L->top = new base, stack = cont/func/t/k
| subfic TMP1, BASE, FRAME_CONT
| lp BASE, L->top
| stw PC, -16(BASE) // [cont|PC]
| add PC, TMP1, BASE
| lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here.
| li NARGS8:RC, 16 // 2 args for func(t, k).
| b ->vm_call_dispatch_f
|
|//-----------------------------------------------------------------------
|
|->vmeta_tsets1:
| la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
| li TMP0, LJ_TSTR
| decode_RB8 RB, INS
| stw STR:RC, 4(CARG3)
| add CARG2, BASE, RB
| stw TMP0, 0(CARG3)
| b >1
|
|->vmeta_tsets:
| la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
| li TMP0, LJ_TTAB
| stw TAB:RB, 4(CARG2)
| la CARG3, DISPATCH_GL(tmptv2)(DISPATCH)
| stw TMP0, 0(CARG2)
| li TMP1, LJ_TSTR
| stw STR:RC, 4(CARG3)
| stw TMP1, 0(CARG3)
| b >1
|
|->vmeta_tsetb: // TMP0 = index
|.if not DUALNUM
| tonum_u f0, TMP0
|.endif
| decode_RB8 RB, INS
| la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
| add CARG2, BASE, RB
|.if DUALNUM
| stw TISNUM, 0(CARG3)
| stw TMP0, 4(CARG3)
|.else
| stfd f0, 0(CARG3)
|.endif
| b >1
|
|->vmeta_tsetv:
| decode_RB8 RB, INS
| decode_RC8 RC, INS
| add CARG2, BASE, RB
| add CARG3, BASE, RC
|1:
| stp BASE, L->base
| mr CARG1, L
| stw PC, SAVE_PC
| bl extern lj_meta_tset // (lua_State *L, TValue *o, TValue *k)
| // Returns TValue * (finished) or NULL (metamethod).
| cmplwi CRET1, 0
| lfdx f0, BASE, RA
| beq >3
| // NOBARRIER: lj_meta_tset ensures the table is not black.
| ins_next1
| stfd f0, 0(CRET1)
| ins_next2
|
|3: // Call __newindex metamethod.
| // BASE = base, L->top = new base, stack = cont/func/t/k/(v)
| subfic TMP1, BASE, FRAME_CONT
| lp BASE, L->top
| stw PC, -16(BASE) // [cont|PC]
| add PC, TMP1, BASE
| lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here.
| li NARGS8:RC, 24 // 3 args for func(t, k, v)
| stfd f0, 16(BASE) // Copy value to third argument.
| b ->vm_call_dispatch_f
|
|//-- Comparison metamethods ---------------------------------------------
|
|->vmeta_comp:
| mr CARG1, L
| subi PC, PC, 4
|.if DUALNUM
| mr CARG2, RA
|.else
| add CARG2, BASE, RA
|.endif
| stw PC, SAVE_PC
|.if DUALNUM
| mr CARG3, RD
|.else
| add CARG3, BASE, RD
|.endif
| stp BASE, L->base
| decode_OP1 CARG4, INS
| bl extern lj_meta_comp // (lua_State *L, TValue *o1, *o2, int op)
| // Returns 0/1 or TValue * (metamethod).
|3:
| cmplwi CRET1, 1
| bgt ->vmeta_binop
| subfic CRET1, CRET1, 0
|4:
| lwz INS, 0(PC)
| addi PC, PC, 4
| decode_RD4 TMP2, INS
| addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
| and TMP2, TMP2, CRET1
| add PC, PC, TMP2
|->cont_nop:
| ins_next
|
|->cont_ra: // RA = resultptr
| lwz INS, -4(PC)
| lfd f0, 0(RA)
| decode_RA8 TMP1, INS
| stfdx f0, BASE, TMP1
| b ->cont_nop
|
|->cont_condt: // RA = resultptr
| lwz TMP0, 0(RA)
| .gpr64 extsw TMP0, TMP0
| subfic TMP0, TMP0, LJ_TTRUE // Branch if result is true.
| subfe CRET1, CRET1, CRET1
| not CRET1, CRET1
| b <4
|
|->cont_condf: // RA = resultptr
| lwz TMP0, 0(RA)
| .gpr64 extsw TMP0, TMP0
| subfic TMP0, TMP0, LJ_TTRUE // Branch if result is false.
| subfe CRET1, CRET1, CRET1
| b <4
|
|->vmeta_equal:
| // CARG2, CARG3, CARG4 are already set by BC_ISEQV/BC_ISNEV.
| subi PC, PC, 4
| stp BASE, L->base
| mr CARG1, L
| stw PC, SAVE_PC
| bl extern lj_meta_equal // (lua_State *L, GCobj *o1, *o2, int ne)
| // Returns 0/1 or TValue * (metamethod).
| b <3
|
|->vmeta_equal_cd:
|.if FFI
| mr CARG2, INS
| subi PC, PC, 4
| stp BASE, L->base
| mr CARG1, L
| stw PC, SAVE_PC
| bl extern lj_meta_equal_cd // (lua_State *L, BCIns op)
| // Returns 0/1 or TValue * (metamethod).
| b <3
|.endif
|
|//-- Arithmetic metamethods ---------------------------------------------
|
|->vmeta_arith_nv:
| add CARG3, KBASE, RC
| add CARG4, BASE, RB
| b >1
|->vmeta_arith_nv2:
|.if DUALNUM
| mr CARG3, RC
| mr CARG4, RB
| b >1
|.endif
|
|->vmeta_unm:
| mr CARG3, RD
| mr CARG4, RD
| b >1
|
|->vmeta_arith_vn:
| add CARG3, BASE, RB
| add CARG4, KBASE, RC
| b >1
|
|->vmeta_arith_vv:
| add CARG3, BASE, RB
| add CARG4, BASE, RC
|.if DUALNUM
| b >1
|.endif
|->vmeta_arith_vn2:
|->vmeta_arith_vv2:
|.if DUALNUM
| mr CARG3, RB
| mr CARG4, RC
|.endif
|1:
| add CARG2, BASE, RA
| stp BASE, L->base
| mr CARG1, L
| stw PC, SAVE_PC
| decode_OP1 CARG5, INS // Caveat: CARG5 overlaps INS.
| bl extern lj_meta_arith // (lua_State *L, TValue *ra,*rb,*rc, BCReg op)
| // Returns NULL (finished) or TValue * (metamethod).
| cmplwi CRET1, 0
| beq ->cont_nop
|
| // Call metamethod for binary op.
|->vmeta_binop:
| // BASE = old base, CRET1 = new base, stack = cont/func/o1/o2
| sub TMP1, CRET1, BASE
| stw PC, -16(CRET1) // [cont|PC]
| mr TMP2, BASE
| addi PC, TMP1, FRAME_CONT
| mr BASE, CRET1
| li NARGS8:RC, 16 // 2 args for func(o1, o2).
| b ->vm_call_dispatch
|
|->vmeta_len:
#if LJ_52
| mr SAVE0, CARG1
#endif
| mr CARG2, RD
| stp BASE, L->base
| mr CARG1, L
| stw PC, SAVE_PC
| bl extern lj_meta_len // (lua_State *L, TValue *o)
| // Returns NULL (retry) or TValue * (metamethod base).
#if LJ_52
| cmplwi CRET1, 0
| bne ->vmeta_binop // Binop call for compatibility.
| mr CARG1, SAVE0
| b ->BC_LEN_Z
#else
| b ->vmeta_binop // Binop call for compatibility.
#endif
|
|//-- Call metamethod ----------------------------------------------------
|
|->vmeta_call: // Resolve and call __call metamethod.
| // TMP2 = old base, BASE = new base, RC = nargs*8
| mr CARG1, L
| stp TMP2, L->base // This is the callers base!
| subi CARG2, BASE, 8
| stw PC, SAVE_PC
| add CARG3, BASE, RC
| mr SAVE0, NARGS8:RC
| bl extern lj_meta_call // (lua_State *L, TValue *func, TValue *top)
| lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here.
| addi NARGS8:RC, SAVE0, 8 // Got one more argument now.
| ins_call
|
|->vmeta_callt: // Resolve __call for BC_CALLT.
| // BASE = old base, RA = new base, RC = nargs*8
| mr CARG1, L
| stp BASE, L->base
| subi CARG2, RA, 8
| stw PC, SAVE_PC
| add CARG3, RA, RC
| mr SAVE0, NARGS8:RC
| bl extern lj_meta_call // (lua_State *L, TValue *func, TValue *top)
| lwz TMP1, FRAME_PC(BASE)
| addi NARGS8:RC, SAVE0, 8 // Got one more argument now.
| lwz LFUNC:RB, FRAME_FUNC(RA) // Guaranteed to be a function here.
| b ->BC_CALLT_Z
|
|//-- Argument coercion for 'for' statement ------------------------------
|
|->vmeta_for:
| mr CARG1, L
| stp BASE, L->base
| mr CARG2, RA
| stw PC, SAVE_PC
| mr SAVE0, INS
| bl extern lj_meta_for // (lua_State *L, TValue *base)
|.if JIT
| decode_OP1 TMP0, SAVE0
|.endif
| decode_RA8 RA, SAVE0
|.if JIT
| cmpwi TMP0, BC_JFORI
|.endif
| decode_RD8 RD, SAVE0
|.if JIT
| beqy =>BC_JFORI
|.endif
| b =>BC_FORI
|
|//-----------------------------------------------------------------------
|//-- Fast functions -----------------------------------------------------
|//-----------------------------------------------------------------------
|
|.macro .ffunc, name
|->ff_ .. name:
|.endmacro
|
|.macro .ffunc_1, name
|->ff_ .. name:
| cmplwi NARGS8:RC, 8
| lwz CARG3, 0(BASE)
| lwz CARG1, 4(BASE)
| blt ->fff_fallback
|.endmacro
|
|.macro .ffunc_2, name
|->ff_ .. name:
| cmplwi NARGS8:RC, 16
| lwz CARG3, 0(BASE)
| lwz CARG4, 8(BASE)
| lwz CARG1, 4(BASE)
| lwz CARG2, 12(BASE)
| blt ->fff_fallback
|.endmacro
|
|.macro .ffunc_n, name
|->ff_ .. name:
| cmplwi NARGS8:RC, 8
| lwz CARG3, 0(BASE)
| lfd FARG1, 0(BASE)
| blt ->fff_fallback
| checknum CARG3; bge ->fff_fallback
|.endmacro
|
|.macro .ffunc_nn, name
|->ff_ .. name:
| cmplwi NARGS8:RC, 16
| lwz CARG3, 0(BASE)
| lfd FARG1, 0(BASE)
| lwz CARG4, 8(BASE)
| lfd FARG2, 8(BASE)
| blt ->fff_fallback
| checknum CARG3; bge ->fff_fallback
| checknum CARG4; bge ->fff_fallback
|.endmacro
|
|// Inlined GC threshold check. Caveat: uses TMP0 and TMP1.
|.macro ffgccheck
| lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH)
| lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH)
| cmplw TMP0, TMP1
| bgel ->fff_gcstep
|.endmacro
|
|//-- Base library: checks -----------------------------------------------
|
|.ffunc_1 assert
| li TMP1, LJ_TFALSE
| la RA, -8(BASE)
| cmplw cr1, CARG3, TMP1
| lwz PC, FRAME_PC(BASE)
| bge cr1, ->fff_fallback
| stw CARG3, 0(RA)
| addi RD, NARGS8:RC, 8 // Compute (nresults+1)*8.
| stw CARG1, 4(RA)
| beq ->fff_res // Done if exactly 1 argument.
| li TMP1, 8
| subi RC, RC, 8
|1:
| cmplw TMP1, RC
| lfdx f0, BASE, TMP1
| stfdx f0, RA, TMP1
| addi TMP1, TMP1, 8
| bney <1
| b ->fff_res
|
|.ffunc type
| cmplwi NARGS8:RC, 8
| lwz CARG1, 0(BASE)
| blt ->fff_fallback
| .gpr64 extsw CARG1, CARG1
| subfc TMP0, TISNUM, CARG1
| subfe TMP2, CARG1, CARG1
| orc TMP1, TMP2, TMP0
| addi TMP1, TMP1, ~LJ_TISNUM+1
| slwi TMP1, TMP1, 3
| la TMP2, CFUNC:RB->upvalue
| lfdx FARG1, TMP2, TMP1
| b ->fff_resn
|
|//-- Base library: getters and setters ---------------------------------
|
|.ffunc_1 getmetatable
| checktab CARG3; bne >6
|1: // Field metatable must be at same offset for GCtab and GCudata!
| lwz TAB:CARG1, TAB:CARG1->metatable
|2:
| li CARG3, LJ_TNIL
| cmplwi TAB:CARG1, 0
| lwz STR:RC, DISPATCH_GL(gcroot[GCROOT_MMNAME+MM_metatable])(DISPATCH)
| beq ->fff_restv
| lwz TMP0, TAB:CARG1->hmask
| li CARG3, LJ_TTAB // Use metatable as default result.
| lwz TMP1, STR:RC->hash
| lwz NODE:TMP2, TAB:CARG1->node
| and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask
| slwi TMP0, TMP1, 5
| slwi TMP1, TMP1, 3
| sub TMP1, TMP0, TMP1
| add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8)
|3: // Rearranged logic, because we expect _not_ to find the key.
| lwz CARG4, NODE:TMP2->key
| lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2)
| lwz CARG2, NODE:TMP2->val
| lwz TMP1, 4+offsetof(Node, val)(NODE:TMP2)
| checkstr CARG4; bne >4
| cmpw TMP0, STR:RC; beq >5
|4:
| lwz NODE:TMP2, NODE:TMP2->next
| cmplwi NODE:TMP2, 0
| beq ->fff_restv // Not found, keep default result.
| b <3
|5:
| checknil CARG2
| beq ->fff_restv // Ditto for nil value.
| mr CARG3, CARG2 // Return value of mt.__metatable.
| mr CARG1, TMP1
| b ->fff_restv
|
|6:
| cmpwi CARG3, LJ_TUDATA; beq <1
| .gpr64 extsw CARG3, CARG3
| subfc TMP0, TISNUM, CARG3
| subfe TMP2, CARG3, CARG3
| orc TMP1, TMP2, TMP0
| addi TMP1, TMP1, ~LJ_TISNUM+1
| slwi TMP1, TMP1, 2
| la TMP2, DISPATCH_GL(gcroot[GCROOT_BASEMT])(DISPATCH)
| lwzx TAB:CARG1, TMP2, TMP1
| b <2
|
|.ffunc_2 setmetatable
| // Fast path: no mt for table yet and not clearing the mt.
| checktab CARG3; bne ->fff_fallback
| lwz TAB:TMP1, TAB:CARG1->metatable
| checktab CARG4; bne ->fff_fallback
| cmplwi TAB:TMP1, 0
| lbz TMP3, TAB:CARG1->marked
| bne ->fff_fallback
| andix. TMP0, TMP3, LJ_GC_BLACK // isblack(table)
| stw TAB:CARG2, TAB:CARG1->metatable
| beq ->fff_restv
| barrierback TAB:CARG1, TMP3, TMP0
| b ->fff_restv
|
|.ffunc rawget
| cmplwi NARGS8:RC, 16
| lwz CARG4, 0(BASE)
| lwz TAB:CARG2, 4(BASE)
| blt ->fff_fallback
| checktab CARG4; bne ->fff_fallback
| la CARG3, 8(BASE)
| mr CARG1, L
| bl extern lj_tab_get // (lua_State *L, GCtab *t, cTValue *key)
| // Returns cTValue *.
| lfd FARG1, 0(CRET1)
| b ->fff_resn
|
|//-- Base library: conversions ------------------------------------------
|
|.ffunc tonumber
| // Only handles the number case inline (without a base argument).
| cmplwi NARGS8:RC, 8
| lwz CARG1, 0(BASE)
| lfd FARG1, 0(BASE)
| bne ->fff_fallback // Exactly one argument.
| checknum CARG1; bgt ->fff_fallback
| b ->fff_resn
|
|.ffunc_1 tostring
| // Only handles the string or number case inline.
| checkstr CARG3
| // A __tostring method in the string base metatable is ignored.
| beq ->fff_restv // String key?
| // Handle numbers inline, unless a number base metatable is present.
| lwz TMP0, DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])(DISPATCH)
| checknum CARG3
| cmplwi cr1, TMP0, 0
| stp BASE, L->base // Add frame since C call can throw.
| crorc 4*cr0+eq, 4*cr0+gt, 4*cr1+eq
| stw PC, SAVE_PC // Redundant (but a defined value).
| beq ->fff_fallback
| ffgccheck
| mr CARG1, L
| mr CARG2, BASE
|.if DUALNUM
| bl extern lj_str_fromnumber // (lua_State *L, cTValue *o)
|.else
| bl extern lj_str_fromnum // (lua_State *L, lua_Number *np)
|.endif
| // Returns GCstr *.
| li CARG3, LJ_TSTR
| b ->fff_restv
|
|//-- Base library: iterators -------------------------------------------
|
|.ffunc next
| cmplwi NARGS8:RC, 8
| lwz CARG1, 0(BASE)
| lwz TAB:CARG2, 4(BASE)
| blt ->fff_fallback
| stwx TISNIL, BASE, NARGS8:RC // Set missing 2nd arg to nil.
| checktab CARG1
| lwz PC, FRAME_PC(BASE)
| bne ->fff_fallback
| stp BASE, L->base // Add frame since C call can throw.
| mr CARG1, L
| stp BASE, L->top // Dummy frame length is ok.
| la CARG3, 8(BASE)
| stw PC, SAVE_PC
| bl extern lj_tab_next // (lua_State *L, GCtab *t, TValue *key)
| // Returns 0 at end of traversal.
| cmplwi CRET1, 0
| li CARG3, LJ_TNIL
| beq ->fff_restv // End of traversal: return nil.
| lfd f0, 8(BASE) // Copy key and value to results.
