
AS5 SUBTITLE FORMAT

By Rodrigo Braz Monteiro, Niels Martin Hansen, David Lamparter and Karl Blomster

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License.

July 23, 2007

Contents

1 Abstract 3

2 AS5 Files 4
2.1 File Format . 4
2.2 File Structure . 4

2.2.1 [AS5] . 5
2.2.2 [Events] . 6
2.2.3 [Styles] . 7
2.2.4 [Resources] . 10

3 Style Overrides 11
3.1 General Information on Override Tags . 11
3.2 Invalid or Malformed Tags and Syntax Errors . 12
3.3 Vector Path Format . 12
3.4 Special Character Escapes . 12

3.4.1 \n . 13
3.4.2 \h . 13
3.4.3 \{, \} . 13
3.4.4 \\ . 13

3.5 Basic Typography Tags . 13
3.5.1 \i . 13
3.5.2 \b . 14
3.5.3 \u . 14
3.5.4 \s . 14
3.5.5 \fn . 14
3.5.6 \fe . 15
3.5.7 \fs . 15
3.5.8 \bord . 15
3.5.9 \shad . 16
3.5.10 \bordstyle . 16

3.6 Font Scaling Tags . 16
3.6.1 \fsc, \fscx, \fscy . 16
3.6.2 \fsp . 17
3.6.3 \fsvp . 17

3.7 Colouring Tags . 17
3.7.1 \$c . 17
3.7.2 \$a . 17

3.8 Positioning and Rotation Tags . 18
3.8.1 \left, \right, \top, \bottom . 18
3.8.2 \an, \ax, \ay, \nx, \ny . 18
3.8.3 \rel . 18
3.8.4 \vertical . 19
3.8.5 \q . 19
3.8.6 \pos . 19
3.8.7 \org . 19
3.8.8 \bls . 20
3.8.9 \frx, \fry, \frz . 20
3.8.10 \fax, \fay . 20

3.9 Animation Tags . 20
3.9.1 \fad . 20

1

3.9.2 \t . 21
3.10 Shape Transformation Tags . 21

3.10.1 \distort . 21
3.10.2 \baseline . 22
3.10.3 \blpos . 23

3.11 Rastering Tags . 23
3.11.1 \$vc . 23
3.11.2 \$blend . 23
3.11.3 \clip . 23
3.11.4 \iclip . 24
3.11.5 \$blur . 24

3.12 Advanced Typography Tags . 24

4 Renderer Behaviour Specification 25

5 Container Multiplexing Specification 26
5.1 Matroska . 26

References 27

2

1 Abstract

This document specifies the AS5 Subtitle Format, developed jointly by the Aegisub[1] and asa[2] teams
in order to replace the old Sub Station Alpha[3] subtitle format and its extensions:

• Advanced Sub Station Alpha (ASS) implemented by Gabest in VSFilter[5]

• Advanced Sub Station Alpha 2 (ASS2), also implemented by Gabest in VSFilter

• Advanced Sub Station Alpha 3 (ASS3) implemented by equinox in asa.

The goal is to create a flexible, easy to understand and powerful subtitle format that can be used in
hardsubs or multiplexed into Matroska Video[7] files as softsubs. The syntax is heavily influenced by
the older SSA and ASS formats, which in turn vaguely resemble the TeX typesetting language; but AS5
also has many differences compared to these older formats and you should not expect it to behave
exactly like them.

AS5 has no official meaning. The “A” can stand for Aegisub, asa, ASS or Advanced, the “S” for Subtitles,
and the 5 is a reference to the fact that it’s a major improvement over SSA4 format (from which ASS,
ASS2 and ASS3 derive). The full name of the format is “AS5 Subtitle Format”.

3

2 AS5 Files

2.1 File Format

All AS5 files are REQUIRED to comply with the three requirements below:

• Be encoded with one of UTF-8[8], UTF-16 Big Endian [9] or UTF-16 Little Endian Unicode Trans-
formation Formats. UTF-8 is preferred.

• Not to have any character below Unicode code point U+20, except for U+09, U+0A, U+0D.
That is, it must be a plain-text file.

• All lines must end with Windows line endings, that is, U+0D followed by U+0A.

These requirements are important so the AS5 format can be edited in most plain-text editors across
most operating systems and languages without problems. The character set of a subtitle file can be
autodetermined by its Byte-Order Mark or by the value of the first two bytes. See below.

When used as a standalone file, the extension should be .AS5. When multiplexed into a Matroska
container, the Codec ID used is S TEXT/AS5.

TODO: Get clearance from the Matroska team to use that Codec ID.

