mirror of https://github.com/odrling/Aegisub
347 lines
8.1 KiB
C++
347 lines
8.1 KiB
C++
// Copyright (c) 2007, Rodrigo Braz Monteiro
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of the Aegisub Group nor the names of its contributors
|
|
// may be used to endorse or promote products derived from this software
|
|
// without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// AEGISUB
|
|
//
|
|
// Website: http://aegisub.cellosoft.com
|
|
// Contact: mailto:zeratul@cellosoft.com
|
|
//
|
|
|
|
|
|
///////////
|
|
// Headers
|
|
#include <wx/tokenzr.h>
|
|
#include "spline.h"
|
|
|
|
|
|
/////////////////////
|
|
// Curve constructor
|
|
SplineCurve::SplineCurve() {
|
|
type = CURVE_INVALID;
|
|
}
|
|
|
|
|
|
/////////////////////////////////////////////////////////
|
|
// Split a curve in two using the de Casteljau algorithm
|
|
void SplineCurve::Split(SplineCurve &c1,SplineCurve &c2,float t) {
|
|
// Split a line
|
|
if (type == CURVE_LINE) {
|
|
c1.type = CURVE_LINE;
|
|
c2.type = CURVE_LINE;
|
|
c1.p1 = p1;
|
|
c1.p2 = p1*t+p2*(1-t);
|
|
c2.p1 = c1.p2;
|
|
c2.p2 = p2;
|
|
}
|
|
|
|
// Split a bicubic
|
|
else if (type == CURVE_BICUBIC) {
|
|
c1.type = CURVE_BICUBIC;
|
|
c2.type = CURVE_BICUBIC;
|
|
// TODO
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////
|
|
// Spline constructor
|
|
Spline::Spline() {
|
|
}
|
|
|
|
|
|
/////////////////
|
|
// Encode to ASS
|
|
wxString Spline::EncodeToASS() {
|
|
wxString result;
|
|
char lastCommand = 0;
|
|
|
|
// At least one element?
|
|
bool isFirst = true;
|
|
|
|
// Insert each element
|
|
for (std::list<SplineCurve>::iterator cur=curves.begin();cur!=curves.end();cur++) {
|
|
// Start of spline
|
|
if (isFirst) {
|
|
result = wxString::Format(_T("m %i %i "),(int)cur->p1.x,(int)cur->p1.y);
|
|
lastCommand = 'm';
|
|
isFirst = false;
|
|
}
|
|
|
|
// Each curve
|
|
switch (cur->type) {
|
|
case CURVE_LINE:
|
|
if (lastCommand != 'l') {
|
|
result += _T("l ");
|
|
lastCommand = 'l';
|
|
}
|
|
result += wxString::Format(_T("%i %i "),(int)cur->p2.x,(int)cur->p2.y);
|
|
break;
|
|
case CURVE_BICUBIC:
|
|
if (lastCommand != 'b') {
|
|
result += _T("b ");
|
|
lastCommand = 'b';
|
|
}
|
|
result += wxString::Format(_T("%i %i %i %i %i %i "),(int)cur->p2.x,(int)cur->p2.y,(int)cur->p3.x,(int)cur->p3.y,(int)cur->p4.x,(int)cur->p4.y);
|
|
break;
|
|
default: break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
///////////////////
|
|
// Decode from ASS
|
|
void Spline::DecodeFromASS(wxString str) {
|
|
// Clear current
|
|
curves.clear();
|
|
std::vector<int> stack;
|
|
|
|
// Prepare
|
|
char lastCommand = 'm';
|
|
int x = 0;
|
|
int y = 0;
|
|
|
|
// Tokenize the string
|
|
wxStringTokenizer tkn(str,_T(" "));
|
|
while (tkn.HasMoreTokens()) {
|
|
wxString token = tkn.GetNextToken();
|
|
|
|
// Got a number
|
|
if (token.IsNumber()) {
|
|
long n;
|
|
token.ToLong(&n);
|
|
stack.push_back(n);
|
|
|
|
// Move
|
|
if (stack.size() == 2 && lastCommand == 'm') {
|
|
x = stack[0];
|
|
y = stack[1];
|
|
stack.clear();
|
|
}
|
|
|
|
// Line
|
|
if (stack.size() == 2 && lastCommand == 'l') {
|
|
SplineCurve curve;
|
|
curve.p1.x = x;
|
|
curve.p1.y = y;
|
|
curve.p2.x = stack[0];
|
|
curve.p2.y = stack[1];
|
|
curve.type = CURVE_LINE;
|
|
x = curve.p2.x;
|
|
y = curve.p2.y;
|
|
stack.clear();
|
|
AppendCurve(curve);
|
|
}
|
|
|
|
// Bicubic
|
|
else if (stack.size() == 6 && lastCommand == 'b') {
|
|
SplineCurve curve;
|
|
curve.p1.x = x;
|
|
curve.p1.y = y;
|
|
curve.p2.x = stack[0];
|
|
curve.p2.y = stack[1];
|
|
curve.p3.x = stack[2];
|
|
curve.p3.y = stack[3];
|
|
curve.p4.x = stack[4];
|
|
curve.p4.y = stack[5];
|
|
curve.type = CURVE_BICUBIC;
|
|
x = curve.p4.x;
|
|
y = curve.p4.y;
|
|
stack.clear();
|
|
AppendCurve(curve);
|
|
}
|
|
|
|
// Close
|
|
else if (lastCommand == 'c') {
|
|
stack.clear();
|
|
}
|
|
}
|
|
|
|