| la RA, -8(BASE)
| lfd f1, 16(BASE)
| stfd f0, 0(RA)
| li RD, (2+1)*8
| stfd f1, 8(RA)
| b ->fff_res
|
|.ffunc_1 pairs
| checktab CARG3
| lwz PC, FRAME_PC(BASE)
| bne ->fff_fallback
#if LJ_52
| lwz TAB:TMP2, TAB:CARG1->metatable
| lfd f0, CFUNC:RB->upvalue[0]
| cmplwi TAB:TMP2, 0
| la RA, -8(BASE)
| bne ->fff_fallback
#else
| lfd f0, CFUNC:RB->upvalue[0]
| la RA, -8(BASE)
#endif
| stw TISNIL, 8(BASE)
| li RD, (3+1)*8
| stfd f0, 0(RA)
| b ->fff_res
|
|.ffunc ipairs_aux
| cmplwi NARGS8:RC, 16
| lwz CARG3, 0(BASE)
| lwz TAB:CARG1, 4(BASE)
| lwz CARG4, 8(BASE)
|.if DUALNUM
| lwz TMP2, 12(BASE)
|.else
| lfd FARG2, 8(BASE)
|.endif
| blt ->fff_fallback
| checktab CARG3
| checknum cr1, CARG4
| lwz PC, FRAME_PC(BASE)
|.if DUALNUM
| bne ->fff_fallback
| bne cr1, ->fff_fallback
|.else
| lus TMP0, 0x3ff0
| stw ZERO, TMPD_LO
| bne ->fff_fallback
| stw TMP0, TMPD_HI
| bge cr1, ->fff_fallback
| lfd FARG1, TMPD
| toint TMP2, FARG2, f0
|.endif
| lwz TMP0, TAB:CARG1->asize
| lwz TMP1, TAB:CARG1->array
|.if not DUALNUM
| fadd FARG2, FARG2, FARG1
|.endif
| addi TMP2, TMP2, 1
| la RA, -8(BASE)
| cmplw TMP0, TMP2
|.if DUALNUM
| stw TISNUM, 0(RA)
| slwi TMP3, TMP2, 3
| stw TMP2, 4(RA)
|.else
| slwi TMP3, TMP2, 3
| stfd FARG2, 0(RA)
|.endif
| ble >2 // Not in array part?
| lwzx TMP2, TMP1, TMP3
| lfdx f0, TMP1, TMP3
|1:
| checknil TMP2
| li RD, (0+1)*8
| beq ->fff_res // End of iteration, return 0 results.
| li RD, (2+1)*8
| stfd f0, 8(RA)
| b ->fff_res
|2: // Check for empty hash part first. Otherwise call C function.
| lwz TMP0, TAB:CARG1->hmask
| cmplwi TMP0, 0
| li RD, (0+1)*8
| beq ->fff_res
| mr CARG2, TMP2
| bl extern lj_tab_getinth // (GCtab *t, int32_t key)
| // Returns cTValue * or NULL.
| cmplwi CRET1, 0
| li RD, (0+1)*8
| beq ->fff_res
| lwz TMP2, 0(CRET1)
| lfd f0, 0(CRET1)
| b <1
|
|.ffunc_1 ipairs
| checktab CARG3
| lwz PC, FRAME_PC(BASE)
| bne ->fff_fallback
#if LJ_52
| lwz TAB:TMP2, TAB:CARG1->metatable
| lfd f0, CFUNC:RB->upvalue[0]
| cmplwi TAB:TMP2, 0
| la RA, -8(BASE)
| bne ->fff_fallback
#else
| lfd f0, CFUNC:RB->upvalue[0]
| la RA, -8(BASE)
#endif
|.if DUALNUM
| stw TISNUM, 8(BASE)
|.else
| stw ZERO, 8(BASE)
|.endif
| stw ZERO, 12(BASE)
| li RD, (3+1)*8
| stfd f0, 0(RA)
| b ->fff_res
|
|//-- Base library: catch errors ----------------------------------------
|
|.ffunc pcall
| cmplwi NARGS8:RC, 8
| lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
| blt ->fff_fallback
| mr TMP2, BASE
| la BASE, 8(BASE)
| // Remember active hook before pcall.
| rlwinm TMP3, TMP3, 32-HOOK_ACTIVE_SHIFT, 31, 31
| subi NARGS8:RC, NARGS8:RC, 8
| addi PC, TMP3, 8+FRAME_PCALL
| b ->vm_call_dispatch
|
|.ffunc xpcall
| cmplwi NARGS8:RC, 16
| lwz CARG4, 8(BASE)
| lfd FARG2, 8(BASE)
| lfd FARG1, 0(BASE)
| blt ->fff_fallback
| lbz TMP1, DISPATCH_GL(hookmask)(DISPATCH)
| mr TMP2, BASE
| checkfunc CARG4; bne ->fff_fallback // Traceback must be a function.
| la BASE, 16(BASE)
| // Remember active hook before pcall.
| rlwinm TMP1, TMP1, 32-HOOK_ACTIVE_SHIFT, 31, 31
| stfd FARG2, 0(TMP2) // Swap function and traceback.
| subi NARGS8:RC, NARGS8:RC, 16
| stfd FARG1, 8(TMP2)
| addi PC, TMP1, 16+FRAME_PCALL
| b ->vm_call_dispatch
|
|//-- Coroutine library --------------------------------------------------
|
|.macro coroutine_resume_wrap, resume
|.if resume
|.ffunc_1 coroutine_resume
| cmpwi CARG3, LJ_TTHREAD; bne ->fff_fallback
|.else
|.ffunc coroutine_wrap_aux
| lwz L:CARG1, CFUNC:RB->upvalue[0].gcr
|.endif
| lbz TMP0, L:CARG1->status
| lp TMP1, L:CARG1->cframe
| lp CARG2, L:CARG1->top
| cmplwi cr0, TMP0, LUA_YIELD
| lp TMP2, L:CARG1->base
| cmplwi cr1, TMP1, 0
| lwz TMP0, L:CARG1->maxstack
| cmplw cr7, CARG2, TMP2
| lwz PC, FRAME_PC(BASE)
| crorc 4*cr6+lt, 4*cr0+gt, 4*cr1+eq // st>LUA_YIELD || cframe!=0
| add TMP2, CARG2, NARGS8:RC
| crandc 4*cr6+gt, 4*cr7+eq, 4*cr0+eq // base==top && st!=LUA_YIELD
| cmplw cr1, TMP2, TMP0
| cror 4*cr6+lt, 4*cr6+lt, 4*cr6+gt
| stw PC, SAVE_PC
| cror 4*cr6+lt, 4*cr6+lt, 4*cr1+gt // cond1 || cond2 || stackov
| stp BASE, L->base
| blt cr6, ->fff_fallback
|1:
|.if resume
| addi BASE, BASE, 8 // Keep resumed thread in stack for GC.
| subi NARGS8:RC, NARGS8:RC, 8
| subi TMP2, TMP2, 8
|.endif
| stp TMP2, L:CARG1->top
| li TMP1, 0
| stp BASE, L->top
|2: // Move args to coroutine.
| cmpw TMP1, NARGS8:RC
| lfdx f0, BASE, TMP1
| beq >3
| stfdx f0, CARG2, TMP1
| addi TMP1, TMP1, 8
| b <2
|3:
| li CARG3, 0
| mr L:SAVE0, L:CARG1
| li CARG4, 0
| bl ->vm_resume // (lua_State *L, TValue *base, 0, 0)
| // Returns thread status.
|4:
| lp TMP2, L:SAVE0->base
| cmplwi CRET1, LUA_YIELD
| lp TMP3, L:SAVE0->top
| li_vmstate INTERP
| lp BASE, L->base
| st_vmstate
| bgt >8
| sub RD, TMP3, TMP2
| lwz TMP0, L->maxstack
| cmplwi RD, 0
| add TMP1, BASE, RD
| beq >6 // No results?
| cmplw TMP1, TMP0
| li TMP1, 0
| bgt >9 // Need to grow stack?
|
| subi TMP3, RD, 8
| stp TMP2, L:SAVE0->top // Clear coroutine stack.
|5: // Move results from coroutine.
| cmplw TMP1, TMP3
| lfdx f0, TMP2, TMP1
| stfdx f0, BASE, TMP1
| addi TMP1, TMP1, 8
| bne <5
|6:
| andix. TMP0, PC, FRAME_TYPE
|.if resume
| li TMP1, LJ_TTRUE
| la RA, -8(BASE)
| stw TMP1, -8(BASE) // Prepend true to results.
| addi RD, RD, 16
|.else
| mr RA, BASE
| addi RD, RD, 8
|.endif
|7:
| stw PC, SAVE_PC
| mr MULTRES, RD
| beq ->BC_RET_Z
| b ->vm_return
|
|8: // Coroutine returned with error (at co->top-1).
|.if resume
| andix. TMP0, PC, FRAME_TYPE
| la TMP3, -8(TMP3)
| li TMP1, LJ_TFALSE
| lfd f0, 0(TMP3)
| stp TMP3, L:SAVE0->top // Remove error from coroutine stack.
| li RD, (2+1)*8
| stw TMP1, -8(BASE) // Prepend false to results.
| la RA, -8(BASE)
| stfd f0, 0(BASE) // Copy error message.
| b <7
|.else
| mr CARG1, L
| mr CARG2, L:SAVE0
| bl extern lj_ffh_coroutine_wrap_err // (lua_State *L, lua_State *co)
|.endif
|
|9: // Handle stack expansion on return from yield.
| mr CARG1, L
| srwi CARG2, RD, 3
| bl extern lj_state_growstack // (lua_State *L, int n)
| li CRET1, 0
| b <4
|.endmacro
|
| coroutine_resume_wrap 1 // coroutine.resume
| coroutine_resume_wrap 0 // coroutine.wrap
|
|.ffunc coroutine_yield
| lp TMP0, L->cframe
| add TMP1, BASE, NARGS8:RC
| stp BASE, L->base
| andix. TMP0, TMP0, CFRAME_RESUME
| stp TMP1, L->top
| li CRET1, LUA_YIELD
| beq ->fff_fallback
| stp ZERO, L->cframe
| stb CRET1, L->status
| b ->vm_leave_unw
|
|//-- Math library -------------------------------------------------------
|
|.ffunc_1 math_abs
| checknum CARG3
|.if DUALNUM
| bne >2
| srawi TMP1, CARG1, 31
| xor TMP2, TMP1, CARG1
|.if GPR64
| lus TMP0, 0x8000
| sub CARG1, TMP2, TMP1
| cmplw CARG1, TMP0
| beq >1
|.else
| sub. CARG1, TMP2, TMP1
| blt >1
|.endif
|->fff_resi:
| lwz PC, FRAME_PC(BASE)
| la RA, -8(BASE)
| stw TISNUM, -8(BASE)
| stw CRET1, -4(BASE)
| b ->fff_res1
|1:
| lus CARG3, 0x41e0 // 2^31.
| li CARG1, 0
| b ->fff_restv
|2:
|.endif
| bge ->fff_fallback
| rlwinm CARG3, CARG3, 0, 1, 31
| // Fallthrough.
|
|->fff_restv:
| // CARG3/CARG1 = TValue result.
| lwz PC, FRAME_PC(BASE)
| stw CARG3, -8(BASE)
| la RA, -8(BASE)
| stw CARG1, -4(BASE)
|->fff_res1:
| // RA = results, PC = return.
| li RD, (1+1)*8
|->fff_res:
| // RA = results, RD = (nresults+1)*8, PC = return.
| andix. TMP0, PC, FRAME_TYPE
| mr MULTRES, RD
| bney ->vm_return
| lwz INS, -4(PC)
| decode_RB8 RB, INS
|5:
| cmplw RB, RD // More results expected?
| decode_RA8 TMP0, INS
| bgt >6
| ins_next1
| // Adjust BASE. KBASE is assumed to be set for the calling frame.
| sub BASE, RA, TMP0
| ins_next2
|
|6: // Fill up results with nil.
| subi TMP1, RD, 8
| addi RD, RD, 8
| stwx TISNIL, RA, TMP1
| b <5
|
|.macro math_extern, func
| .ffunc_n math_ .. func
| blex func
| b ->fff_resn
|.endmacro
|
|.macro math_extern2, func
| .ffunc_nn math_ .. func
| blex func
| b ->fff_resn
|.endmacro
|
|.macro math_round, func
| .ffunc_1 math_ .. func
| checknum CARG3; beqy ->fff_restv
| rlwinm TMP2, CARG3, 12, 21, 31
| bge ->fff_fallback
| addic. TMP2, TMP2, -1023 // exp = exponent(x) - 1023
| cmplwi cr1, TMP2, 31 // 0 <= exp < 31?
| subfic TMP0, TMP2, 31
| blt >3
| slwi TMP1, CARG3, 11
| srwi TMP3, CARG1, 21
| oris TMP1, TMP1, 0x8000
| addi TMP2, TMP2, 1
| or TMP1, TMP1, TMP3
| slwi CARG2, CARG1, 11
| bge cr1, >4
| slw TMP3, TMP1, TMP2
| srw RD, TMP1, TMP0
| or TMP3, TMP3, CARG2
| srawi TMP2, CARG3, 31
|.if "func" == "floor"
| and TMP1, TMP3, TMP2
| addic TMP0, TMP1, -1
| subfe TMP1, TMP0, TMP1
| add CARG1, RD, TMP1
| xor CARG1, CARG1, TMP2
| sub CARG1, CARG1, TMP2
| b ->fff_resi
|.else
| andc TMP1, TMP3, TMP2
| addic TMP0, TMP1, -1
| subfe TMP1, TMP0, TMP1
| add CARG1, RD, TMP1
| cmpw CARG1, RD
| xor CARG1, CARG1, TMP2
| sub CARG1, CARG1, TMP2
| bge ->fff_resi
| // Overflow to 2^31.
| lus CARG3, 0x41e0 // 2^31.
| li CARG1, 0
| b ->fff_restv
|.endif
|3: // |x| < 1
| slwi TMP2, CARG3, 1
| srawi TMP1, CARG3, 31
| or TMP2, CARG1, TMP2 // ztest = (hi+hi) | lo
|.if "func" == "floor"
| and TMP1, TMP2, TMP1 // (ztest & sign) == 0 ? 0 : -1
| subfic TMP2, TMP1, 0
| subfe CARG1, CARG1, CARG1
|.else
| andc TMP1, TMP2, TMP1 // (ztest & ~sign) == 0 ? 0 : 1
| addic TMP2, TMP1, -1
| subfe CARG1, TMP2, TMP1
|.endif
| b ->fff_resi
|4: // exp >= 31. Check for -(2^31).
| xoris TMP1, TMP1, 0x8000
| srawi TMP2, CARG3, 31
|.if "func" == "floor"
| or TMP1, TMP1, CARG2
|.endif
|.if PPE
| orc TMP1, TMP1, TMP2
| cmpwi TMP1, 0
|.else
| orc. TMP1, TMP1, TMP2
|.endif
| crand 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
| lus CARG1, 0x8000 // -(2^31).
| beqy ->fff_resi
|5:
| lfd FARG1, 0(BASE)
| blex func
| b ->fff_resn
|.endmacro
|
|.if DUALNUM
| math_round floor
| math_round ceil
|.else
| // NYI: use internal implementation.
| math_extern floor
| math_extern ceil
|.endif
|
|.if SQRT
|.ffunc_n math_sqrt
| fsqrt FARG1, FARG1
| b ->fff_resn
|.else
| math_extern sqrt
|.endif
|
|.ffunc math_log
| cmplwi NARGS8:RC, 8
| lwz CARG3, 0(BASE)
| lfd FARG1, 0(BASE)
| bne ->fff_fallback // Need exactly 1 argument.
| checknum CARG3; bge ->fff_fallback
| blex log
| b ->fff_resn
|
| math_extern log10
| math_extern exp
| math_extern sin
| math_extern cos
| math_extern tan
| math_extern asin
| math_extern acos
| math_extern atan
| math_extern sinh
| math_extern cosh
| math_extern tanh
| math_extern2 pow
| math_extern2 atan2
| math_extern2 fmod
|
|->ff_math_deg:
|.ffunc_n math_rad
| lfd FARG2, CFUNC:RB->upvalue[0]
| fmul FARG1, FARG1, FARG2
| b ->fff_resn
|
|.if DUALNUM
|.ffunc math_ldexp
| cmplwi NARGS8:RC, 16
| lwz CARG3, 0(BASE)
| lfd FARG1, 0(BASE)
| lwz CARG4, 8(BASE)
|.if GPR64
| lwz CARG2, 12(BASE)
|.else
| lwz CARG1, 12(BASE)
|.endif
| blt ->fff_fallback
| checknum CARG3; bge ->fff_fallback
| checknum CARG4; bne ->fff_fallback
|.else
|.ffunc_nn math_ldexp
|.if GPR64
| toint CARG2, FARG2
|.else
| toint CARG1, FARG2
|.endif
|.endif
| blex ldexp
| b ->fff_resn
|
|.ffunc_n math_frexp
|.if GPR64
| la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
|.else
| la CARG1, DISPATCH_GL(tmptv)(DISPATCH)
|.endif
| lwz PC, FRAME_PC(BASE)
| blex frexp
| lwz TMP1, DISPATCH_GL(tmptv)(DISPATCH)
| la RA, -8(BASE)
|.if not DUALNUM
| tonum_i FARG2, TMP1
|.endif
| stfd FARG1, 0(RA)
| li RD, (2+1)*8
|.if DUALNUM
| stw TISNUM, 8(RA)
| stw TMP1, 12(RA)
|.else
| stfd FARG2, 8(RA)
|.endif
| b ->fff_res
|
|.ffunc_n math_modf
|.if GPR64
| la CARG2, -8(BASE)
|.else
| la CARG1, -8(BASE)
|.endif
| lwz PC, FRAME_PC(BASE)
| blex modf
| la RA, -8(BASE)
| stfd FARG1, 0(BASE)
| li RD, (2+1)*8
| b ->fff_res
|
|.macro math_minmax, name, ismax
|.if DUALNUM
| .ffunc_1 name
| checknum CARG3
| addi TMP1, BASE, 8
| add TMP2, BASE, NARGS8:RC
| bne >4
|1: // Handle integers.
