Aegisub/aegisub/spline.cpp

347 lines
8.1 KiB
C++

// Copyright (c) 2007, Rodrigo Braz Monteiro
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of the Aegisub Group nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// -----------------------------------------------------------------------------
//
// AEGISUB
//
// Website: http://aegisub.cellosoft.com
// Contact: mailto:zeratul@cellosoft.com
//
///////////
// Headers
#include <wx/tokenzr.h>
#include "spline.h"
/////////////////////
// Curve constructor
SplineCurve::SplineCurve() {
type = CURVE_INVALID;
}
/////////////////////////////////////////////////////////
// Split a curve in two using the de Casteljau algorithm
void SplineCurve::Split(SplineCurve &c1,SplineCurve &c2,float t) {
// Split a line
if (type == CURVE_LINE) {
c1.type = CURVE_LINE;
c2.type = CURVE_LINE;
c1.p1 = p1;
c1.p2 = p1*t+p2*(1-t);
c2.p1 = c1.p2;
c2.p2 = p2;
}
// Split a bicubic
else if (type == CURVE_BICUBIC) {
c1.type = CURVE_BICUBIC;
c2.type = CURVE_BICUBIC;
// TODO
}
}
//////////////////////
// Spline constructor
Spline::Spline() {
}
/////////////////
// Encode to ASS
wxString Spline::EncodeToASS() {
wxString result;
char lastCommand = 0;
// At least one element?
bool isFirst = true;
// Insert each element
for (std::list<SplineCurve>::iterator cur=curves.begin();cur!=curves.end();cur++) {
// Start of spline
if (isFirst) {
result = wxString::Format(_T("m %i %i "),(int)cur->p1.x,(int)cur->p1.y);
lastCommand = 'm';
isFirst = false;
}
// Each curve
switch (cur->type) {
case CURVE_LINE:
if (lastCommand != 'l') {
result += _T("l ");
lastCommand = 'l';
}
result += wxString::Format(_T("%i %i "),(int)cur->p2.x,(int)cur->p2.y);
break;
case CURVE_BICUBIC:
if (lastCommand != 'b') {
result += _T("b ");
lastCommand = 'b';
}
result += wxString::Format(_T("%i %i %i %i %i %i "),(int)cur->p2.x,(int)cur->p2.y,(int)cur->p3.x,(int)cur->p3.y,(int)cur->p4.x,(int)cur->p4.y);
break;
default: break;
}
}
return result;
}
///////////////////
// Decode from ASS
void Spline::DecodeFromASS(wxString str) {
// Clear current
curves.clear();
std::vector<int> stack;
// Prepare
char lastCommand = 'm';
int x = 0;
int y = 0;
// Tokenize the string
wxStringTokenizer tkn(str,_T(" "));
while (tkn.HasMoreTokens()) {
wxString token = tkn.GetNextToken();
// Got a number
if (token.IsNumber()) {
long n;
token.ToLong(&n);
stack.push_back(n);
// Move
if (stack.size() == 2 && lastCommand == 'm') {
x = stack[0];
y = stack[1];
stack.clear();
}
// Line
if (stack.size() == 2 && lastCommand == 'l') {
SplineCurve curve;
curve.p1.x = x;
curve.p1.y = y;
curve.p2.x = stack[0];
curve.p2.y = stack[1];
curve.type = CURVE_LINE;
x = curve.p2.x;
y = curve.p2.y;
stack.clear();
AppendCurve(curve);
}
// Bicubic
else if (stack.size() == 6 && lastCommand == 'b') {
SplineCurve curve;
curve.p1.x = x;
curve.p1.y = y;
curve.p2.x = stack[0];
curve.p2.y = stack[1];
curve.p3.x = stack[2];
curve.p3.y = stack[3];
curve.p4.x = stack[4];
curve.p4.y = stack[5];
curve.type = CURVE_BICUBIC;
x = curve.p4.x;
y = curve.p4.y;
stack.clear();
AppendCurve(curve);
}
// Close
else if (lastCommand == 'c') {
stack.clear();
}
}
// Got something else
else {