2.2 File Structure

The file is divided in sections, which are uniquely identified by a string inside square brackets, in a line
of its own. From that point on, every next line is considered to be part of the last found section until
another section is found. There is no end-of-section termination mark; they always end at the start
of the next one or at the end of the file. There MUST only be one and only one of each section; if the
parser finds two lines containing the same section header, it MUST reject the file as invalid. Section
names are case sensitive.

Each section is divided in lines, each line representing one command or definition. Empty lines (that is,
lines only containing a line ending) MUST be ignored by the parser. It is recommended that programs
generating AS5 files insert a blank line at the end of each section to increase readability. There MUST

always be a blank line at the end of the file (as every line is required to end in a line break).

Each line in a section takes the general form of Type: data1,data2,...,dataN. An unknown Type MUST

be ignored by a parser. Subtitle editing programs SHOULD keep such ignored lines in the file after
re-saving it. Note that the space after the colon is mandatory.

There are two sections which are required, [AS5] and [Events], the former being the equivalent of
[Script Info] in previous formats. If either of those sections is missing, the file is invalid and MUST be
rejected by the parser. Any other section can be ommitted from the file, and need not be implemented
by all parsers.

Finally, there is a special type of undefined group, [Private:PROGNAME], which MUST be ENTIRELY
preserved by other programs when re-saving it. This is used to store program-specific data. For
example, Aegisub would create a group called [Private:Aegisub] to store its data inside. This type of
group is identified by the fact that it starts with “[Private:”.

4

Additionally, private data may also be stored in any other section by using commented-out lines: any
line where the first character is a semicolon (; - U+3B) is considered a ”comment line” and MUST

be ignored by the parser; they also MUST be preserved by an editing program when resaving. It is
suggested that an editing program SHOULD check whether commented lines are actually valid AS5
lines, and if they are, display them to the user in some way as ”disabled” lines. Note that commented
out lines MUST NOT influence subtitle rendering in any way.

The sections MAY be written in any order, with the exception of the [AS5] section which MUST always
be the first section.

In general, malformed lines in AS5 (such as unrecognized lines, lines with missing fields, fields with
invalid data for its type (for example, malformed timestamps) or unrecognized section headers) are
not considered fatal syntax errors. If nothing else is explicitly specified, the renderer MUST ignore such
lines completely, and the parser SHOULD emit a warning describing the syntax error. The spirit of this
rule to be forgiving; something that doesn’t make the entire file unuseable or dangerously ambigous
should not be a fatal syntax error. It is usually better to render the valid parts of the file correctly and
tell the user about the problematic lines by the way of warning messages. Under certain circumstances
it may be desirable to suppress warning messages; a well-behaved parser SHOULD include an option to
do so, but in general it is probably more useful to let the user know about the problem instead of just
silently failing to render the line.

2.2.1 [AS5]

This MUST be the first section in every AS5 file. If the very first line of the file is not [AS5], the file
MUST be rejected by the parser as invalid. Note, however, that the first line is allowed to contain a
Byte-Order Mark (BOM), which is the character U+FEFF encoded in the encoding used for the rest of
the script[10]. The first four bytes will therefore be:

• 0xEF 0xBB 0xBF 0x5B - UTF-8 (with BOM)

• 0x5B 0x41 0x53 0x53 - UTF-8 (without BOM)

• 0xFF 0xFE 0x5B 0x00 - UTF-16 LE (with BOM)

• 0x5B 0x00 0x41 0x00 - UTF-16 LE (without BOM)

• 0xFE 0xFF 0x00 0x5B - UTF-16 BE (with BOM)

• 0x00 0x5B 0x00 0x41 - UTF-16 BE (without BOM)

It is possible, therefore, to determine the encoding of the file by checking its first two bytes.

This section is used to declare several script properties that affect its parsing and rendering. All prop-
erties are stored in the format Name: data, with one property per line.

This section MUST always declare the following properties (a file that is missing one of them is not
valid):

• ScriptType: Should always be set to AS5, for this particular version of the specification. An
unrecognized ScriptType value is considered a fatal syntax error, and MUST cause the parser to
reject the entire file as invalid.

5

• Resolution: Should contain the script resolution in WxH format. For example, for a 640x480
script, this should say “Resolution: 640x480”. Note that this does not need to correspond to
the video resolution, however, subtitles MUST be rendered on such a coordinate space. That is,
in a 640x480 script, \pos(320,240) always represents the center of the script, no matter the
resolution of the video it’s being drawn on. Also, in a 100x100 script, a radius 50 circle centered
on the center will always take half of the height and half of the width of the video, even if that
means being distorted if drawn on a video with a non-1:1 aspect ratio (for example, a 640x480
video). An unrecognized or malformed Resolution value is considered a fatal syntax error, and
MUST cause the parser to reject the entire file as invalid.