| lwz CARG4, 0(TMP1)
| cmplw cr1, TMP1, TMP2
| lwz CARG2, 4(TMP1)
| bge cr1, ->fff_resi
| checknum CARG4
| xoris TMP0, CARG1, 0x8000
| xoris TMP3, CARG2, 0x8000
| bne >3
| subfc TMP3, TMP3, TMP0
| subfe TMP0, TMP0, TMP0
|.if ismax
| andc TMP3, TMP3, TMP0
|.else
| and TMP3, TMP3, TMP0
|.endif
| add CARG1, TMP3, CARG2
|.if GPR64
| rldicl CARG1, CARG1, 0, 32
|.endif
| addi TMP1, TMP1, 8
| b <1
|3:
| bge ->fff_fallback
| // Convert intermediate result to number and continue below.
| tonum_i FARG1, CARG1
| lfd FARG2, 0(TMP1)
| b >6
|4:
| lfd FARG1, 0(BASE)
| bge ->fff_fallback
|5: // Handle numbers.
| lwz CARG4, 0(TMP1)
| cmplw cr1, TMP1, TMP2
| lfd FARG2, 0(TMP1)
| bge cr1, ->fff_resn
| checknum CARG4; bge >7
|6:
| fsub f0, FARG1, FARG2
| addi TMP1, TMP1, 8
|.if ismax
| fsel FARG1, f0, FARG1, FARG2
|.else
| fsel FARG1, f0, FARG2, FARG1
|.endif
| b <5
|7: // Convert integer to number and continue above.
| lwz CARG2, 4(TMP1)
| bne ->fff_fallback
| tonum_i FARG2, CARG2
| b <6
|.else
| .ffunc_n name
| li TMP1, 8
|1:
| lwzx CARG2, BASE, TMP1
| lfdx FARG2, BASE, TMP1
| cmplw cr1, TMP1, NARGS8:RC
| checknum CARG2
| bge cr1, ->fff_resn
| bge ->fff_fallback
| fsub f0, FARG1, FARG2
| addi TMP1, TMP1, 8
|.if ismax
| fsel FARG1, f0, FARG1, FARG2
|.else
| fsel FARG1, f0, FARG2, FARG1
|.endif
| b <1
|.endif
|.endmacro
|
| math_minmax math_min, 0
| math_minmax math_max, 1
|
|//-- String library -----------------------------------------------------
|
|.ffunc_1 string_len
| checkstr CARG3; bne ->fff_fallback
| lwz CRET1, STR:CARG1->len
| b ->fff_resi
|
|.ffunc string_byte // Only handle the 1-arg case here.
| cmplwi NARGS8:RC, 8
| lwz CARG3, 0(BASE)
| lwz STR:CARG1, 4(BASE)
| bne ->fff_fallback // Need exactly 1 argument.
| checkstr CARG3
| bne ->fff_fallback
| lwz TMP0, STR:CARG1->len
|.if DUALNUM
| lbz CARG1, STR:CARG1[1] // Access is always ok (NUL at end).
| li RD, (0+1)*8
| lwz PC, FRAME_PC(BASE)
| cmplwi TMP0, 0
| la RA, -8(BASE)
| beqy ->fff_res
| b ->fff_resi
|.else
| lbz TMP1, STR:CARG1[1] // Access is always ok (NUL at end).
| addic TMP3, TMP0, -1 // RD = ((str->len != 0)+1)*8
| subfe RD, TMP3, TMP0
| stw TMP1, TONUM_LO // Inlined tonum_u f0, TMP1.
| addi RD, RD, 1
| lfd f0, TONUM_D
| la RA, -8(BASE)
| lwz PC, FRAME_PC(BASE)
| fsub f0, f0, TOBIT
| slwi RD, RD, 3
| stfd f0, 0(RA)
| b ->fff_res
|.endif
|
|.ffunc string_char // Only handle the 1-arg case here.
| ffgccheck
| cmplwi NARGS8:RC, 8
| lwz CARG3, 0(BASE)
|.if DUALNUM
| lwz TMP0, 4(BASE)
| bne ->fff_fallback // Exactly 1 argument.
| checknum CARG3; bne ->fff_fallback
| la CARG2, 7(BASE)
|.else
| lfd FARG1, 0(BASE)
| bne ->fff_fallback // Exactly 1 argument.
| checknum CARG3; bge ->fff_fallback
| toint TMP0, FARG1
| la CARG2, TMPD_BLO
|.endif
| li CARG3, 1
| cmplwi TMP0, 255; bgt ->fff_fallback
|->fff_newstr:
| mr CARG1, L
| stp BASE, L->base
| stw PC, SAVE_PC
| bl extern lj_str_new // (lua_State *L, char *str, size_t l)
| // Returns GCstr *.
| lp BASE, L->base
| li CARG3, LJ_TSTR
| b ->fff_restv
|
|.ffunc string_sub
| ffgccheck
| cmplwi NARGS8:RC, 16
| lwz CARG3, 16(BASE)
|.if not DUALNUM
| lfd f0, 16(BASE)
|.endif
| lwz TMP0, 0(BASE)
| lwz STR:CARG1, 4(BASE)
| blt ->fff_fallback
| lwz CARG2, 8(BASE)
|.if DUALNUM
| lwz TMP1, 12(BASE)
|.else
| lfd f1, 8(BASE)
|.endif
| li TMP2, -1
| beq >1
|.if DUALNUM
| checknum CARG3
| lwz TMP2, 20(BASE)
| bne ->fff_fallback
|1:
| checknum CARG2; bne ->fff_fallback
|.else
| checknum CARG3; bge ->fff_fallback
| toint TMP2, f0
|1:
| checknum CARG2; bge ->fff_fallback
|.endif
| checkstr TMP0; bne ->fff_fallback
|.if not DUALNUM
| toint TMP1, f1
|.endif
| lwz TMP0, STR:CARG1->len
| cmplw TMP0, TMP2 // len < end? (unsigned compare)
| addi TMP3, TMP2, 1
| blt >5
|2:
| cmpwi TMP1, 0 // start <= 0?
| add TMP3, TMP1, TMP0
| ble >7
|3:
| sub CARG3, TMP2, TMP1
| addi CARG2, STR:CARG1, #STR-1
| srawi TMP0, CARG3, 31
| addi CARG3, CARG3, 1
| add CARG2, CARG2, TMP1
| andc CARG3, CARG3, TMP0
|.if GPR64
| rldicl CARG2, CARG2, 0, 32
| rldicl CARG3, CARG3, 0, 32
|.endif
| b ->fff_newstr
|
|5: // Negative end or overflow.
| cmpw TMP0, TMP2 // len >= end? (signed compare)
| add TMP2, TMP0, TMP3 // Negative end: end = end+len+1.
| bge <2
| mr TMP2, TMP0 // Overflow: end = len.
| b <2
|
|7: // Negative start or underflow.
| .gpr64 extsw TMP1, TMP1
| addic CARG3, TMP1, -1
| subfe CARG3, CARG3, CARG3
| srawi CARG2, TMP3, 31 // Note: modifies carry.
| andc TMP3, TMP3, CARG3
| andc TMP1, TMP3, CARG2
| addi TMP1, TMP1, 1 // start = 1 + (start ? start+len : 0)
| b <3
|
|.ffunc string_rep // Only handle the 1-char case inline.
| ffgccheck
| cmplwi NARGS8:RC, 16
| lwz TMP0, 0(BASE)
| lwz STR:CARG1, 4(BASE)
| lwz CARG4, 8(BASE)
|.if DUALNUM
| lwz CARG3, 12(BASE)
|.else
| lfd FARG2, 8(BASE)
|.endif
| bne ->fff_fallback // Exactly 2 arguments.
| checkstr TMP0; bne ->fff_fallback
|.if DUALNUM
| checknum CARG4; bne ->fff_fallback
|.else
| checknum CARG4; bge ->fff_fallback
| toint CARG3, FARG2
|.endif
| lwz TMP0, STR:CARG1->len
| cmpwi CARG3, 0
| lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH)
| ble >2 // Count <= 0? (or non-int)
| cmplwi TMP0, 1
| subi TMP2, CARG3, 1
| blt >2 // Zero length string?
| cmplw cr1, TMP1, CARG3
| bne ->fff_fallback // Fallback for > 1-char strings.
| lbz TMP0, STR:CARG1[1]
| lp CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH)
| blt cr1, ->fff_fallback
|1: // Fill buffer with char. Yes, this is suboptimal code (do you care?).
| cmplwi TMP2, 0
| stbx TMP0, CARG2, TMP2
| subi TMP2, TMP2, 1
| bne <1
| b ->fff_newstr
|2: // Return empty string.
| la STR:CARG1, DISPATCH_GL(strempty)(DISPATCH)
| li CARG3, LJ_TSTR
| b ->fff_restv
|
|.ffunc string_reverse
| ffgccheck
| cmplwi NARGS8:RC, 8
| lwz CARG3, 0(BASE)
| lwz STR:CARG1, 4(BASE)
| blt ->fff_fallback
| checkstr CARG3
| lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH)
| bne ->fff_fallback
| lwz CARG3, STR:CARG1->len
| la CARG1, #STR(STR:CARG1)
| lp CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH)
| li TMP2, 0
| cmplw TMP1, CARG3
| subi TMP3, CARG3, 1
| blt ->fff_fallback
|1: // Reverse string copy.
| cmpwi TMP3, 0
| lbzx TMP1, CARG1, TMP2
| blty ->fff_newstr
| stbx TMP1, CARG2, TMP3
| subi TMP3, TMP3, 1
| addi TMP2, TMP2, 1
| b <1
|
|.macro ffstring_case, name, lo
| .ffunc name
| ffgccheck
| cmplwi NARGS8:RC, 8
| lwz CARG3, 0(BASE)
| lwz STR:CARG1, 4(BASE)
| blt ->fff_fallback
| checkstr CARG3
| lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH)
| bne ->fff_fallback
| lwz CARG3, STR:CARG1->len
| la CARG1, #STR(STR:CARG1)
| lp CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH)
| cmplw TMP1, CARG3
| li TMP2, 0
| blt ->fff_fallback
|1: // ASCII case conversion.
| cmplw TMP2, CARG3
| lbzx TMP1, CARG1, TMP2
| bgey ->fff_newstr
| subi TMP0, TMP1, lo
| xori TMP3, TMP1, 0x20
| addic TMP0, TMP0, -26
| subfe TMP3, TMP3, TMP3
| rlwinm TMP3, TMP3, 0, 26, 26 // x &= 0x20.
| xor TMP1, TMP1, TMP3
| stbx TMP1, CARG2, TMP2
| addi TMP2, TMP2, 1
| b <1
|.endmacro
|
|ffstring_case string_lower, 65
|ffstring_case string_upper, 97
|
|//-- Table library ------------------------------------------------------
|
|.ffunc_1 table_getn
| checktab CARG3; bne ->fff_fallback
| bl extern lj_tab_len // (GCtab *t)
| // Returns uint32_t (but less than 2^31).
| b ->fff_resi
|
|//-- Bit library --------------------------------------------------------
|
|.macro .ffunc_bit, name
|.if DUALNUM
| .ffunc_1 bit_..name
| checknum CARG3; bnel ->fff_tobit_fb
|.else
| .ffunc_n bit_..name
| fadd FARG1, FARG1, TOBIT
| stfd FARG1, TMPD
| lwz CARG1, TMPD_LO
|.endif
|.endmacro
|
|.macro .ffunc_bit_op, name, ins
| .ffunc_bit name
| addi TMP1, BASE, 8
| add TMP2, BASE, NARGS8:RC
|1:
| lwz CARG4, 0(TMP1)
| cmplw cr1, TMP1, TMP2
|.if DUALNUM
| lwz CARG2, 4(TMP1)
|.else
| lfd FARG1, 0(TMP1)
|.endif
| bgey cr1, ->fff_resi
| checknum CARG4
|.if DUALNUM
| bnel ->fff_bitop_fb
|.else
| fadd FARG1, FARG1, TOBIT
| bge ->fff_fallback
| stfd FARG1, TMPD
| lwz CARG2, TMPD_LO
|.endif
| ins CARG1, CARG1, CARG2
| addi TMP1, TMP1, 8
| b <1
|.endmacro
|
|.ffunc_bit_op band, and
|.ffunc_bit_op bor, or
|.ffunc_bit_op bxor, xor
|
|.ffunc_bit bswap
| rotlwi TMP0, CARG1, 8
| rlwimi TMP0, CARG1, 24, 0, 7
| rlwimi TMP0, CARG1, 24, 16, 23
| mr CRET1, TMP0
| b ->fff_resi
|
|.ffunc_bit bnot
| not CRET1, CARG1
| b ->fff_resi
|
|.macro .ffunc_bit_sh, name, ins, shmod
|.if DUALNUM
| .ffunc_2 bit_..name
| checknum CARG3; bnel ->fff_tobit_fb
| // Note: no inline conversion from number for 2nd argument!
| checknum CARG4; bne ->fff_fallback
|.else
| .ffunc_nn bit_..name
| fadd FARG1, FARG1, TOBIT
| fadd FARG2, FARG2, TOBIT
| stfd FARG1, TMPD
| lwz CARG1, TMPD_LO
| stfd FARG2, TMPD
| lwz CARG2, TMPD_LO
|.endif
|.if shmod == 1
| rlwinm CARG2, CARG2, 0, 27, 31
|.elif shmod == 2
| neg CARG2, CARG2
|.endif
| ins CRET1, CARG1, CARG2
| b ->fff_resi
|.endmacro
|
|.ffunc_bit_sh lshift, slw, 1
|.ffunc_bit_sh rshift, srw, 1
|.ffunc_bit_sh arshift, sraw, 1
|.ffunc_bit_sh rol, rotlw, 0
|.ffunc_bit_sh ror, rotlw, 2
|
|.ffunc_bit tobit
|.if DUALNUM
| b ->fff_resi
|.else
|->fff_resi:
| tonum_i FARG1, CRET1
|.endif
|->fff_resn:
| lwz PC, FRAME_PC(BASE)
| la RA, -8(BASE)
| stfd FARG1, -8(BASE)
| b ->fff_res1
|
|// Fallback FP number to bit conversion.
|->fff_tobit_fb:
|.if DUALNUM
| lfd FARG1, 0(BASE)
| bgt ->fff_fallback
| fadd FARG1, FARG1, TOBIT
| stfd FARG1, TMPD
| lwz CARG1, TMPD_LO
| blr
|.endif
|->fff_bitop_fb:
|.if DUALNUM
| lfd FARG1, 0(TMP1)
| bgt ->fff_fallback
| fadd FARG1, FARG1, TOBIT
| stfd FARG1, TMPD
| lwz CARG2, TMPD_LO
| blr
|.endif
|
|//-----------------------------------------------------------------------
|
|->fff_fallback: // Call fast function fallback handler.
| // BASE = new base, RB = CFUNC, RC = nargs*8
| lp TMP3, CFUNC:RB->f
| add TMP1, BASE, NARGS8:RC
| lwz PC, FRAME_PC(BASE) // Fallback may overwrite PC.
| addi TMP0, TMP1, 8*LUA_MINSTACK
| lwz TMP2, L->maxstack
| stw PC, SAVE_PC // Redundant (but a defined value).
| .toc lp TMP3, 0(TMP3)
| cmplw TMP0, TMP2
| stp BASE, L->base
| stp TMP1, L->top
| mr CARG1, L
| bgt >5 // Need to grow stack.
| mtctr TMP3
| bctrl // (lua_State *L)
| // Either throws an error, or recovers and returns -1, 0 or nresults+1.
| lp BASE, L->base
| cmpwi CRET1, 0
| slwi RD, CRET1, 3
| la RA, -8(BASE)
| bgt ->fff_res // Returned nresults+1?
|1: // Returned 0 or -1: retry fast path.
| lp TMP0, L->top
| lwz LFUNC:RB, FRAME_FUNC(BASE)
| sub NARGS8:RC, TMP0, BASE
| bne ->vm_call_tail // Returned -1?
| ins_callt // Returned 0: retry fast path.
|
|// Reconstruct previous base for vmeta_call during tailcall.
|->vm_call_tail:
| andix. TMP0, PC, FRAME_TYPE
| rlwinm TMP1, PC, 0, 0, 28
| bne >3
| lwz INS, -4(PC)
| decode_RA8 TMP1, INS
| addi TMP1, TMP1, 8
|3:
| sub TMP2, BASE, TMP1
| b ->vm_call_dispatch // Resolve again for tailcall.
|
|5: // Grow stack for fallback handler.
| li CARG2, LUA_MINSTACK
| bl extern lj_state_growstack // (lua_State *L, int n)
| lp BASE, L->base
| cmpw TMP0, TMP0 // Set 4*cr0+eq to force retry.
| b <1
|
|->fff_gcstep: // Call GC step function.
| // BASE = new base, RC = nargs*8
| mflr SAVE0
| stp BASE, L->base
| add TMP0, BASE, NARGS8:RC
| stw PC, SAVE_PC // Redundant (but a defined value).
| stp TMP0, L->top
| mr CARG1, L
| bl extern lj_gc_step // (lua_State *L)
| lp BASE, L->base
| mtlr SAVE0
| lp TMP0, L->top
| sub NARGS8:RC, TMP0, BASE
| lwz CFUNC:RB, FRAME_FUNC(BASE)
| blr
|
|//-----------------------------------------------------------------------
|//-- Special dispatch targets -------------------------------------------
|//-----------------------------------------------------------------------
|
|->vm_record: // Dispatch target for recording phase.
|.if JIT
| lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
| andix. TMP0, TMP3, HOOK_VMEVENT // No recording while in vmevent.
| bne >5
| // Decrement the hookcount for consistency, but always do the call.
