// Copyright (c) 2005, 2006, Rodrigo Braz Monteiro // Copyright (c) 2006, 2007, Niels Martin Hansen // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of the Aegisub Group nor the names of its contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // ----------------------------------------------------------------------------- // // AEGISUB // // Website: http://aegisub.cellosoft.com // Contact: mailto:zeratul@cellosoft.com // #include "config.h" #include #include #include #include #include #ifdef _OPENMP #include #endif #include "audio_spectrum.h" #include "fft.h" #include "colorspace.h" #include "options.h" #include "utils.h" #include // Audio spectrum FFT data cache // Spectrum cache basically caches the raw result of FFT class AudioSpectrumCache { public: // Type of a single FFT result line typedef std::vector CacheLine; // Types for cache aging typedef unsigned int CacheAccessTime; struct CacheAgeData { CacheAccessTime access_time; unsigned long first_line; unsigned long num_lines; // includes overlap-lines bool operator< (const CacheAgeData& second) const { return access_time < second.access_time; } CacheAgeData(CacheAccessTime t, unsigned long first, unsigned long num) : access_time(t), first_line(first), num_lines(num) { } }; typedef std::vector CacheAgeList; // Get the overlap'th overlapping FFT in FFT group i, generating it if needed virtual CacheLine& GetLine(unsigned long i, unsigned int overlap, bool &created, CacheAccessTime access_time) = 0; // Get the total number of cache lines currently stored in this cache node's sub tree virtual size_t GetManagedLineCount() = 0; // Append to a list of last access times to the cache virtual void GetLineAccessTimes(CacheAgeList &ages) = 0; // Delete the cache storage starting with the given line id // Return true if the object called on is empty and can safely be deleted too virtual bool KillLine(unsigned long line_id) = 0; // Set the FFT size used static void SetLineLength(unsigned long new_length) { line_length = new_length; null_line.resize(new_length, 0); } virtual ~AudioSpectrumCache() {}; protected: // A cache line containing only zero-values static CacheLine null_line; // The FFT size static unsigned long line_length; }; AudioSpectrumCache::CacheLine AudioSpectrumCache::null_line; unsigned long AudioSpectrumCache::line_length; // Bottom level FFT cache, holds actual power data itself class FinalSpectrumCache : public AudioSpectrumCache { private: std::vector data; unsigned long start, length; // start and end of range unsigned int overlaps; CacheAccessTime last_access; public: CacheLine& GetLine(unsigned long i, unsigned int overlap, bool &created, CacheAccessTime access_time) { last_access = access_time; // This check ought to be redundant if (i >= start && i-start < length) return data[i - start + overlap*length]; else return null_line; } size_t GetManagedLineCount() { return data.size(); } void GetLineAccessTimes(CacheAgeList &ages) { ages.push_back(CacheAgeData(last_access, start, data.size())); } bool KillLine(unsigned long line_id) { return start == line_id; } FinalSpectrumCache(AudioProvider *provider, unsigned long _start, unsigned long _length, unsigned int _overlaps) { start = _start; length = _length; overlaps = _overlaps; if (overlaps < 1) overlaps = 1; // Add an upper limit to number of overlaps or trust user to do sane things? // Any limit should probably be a function of length assert(length > 2); // First fill the data vector with blanks // Both start and end are included in the range stored, so we have end-start+1 elements data.resize(length*overlaps, null_line); unsigned int overlap_offset = line_length / overlaps * 2; // FIXME: the result seems weird/wrong without this factor 2, but why? FFT fft; // Use FFTW instead? A wavelet? for (unsigned int overlap = 0; overlap < overlaps; ++overlap) { // Start sample number of the next line calculated // line_length is half of the number of samples used to calculate a line, since half of the output from // a Fourier transform of real data is redundant, and not interesting for the purpose of creating // a frequenmcy/power spectrum. int64_t sample = start * line_length*2 + overlap*overlap_offset; long len = length; #ifdef _OPENMP #pragma omp parallel shared(overlap,len) #endif { short *raw_sample_data = new short[line_length*2]; float *sample_data = new float[line_length*2]; float *out_r = new float[line_length*2]; float *out_i = new float[line_length*2]; #ifdef _OPENMP #pragma omp for #endif for (long i = 0; i < len; ++i) { // Initialize sample = start * line_length*2 + overlap*overlap_offset + i*line_length*2; provider->GetAudio(raw_sample_data, sample, line_length*2); for (size_t j = 0; j < line_length; ++j) { sample_data[j*2] = (float)raw_sample_data[j*2]; sample_data[j*2+1] = (float)raw_sample_data[j*2+1]; } fft.Transform(line_length*2, sample_data, out_r, out_i); CacheLine &line = data[i + length*overlap]; for (size_t j = 0; j < line_length; ++j) { line[j] = sqrt(out_r[j]*out_r[j] + out_i[j]*out_i[j]); } //sample += line_length*2; } delete[] raw_sample_data; delete[] sample_data; delete[] out_r; delete[] out_i; } } } virtual ~FinalSpectrumCache() { } }; // Non-bottom-level cache, refers to other caches to do the work class IntermediateSpectrumCache : public AudioSpectrumCache { private: std::vector sub_caches; unsigned long start, length, subcache_length; unsigned int overlaps; bool subcaches_are_final; int depth; AudioProvider *provider; public: CacheLine &GetLine(unsigned long i, unsigned int overlap, bool &created, CacheAccessTime access_time) { if (i >= start && i-start <= length) { // Determine which sub-cache this line resides in size_t subcache = (i-start) / subcache_length; assert(subcache < sub_caches.size()); if (!sub_caches[subcache]) { created = true; if (subcaches_are_final) { sub_caches[subcache] = new FinalSpectrumCache(provider, start+subcache*subcache_length, subcache_length, overlaps); } else { sub_caches[subcache] = new IntermediateSpectrumCache(provider, start+subcache*subcache_length, subcache_length, overlaps, depth+1); } } return sub_caches[subcache]->GetLine(i, overlap, created, access_time); } else { return null_line; } } size_t GetManagedLineCount() { size_t res = 0; for (size_t i = 0; i < sub_caches.size(); ++i) { if (sub_caches[i]) res += sub_caches[i]->GetManagedLineCount(); } return res; } void GetLineAccessTimes(CacheAgeList &ages) { for (size_t i = 0; i < sub_caches.size(); ++i) { if (sub_caches[i]) sub_caches[i]->GetLineAccessTimes(ages); } } bool KillLine(unsigned long line_id) { int sub_caches_left = 0; for (size_t i = 0; i < sub_caches.size(); ++i) { if (sub_caches[i]) { if (sub_caches[i]->KillLine(line_id)) { delete sub_caches[i]; sub_caches[i] = 0; } else { sub_caches_left++; } } } return sub_caches_left == 0; } IntermediateSpectrumCache(AudioProvider *_provider, unsigned long _start, unsigned long _length, unsigned int _overlaps, int _depth) { provider = _provider; start = _start; length = _length; overlaps = _overlaps; depth = _depth; // FIXME: this calculation probably needs tweaking int num_subcaches = 1; unsigned long tmp = length; while (tmp > 0) { tmp /= 16; num_subcaches *= 2; } subcache_length = length / (num_subcaches-1); subcaches_are_final = num_subcaches <= 4; sub_caches.resize(num_subcaches, 0); } virtual ~IntermediateSpectrumCache() { for (size_t i = 0; i < sub_caches.size(); ++i) if (sub_caches[i]) delete sub_caches[i]; } }; class AudioSpectrumCacheManager { private: IntermediateSpectrumCache *cache_root; unsigned long cache_hits, cache_misses; AudioSpectrumCache::CacheAccessTime cur_time; unsigned long max_lines_cached; public: AudioSpectrumCache::CacheLine &GetLine(unsigned long i, unsigned int overlap) { bool created = false; AudioSpectrumCache::CacheLine &res = cache_root->GetLine(i, overlap, created, cur_time++); if (created) cache_misses++; else cache_hits++; return res; } void Age() { wxLogDebug(_T("AudioSpectrumCacheManager stats: hits=%u, misses=%u, misses%%=%f, managed lines=%u (max=%u)"), cache_hits, cache_misses, cache_misses/float(cache_hits+cache_misses)*100, cache_root->GetManagedLineCount(), max_lines_cached); // 0 means no limit if (max_lines_cached == 0) return; // No reason to proceed with complicated stuff if the count is too small // (FIXME: does this really pay off?) if (cache_root->GetManagedLineCount() < max_lines_cached) return; // Get and sort ages AudioSpectrumCache::CacheAgeList ages; cache_root->GetLineAccessTimes(ages); std::sort(ages.begin(), ages.end()); // Number of lines we have found used so far // When this exceeds max_lines_caches go into kill-mode unsigned long cumulative_lines = 0; // Run backwards through the line age list (the most recently accessed items are at end) AudioSpectrumCache::CacheAgeList::reverse_iterator it = ages.rbegin(); // Find the point where we have too many lines cached while (cumulative_lines < max_lines_cached) { if (it == ages.rend()) { wxLogDebug(_T("AudioSpectrumCacheManager done aging did not exceed max_lines_cached")); return; } cumulative_lines += it->num_lines; ++it; } // By here, we have exceeded max_lines_cached so backtrack one --it; // And now start cleaning up for (; it != ages.rend(); ++it) { cache_root->KillLine(it->first_line); } wxLogDebug(_T("AudioSpectrumCacheManager done aging, managed lines now=%u (max=%u)"), cache_root->GetManagedLineCount(), max_lines_cached); assert(cache_root->GetManagedLineCount() < max_lines_cached); } AudioSpectrumCacheManager(AudioProvider *provider, unsigned long line_length, unsigned long num_lines, unsigned int num_overlaps) { cache_hits = cache_misses = 0; cur_time = 0; cache_root = new IntermediateSpectrumCache(provider, 0, num_lines, num_overlaps, 0); // option is stored in megabytes, but we want number of bytes unsigned long max_cache_size = Options.AsInt(_T("Audio Spectrum Memory Max")); // It can't go too low if (max_cache_size < 5) max_cache_size = 128; max_cache_size *= 1024 * 1024; unsigned long line_size = sizeof(AudioSpectrumCache::CacheLine::value_type) * line_length; max_lines_cached = max_cache_size / line_size; } ~AudioSpectrumCacheManager() { delete cache_root; } }; // AudioSpectrum AudioSpectrum::AudioSpectrum(AudioProvider *_provider) { provider = _provider; // Determine the quality of the spectrum rendering based on an index int quality_index = Options.AsInt(_T("Audio Spectrum Quality")); if (quality_index < 0) quality_index = 0; if (quality_index > 5) quality_index = 5; // no need to go freaking insane // Line length determines the balance between resolution in the time and frequency domains. // Larger line length gives better resolution in frequency domain, // smaller gives better resolution in time domain. // Any values uses the same amount of memory, but larger values takes (slightly) more CPU. // Line lengths must be powers of 2 due to the FFT algorithm. // 2^8 is a good compromise between time and frequency domain resolution, any smaller // gives an unreasonably low resolution in the frequency domain. // Increasing the number of overlaps gives better resolution in the time domain. // Doubling the number of overlaps doubles memory and CPU use, and also // doubles resolution in the time domain. switch (quality_index) { case 0: // No overlaps, good comprimise between time/frequency resolution. // 4 bytes used per sample. line_length = 1<<8; fft_overlaps = 1; break; case 1: // Double frequency resolution, the resulting half time resolution // is countered with an overlap. // 8 bytes per sample. line_length = 1<<9; fft_overlaps = 2; break; case 2: // Resulting double resolution in both domains. // 16 bytes per sample. line_length = 1<<9; fft_overlaps = 4; break; case 3: // Double frequency and quadrouble time resolution. // 32 bytes per sample. line_length = 1<<9; fft_overlaps = 8; break; case 4: // Quadrouble resolution in both domains. // 64 bytes per sample. line_length = 1<<10; fft_overlaps = 16; break; case 5: // Eight-double resolution in both domains. // 256 bytes per sample. line_length = 1<<11; fft_overlaps = 64; break; default: throw _T("Internal error in AudioSpectrum class - impossible quality index"); } int64_t _num_lines = provider->GetNumSamples() / line_length / 2; num_lines = (unsigned long)_num_lines; AudioSpectrumCache::SetLineLength(line_length); cache = new AudioSpectrumCacheManager(provider, line_length, num_lines, fft_overlaps); power_scale = 1; minband = Options.AsInt(_T("Audio Spectrum Cutoff")); maxband = line_length - minband * 2/3; // TODO: make this