if (token == _T("m")) lastCommand = 'm';
else if (token == _T("l")) lastCommand = 'l';
else if (token == _T("b")) lastCommand = 'b';
else if (token == _T("n")) lastCommand = 'n';
else if (token == _T("s")) lastCommand = 's';
else if (token == _T("c")) lastCommand = 'c';
}
}
}
////////////////////////////////
// Append a curve to the spline
void Spline::AppendCurve(SplineCurve &curve) {
curves.push_back(curve);
}
////////////////////////////////////////
// Moves a specific point in the spline
void Spline::MovePoint(int curveIndex,int point,wxPoint pos) {
// Curves
int i = 0;
SplineCurve *c0 = NULL;
SplineCurve *c1 = NULL;
SplineCurve *c2 = NULL;
// Indices
//int size = curves.size();
int i0 = curveIndex-1;
int i1 = curveIndex;
int i2 = curveIndex+1;
//if (i0 < 0) i0 = size-1;
//if (i2 >= size) i2 = 0;
// Get the curves
for (std::list<SplineCurve>::iterator cur = curves.begin();cur!=curves.end();cur++) {
if (i == i0) c0 = &(*cur);
if (i == i1) c1 = &(*cur);
if (i == i2) c2 = &(*cur);
i++;
}
// Modify
if (point == 0) {
c1->p1.x = pos.x;
c1->p1.y = pos.y;
if (c0) {
if (c0->type == CURVE_BICUBIC) {
c0->p4.x = pos.x;
c0->p4.y = pos.y;
}
else {
c0->p2.x = pos.x;
c0->p2.y = pos.y;
}
}
}
else if (point == 1) {
c1->p2.x = pos.x;
c1->p2.y = pos.y;
if (c2 && c1->type != CURVE_BICUBIC) {
c2->p1.x = pos.x;
c2->p1.y = pos.y;
}
}
else if (point == 2) {
c1->p3.x = pos.x;
c1->p3.y = pos.y;
}
else if (point == 3) {
c1->p4.x = pos.x;
c1->p4.y = pos.y;
if (c2 && c1->type == CURVE_BICUBIC) {
c2->p1.x = pos.x;
c2->p1.y = pos.y;
}
}
}
//////////////////////////////////////
// Gets a list of points in the curve
void Spline::GetPointList(std::vector<Vector2D> &points) {
// Prepare
points.clear();
Vector2D pt;
bool isFirst = true;
// Generate points for each curve
for (std::list<SplineCurve>::iterator cur = curves.begin();cur!=curves.end();cur++) {
// First point
if (isFirst) {
pt.x = cur->p1.x;
pt.y = cur->p1.y;
points.push_back(pt);
}
// Line
if (cur->type == CURVE_LINE) {
pt.x = cur->p2.x;
pt.y = cur->p2.y;
points.push_back(pt);
}
// Bicubic
else if (cur->type == CURVE_BICUBIC) {
// Get the control points
Vector2D p1 = cur->p1;
Vector2D p2 = cur->p2;
Vector2D p3 = cur->p3;
Vector2D p4 = cur->p4;
// Find number of steps
int len = (p2-p1).Len() + (p3-p2).Len() + (p4-p3).Len();
int steps = len/8;
// Render curve
for (int i=0;i<steps;i++) {
// Get t and t-1 (u)
float t = float(i)/float(steps);
float u = 1.0f-t;
// Calculate the point and insert it
pt = p1*u*u*u + 3*p2*t*u*u + 3*p3*t*t*u + p4*t*t*t;
points.push_back(pt);
}
}
}
// Insert a copy of the first point at the end
if (points.size()) {
points.push_back(points[0]);
}
}
///////////////////////////////////////////////////////
// t value and curve of the point closest to reference
void GetClosestParametricPoint(Vector2D reference,int &curve,float &t) {
// TODO
}
//////////////////////////////
// Point closest to reference
Vector2D Spline::GetClosestPoint(Vector2D reference) {
// TODO
return Vector2D(-1,-1);
}
//////////////////////////////////////
// Control point closest to reference
Vector2D Spline::GetClosestControlPoint(Vector2D reference) {
// TODO
return Vector2D(-1,-1);
}