| lwz TMP2, DISPATCH_GL(hookcount)(DISPATCH)
| andix. TMP0, TMP3, HOOK_ACTIVE
| bne >1
| subi TMP2, TMP2, 1
| andi. TMP0, TMP3, LUA_MASKLINE|LUA_MASKCOUNT
| beqy >1
| stw TMP2, DISPATCH_GL(hookcount)(DISPATCH)
| b >1
|.endif
|
|->vm_rethook: // Dispatch target for return hooks.
| lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
| andix. TMP0, TMP3, HOOK_ACTIVE // Hook already active?
| beq >1
|5: // Re-dispatch to static ins.
| addi TMP1, TMP1, GG_DISP2STATIC // Assumes decode_OPP TMP1, INS.
| lpx TMP0, DISPATCH, TMP1
| mtctr TMP0
| bctr
|
|->vm_inshook: // Dispatch target for instr/line hooks.
| lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
| lwz TMP2, DISPATCH_GL(hookcount)(DISPATCH)
| andix. TMP0, TMP3, HOOK_ACTIVE // Hook already active?
| rlwinm TMP0, TMP3, 31-LUA_HOOKLINE, 31, 0
| bne <5
|
| cmpwi cr1, TMP0, 0
| addic. TMP2, TMP2, -1
| beq cr1, <5
| stw TMP2, DISPATCH_GL(hookcount)(DISPATCH)
| beq >1
| bge cr1, <5
|1:
| mr CARG1, L
| stw MULTRES, SAVE_MULTRES
| mr CARG2, PC
| stp BASE, L->base
| // SAVE_PC must hold the _previous_ PC. The callee updates it with PC.
| bl extern lj_dispatch_ins // (lua_State *L, const BCIns *pc)
|3:
| lp BASE, L->base
|4: // Re-dispatch to static ins.
| lwz INS, -4(PC)
| decode_OPP TMP1, INS
| decode_RB8 RB, INS
| addi TMP1, TMP1, GG_DISP2STATIC
| decode_RD8 RD, INS
| lpx TMP0, DISPATCH, TMP1
| decode_RA8 RA, INS
| decode_RC8 RC, INS
| mtctr TMP0
| bctr
|
|->cont_hook: // Continue from hook yield.
| addi PC, PC, 4
| lwz MULTRES, -20(RB) // Restore MULTRES for *M ins.
| b <4
|
|->vm_hotloop: // Hot loop counter underflow.
|.if JIT
| lwz LFUNC:TMP1, FRAME_FUNC(BASE)
| addi CARG1, DISPATCH, GG_DISP2J
| stw PC, SAVE_PC
| lwz TMP1, LFUNC:TMP1->pc
| mr CARG2, PC
| stw L, DISPATCH_J(L)(DISPATCH)
| lbz TMP1, PC2PROTO(framesize)(TMP1)
| stp BASE, L->base
| slwi TMP1, TMP1, 3
| add TMP1, BASE, TMP1
| stp TMP1, L->top
| bl extern lj_trace_hot // (jit_State *J, const BCIns *pc)
| b <3
|.endif
|
|->vm_callhook: // Dispatch target for call hooks.
| mr CARG2, PC
|.if JIT
| b >1
|.endif
|
|->vm_hotcall: // Hot call counter underflow.
|.if JIT
| ori CARG2, PC, 1
|1:
|.endif
| add TMP0, BASE, RC
| stw PC, SAVE_PC
| mr CARG1, L
| stp BASE, L->base
| sub RA, RA, BASE
| stp TMP0, L->top
| bl extern lj_dispatch_call // (lua_State *L, const BCIns *pc)
| // Returns ASMFunction.
| lp BASE, L->base
| lp TMP0, L->top
| stw ZERO, SAVE_PC // Invalidate for subsequent line hook.
| sub NARGS8:RC, TMP0, BASE
| add RA, BASE, RA
| lwz LFUNC:RB, FRAME_FUNC(BASE)
| lwz INS, -4(PC)
| mtctr CRET1
| bctr
|
|//-----------------------------------------------------------------------
|//-- Trace exit handler -------------------------------------------------
|//-----------------------------------------------------------------------
|
|.macro savex_, a, b, c, d
| stfd f..a, 16+a*8(sp)
| stfd f..b, 16+b*8(sp)
| stfd f..c, 16+c*8(sp)
| stfd f..d, 16+d*8(sp)
|.endmacro
|
|->vm_exit_handler:
|.if JIT
| addi sp, sp, -(16+32*8+32*4)
| stmw r2, 16+32*8+2*4(sp)
| addi DISPATCH, JGL, -GG_DISP2G-32768
| li CARG2, ~LJ_VMST_EXIT
| lwz CARG1, 16+32*8+32*4(sp) // Get stack chain.
| stw CARG2, DISPATCH_GL(vmstate)(DISPATCH)
| savex_ 0,1,2,3
| stw CARG1, 0(sp) // Store extended stack chain.
| clrso TMP1
| savex_ 4,5,6,7
| addi CARG2, sp, 16+32*8+32*4 // Recompute original value of sp.
| savex_ 8,9,10,11
| stw CARG2, 16+32*8+1*4(sp) // Store sp in RID_SP.
| savex_ 12,13,14,15
| mflr CARG3
| li TMP1, 0
| savex_ 16,17,18,19
| stw TMP1, 16+32*8+0*4(sp) // Clear RID_TMP.
| savex_ 20,21,22,23
| lhz CARG4, 2(CARG3) // Load trace number.
| savex_ 24,25,26,27
| lwz L, DISPATCH_GL(jit_L)(DISPATCH)
| savex_ 28,29,30,31
| sub CARG3, TMP0, CARG3 // Compute exit number.
| lp BASE, DISPATCH_GL(jit_base)(DISPATCH)
| srwi CARG3, CARG3, 2
| stw L, DISPATCH_J(L)(DISPATCH)
| subi CARG3, CARG3, 2
| stw TMP1, DISPATCH_GL(jit_L)(DISPATCH)
| stw CARG4, DISPATCH_J(parent)(DISPATCH)
| stp BASE, L->base
| addi CARG1, DISPATCH, GG_DISP2J
| stw CARG3, DISPATCH_J(exitno)(DISPATCH)
| addi CARG2, sp, 16
| bl extern lj_trace_exit // (jit_State *J, ExitState *ex)
| // Returns MULTRES (unscaled) or negated error code.
| lp TMP1, L->cframe
| lwz TMP2, 0(sp)
| lp BASE, L->base
|.if GPR64
| rldicr sp, TMP1, 0, 61
|.else
| rlwinm sp, TMP1, 0, 0, 29
|.endif
| lwz PC, SAVE_PC // Get SAVE_PC.
| stw TMP2, 0(sp)
| stw L, SAVE_L // Set SAVE_L (on-trace resume/yield).
| b >1
|.endif
|->vm_exit_interp:
|.if JIT
| // CARG1 = MULTRES or negated error code, BASE, PC and JGL set.
| lwz L, SAVE_L
| addi DISPATCH, JGL, -GG_DISP2G-32768
|1:
| cmpwi CARG1, 0
| blt >3 // Check for error from exit.
| lwz LFUNC:TMP1, FRAME_FUNC(BASE)
| slwi MULTRES, CARG1, 3
| li TMP2, 0
| stw MULTRES, SAVE_MULTRES
| lwz TMP1, LFUNC:TMP1->pc
| stw TMP2, DISPATCH_GL(jit_L)(DISPATCH)
| lwz KBASE, PC2PROTO(k)(TMP1)
| // Setup type comparison constants.
| li TISNUM, LJ_TISNUM
| lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float).
| stw TMP3, TMPD
| li ZERO, 0
| ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float).
| lfs TOBIT, TMPD
| stw TMP3, TMPD
| lus TMP0, 0x4338 // Hiword of 2^52 + 2^51 (double)
| li TISNIL, LJ_TNIL
| stw TMP0, TONUM_HI
| lfs TONUM, TMPD
| // Modified copy of ins_next which handles function header dispatch, too.
| lwz INS, 0(PC)
| addi PC, PC, 4
| // Assumes TISNIL == ~LJ_VMST_INTERP == -1.
| stw TISNIL, DISPATCH_GL(vmstate)(DISPATCH)
| decode_OPP TMP1, INS
| decode_RA8 RA, INS
| lpx TMP0, DISPATCH, TMP1
| mtctr TMP0
| cmplwi TMP1, BC_FUNCF*4 // Function header?
| bge >2
| decode_RB8 RB, INS
| decode_RD8 RD, INS
| decode_RC8 RC, INS
| bctr
|2:
| subi RC, MULTRES, 8
| add RA, RA, BASE
| bctr
|
|3: // Rethrow error from the right C frame.
| neg CARG2, CARG1
| mr CARG1, L
| bl extern lj_err_throw // (lua_State *L, int errcode)
|.endif
|
|//-----------------------------------------------------------------------
|//-- Math helper functions ----------------------------------------------
|//-----------------------------------------------------------------------
|
|// NYI: Use internal implementations of floor, ceil, trunc.
|
|->vm_modi:
| divwo. TMP0, CARG1, CARG2
| bso >1
|.if GPR64
| xor CARG3, CARG1, CARG2
| cmpwi CARG3, 0
|.else
| xor. CARG3, CARG1, CARG2
|.endif
| mullw TMP0, TMP0, CARG2
| sub CARG1, CARG1, TMP0
| bgelr
| cmpwi CARG1, 0; beqlr
| add CARG1, CARG1, CARG2
| blr
|1:
| cmpwi CARG2, 0
| li CARG1, 0
| beqlr
| clrso TMP0 // Clear SO for -2147483648 % -1 and return 0.
| blr
|
|//-----------------------------------------------------------------------
|//-- Miscellaneous functions --------------------------------------------
|//-----------------------------------------------------------------------
|
|// void lj_vm_cachesync(void *start, void *end)
|// Flush D-Cache and invalidate I-Cache. Assumes 32 byte cache line size.
|// This is a good lower bound, except for very ancient PPC models.
|->vm_cachesync:
|.if JIT or FFI
| // Compute start of first cache line and number of cache lines.
| rlwinm CARG1, CARG1, 0, 0, 26
| sub CARG2, CARG2, CARG1
| addi CARG2, CARG2, 31
| rlwinm. CARG2, CARG2, 27, 5, 31
| beqlr
| mtctr CARG2
| mr CARG3, CARG1
|1: // Flush D-Cache.
| dcbst r0, CARG1
| addi CARG1, CARG1, 32
| bdnz <1
| sync
| mtctr CARG2
|1: // Invalidate I-Cache.
| icbi r0, CARG3
| addi CARG3, CARG3, 32
| bdnz <1
| isync
| blr
|.endif
|
|//-----------------------------------------------------------------------
|//-- FFI helper functions -----------------------------------------------
|//-----------------------------------------------------------------------
|
|// Handler for callback functions. Callback slot number in r11, g in r12.
|->vm_ffi_callback:
|.if FFI
|.type CTSTATE, CTState, PC
| saveregs
| lwz CTSTATE, GL:r12->ctype_state
| addi DISPATCH, r12, GG_G2DISP
| stw r11, CTSTATE->cb.slot
| stw r3, CTSTATE->cb.gpr[0]
| stfd f1, CTSTATE->cb.fpr[0]
| stw r4, CTSTATE->cb.gpr[1]
| stfd f2, CTSTATE->cb.fpr[1]
| stw r5, CTSTATE->cb.gpr[2]
| stfd f3, CTSTATE->cb.fpr[2]
| stw r6, CTSTATE->cb.gpr[3]
| stfd f4, CTSTATE->cb.fpr[3]
| stw r7, CTSTATE->cb.gpr[4]
| stfd f5, CTSTATE->cb.fpr[4]
| stw r8, CTSTATE->cb.gpr[5]
| stfd f6, CTSTATE->cb.fpr[5]
| stw r9, CTSTATE->cb.gpr[6]
| stfd f7, CTSTATE->cb.fpr[6]
| stw r10, CTSTATE->cb.gpr[7]
| stfd f8, CTSTATE->cb.fpr[7]
| addi TMP0, sp, CFRAME_SPACE+8
| stw TMP0, CTSTATE->cb.stack
| mr CARG1, CTSTATE
| stw CTSTATE, SAVE_PC // Any value outside of bytecode is ok.
| mr CARG2, sp
| bl extern lj_ccallback_enter // (CTState *cts, void *cf)
| // Returns lua_State *.
| lp BASE, L:CRET1->base
| li TISNUM, LJ_TISNUM // Setup type comparison constants.
| lp RC, L:CRET1->top
| lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float).
| li ZERO, 0
| mr L, CRET1
| stw TMP3, TMPD
| lus TMP0, 0x4338 // Hiword of 2^52 + 2^51 (double)
| lwz LFUNC:RB, FRAME_FUNC(BASE)
| ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float).
| stw TMP0, TONUM_HI
| li TISNIL, LJ_TNIL
| li_vmstate INTERP
| lfs TOBIT, TMPD
| stw TMP3, TMPD
| sub RC, RC, BASE
| st_vmstate
| lfs TONUM, TMPD
| ins_callt
|.endif
|
|->cont_ffi_callback: // Return from FFI callback.
|.if FFI
| lwz CTSTATE, DISPATCH_GL(ctype_state)(DISPATCH)
| stp BASE, L->base
| stp RB, L->top
| stp L, CTSTATE->L
| mr CARG1, CTSTATE
| mr CARG2, RA
| bl extern lj_ccallback_leave // (CTState *cts, TValue *o)
| lwz CRET1, CTSTATE->cb.gpr[0]
| lfd FARG1, CTSTATE->cb.fpr[0]
| lwz CRET2, CTSTATE->cb.gpr[1]
| b ->vm_leave_unw
|.endif
|
|->vm_ffi_call: // Call C function via FFI.
| // Caveat: needs special frame unwinding, see below.
|.if FFI
| .type CCSTATE, CCallState, CARG1
| lwz TMP1, CCSTATE->spadj
| mflr TMP0
| lbz CARG2, CCSTATE->nsp
| lbz CARG3, CCSTATE->nfpr
| neg TMP1, TMP1
| stw TMP0, 4(sp)
| cmpwi cr1, CARG3, 0
| mr TMP2, sp
| addic. CARG2, CARG2, -1
| stwux sp, sp, TMP1
| crnot 4*cr1+eq, 4*cr1+eq // For vararg calls.
| stw r14, -4(TMP2)
| stw CCSTATE, -8(TMP2)
| mr r14, TMP2
| la TMP1, CCSTATE->stack
| slwi CARG2, CARG2, 2
| blty >2
| la TMP2, 8(sp)
|1:
| lwzx TMP0, TMP1, CARG2
| stwx TMP0, TMP2, CARG2
| addic. CARG2, CARG2, -4
| bge <1
|2:
| bney cr1, >3
| lfd f1, CCSTATE->fpr[0]
| lfd f2, CCSTATE->fpr[1]
| lfd f3, CCSTATE->fpr[2]
| lfd f4, CCSTATE->fpr[3]
| lfd f5, CCSTATE->fpr[4]
| lfd f6, CCSTATE->fpr[5]
| lfd f7, CCSTATE->fpr[6]
| lfd f8, CCSTATE->fpr[7]
|3:
| lp TMP0, CCSTATE->func
| lwz CARG2, CCSTATE->gpr[1]
| lwz CARG3, CCSTATE->gpr[2]
| lwz CARG4, CCSTATE->gpr[3]
| lwz CARG5, CCSTATE->gpr[4]
| mtctr TMP0
| lwz r8, CCSTATE->gpr[5]
| lwz r9, CCSTATE->gpr[6]
| lwz r10, CCSTATE->gpr[7]
| lwz CARG1, CCSTATE->gpr[0] // Do this last, since CCSTATE is CARG1.
| bctrl
| lwz CCSTATE:TMP1, -8(r14)
| lwz TMP2, -4(r14)
| lwz TMP0, 4(r14)
| stw CARG1, CCSTATE:TMP1->gpr[0]
| stfd FARG1, CCSTATE:TMP1->fpr[0]
| stw CARG2, CCSTATE:TMP1->gpr[1]
| mtlr TMP0
| stw CARG3, CCSTATE:TMP1->gpr[2]
| mr sp, r14
| stw CARG4, CCSTATE:TMP1->gpr[3]
| mr r14, TMP2
| blr
|.endif
|// Note: vm_ffi_call must be the last function in this object file!
|
|//-----------------------------------------------------------------------
}
/* Generate the code for a single instruction. */
static void build_ins(BuildCtx *ctx, BCOp op, int defop)
{
int vk = 0;
|=>defop:
switch (op) {
/* -- Comparison ops ---------------------------------------------------- */
/* Remember: all ops branch for a true comparison, fall through otherwise. */
case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT:
| // RA = src1*8, RD = src2*8, JMP with RD = target
|.if DUALNUM
| lwzux TMP0, RA, BASE
| addi PC, PC, 4
| lwz CARG2, 4(RA)
| lwzux TMP1, RD, BASE
| lwz TMP2, -4(PC)
| checknum cr0, TMP0
| lwz CARG3, 4(RD)
| decode_RD4 TMP2, TMP2
| checknum cr1, TMP1
| addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
| bne cr0, >7
| bne cr1, >8
| cmpw CARG2, CARG3
if (op == BC_ISLT) {
| bge >2
} else if (op == BC_ISGE) {
| blt >2
} else if (op == BC_ISLE) {
| bgt >2
} else {
| ble >2
}
|1:
| add PC, PC, TMP2
|2:
| ins_next
|
|7: // RA is not an integer.
| bgt cr0, ->vmeta_comp
| // RA is a number.
| lfd f0, 0(RA)
| bgt cr1, ->vmeta_comp
| blt cr1, >4
| // RA is a number, RD is an integer.
| tonum_i f1, CARG3
| b >5
|
|8: // RA is an integer, RD is not an integer.
| bgt cr1, ->vmeta_comp
| // RA is an integer, RD is a number.