customisable? // Generate colour maps unsigned char *palptr = colours_normal; for (int i = 0; i < 256; i++) { //hsl_to_rgb(170 + i * 2/3, 128 + i/2, i, palptr+0, palptr+1, palptr+2); // Previous hsl_to_rgb((255+128-i)/2, 128 + i/2, MIN(255,2*i), palptr+0, palptr+1, palptr+2); // Icy blue palptr += 3; } palptr = colours_selected; for (int i = 0; i < 256; i++) { //hsl_to_rgb(170 + i * 2/3, 128 + i/2, i*3/4+64, palptr+0, palptr+1, palptr+2); hsl_to_rgb((255+128-i)/2, 128 + i/2, MIN(255,3*i/2+64), palptr+0, palptr+1, palptr+2); // Icy blue palptr += 3; } } AudioSpectrum::~AudioSpectrum() { delete cache; } void AudioSpectrum::RenderRange(int64_t range_start, int64_t range_end, bool selected, unsigned char *img, int imgleft, int imgwidth, int imgpitch, int imgheight) { unsigned long first_line = (unsigned long)(fft_overlaps * range_start / line_length / 2); unsigned long last_line = (unsigned long)(fft_overlaps * range_end / line_length / 2); float *power = new float[line_length]; int last_imgcol_rendered = -1; unsigned char *palette; if (selected) palette = colours_selected; else palette = colours_normal; // Some scaling constants const int maxpower = (1 << (16 - 1))*256; const double upscale = power_scale * 16384 / line_length; const double onethirdmaxpower = maxpower / 3, twothirdmaxpower = maxpower * 2/3; const double logoverscale = log(maxpower*upscale - twothirdmaxpower); // Note that here "lines" are actually bands of power data unsigned long baseline = first_line / fft_overlaps; unsigned int overlap = first_line % fft_overlaps; for (unsigned long i = first_line; i <= last_line; ++i) { // Handle horizontal compression and don't unneededly re-render columns int imgcol = imgleft + imgwidth * (i - first_line) / (last_line - first_line + 1); if (imgcol <= last_imgcol_rendered) continue; AudioSpectrumCache::CacheLine &line = cache->GetLine(baseline, overlap); ++overlap; if (overlap >= fft_overlaps) { overlap = 0; ++baseline; } // Apply a "compressed" scaling to the signal power for (unsigned int j = 0; j < line_length; j++) { // First do a simple linear scale power calculation -- 8 gives a reasonable default scaling power[j] = line[j] * upscale; if (power[j] > maxpower * 2/3) { double p = power[j] - twothirdmaxpower; p = log(p) * onethirdmaxpower / logoverscale; power[j] = p + twothirdmaxpower; } } #define WRITE_PIXEL \ if (intensity < 0) intensity = 0; \ if (intensity > 255) intensity = 255; \ img[((imgheight-y-1)*imgpitch+x)*3 + 0] = palette[intensity*3+0]; \ img[((imgheight-y-1)*imgpitch+x)*3 + 1] = palette[intensity*3+1]; \ img[((imgheight-y-1)*imgpitch+x)*3 + 2] = palette[intensity*3+2]; // Handle horizontal expansion int next_line_imgcol = imgleft + imgwidth * (i - first_line + 1) / (last_line - first_line + 1); if (next_line_imgcol >= imgpitch) next_line_imgcol = imgpitch-1; for (int x = imgcol; x <= next_line_imgcol; ++x) { // Decide which rendering algo to use if (maxband - minband > imgheight) { // more than one frequency sample per pixel (vertically compress data) // pick the largest value per pixel for display // Iterate over pixels, picking a range of samples for each for (int y = 0; y < imgheight; ++y) { int sample1 = MAX(0,maxband * y/imgheight + minband); int sample2 = MIN(signed(line_length-1),maxband * (y+1)/imgheight + minband); float maxval = 0; for (int samp = sample1; samp <= sample2; samp++) { if (power[samp] > maxval) maxval = power[samp]; } int intensity = int(256 * maxval / maxpower); WRITE_PIXEL } } else { // less than one frequency sample per pixel (vertically expand data) // interpolate between pixels // can also happen with exactly one sample per pixel, but how often is that? // Iterate over pixels, picking the nearest power values for (int y = 0; y < imgheight; ++y) { float ideal = (float)(y+1.)/imgheight * maxband; float sample1 = power[(int)floor(ideal)+minband]; float sample2 = power[(int)ceil(ideal)+minband]; float frac = ideal - floor(ideal); int intensity = int(((1-frac)*sample1 + frac*sample2) / maxpower * 256); WRITE_PIXEL } } } #undef WRITE_PIXEL } delete[] power; cache->Age(); } void AudioSpectrum::SetScaling(float _power_scale) { power_scale = _power_scale; }