// Got something else
|
|
else {
|
|
if (token == _T("m")) lastCommand = 'm';
|
|
else if (token == _T("l")) lastCommand = 'l';
|
|
else if (token == _T("b")) lastCommand = 'b';
|
|
else if (token == _T("n")) lastCommand = 'n';
|
|
else if (token == _T("s")) lastCommand = 's';
|
|
else if (token == _T("c")) lastCommand = 'c';
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
////////////////////////////////
|
|
// Append a curve to the spline
|
|
void Spline::AppendCurve(SplineCurve &curve) {
|
|
curves.push_back(curve);
|
|
}
|
|
|
|
|
|
////////////////////////////////////////
|
|
// Moves a specific point in the spline
|
|
void Spline::MovePoint(int curveIndex,int point,wxPoint pos) {
|
|
// Curves
|
|
int i = 0;
|
|
SplineCurve *c0 = NULL;
|
|
SplineCurve *c1 = NULL;
|
|
SplineCurve *c2 = NULL;
|
|
|
|
// Indices
|
|
//int size = curves.size();
|
|
int i0 = curveIndex-1;
|
|
int i1 = curveIndex;
|
|
int i2 = curveIndex+1;
|
|
//if (i0 < 0) i0 = size-1;
|
|
//if (i2 >= size) i2 = 0;
|
|
|
|
// Get the curves
|
|
for (std::list<SplineCurve>::iterator cur = curves.begin();cur!=curves.end();cur++) {
|
|
if (i == i0) c0 = &(*cur);
|
|
if (i == i1) c1 = &(*cur);
|
|
if (i == i2) c2 = &(*cur);
|
|
i++;
|
|
}
|
|
|
|
// Modify
|
|
if (point == 0) {
|
|
c1->p1.x = pos.x;
|
|
c1->p1.y = pos.y;
|
|
if (c0) {
|
|
if (c0->type == CURVE_BICUBIC) {
|
|
c0->p4.x = pos.x;
|
|
c0->p4.y = pos.y;
|
|
}
|
|
else {
|
|
c0->p2.x = pos.x;
|
|
c0->p2.y = pos.y;
|
|
}
|
|
}
|
|
}
|
|
else if (point == 1) {
|
|
c1->p2.x = pos.x;
|
|
c1->p2.y = pos.y;
|
|
if (c2 && c1->type != CURVE_BICUBIC) {
|
|
c2->p1.x = pos.x;
|
|
c2->p1.y = pos.y;
|
|
}
|
|
}
|
|
else if (point == 2) {
|
|
c1->p3.x = pos.x;
|
|
c1->p3.y = pos.y;
|
|
}
|
|
else if (point == 3) {
|
|
c1->p4.x = pos.x;
|
|
c1->p4.y = pos.y;
|
|
if (c2 && c1->type == CURVE_BICUBIC) {
|
|
c2->p1.x = pos.x;
|
|
c2->p1.y = pos.y;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////
|
|
// Gets a list of points in the curve
|
|
void Spline::GetPointList(std::vector<Vector2D> &points) {
|
|
// Prepare
|
|
points.clear();
|
|
Vector2D pt;
|
|
bool isFirst = true;
|
|
|
|
// Generate points for each curve
|
|
for (std::list<SplineCurve>::iterator cur = curves.begin();cur!=curves.end();cur++) {
|
|
// First point
|
|
if (isFirst) {
|
|
pt.x = cur->p1.x;
|
|
pt.y = cur->p1.y;
|
|
points.push_back(pt);
|
|
}
|
|
|
|
// Line
|
|
if (cur->type == CURVE_LINE) {
|
|
pt.x = cur->p2.x;
|
|
pt.y = cur->p2.y;
|
|
points.push_back(pt);
|
|
}
|
|
|
|
// Bicubic
|
|
else if (cur->type == CURVE_BICUBIC) {
|
|
// Get the control points
|
|
Vector2D p1 = cur->p1;
|
|
Vector2D p2 = cur->p2;
|
|
Vector2D p3 = cur->p3;
|
|
Vector2D p4 = cur->p4;
|
|
|
|
// Find number of steps
|
|
int len = (p2-p1).Len() + (p3-p2).Len() + (p4-p3).Len();
|
|
int steps = len/8;
|
|
|
|
// Render curve
|
|
for (int i=0;i<steps;i++) {
|
|
// Get t and t-1 (u)
|
|
float t = float(i)/float(steps);
|
|
float u = 1.0f-t;
|
|
|
|
// Calculate the point and insert it
|
|
pt = p1*u*u*u + 3*p2*t*u*u + 3*p3*t*t*u + p4*t*t*t;
|
|
points.push_back(pt);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Insert a copy of the first point at the end
|
|
if (points.size()) {
|
|
points.push_back(points[0]);
|
|
}
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////
|
|
// t value and curve of the point closest to reference
|
|
void GetClosestParametricPoint(Vector2D reference,int &curve,float &t) {
|
|
// TODO
|
|
}
|
|
|
|
|
|
//////////////////////////////
|
|
// Point closest to reference
|
|
Vector2D Spline::GetClosestPoint(Vector2D reference) {
|
|
// TODO
|
|
return Vector2D(-1,-1);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////
|
|
// Control point closest to reference
|
|
Vector2D Spline::GetClosestControlPoint(Vector2D reference) {
|
|
// TODO
|
|
return Vector2D(-1,-1);
|
|
}
|