| tonum_i f0, CARG2
|4:
| lfd f1, 0(RD)
|5:
| fcmpu cr0, f0, f1
if (op == BC_ISLT) {
| bge <2
} else if (op == BC_ISGE) {
| blt <2
} else if (op == BC_ISLE) {
| cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
| bge <2
} else {
| cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
| blt <2
}
| b <1
|.else
| lwzx TMP0, BASE, RA
| addi PC, PC, 4
| lfdx f0, BASE, RA
| lwzx TMP1, BASE, RD
| checknum cr0, TMP0
| lwz TMP2, -4(PC)
| lfdx f1, BASE, RD
| checknum cr1, TMP1
| decode_RD4 TMP2, TMP2
| bge cr0, ->vmeta_comp
| addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
| bge cr1, ->vmeta_comp
| fcmpu cr0, f0, f1
if (op == BC_ISLT) {
| bge >1
} else if (op == BC_ISGE) {
| blt >1
} else if (op == BC_ISLE) {
| cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
| bge >1
} else {
| cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
| blt >1
}
| add PC, PC, TMP2
|1:
| ins_next
|.endif
break;
case BC_ISEQV: case BC_ISNEV:
vk = op == BC_ISEQV;
| // RA = src1*8, RD = src2*8, JMP with RD = target
|.if DUALNUM
| lwzux TMP0, RA, BASE
| addi PC, PC, 4
| lwz CARG2, 4(RA)
| lwzux TMP1, RD, BASE
| checknum cr0, TMP0
| lwz TMP2, -4(PC)
| checknum cr1, TMP1
| decode_RD4 TMP2, TMP2
| lwz CARG3, 4(RD)
| cror 4*cr7+gt, 4*cr0+gt, 4*cr1+gt
| addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
if (vk) {
| ble cr7, ->BC_ISEQN_Z
} else {
| ble cr7, ->BC_ISNEN_Z
}
|.else
| lwzux TMP0, RA, BASE
| lwz TMP2, 0(PC)
| lfd f0, 0(RA)
| addi PC, PC, 4
| lwzux TMP1, RD, BASE
| checknum cr0, TMP0
| decode_RD4 TMP2, TMP2
| lfd f1, 0(RD)
| checknum cr1, TMP1
| addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
| bge cr0, >5
| bge cr1, >5
| fcmpu cr0, f0, f1
if (vk) {
| bne >1
| add PC, PC, TMP2
} else {
| beq >1
| add PC, PC, TMP2
}
|1:
| ins_next
|.endif
|5: // Either or both types are not numbers.
|.if not DUALNUM
| lwz CARG2, 4(RA)
| lwz CARG3, 4(RD)
|.endif
|.if FFI
| cmpwi cr7, TMP0, LJ_TCDATA
| cmpwi cr5, TMP1, LJ_TCDATA
|.endif
| not TMP3, TMP0
| cmplw TMP0, TMP1
| cmplwi cr1, TMP3, ~LJ_TISPRI // Primitive?
|.if FFI
| cror 4*cr7+eq, 4*cr7+eq, 4*cr5+eq
|.endif
| cmplwi cr6, TMP3, ~LJ_TISTABUD // Table or userdata?
|.if FFI
| beq cr7, ->vmeta_equal_cd
|.endif
| cmplw cr5, CARG2, CARG3
| crandc 4*cr0+gt, 4*cr0+eq, 4*cr1+gt // 2: Same type and primitive.
| crorc 4*cr0+lt, 4*cr5+eq, 4*cr0+eq // 1: Same tv or different type.
| crand 4*cr0+eq, 4*cr0+eq, 4*cr5+eq // 0: Same type and same tv.
| mr SAVE0, PC
| cror 4*cr0+eq, 4*cr0+eq, 4*cr0+gt // 0 or 2.
| cror 4*cr0+lt, 4*cr0+lt, 4*cr0+gt // 1 or 2.
if (vk) {
| bne cr0, >6
| add PC, PC, TMP2
|6:
} else {
| beq cr0, >6
| add PC, PC, TMP2
|6:
}
|.if DUALNUM
| bge cr0, >2 // Done if 1 or 2.
|1:
| ins_next
|2:
|.else
| blt cr0, <1 // Done if 1 or 2.
|.endif
| blt cr6, <1 // Done if not tab/ud.
|
| // Different tables or userdatas. Need to check __eq metamethod.
| // Field metatable must be at same offset for GCtab and GCudata!
| lwz TAB:TMP2, TAB:CARG2->metatable
| li CARG4, 1-vk // ne = 0 or 1.
| cmplwi TAB:TMP2, 0
| beq <1 // No metatable?
| lbz TMP2, TAB:TMP2->nomm
| andix. TMP2, TMP2, 1<<MM_eq
| bne <1 // Or 'no __eq' flag set?
| mr PC, SAVE0 // Restore old PC.
| b ->vmeta_equal // Handle __eq metamethod.
break;
case BC_ISEQS: case BC_ISNES:
vk = op == BC_ISEQS;
| // RA = src*8, RD = str_const*8 (~), JMP with RD = target
| lwzux TMP0, RA, BASE
| srwi RD, RD, 1
| lwz STR:TMP3, 4(RA)
| lwz TMP2, 0(PC)
| subfic RD, RD, -4
| addi PC, PC, 4
|.if FFI
| cmpwi TMP0, LJ_TCDATA
|.endif
| lwzx STR:TMP1, KBASE, RD // KBASE-4-str_const*4
| .gpr64 extsw TMP0, TMP0
| subfic TMP0, TMP0, LJ_TSTR
|.if FFI
| beq ->vmeta_equal_cd
|.endif
| sub TMP1, STR:TMP1, STR:TMP3
| or TMP0, TMP0, TMP1
| decode_RD4 TMP2, TMP2
| subfic TMP0, TMP0, 0
| addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
| subfe TMP1, TMP1, TMP1
if (vk) {
| andc TMP2, TMP2, TMP1
} else {
| and TMP2, TMP2, TMP1
}
| add PC, PC, TMP2
| ins_next
break;
case BC_ISEQN: case BC_ISNEN:
vk = op == BC_ISEQN;
| // RA = src*8, RD = num_const*8, JMP with RD = target
|.if DUALNUM
| lwzux TMP0, RA, BASE
| addi PC, PC, 4
| lwz CARG2, 4(RA)
| lwzux TMP1, RD, KBASE
| checknum cr0, TMP0
| lwz TMP2, -4(PC)
| checknum cr1, TMP1
| decode_RD4 TMP2, TMP2
| lwz CARG3, 4(RD)
| addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
if (vk) {
|->BC_ISEQN_Z:
} else {
|->BC_ISNEN_Z:
}
| bne cr0, >7
| bne cr1, >8
| cmpw CARG2, CARG3
|4:
|.else
if (vk) {
|->BC_ISEQN_Z: // Dummy label.
} else {
|->BC_ISNEN_Z: // Dummy label.
}
| lwzx TMP0, BASE, RA
| addi PC, PC, 4
| lfdx f0, BASE, RA
| lwz TMP2, -4(PC)
| lfdx f1, KBASE, RD
| decode_RD4 TMP2, TMP2
| checknum TMP0
| addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
| bge >3
| fcmpu cr0, f0, f1
|.endif
if (vk) {
| bne >1
| add PC, PC, TMP2
|1:
|.if not FFI
|3:
|.endif
} else {
| beq >2
|1:
|.if not FFI
|3:
|.endif
| add PC, PC, TMP2
|2:
}
| ins_next
|.if FFI
|3:
| cmpwi TMP0, LJ_TCDATA
| beq ->vmeta_equal_cd
| b <1
|.endif
|.if DUALNUM
|7: // RA is not an integer.
| bge cr0, <3
| // RA is a number.
| lfd f0, 0(RA)
| blt cr1, >1
| // RA is a number, RD is an integer.
| tonum_i f1, CARG3
| b >2
|
|8: // RA is an integer, RD is a number.
| tonum_i f0, CARG2
|1:
| lfd f1, 0(RD)
|2:
| fcmpu cr0, f0, f1
| b <4
|.endif
break;
case BC_ISEQP: case BC_ISNEP:
vk = op == BC_ISEQP;
| // RA = src*8, RD = primitive_type*8 (~), JMP with RD = target
| lwzx TMP0, BASE, RA
| srwi TMP1, RD, 3
| lwz TMP2, 0(PC)
| not TMP1, TMP1
| addi PC, PC, 4
|.if FFI
| cmpwi TMP0, LJ_TCDATA
|.endif
| sub TMP0, TMP0, TMP1
|.if FFI
| beq ->vmeta_equal_cd
|.endif
| decode_RD4 TMP2, TMP2
| .gpr64 extsw TMP0, TMP0
| addic TMP0, TMP0, -1
| addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
| subfe TMP1, TMP1, TMP1
if (vk) {
| and TMP2, TMP2, TMP1
} else {
| andc TMP2, TMP2, TMP1
}
| add PC, PC, TMP2
| ins_next
break;
/* -- Unary test and copy ops ------------------------------------------- */
case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF:
| // RA = dst*8 or unused, RD = src*8, JMP with RD = target
| lwzx TMP0, BASE, RD
| lwz INS, 0(PC)
| addi PC, PC, 4
if (op == BC_IST || op == BC_ISF) {
| .gpr64 extsw TMP0, TMP0
| subfic TMP0, TMP0, LJ_TTRUE
| decode_RD4 TMP2, INS
| subfe TMP1, TMP1, TMP1
| addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
if (op == BC_IST) {
| andc TMP2, TMP2, TMP1
} else {
| and TMP2, TMP2, TMP1
}
| add PC, PC, TMP2
} else {
| li TMP1, LJ_TFALSE
| lfdx f0, BASE, RD
| cmplw TMP0, TMP1
if (op == BC_ISTC) {
| bge >1
} else {
| blt >1
}
| addis PC, PC, -(BCBIAS_J*4 >> 16)
| decode_RD4 TMP2, INS
| stfdx f0, BASE, RA
| add PC, PC, TMP2
|1:
}
| ins_next
break;
/* -- Unary ops --------------------------------------------------------- */
case BC_MOV:
| // RA = dst*8, RD = src*8
| ins_next1
| lfdx f0, BASE, RD
| stfdx f0, BASE, RA
| ins_next2
break;
case BC_NOT:
| // RA = dst*8, RD = src*8
| ins_next1
| lwzx TMP0, BASE, RD
| .gpr64 extsw TMP0, TMP0
| subfic TMP1, TMP0, LJ_TTRUE
| adde TMP0, TMP0, TMP1
| stwx TMP0, BASE, RA
| ins_next2
break;
case BC_UNM:
| // RA = dst*8, RD = src*8
| lwzux TMP1, RD, BASE
| lwz TMP0, 4(RD)
| checknum TMP1
|.if DUALNUM
| bne >5
|.if GPR64
| lus TMP2, 0x8000
| neg TMP0, TMP0
| cmplw TMP0, TMP2
| beq >4
|.else
| nego. TMP0, TMP0
| bso >4
|1:
|.endif
| ins_next1
| stwux TISNUM, RA, BASE
| stw TMP0, 4(RA)
|3:
| ins_next2
|4:
|.if not GPR64
| // Potential overflow.
| checkov TMP1, <1 // Ignore unrelated overflow.
|.endif
| lus TMP1, 0x41e0 // 2^31.
| li TMP0, 0
| b >7
|.endif
|5:
| bge ->vmeta_unm
| xoris TMP1, TMP1, 0x8000
|7:
| ins_next1
| stwux TMP1, RA, BASE
| stw TMP0, 4(RA)
|.if DUALNUM
| b <3
|.else
| ins_next2
|.endif
break;
case BC_LEN:
| // RA = dst*8, RD = src*8
| lwzux TMP0, RD, BASE
| lwz CARG1, 4(RD)
| checkstr TMP0; bne >2
| lwz CRET1, STR:CARG1->len
|1:
|.if DUALNUM
| ins_next1
| stwux TISNUM, RA, BASE
| stw CRET1, 4(RA)
|.else
| tonum_u f0, CRET1 // Result is a non-negative integer.
| ins_next1
| stfdx f0, BASE, RA
|.endif
| ins_next2
|2:
| checktab TMP0; bne ->vmeta_len
#if LJ_52
| lwz TAB:TMP2, TAB:CARG1->metatable
| cmplwi TAB:TMP2, 0
| bne >9
|3:
#endif
|->BC_LEN_Z:
| bl extern lj_tab_len // (GCtab *t)
| // Returns uint32_t (but less than 2^31).
| b <1
#if LJ_52
|9:
| lbz TMP0, TAB:TMP2->nomm
| andix. TMP0, TMP0, 1<<MM_len
| bne <3 // 'no __len' flag set: done.
| b ->vmeta_len
#endif
break;
/* -- Binary ops -------------------------------------------------------- */
|.macro ins_arithpre
| // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8
||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN);
||switch (vk) {
||case 0:
| lwzx TMP1, BASE, RB
| .if DUALNUM
| lwzx TMP2, KBASE, RC
| .endif
| lfdx f14, BASE, RB
| lfdx f15, KBASE, RC
| .if DUALNUM
| checknum cr0, TMP1
| checknum cr1, TMP2
| crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
| bge ->vmeta_arith_vn
| .else
| checknum TMP1; bge ->vmeta_arith_vn
| .endif
|| break;
||case 1:
| lwzx TMP1, BASE, RB
| .if DUALNUM
| lwzx TMP2, KBASE, RC
| .endif
| lfdx f15, BASE, RB
| lfdx f14, KBASE, RC
| .if DUALNUM
| checknum cr0, TMP1
| checknum cr1, TMP2
| crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
| bge ->vmeta_arith_nv
| .else
| checknum TMP1; bge ->vmeta_arith_nv
| .endif
|| break;
||default:
| lwzx TMP1, BASE, RB
| lwzx TMP2, BASE, RC
| lfdx f14, BASE, RB
| lfdx f15, BASE, RC
| checknum cr0, TMP1
| checknum cr1, TMP2
| crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
| bge ->vmeta_arith_vv
|| break;
||}
|.endmacro
|
|.macro ins_arithfallback, ins
||switch (vk) {
||case 0:
| ins ->vmeta_arith_vn2
|| break;
||case 1:
| ins ->vmeta_arith_nv2
|| break;
||default:
| ins ->vmeta_arith_vv2
|| break;
||}
|.endmacro
|
|.macro intmod, a, b, c
| bl ->vm_modi
|.endmacro
|
|.macro fpmod, a, b, c
|->BC_MODVN_Z:
| fdiv FARG1, b, c
| // NYI: Use internal implementation of floor.
| blex floor // floor(b/c)
| fmul a, FARG1, c
| fsub a, b, a // b - floor(b/c)*c
|.endmacro
|
|.macro ins_arithfp, fpins
| ins_arithpre
|.if "fpins" == "fpmod_"
| b ->BC_MODVN_Z // Avoid 3 copies. It's slow anyway.
|.else
| fpins f0, f14, f15
| ins_next1
| stfdx f0, BASE, RA
| ins_next2
|.endif
|.endmacro
|
|.macro ins_arithdn, intins, fpins
| // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8
||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN);
||switch (vk) {
||case 0:
| lwzux TMP1, RB, BASE
| lwzux TMP2, RC, KBASE
| lwz CARG1, 4(RB)
| checknum cr0, TMP1
| lwz CARG2, 4(RC)
|| break;
||case 1:
| lwzux TMP1, RB, BASE
| lwzux TMP2, RC, KBASE
| lwz CARG2, 4(RB)
| checknum cr0, TMP1
| lwz CARG1, 4(RC)
|| break;
||default:
| lwzux TMP1, RB, BASE
| lwzux TMP2, RC, BASE
| lwz CARG1, 4(RB)
| checknum cr0, TMP1
| lwz CARG2, 4(RC)
|| break;
||}
| checknum cr1, TMP2
| bne >5
| bne cr1, >5
| intins CARG1, CARG1, CARG2
| bso >4
|1:
| ins_next1
| stwux TISNUM, RA, BASE
| stw CARG1, 4(RA)
|2:
| ins_next2
|4: // Overflow.
| checkov TMP0, <1 // Ignore unrelated overflow.
| ins_arithfallback b
|5: // FP variant.
||if (vk == 1) {
| lfd f15, 0(RB)
| crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
| lfd f14, 0(RC)
||} else {
| lfd f14, 0(RB)
| crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
| lfd f15, 0(RC)
||}
| ins_arithfallback bge
|.if "fpins" == "fpmod_"
| b ->BC_MODVN_Z // Avoid 3 copies. It's slow anyway.
|.else
| fpins f0, f14, f15
| ins_next1
| stfdx f0, BASE, RA
| b <2
|.endif
|.endmacro
|
|.macro ins_arith, intins, fpins
|.if DUALNUM
| ins_arithdn intins, fpins
|.else
| ins_arithfp fpins
|.endif
|.endmacro
case BC_ADDVN: case BC_ADDNV: case BC_ADDVV:
|.if GPR64
|.macro addo32., y, a, b
| // Need to check overflow for (a<<32) + (b<<32).
| rldicr TMP0, a, 32, 31
| rldicr TMP3, b, 32, 31
| addo. TMP0, TMP0, TMP3
| add y, a, b
|.endmacro
| ins_arith addo32., fadd
|.else
| ins_arith addo., fadd
|.endif
break;
case BC_SUBVN: case BC_SUBNV: case BC_SUBVV:
|.if GPR64
|.macro subo32., y, a, b
| // Need to check overflow for (a<<32) - (b<<32).
| rldicr TMP0, a, 32, 31
| rldicr TMP3, b, 32, 31
| subo. TMP0, TMP0, TMP3
| sub y, a, b
|.endmacro
| ins_arith subo32., fsub
|.else
| ins_arith subo., fsub
|.endif
break;
case BC_MULVN: case BC_MULNV: case BC_MULVV:
| ins_arith mullwo., fmul
break;
case BC_DIVVN: case BC_DIVNV: case BC_DIVVV:
| ins_arithfp fdiv
break;
case BC_MODVN:
| ins_arith intmod, fpmod
break;
case BC_MODNV: case BC_MODVV:
| ins_arith intmod, fpmod_
break;
case BC_POW:
| // NYI: (partial) integer arithmetic.
| lwzx TMP1, BASE, RB
| lfdx FARG1, BASE, RB
| lwzx TMP2, BASE, RC
| lfdx FARG2, BASE, RC
| checknum cr0, TMP1
| checknum cr1, TMP2
| crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
| bge ->vmeta_arith_vv
| blex pow
| ins_next1
| stfdx FARG1, BASE, RA
| ins_next2
break;
case BC_CAT:
| // RA = dst*8, RB = src_start*8, RC = src_end*8
| sub CARG3, RC, RB
| stp BASE, L->base
| add CARG2, BASE, RC
| mr SAVE0, RB
|->BC_CAT_Z:
| stw PC, SAVE_PC
| mr CARG1, L
| srwi CARG3, CARG3, 3
| bl extern lj_meta_cat // (lua_State *L, TValue *top, int left)
| // Returns NULL (finished) or TValue * (metamethod).
| cmplwi CRET1, 0
| lp BASE, L->base
| bne ->vmeta_binop
| ins_next1
| lfdx f0, BASE, SAVE0 // Copy result from RB to RA.
| stfdx f0, BASE, RA
| ins_next2
break;
/* -- Constant ops ------------------------------------------------------ */
case BC_KSTR:
| // RA = dst*8, RD = str_const*8 (~)
| srwi TMP1, RD, 1
| subfic TMP1, TMP1, -4
| ins_next1
| lwzx TMP0, KBASE, TMP1 // KBASE-4-str_const*4
| li TMP2, LJ_TSTR
| stwux TMP2, RA, BASE
| stw TMP0, 4(RA)
| ins_next2
break;
case BC_KCDATA:
|.if FFI
| // RA = dst*8, RD = cdata_const*8 (~)
| srwi TMP1, RD, 1
| subfic TMP1, TMP1, -4
| ins_next1
| lwzx TMP0, KBASE, TMP1 // KBASE-4-cdata_const*4
| li TMP2, LJ_TCDATA
| stwux TMP2, RA, BASE
| stw TMP0, 4(RA)
| ins_next2
|.endif
break;
case BC_KSHORT:
| // RA = dst*8, RD = int16_literal*8
|.if DUALNUM
| slwi RD, RD, 13
| srawi RD, RD, 16
| ins_next1
| stwux TISNUM, RA, BASE
| stw RD, 4(RA)
| ins_next2
|.else
| // The soft-float approach is faster.
| slwi RD, RD, 13
| srawi TMP1, RD, 31
| xor TMP2, TMP1, RD
| sub TMP2, TMP2, TMP1 // TMP2 = abs(x)
| cntlzw TMP3, TMP2
| subfic TMP1, TMP3, 0x40d // TMP1 = exponent-1
| slw TMP2, TMP2, TMP3 // TMP2 = left aligned mantissa
| subfic TMP3, RD, 0
| slwi TMP1, TMP1, 20
| rlwimi RD, TMP2, 21, 1, 31 // hi = sign(x) | (mantissa>>11)
| subfe TMP0, TMP0, TMP0
| add RD, RD, TMP1 // hi = hi + exponent-1
| and RD, RD, TMP0 // hi = x == 0 ? 0 : hi
| ins_next1
| stwux RD, RA, BASE
| stw ZERO, 4(RA)
| ins_next2
|.endif
break;
case BC_KNUM:
| // RA = dst*8, RD = num_const*8
| ins_next1
| lfdx f0, KBASE, RD
| stfdx f0, BASE, RA
| ins_next2
break;
case BC_KPRI:
| // RA = dst*8, RD = primitive_type*8 (~)
| srwi TMP1, RD, 3
| not TMP0, TMP1
| ins_next1
| stwx TMP0, BASE, RA
| ins_next2
break;
case BC_KNIL:
| // RA = base*8, RD = end*8
| stwx TISNIL, BASE, RA
| addi RA, RA, 8
|1:
| stwx TISNIL, BASE, RA
| cmpw RA, RD
| addi RA, RA, 8
| blt <1
| ins_next_
break;
/* -- Upvalue and function ops ------------------------------------------ */
case BC_UGET:
| // RA = dst*8, RD = uvnum*8
| lwz LFUNC:RB, FRAME_FUNC(BASE)
| srwi RD, RD, 1
| addi RD, RD, offsetof(GCfuncL, uvptr)
| lwzx UPVAL:RB, LFUNC:RB, RD
| ins_next1
| lwz TMP1, UPVAL:RB->v
| lfd f0, 0(TMP1)
| stfdx f0, BASE, RA
| ins_next2
break;
case BC_USETV:
| // RA = uvnum*8, RD = src*8
| lwz LFUNC:RB, FRAME_FUNC(BASE)
| srwi RA, RA, 1
| addi RA, RA, offsetof(GCfuncL, uvptr)
| lfdux f0, RD, BASE
| lwzx UPVAL:RB, LFUNC:RB, RA
| lbz TMP3, UPVAL:RB->marked
| lwz CARG2, UPVAL:RB->v
| andix. TMP3, TMP3, LJ_GC_BLACK // isblack(uv)
| lbz TMP0, UPVAL:RB->closed
| lwz TMP2, 0(RD)
| stfd f0, 0(CARG2)
| cmplwi cr1, TMP0, 0
| lwz TMP1, 4(RD)
| cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
| subi TMP2, TMP2, (LJ_TNUMX+1)
| bne >2 // Upvalue is closed and black?
|1:
| ins_next
|
|2: // Check if new value is collectable.
| cmplwi TMP2, LJ_TISGCV - (LJ_TNUMX+1)
| bge <1 // tvisgcv(v)
| lbz TMP3, GCOBJ:TMP1->gch.marked
| andix. TMP3, TMP3, LJ_GC_WHITES // iswhite(v)
| la CARG1, GG_DISP2G(DISPATCH)
| // Crossed a write barrier. Move the barrier forward.
| beq <1
| bl extern lj_gc_barrieruv // (global_State *g, TValue *tv)
| b <1
break;
case BC_USETS:
| // RA = uvnum*8, RD = str_const*8 (~)
| lwz LFUNC:RB, FRAME_FUNC(BASE)
| srwi TMP1, RD, 1
| srwi RA, RA, 1
| subfic TMP1, TMP1, -4
| addi RA, RA, offsetof(GCfuncL, uvptr)
| lwzx STR:TMP1, KBASE, TMP1 // KBASE-4-str_const*4
| lwzx UPVAL:RB, LFUNC:RB, RA
| lbz TMP3, UPVAL:RB->marked
| lwz CARG2, UPVAL:RB->v
| andix. TMP3, TMP3, LJ_GC_BLACK // isblack(uv)
| lbz TMP3, STR:TMP1->marked
| lbz TMP2, UPVAL:RB->closed
| li TMP0, LJ_TSTR
| stw STR:TMP1, 4(CARG2)
| stw TMP0, 0(CARG2)
| bne >2
|1:
| ins_next
|
|2: // Check if string is white and ensure upvalue is closed.
| andix. TMP3, TMP3, LJ_GC_WHITES // iswhite(str)
| cmplwi cr1, TMP2, 0
| cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
| la CARG1, GG_DISP2G(DISPATCH)
| // Crossed a write barrier. Move the barrier forward.
| beq <1
| bl extern lj_gc_barrieruv // (global_State *g, TValue *tv)
| b <1
break;
case BC_USETN:
| // RA = uvnum*8, RD = num_const*8
| lwz LFUNC:RB, FRAME_FUNC(BASE)
| srwi RA, RA, 1
| addi RA, RA, offsetof(GCfuncL, uvptr)
| lfdx f0, KBASE, RD
| lwzx UPVAL:RB, LFUNC:RB, RA
| ins_next1
| lwz TMP1, UPVAL:RB->v
| stfd f0, 0(TMP1)
| ins_next2
break;
case BC_USETP:
| // RA = uvnum*8, RD = primitive_type*8 (~)
| lwz LFUNC:RB, FRAME_FUNC(BASE)
| srwi RA, RA, 1
| srwi TMP0, RD, 3
| addi RA, RA, offsetof(GCfuncL, uvptr)
| not TMP0, TMP0
| lwzx UPVAL:RB, LFUNC:RB, RA
| ins_next1
| lwz TMP1, UPVAL:RB->v
| stw TMP0, 0(TMP1)
| ins_next2
break;
case BC_UCLO:
| // RA = level*8, RD = target
| lwz TMP1, L->openupval
| branch_RD // Do this first since RD is not saved.
| stp BASE, L->base
| cmplwi TMP1, 0
| mr CARG1, L
| beq >1
| add CARG2, BASE, RA
| bl extern lj_func_closeuv // (lua_State *L, TValue *level)
| lp BASE, L->base
|1:
| ins_next
break;
case BC_FNEW:
| // RA = dst*8, RD = proto_const*8 (~) (holding function prototype)
| srwi TMP1, RD, 1
| stp BASE, L->base
| subfic TMP1, TMP1, -4
| stw PC, SAVE_PC
| lwzx CARG2, KBASE, TMP1 // KBASE-4-tab_const*4
| mr CARG1, L
| lwz CARG3, FRAME_FUNC(BASE)
| // (lua_State *L, GCproto *pt, GCfuncL *parent)
| bl extern lj_func_newL_gc
| // Returns GCfuncL *.
| lp BASE, L->base
| li TMP0, LJ_TFUNC
| stwux TMP0, RA, BASE
| stw LFUNC:CRET1, 4(RA)
| ins_next
break;
/* -- Table ops --------------------------------------------------------- */
case BC_TNEW:
case BC_TDUP:
| // RA = dst*8, RD = (hbits|asize)*8 | tab_const*8 (~)
| lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH)
| mr CARG1, L
| lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH)
| stp BASE, L->base
| cmplw TMP0, TMP1
| stw PC, SAVE_PC
| bge >5
|1:
if (op == BC_TNEW) {
| rlwinm CARG2, RD, 29, 21, 31
| rlwinm CARG3, RD, 18, 27, 31
| cmpwi CARG2, 0x7ff; beq >3
|2:
| bl extern lj_tab_new // (lua_State *L, int32_t asize, uint32_t hbits)
| // Returns Table *.
} else {
| srwi TMP1, RD, 1
| subfic TMP1, TMP1, -4
| lwzx CARG2, KBASE, TMP1 // KBASE-4-tab_const*4
| bl extern lj_tab_dup // (lua_State *L, Table *kt)
| // Returns Table *.
}
| lp BASE, L->base
| li TMP0, LJ_TTAB
| stwux TMP0, RA, BASE
| stw TAB:CRET1, 4(RA)
| ins_next
if (op == BC_TNEW) {
|3:
| li CARG2, 0x801
| b <2
}
|5:
| mr SAVE0, RD
| bl extern lj_gc_step_fixtop // (lua_State *L)
| mr RD, SAVE0
| mr CARG1, L
| b <1
break;
case BC_GGET:
| // RA = dst*8, RD = str_const*8 (~)
case BC_GSET:
| // RA = src*8, RD = str_const*8 (~)
| lwz LFUNC:TMP2, FRAME_FUNC(BASE)
| srwi TMP1, RD, 1
| lwz TAB:RB, LFUNC:TMP2->env
| subfic TMP1, TMP1, -4
| lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4
if (op == BC_GGET) {
| b ->BC_TGETS_Z
} else {
| b ->BC_TSETS_Z
}
break;
case BC_TGETV:
| // RA = dst*8, RB = table*8, RC = key*8
| lwzux CARG1, RB, BASE
| lwzux CARG2, RC, BASE
| lwz TAB:RB, 4(RB)
|.if DUALNUM
| lwz RC, 4(RC)
|.else
| lfd f0, 0(RC)
|.endif
| checktab CARG1
| checknum cr1, CARG2
| bne ->vmeta_tgetv
|.if DUALNUM
| lwz TMP0, TAB:RB->asize
| bne cr1, >5
| lwz TMP1, TAB:RB->array
| cmplw TMP0, RC
| slwi TMP2, RC, 3
|.else
| bge cr1, >5
| // Convert number key to integer, check for integerness and range.
| fctiwz f1, f0
| fadd f2, f0, TOBIT
| stfd f1, TMPD
| lwz TMP0, TAB:RB->asize
| fsub f2, f2, TOBIT
| lwz TMP2, TMPD_LO
| lwz TMP1, TAB:RB->array
| fcmpu cr1, f0, f2
| cmplw cr0, TMP0, TMP2
| crand 4*cr0+gt, 4*cr0+gt, 4*cr1+eq
| slwi TMP2, TMP2, 3
|.endif
| ble ->vmeta_tgetv // Integer key and in array part?
| lwzx TMP0, TMP1, TMP2
| lfdx f14, TMP1, TMP2
| checknil TMP0; beq >2
|1:
| ins_next1
| stfdx f14, BASE, RA
| ins_next2
|
|2: // Check for __index if table value is nil.
| lwz TAB:TMP2, TAB:RB->metatable
| cmplwi TAB:TMP2, 0
| beq <1 // No metatable: done.
| lbz TMP0, TAB:TMP2->nomm
| andix. TMP0, TMP0, 1<<MM_index
| bne <1 // 'no __index' flag set: done.
| b ->vmeta_tgetv
|
|5:
| checkstr CARG2; bne ->vmeta_tgetv
|.if not DUALNUM
| lwz STR:RC, 4(RC)
|.endif
| b ->BC_TGETS_Z // String key?
break;
case BC_TGETS:
| // RA = dst*8, RB = table*8, RC = str_const*8 (~)
| lwzux CARG1, RB, BASE
| srwi TMP1, RC, 1
| lwz TAB:RB, 4(RB)
| subfic TMP1, TMP1, -4
| checktab CARG1
| lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4
| bne ->vmeta_tgets1
|->BC_TGETS_Z:
| // TAB:RB = GCtab *, STR:RC = GCstr *, RA = dst*8
| lwz TMP0, TAB:RB->hmask
| lwz TMP1, STR:RC->hash
| lwz NODE:TMP2, TAB:RB->node
| and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask
| slwi TMP0, TMP1, 5
| slwi TMP1, TMP1, 3
| sub TMP1, TMP0, TMP1
| add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8)
|1:
| lwz CARG1, NODE:TMP2->key
| lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2)
| lwz CARG2, NODE:TMP2->val
| lwz TMP1, 4+offsetof(Node, val)(NODE:TMP2)
| checkstr CARG1; bne >4
| cmpw TMP0, STR:RC; bne >4
| checknil CARG2; beq >5 // Key found, but nil value?
|3:
| stwux CARG2, RA, BASE
| stw TMP1, 4(RA)
| ins_next
|
|4: // Follow hash chain.
| lwz NODE:TMP2, NODE:TMP2->next
| cmplwi NODE:TMP2, 0
| bne <1
| // End of hash chain: key not found, nil result.
| li CARG2, LJ_TNIL
|
|5: // Check for __index if table value is nil.
| lwz TAB:TMP2, TAB:RB->metatable
| cmplwi TAB:TMP2, 0
| beq <3 // No metatable: done.
| lbz TMP0, TAB:TMP2->nomm
| andix. TMP0, TMP0, 1<<MM_index
| bne <3 // 'no __index' flag set: done.
| b ->vmeta_tgets
break;
case BC_TGETB:
| // RA = dst*8, RB = table*8, RC = index*8
| lwzux CARG1, RB, BASE
| srwi TMP0, RC, 3
| lwz TAB:RB, 4(RB)
| checktab CARG1; bne ->vmeta_tgetb
| lwz TMP1, TAB:RB->asize
| lwz TMP2, TAB:RB->array
| cmplw TMP0, TMP1; bge ->vmeta_tgetb
| lwzx TMP1, TMP2, RC
| lfdx f0, TMP2, RC
| checknil TMP1; beq >5
|1:
| ins_next1
| stfdx f0, BASE, RA
| ins_next2
|
|5: // Check for __index if table value is nil.
| lwz TAB:TMP2, TAB:RB->metatable
| cmplwi TAB:TMP2, 0
| beq <1 // No metatable: done.
| lbz TMP2, TAB:TMP2->nomm
| andix. TMP2, TMP2, 1<<MM_index
| bne <1 // 'no __index' flag set: done.
| b ->vmeta_tgetb // Caveat: preserve TMP0!
break;
case BC_TSETV:
| // RA = src*8, RB = table*8, RC = key*8
| lwzux CARG1, RB, BASE
| lwzux CARG2, RC, BASE
| lwz TAB:RB, 4(RB)
|.if DUALNUM
| lwz RC, 4(RC)
|.else
| lfd f0, 0(RC)
|.endif
| checktab CARG1
| checknum cr1, CARG2
| bne ->vmeta_tsetv
|.if DUALNUM
| lwz TMP0, TAB:RB->asize
| bne cr1, >5
| lwz TMP1, TAB:RB->array
| cmplw TMP0, RC
| slwi TMP0, RC, 3
|.else
| bge cr1, >5
| // Convert number key to integer, check for integerness and range.
| fctiwz f1, f0
| fadd f2, f0, TOBIT
| stfd f1, TMPD
| lwz TMP0, TAB:RB->asize
| fsub f2, f2, TOBIT
| lwz TMP2, TMPD_LO
| lwz TMP1, TAB:RB->array
| fcmpu cr1, f0, f2
| cmplw cr0, TMP0, TMP2
| crand 4*cr0+gt, 4*cr0+gt, 4*cr1+eq
| slwi TMP0, TMP2, 3
|.endif
| ble ->vmeta_tsetv // Integer key and in array part?
| lwzx TMP2, TMP1, TMP0
| lbz TMP3, TAB:RB->marked
| lfdx f14, BASE, RA
| checknil TMP2; beq >3
|1:
| andix. TMP2, TMP3, LJ_GC_BLACK // isblack(table)
| stfdx f14, TMP1, TMP0
| bne >7
|2:
| ins_next
|
|3: // Check for __newindex if previous value is nil.
| lwz TAB:TMP2, TAB:RB->metatable
| cmplwi TAB:TMP2, 0
| beq <1 // No metatable: done.
| lbz TMP2, TAB:TMP2->nomm
| andix. TMP2, TMP2, 1<<MM_newindex
| bne <1 // 'no __newindex' flag set: done.
| b ->vmeta_tsetv
|
|5:
| checkstr CARG2; bne ->vmeta_tsetv
|.if not DUALNUM
| lwz STR:RC, 4(RC)
|.endif
| b ->BC_TSETS_Z // String key?
|
|7: // Possible table write barrier for the value. Skip valiswhite check.
| barrierback TAB:RB, TMP3, TMP0
| b <2
break;
case BC_TSETS:
| // RA = src*8, RB = table*8, RC = str_const*8 (~)
| lwzux CARG1, RB, BASE
| srwi TMP1, RC, 1
| lwz TAB:RB, 4(RB)
| subfic TMP1, TMP1, -4
| checktab CARG1
| lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4
| bne ->vmeta_tsets1
|->BC_TSETS_Z:
| // TAB:RB = GCtab *, STR:RC = GCstr *, RA = src*8
| lwz TMP0, TAB:RB->hmask
| lwz TMP1, STR:RC->hash
| lwz NODE:TMP2, TAB:RB->node
| stb ZERO, TAB:RB->nomm // Clear metamethod cache.
| and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask
| lfdx f14, BASE, RA
| slwi TMP0, TMP1, 5
| slwi TMP1, TMP1, 3
| sub TMP1, TMP0, TMP1
| lbz TMP3, TAB:RB->marked
| add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8)
|1:
| lwz CARG1, NODE:TMP2->key
| lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2)
| lwz CARG2, NODE:TMP2->val
| lwz NODE:TMP1, NODE:TMP2->next
| checkstr CARG1; bne >5
| cmpw TMP0, STR:RC; bne >5
| checknil CARG2; beq >4 // Key found, but nil value?
|2:
| andix. TMP0, TMP3, LJ_GC_BLACK // isblack(table)
| stfd f14, NODE:TMP2->val
| bne >7
|3:
| ins_next
|
|4: // Check for __newindex if previous value is nil.
| lwz TAB:TMP1, TAB:RB->metatable
| cmplwi TAB:TMP1, 0
| beq <2 // No metatable: done.
| lbz TMP0, TAB:TMP1->nomm
| andix. TMP0, TMP0, 1<<MM_newindex
| bne <2 // 'no __newindex' flag set: done.
| b ->vmeta_tsets
|
|5: // Follow hash chain.
| cmplwi NODE:TMP1, 0
| mr NODE:TMP2, NODE:TMP1
| bne <1
| // End of hash chain: key not found, add a new one.
|
| // But check for __newindex first.
| lwz TAB:TMP1, TAB:RB->metatable
| la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
| stw PC, SAVE_PC
| mr CARG1, L
| cmplwi TAB:TMP1, 0
| stp BASE, L->base
| beq >6 // No metatable: continue.
| lbz TMP0, TAB:TMP1->nomm
| andix. TMP0, TMP0, 1<<MM_newindex
| beq ->vmeta_tsets // 'no __newindex' flag NOT set: check.
|6:
| li TMP0, LJ_TSTR
| stw STR:RC, 4(CARG3)
| mr CARG2, TAB:RB
| stw TMP0, 0(CARG3)
| bl extern lj_tab_newkey // (lua_State *L, GCtab *t, TValue *k)
| // Returns TValue *.
| lp BASE, L->base
| stfd f14, 0(CRET1)
| b <3 // No 2nd write barrier needed.
|
|7: // Possible table write barrier for the value. Skip valiswhite check.
| barrierback TAB:RB, TMP3, TMP0
| b <3
break;
case BC_TSETB:
| // RA = src*8, RB = table*8, RC = index*8
| lwzux CARG1, RB, BASE
| srwi TMP0, RC, 3
| lwz TAB:RB, 4(RB)
| checktab CARG1; bne ->vmeta_tsetb
| lwz TMP1, TAB:RB->asize
| lwz TMP2, TAB:RB->array
| lbz TMP3, TAB:RB->marked
| cmplw TMP0, TMP1
| lfdx f14, BASE, RA
| bge ->vmeta_tsetb
| lwzx TMP1, TMP2, RC
| checknil TMP1; beq >5
|1:
| andix. TMP0, TMP3, LJ_GC_BLACK // isblack(table)
| stfdx f14, TMP2, RC
| bne >7
|2:
| ins_next
|
|5: // Check for __newindex if previous value is nil.
| lwz TAB:TMP1, TAB:RB->metatable
| cmplwi TAB:TMP1, 0
| beq <1 // No metatable: done.
| lbz TMP1, TAB:TMP1->nomm
| andix. TMP1, TMP1, 1<<MM_newindex
| bne <1 // 'no __newindex' flag set: done.
| b ->vmeta_tsetb // Caveat: preserve TMP0!
|
|7: // Possible table write barrier for the value. Skip valiswhite check.
| barrierback TAB:RB, TMP3, TMP0
| b <2
break;
case BC_TSETM:
| // RA = base*8 (table at base-1), RD = num_const*8 (start index)
| add RA, BASE, RA
|1:
| add TMP3, KBASE, RD
| lwz TAB:CARG2, -4(RA) // Guaranteed to be a table.
| addic. TMP0, MULTRES, -8
| lwz TMP3, 4(TMP3) // Integer constant is in lo-word.
| srwi CARG3, TMP0, 3
| beq >4 // Nothing to copy?
| add CARG3, CARG3, TMP3
| lwz TMP2, TAB:CARG2->asize
| slwi TMP1, TMP3, 3
| lbz TMP3, TAB:CARG2->marked
| cmplw CARG3, TMP2
| add TMP2, RA, TMP0
| lwz TMP0, TAB:CARG2->array
| bgt >5
| add TMP1, TMP1, TMP0
| andix. TMP0, TMP3, LJ_GC_BLACK // isblack(table)
|3: // Copy result slots to table.
| lfd f0, 0(RA)
| addi RA, RA, 8
| cmpw cr1, RA, TMP2
| stfd f0, 0(TMP1)
| addi TMP1, TMP1, 8
| blt cr1, <3
| bne >7
|4:
| ins_next
|
|5: // Need to resize array part.
| stp BASE, L->base
| mr CARG1, L
| stw PC, SAVE_PC
| mr SAVE0, RD
| bl extern lj_tab_reasize // (lua_State *L, GCtab *t, int nasize)
| // Must not reallocate the stack.
| mr RD, SAVE0
| b <1
|
|7: // Possible table write barrier for any value. Skip valiswhite check.
| barrierback TAB:CARG2, TMP3, TMP0
| b <4
break;
/* -- Calls and vararg handling ----------------------------------------- */
case BC_CALLM:
| // RA = base*8, (RB = (nresults+1)*8,) RC = extra_nargs*8
| add NARGS8:RC, NARGS8:RC, MULTRES
| // Fall through. Assumes BC_CALL follows.
break;
case BC_CALL:
| // RA = base*8, (RB = (nresults+1)*8,) RC = (nargs+1)*8
| mr TMP2, BASE
| lwzux TMP0, BASE, RA
| lwz LFUNC:RB, 4(BASE)
| subi NARGS8:RC, NARGS8:RC, 8
| addi BASE, BASE, 8
| checkfunc TMP0; bne ->vmeta_call
| ins_call
break;
case BC_CALLMT:
| // RA = base*8, (RB = 0,) RC = extra_nargs*8
| add NARGS8:RC, NARGS8:RC, MULTRES
| // Fall through. Assumes BC_CALLT follows.
break;
case BC_CALLT:
| // RA = base*8, (RB = 0,) RC = (nargs+1)*8
| lwzux TMP0, RA, BASE
| lwz LFUNC:RB, 4(RA)
| subi NARGS8:RC, NARGS8:RC, 8
| lwz TMP1, FRAME_PC(BASE)
| checkfunc TMP0
| addi RA, RA, 8
| bne ->vmeta_callt
|->BC_CALLT_Z:
| andix. TMP0, TMP1, FRAME_TYPE // Caveat: preserve cr0 until the crand.
| lbz TMP3, LFUNC:RB->ffid
| xori TMP2, TMP1, FRAME_VARG
| cmplwi cr1, NARGS8:RC, 0
| bne >7
|1:
| stw LFUNC:RB, FRAME_FUNC(BASE) // Copy function down, but keep PC.
| li TMP2, 0
| cmplwi cr7, TMP3, 1 // (> FF_C) Calling a fast function?
| beq cr1, >3
|2:
| addi TMP3, TMP2, 8
| lfdx f0, RA, TMP2
| cmplw cr1, TMP3, NARGS8:RC
| stfdx f0, BASE, TMP2
| mr TMP2, TMP3
| bne cr1, <2
|3:
| crand 4*cr0+eq, 4*cr0+eq, 4*cr7+gt
| beq >5
|4:
| ins_callt
|
|5: // Tailcall to a fast function with a Lua frame below.
| lwz INS, -4(TMP1)
| decode_RA8 RA, INS
| sub TMP1, BASE, RA
| lwz LFUNC:TMP1, FRAME_FUNC-8(TMP1)
| lwz TMP1, LFUNC:TMP1->pc
| lwz KBASE, PC2PROTO(k)(TMP1) // Need to prepare KBASE.
| b <4
|
|7: // Tailcall from a vararg function.
| andix. TMP0, TMP2, FRAME_TYPEP
| bne <1 // Vararg frame below?
| sub BASE, BASE, TMP2 // Relocate BASE down.
| lwz TMP1, FRAME_PC(BASE)
| andix. TMP0, TMP1, FRAME_TYPE
| b <1
break;
case BC_ITERC:
| // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 ((2+1)*8))
| mr TMP2, BASE
| add BASE, BASE, RA
| lwz TMP1, -24(BASE)
| lwz LFUNC:RB, -20(BASE)
| lfd f1, -8(BASE)
| lfd f0, -16(BASE)
| stw TMP1, 0(BASE) // Copy callable.
| stw LFUNC:RB, 4(BASE)
| checkfunc TMP1
| stfd f1, 16(BASE) // Copy control var.
| li NARGS8:RC, 16 // Iterators get 2 arguments.
| stfdu f0, 8(BASE) // Copy state.
| bne ->vmeta_call
| ins_call
break;
case BC_ITERN:
| // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 (2+1)*8)
|.if JIT
| // NYI: add hotloop, record BC_ITERN.
|.endif
| add RA, BASE, RA
| lwz TAB:RB, -12(RA)
| lwz RC, -4(RA) // Get index from control var.
| lwz TMP0, TAB:RB->asize
| lwz TMP1, TAB:RB->array
| addi PC, PC, 4
|1: // Traverse array part.
| cmplw RC, TMP0
| slwi TMP3, RC, 3
| bge >5 // Index points after array part?
| lwzx TMP2, TMP1, TMP3
| lfdx f0, TMP1, TMP3
| checknil TMP2
| lwz INS, -4(PC)
| beq >4
|.if DUALNUM
| stw RC, 4(RA)
| stw TISNUM, 0(RA)
|.else
| tonum_u f1, RC
|.endif
| addi RC, RC, 1
| addis TMP3, PC, -(BCBIAS_J*4 >> 16)
| stfd f0, 8(RA)
| decode_RD4 TMP1, INS
| stw RC, -4(RA) // Update control var.
| add PC, TMP1, TMP3
|.if not DUALNUM
| stfd f1, 0(RA)
|.endif
|3:
| ins_next
|
|4: // Skip holes in array part.
| addi RC, RC, 1
| b <1
|
|5: // Traverse hash part.
| lwz TMP1, TAB:RB->hmask
| sub RC, RC, TMP0
| lwz TMP2, TAB:RB->node
|6:
| cmplw RC, TMP1 // End of iteration? Branch to ITERL+1.
| slwi TMP3, RC, 5
| bgty <3
| slwi RB, RC, 3
| sub TMP3, TMP3, RB
| lwzx RB, TMP2, TMP3
| lfdx f0, TMP2, TMP3
| add NODE:TMP3, TMP2, TMP3
| checknil RB
| lwz INS, -4(PC)
| beq >7
| lfd f1, NODE:TMP3->key
| addis TMP2, PC, -(BCBIAS_J*4 >> 16)
| stfd f0, 8(RA)
| add RC, RC, TMP0
| decode_RD4 TMP1, INS
| stfd f1, 0(RA)
| addi RC, RC, 1
| add PC, TMP1, TMP2
| stw RC, -4(RA) // Update control var.
| b <3
|
|7: // Skip holes in hash part.
| addi RC, RC, 1
| b <6
break;
case BC_ISNEXT:
| // RA = base*8, RD = target (points to ITERN)
| add RA, BASE, RA
| lwz TMP0, -24(RA)
| lwz CFUNC:TMP1, -20(RA)
| lwz TMP2, -16(RA)
| lwz TMP3, -8(RA)
| cmpwi cr0, TMP2, LJ_TTAB
| cmpwi cr1, TMP0, LJ_TFUNC
| cmpwi cr6, TMP3, LJ_TNIL
| bne cr1, >5
| lbz TMP1, CFUNC:TMP1->ffid
| crand 4*cr0+eq, 4*cr0+eq, 4*cr6+eq
| cmpwi cr7, TMP1, FF_next_N
| srwi TMP0, RD, 1
| crand 4*cr0+eq, 4*cr0+eq, 4*cr7+eq
| add TMP3, PC, TMP0
| bne cr0, >5
| lus TMP1, 0xfffe
| ori TMP1, TMP1, 0x7fff
| stw ZERO, -4(RA) // Initialize control var.
| stw TMP1, -8(RA)
| addis PC, TMP3, -(BCBIAS_J*4 >> 16)
|1:
| ins_next
|5: // Despecialize bytecode if any of the checks fail.
| li TMP0, BC_JMP
| li TMP1, BC_ITERC
| stb TMP0, -1(PC)
| addis PC, TMP3, -(BCBIAS_J*4 >> 16)
| stb TMP1, 3(PC)
| b <1
break;
case BC_VARG:
| // RA = base*8, RB = (nresults+1)*8, RC = numparams*8
| lwz TMP0, FRAME_PC(BASE)
| add RC, BASE, RC
| add RA, BASE, RA
| addi RC, RC, FRAME_VARG
| add TMP2, RA, RB
| subi TMP3, BASE, 8 // TMP3 = vtop
| sub RC, RC, TMP0 // RC = vbase
| // Note: RC may now be even _above_ BASE if nargs was < numparams.
| cmplwi cr1, RB, 0
|.if PPE
| sub TMP1, TMP3, RC
| cmpwi TMP1, 0
|.else
| sub. TMP1, TMP3, RC
|.endif
| beq cr1, >5 // Copy all varargs?
| subi TMP2, TMP2, 16
| ble >2 // No vararg slots?
|1: // Copy vararg slots to destination slots.
| lfd f0, 0(RC)
| addi RC, RC, 8
| stfd f0, 0(RA)
| cmplw RA, TMP2
| cmplw cr1, RC, TMP3
| bge >3 // All destination slots filled?
| addi RA, RA, 8
| blt cr1, <1 // More vararg slots?
|2: // Fill up remainder with nil.
| stw TISNIL, 0(RA)
| cmplw RA, TMP2
| addi RA, RA, 8
| blt <2
|3:
| ins_next
|
|5: // Copy all varargs.
| lwz TMP0, L->maxstack
| li MULTRES, 8 // MULTRES = (0+1)*8
| bley <3 // No vararg slots?
| add TMP2, RA, TMP1
| cmplw TMP2, TMP0
| addi MULTRES, TMP1, 8
| bgt >7
|6:
| lfd f0, 0(RC)
| addi RC, RC, 8
| stfd f0, 0(RA)
| cmplw RC, TMP3
| addi RA, RA, 8
| blt <6 // More vararg slots?
| b <3
|
|7: // Grow stack for varargs.
| mr CARG1, L
| stp RA, L->top
| sub SAVE0, RC, BASE // Need delta, because BASE may change.
| stp BASE, L->base
| sub RA, RA, BASE
| stw PC, SAVE_PC
| srwi CARG2, TMP1, 3
| bl extern lj_state_growstack // (lua_State *L, int n)
| lp BASE, L->base
| add RA, BASE, RA
| add RC, BASE, SAVE0
| subi TMP3, BASE, 8
| b <6
break;
/* -- Returns ----------------------------------------------------------- */
case BC_RETM:
| // RA = results*8, RD = extra_nresults*8
| add RD, RD, MULTRES // MULTRES >= 8, so RD >= 8.
| // Fall through. Assumes BC_RET follows.
break;
case BC_RET:
| // RA = results*8, RD = (nresults+1)*8
| lwz PC, FRAME_PC(BASE)
| add RA, BASE, RA
| mr MULTRES, RD
|1:
| andix. TMP0, PC, FRAME_TYPE
| xori TMP1, PC, FRAME_VARG
| bne ->BC_RETV_Z
|
|->BC_RET_Z:
| // BASE = base, RA = resultptr, RD = (nresults+1)*8, PC = return
| lwz INS, -4(PC)
| cmpwi RD, 8
| subi TMP2, BASE, 8
| subi RC, RD, 8
| decode_RB8 RB, INS
| beq >3
| li TMP1, 0
|2:
| addi TMP3, TMP1, 8
| lfdx f0, RA, TMP1
| cmpw TMP3, RC
| stfdx f0, TMP2, TMP1
| beq >3
| addi TMP1, TMP3, 8
| lfdx f1, RA, TMP3
| cmpw TMP1, RC
| stfdx f1, TMP2, TMP3
| bne <2
|3:
|5:
| cmplw RB, RD
| decode_RA8 RA, INS
| bgt >6
| sub BASE, TMP2, RA
| lwz LFUNC:TMP1, FRAME_FUNC(BASE)
| ins_next1
| lwz TMP1, LFUNC:TMP1->pc
| lwz KBASE, PC2PROTO(k)(TMP1)
| ins_next2
|
|6: // Fill up results with nil.
| subi TMP1, RD, 8
| addi RD, RD, 8
| stwx TISNIL, TMP2, TMP1
| b <5
|
|->BC_RETV_Z: // Non-standard return case.
| andix. TMP2, TMP1, FRAME_TYPEP
| bne ->vm_return
| // Return from vararg function: relocate BASE down.
| sub BASE, BASE, TMP1
| lwz PC, FRAME_PC(BASE)
| b <1
break;
case BC_RET0: case BC_RET1:
| // RA = results*8, RD = (nresults+1)*8
| lwz PC, FRAME_PC(BASE)
| add RA, BASE, RA
| mr MULTRES, RD
| andix. TMP0, PC, FRAME_TYPE
| xori TMP1, PC, FRAME_VARG
| bney ->BC_RETV_Z
|
| lwz INS, -4(PC)
| subi TMP2, BASE, 8
| decode_RB8 RB, INS
if (op == BC_RET1) {
| lfd f0, 0(RA)
| stfd f0, 0(TMP2)
}
|5:
| cmplw RB, RD
| decode_RA8 RA, INS
| bgt >6
| sub BASE, TMP2, RA
| lwz LFUNC:TMP1, FRAME_FUNC(BASE)
| ins_next1
| lwz TMP1, LFUNC:TMP1->pc
| lwz KBASE, PC2PROTO(k)(TMP1)
| ins_next2
|
|6: // Fill up results with nil.
| subi TMP1, RD, 8
| addi RD, RD, 8
| stwx TISNIL, TMP2, TMP1
| b <5
break;
/* -- Loops and branches ------------------------------------------------ */
case BC_FORL:
|.if JIT
| hotloop
|.endif
| // Fall through. Assumes BC_IFORL follows.
break;
case BC_JFORI:
case BC_JFORL:
#if !LJ_HASJIT
break;
#endif
case BC_FORI:
case BC_IFORL:
| // RA = base*8, RD = target (after end of loop or start of loop)
vk = (op == BC_IFORL || op == BC_JFORL);
|.if DUALNUM
| // Integer loop.
| lwzux TMP1, RA, BASE
| lwz CARG1, FORL_IDX*8+4(RA)
| cmplw cr0, TMP1, TISNUM
if (vk) {
| lwz CARG3, FORL_STEP*8+4(RA)
| bne >9
|.if GPR64
| // Need to check overflow for (a<<32) + (b<<32).
| rldicr TMP0, CARG1, 32, 31
| rldicr TMP2, CARG3, 32, 31
| add CARG1, CARG1, CARG3
| addo. TMP0, TMP0, TMP2
|.else
| addo. CARG1, CARG1, CARG3
|.endif
| cmpwi cr6, CARG3, 0
| lwz CARG2, FORL_STOP*8+4(RA)
| bso >6
|4:
| stw CARG1, FORL_IDX*8+4(RA)
} else {
| lwz TMP3, FORL_STEP*8(RA)
| lwz CARG3, FORL_STEP*8+4(RA)
| lwz TMP2, FORL_STOP*8(RA)
| lwz CARG2, FORL_STOP*8+4(RA)
| cmplw cr7, TMP3, TISNUM
| cmplw cr1, TMP2, TISNUM
| crand 4*cr0+eq, 4*cr0+eq, 4*cr7+eq
| crand 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
| cmpwi cr6, CARG3, 0
| bne >9
}
| blt cr6, >5
| cmpw CARG1, CARG2
|1:
| stw TISNUM, FORL_EXT*8(RA)
if (op != BC_JFORL) {
| srwi RD, RD, 1
}
| stw CARG1, FORL_EXT*8+4(RA)
if (op != BC_JFORL) {
| add RD, PC, RD
}
if (op == BC_FORI) {
| bgt >3 // See FP loop below.
} else if (op == BC_JFORI) {
| addis PC, RD, -(BCBIAS_J*4 >> 16)
| bley >7
} else if (op == BC_IFORL) {
| bgt >2
| addis PC, RD, -(BCBIAS_J*4 >> 16)
} else {
| bley =>BC_JLOOP
}
|2:
| ins_next
|5: // Invert check for negative step.
| cmpw CARG2, CARG1
| b <1
if (vk) {
|6: // Potential overflow.
| checkov TMP0, <4 // Ignore unrelated overflow.
| b <2
}
|.endif
if (vk) {
|.if DUALNUM
|9: // FP loop.
| lfd f1, FORL_IDX*8(RA)
|.else
| lfdux f1, RA, BASE
|.endif
| lfd f3, FORL_STEP*8(RA)
| lfd f2, FORL_STOP*8(RA)
| lwz TMP3, FORL_STEP*8(RA)
| fadd f1, f1, f3
| stfd f1, FORL_IDX*8(RA)
} else {
|.if DUALNUM
|9: // FP loop.
|.else
| lwzux TMP1, RA, BASE
| lwz TMP3, FORL_STEP*8(RA)
| lwz TMP2, FORL_STOP*8(RA)
| cmplw cr0, TMP1, TISNUM
| cmplw cr7, TMP3, TISNUM
| cmplw cr1, TMP2, TISNUM
|.endif
| lfd f1, FORL_IDX*8(RA)
| crand 4*cr0+lt, 4*cr0+lt, 4*cr7+lt
| crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
| lfd f2, FORL_STOP*8(RA)
| bge ->vmeta_for
}
| cmpwi cr6, TMP3, 0
if (op != BC_JFORL) {
| srwi RD, RD, 1
}
| stfd f1, FORL_EXT*8(RA)
if (op != BC_JFORL) {
| add RD, PC, RD
}
| fcmpu cr0, f1, f2
if (op == BC_JFORI) {
| addis PC, RD, -(BCBIAS_J*4 >> 16)
}
| blt cr6, >5
if (op == BC_FORI) {
| bgt >3
} else if (op == BC_IFORL) {
|.if DUALNUM
| bgty <2
|.else
| bgt >2
|.endif
|1:
| addis PC, RD, -(BCBIAS_J*4 >> 16)
} else if (op == BC_JFORI) {
| bley >7
} else {
| bley =>BC_JLOOP
}
|.if DUALNUM
| b <2
|.else
|2:
| ins_next
|.endif
|5: // Negative step.
if (op == BC_FORI) {
| bge <2
|3: // Used by integer loop, too.
| addis PC, RD, -(BCBIAS_J*4 >> 16)
} else if (op == BC_IFORL) {
| bgey <1
} else if (op == BC_JFORI) {
| bgey >7
} else {
| bgey =>BC_JLOOP
}
| b <2
if (op == BC_JFORI) {
|7:
| lwz INS, -4(PC)
| decode_RD8 RD, INS
| b =>BC_JLOOP
}
break;
case BC_ITERL:
|.if JIT
| hotloop
|.endif
| // Fall through. Assumes BC_IITERL follows.
break;
case BC_JITERL:
#if !LJ_HASJIT
break;
#endif
case BC_IITERL:
| // RA = base*8, RD = target
| lwzux TMP1, RA, BASE
| lwz TMP2, 4(RA)
| checknil TMP1; beq >1 // Stop if iterator returned nil.
if (op == BC_JITERL) {
| stw TMP1, -8(RA)
| stw TMP2, -4(RA)
| b =>BC_JLOOP
} else {
| branch_RD // Otherwise save control var + branch.
| stw TMP1, -8(RA)
| stw TMP2, -4(RA)
}
|1:
| ins_next
break;
case BC_LOOP:
| // RA = base*8, RD = target (loop extent)
| // Note: RA/RD is only used by trace recorder to determine scope/extent
| // This opcode does NOT jump, it's only purpose is to detect a hot loop.
|.if JIT
| hotloop
|.endif
| // Fall through. Assumes BC_ILOOP follows.
break;
case BC_ILOOP:
| // RA = base*8, RD = target (loop extent)
| ins_next
break;
case BC_JLOOP:
|.if JIT
| // RA = base*8 (ignored), RD = traceno*8
| lwz TMP1, DISPATCH_J(trace)(DISPATCH)
| srwi RD, RD, 1
| // Traces on PPC don't store the trace number, so use 0.
| stw ZERO, DISPATCH_GL(vmstate)(DISPATCH)
| lwzx TRACE:TMP2, TMP1, RD
| clrso TMP1
| lp TMP2, TRACE:TMP2->mcode
| stw BASE, DISPATCH_GL(jit_base)(DISPATCH)
| mtctr TMP2
| stw L, DISPATCH_GL(jit_L)(DISPATCH)
| addi JGL, DISPATCH, GG_DISP2G+32768
| bctr
|.endif
break;
case BC_JMP:
| // RA = base*8 (only used by trace recorder), RD = target
| branch_RD
| ins_next
break;
/* -- Function headers -------------------------------------------------- */
case BC_FUNCF:
|.if JIT
| hotcall
|.endif
case BC_FUNCV: /* NYI: compiled vararg functions. */
| // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow.
break;
case BC_JFUNCF:
#if !LJ_HASJIT
break;
#endif
case BC_IFUNCF:
| // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8
| lwz TMP2, L->maxstack
| lbz TMP1, -4+PC2PROTO(numparams)(PC)
| lwz KBASE, -4+PC2PROTO(k)(PC)
| cmplw RA, TMP2
| slwi TMP1, TMP1, 3
| bgt ->vm_growstack_l
if (op != BC_JFUNCF) {
| ins_next1
}
|2:
| cmplw NARGS8:RC, TMP1 // Check for missing parameters.
| blt >3
if (op == BC_JFUNCF) {
| decode_RD8 RD, INS
| b =>BC_JLOOP
} else {
| ins_next2
}
|
|3: // Clear missing parameters.
| stwx TISNIL, BASE, NARGS8:RC
| addi NARGS8:RC, NARGS8:RC, 8
| b <2
break;
case BC_JFUNCV:
#if !LJ_HASJIT
break;
#endif
| NYI // NYI: compiled vararg functions
break; /* NYI: compiled vararg functions. */
case BC_IFUNCV:
| // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8
| lwz TMP2, L->maxstack
| add TMP1, BASE, RC
| add TMP0, RA, RC
| stw LFUNC:RB, 4(TMP1) // Store copy of LFUNC.
| addi TMP3, RC, 8+FRAME_VARG
| lwz KBASE, -4+PC2PROTO(k)(PC)
| cmplw TMP0, TMP2
| stw TMP3, 0(TMP1) // Store delta + FRAME_VARG.
| bge ->vm_growstack_l
| lbz TMP2, -4+PC2PROTO(numparams)(PC)
| mr RA, BASE
| mr RC, TMP1
| ins_next1
| cmpwi TMP2, 0
| addi BASE, TMP1, 8
| beq >3
|1:
| cmplw RA, RC // Less args than parameters?
| lwz TMP0, 0(RA)
| lwz TMP3, 4(RA)
| bge >4
| stw TISNIL, 0(RA) // Clear old fixarg slot (help the GC).
| addi RA, RA, 8
|2:
| addic. TMP2, TMP2, -1
| stw TMP0, 8(TMP1)
| stw TMP3, 12(TMP1)
| addi TMP1, TMP1, 8
| bne <1
|3:
| ins_next2
|
|4: // Clear missing parameters.
| li TMP0, LJ_TNIL
| b <2
break;
case BC_FUNCC:
case BC_FUNCCW:
| // BASE = new base, RA = BASE+framesize*8, RB = CFUNC, RC = nargs*8
if (op == BC_FUNCC) {
| lp RD, CFUNC:RB->f
} else {
| lp RD, DISPATCH_GL(wrapf)(DISPATCH)
}
| add TMP1, RA, NARGS8:RC
| lwz TMP2, L->maxstack
| .toc lp TMP3, 0(RD)
| add RC, BASE, NARGS8:RC
| stp BASE, L->base
| cmplw TMP1, TMP2
| stp RC, L->top
| li_vmstate C
|.if TOC
| mtctr TMP3
|.else
| mtctr RD
|.endif
if (op == BC_FUNCCW) {
| lp CARG2, CFUNC:RB->f
}
| mr CARG1, L
| bgt ->vm_growstack_c // Need to grow stack.
| .toc lp TOCREG, TOC_OFS(RD)
| .tocenv lp ENVREG, ENV_OFS(RD)
| st_vmstate
| bctrl // (lua_State *L [, lua_CFunction f])
| // Returns nresults.
| lp BASE, L->base
| .toc ld TOCREG, SAVE_TOC
| slwi RD, CRET1, 3
| lp TMP1, L->top
| li_vmstate INTERP
| lwz PC, FRAME_PC(BASE) // Fetch PC of caller.
| sub RA, TMP1, RD // RA = L->top - nresults*8
| st_vmstate
| b ->vm_returnc
break;
/* ---------------------------------------------------------------------- */
default:
fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]);
exit(2);
break;
}
}
static int build_backend(BuildCtx *ctx)
{
int op;
dasm_growpc(Dst, BC__MAX);
build_subroutines(ctx);
|.code_op
for (op = 0; op < BC__MAX; op++)
build_ins(ctx, (BCOp)op, op);
return BC__MAX;
}
/* Emit pseudo frame-info for all assembler functions. */
static void emit_asm_debug(BuildCtx *ctx)
{
int fcofs = (int)((uint8_t *)ctx->glob[GLOB_vm_ffi_call] - ctx->code);
int i;
switch (ctx->mode) {
case BUILD_elfasm:
fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n");
fprintf(ctx->fp,
".Lframe0:\n"
"\t.long .LECIE0-.LSCIE0\n"
".LSCIE0:\n"
"\t.long 0xffffffff\n"
"\t.byte 0x1\n"
"\t.string \"\"\n"
"\t.uleb128 0x1\n"
"\t.sleb128 -4\n"
"\t.byte 65\n"
"\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n"
"\t.align 2\n"
".LECIE0:\n\n");
fprintf(ctx->fp,
".LSFDE0:\n"
"\t.long .LEFDE0-.LASFDE0\n"
".LASFDE0:\n"
"\t.long .Lframe0\n"
"\t.long .Lbegin\n"
"\t.long %d\n"
"\t.byte 0xe\n\t.uleb128 %d\n"
"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
"\t.byte 0x5\n\t.uleb128 70\n\t.uleb128 55\n",
fcofs, CFRAME_SIZE);
for (i = 14; i <= 31; i++)
fprintf(ctx->fp,
"\t.byte %d\n\t.uleb128 %d\n"
"\t.byte %d\n\t.uleb128 %d\n",
0x80+i, 37+(31-i), 0x80+32+i, 2+2*(31-i));
fprintf(ctx->fp,
"\t.align 2\n"
".LEFDE0:\n\n");
#if LJ_HASFFI
fprintf(ctx->fp,
".LSFDE1:\n"
"\t.long .LEFDE1-.LASFDE1\n"
".LASFDE1:\n"
"\t.long .Lframe0\n"
#if LJ_TARGET_PS3
"\t.long .lj_vm_ffi_call\n"
#else
"\t.long lj_vm_ffi_call\n"
#endif
"\t.long %d\n"
"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
"\t.byte 0x8e\n\t.uleb128 2\n"
"\t.byte 0xd\n\t.uleb128 0xe\n"
"\t.align 2\n"
".LEFDE1:\n\n", (int)ctx->codesz - fcofs);
#endif
#if !LJ_NO_UNWIND
fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@progbits\n");
fprintf(ctx->fp,
".Lframe1:\n"
"\t.long .LECIE1-.LSCIE1\n"
".LSCIE1:\n"
"\t.long 0\n"
"\t.byte 0x1\n"
"\t.string \"zPR\"\n"
"\t.uleb128 0x1\n"
"\t.sleb128 -4\n"
"\t.byte 65\n"
"\t.uleb128 6\n" /* augmentation length */
"\t.byte 0x1b\n" /* pcrel|sdata4 */
"\t.long lj_err_unwind_dwarf-.\n"
"\t.byte 0x1b\n" /* pcrel|sdata4 */
"\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n"
"\t.align 2\n"
".LECIE1:\n\n");
fprintf(ctx->fp,
".LSFDE2:\n"
"\t.long .LEFDE2-.LASFDE2\n"
".LASFDE2:\n"
"\t.long .LASFDE2-.Lframe1\n"
"\t.long .Lbegin-.\n"
"\t.long %d\n"
"\t.uleb128 0\n" /* augmentation length */
"\t.byte 0xe\n\t.uleb128 %d\n"
"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
"\t.byte 0x5\n\t.uleb128 70\n\t.uleb128 55\n",
fcofs, CFRAME_SIZE);
for (i = 14; i <= 31; i++)
fprintf(ctx->fp,
"\t.byte %d\n\t.uleb128 %d\n"
"\t.byte %d\n\t.uleb128 %d\n",
0x80+i, 37+(31-i), 0x80+32+i, 2+2*(31-i));
fprintf(ctx->fp,
"\t.align 2\n"
".LEFDE2:\n\n");
#if LJ_HASFFI
fprintf(ctx->fp,
".Lframe2:\n"
"\t.long .LECIE2-.LSCIE2\n"
".LSCIE2:\n"
"\t.long 0\n"
"\t.byte 0x1\n"
"\t.string \"zR\"\n"
"\t.uleb128 0x1\n"
"\t.sleb128 -4\n"
"\t.byte 65\n"
"\t.uleb128 1\n" /* augmentation length */
"\t.byte 0x1b\n" /* pcrel|sdata4 */
"\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n"
"\t.align 2\n"
".LECIE2:\n\n");
fprintf(ctx->fp,
".LSFDE3:\n"
"\t.long .LEFDE3-.LASFDE3\n"
".LASFDE3:\n"
"\t.long .LASFDE3-.Lframe2\n"
"\t.long lj_vm_ffi_call-.\n"
"\t.long %d\n"
"\t.uleb128 0\n" /* augmentation length */
"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
"\t.byte 0x8e\n\t.uleb128 2\n"
"\t.byte 0xd\n\t.uleb128 0xe\n"
"\t.align 2\n"
".LEFDE3:\n\n", (int)ctx->codesz - fcofs);
#endif
#endif
break;
default:
break;
}
}