The following items MAY also be used; they are not required, but are recommended. They all have
default values:

• Generator: The name of the program that generated this script, e.g. “Generator: Aegisub”. De-
fault value is empty. This should be ignored by the renderer, but might be useful for inter-editing-
program interaction.

• Wrapping: The line wrapping style. This can be “Manual”, in which case only \n can break lines
or “Automatic”, in which the renderer chooses how to break them. If this is not set, or if the value
set is not recognized, the renderer MUST default to “Automatic”. Even if it is set to Automatic,
\n will still insert a forced line break. On the other hand, if set to manual, the line can NEVER
be broken at anywhere other than forced line breaks, even if it means that the line will become
unreadable because it goes outside the display area. This property is not case sensitive.

• Extensions: A comma-separated list of all extensions being used in this file. At the moment, there
are no extensions available. Renderers should read this to enable any extensions that they might
support. Editing programs MUST keep this field intact, unless the user chooses otherwise. Scripts
WILL break if the list of extensions is suddenly lost.

• Credits: Credits for the people who worked on this subtitle file. Purely for informational purposes
and SHOULD be ignored by the renderer. Subtitling programs SHOULD be able to display these
credits to the user.

• Title: The title of this script. Purely for informational purposes and SHOULD be ignored by the
renderer. Subtitling programs SHOULD be able to display this title to the user.

Unlike in the previous incarnations of the format, storing private properties here is strongly discour-
aged, which means that this section SHOULD NOT contain any properties not listed here. It MAY just
like any other section, contain commented-out lines prefixed with a semicolon (;) which of course may
contain anything, but it is strongly recommended that any application-specific or otherwise private
data SHOULD be stored in the [Private:PROGNAME] section instead, as mentioned above, or if it is
line-specific data, in the User field.

2.2.2 [Events]

The most important section, [Events], lists all the actual subtitle lines in the file. The syntax has been
radically simplified from previous incarnations of the format, and now consist of only five fields. Each
line is represented as:

Line: start,end,style,user,content

6

Where:

• Start: The start time of the line. See below for the timestamp format. A line is only displayed if
the timestamp of the current frame is greater than or equal to the start time. That is, start time is
inclusive.

• End: The end time of the line. It follows the same format as the start time. The line is only
displayed if the timestamp of the current frame is lesser than the end time. That is, end time is
exclusive. In particular, it means that a line whose start time is equal to its end time will never be
displayed. If the end time is earlier than the start time, the renderer SHOULD issue a warning, but
this is not considered a fatal syntax error and it SHOULD render the remaining lines regardless
of the issue. If the end time is earlier than the start time, it should for rendering purposes be
considered to be equal to the start time, and editing programs MAY automatically reset the end
time to be equal to the start time.

• Style: The name of the default style used for this line. See the [Style] section below. If left
blank, the script’s global default style MUST be used. If there is no default style defined, or if an
unknown style name is specified, the renderer MUST fallback to its own defaults (see below), and
SHOULD issue a warning.

• User: This field is used by the program to store program-specific data in each line. Renderers
SHOULD ignore this (but MAY use it for application-specific extension features). This field SHOULD

be left empty if it’s not used. Note that whatever data is stored here MUST NOT contain any
commas!

It is suggested that text in the User field is encoded with the following scheme: The charac-
ters 0x00 to 0x1F (control codes), 0x23 (number sign), 0x2C (comma), 0x3A (colon) and 0x7C
(pipe) are replaced with a number sign (0x23) followed by the hexadecimal code for the charac-
ter, for example a comma is replaced with “#2C”. This scheme allows the field to contain several
sub-fields separated with pipe characters, optionally using a “Name:Value” format.

• Content: The actual text of the line. This contains actual text and override tags. See the section
on override tags for more information.

The timestamp format is h...h:mm:ss[.s...], that is, it begins with an integer of arbitrary length (up
to a maximum of 4 digits) representing the number of hours, followed by a one-digit or two-digit
integer representing minutes, and a floating point number representing seconds. Leading zeroes MAY

be ommitted. Localization is irrelevant: a period (“.”) is always used to separate the decimal point.
This way, 0:21:42.5 and 0000:21:42.5000 are equivalent, and both represent 0 hours, 21 minutes, 42
seconds and 500 miliseconds.

Spaces between each field MUST be ignored by the parser. Any spaces at the beginning of the content
line SHOULD be stripped by any editing program. A hard space (see the overrides section) or empty
override block should be used if space at the start of a line is truly desirable. That is, the two following
lines are syntactically identical:

Line: 0:2:31.57 , 0:02:34.22 , , , Hello world of {\b1}AS5{\b0}!
Line: 0:02:31.570,00:02:34.22,,,Hello world of {\b1}AS5{\b0}!

2.2.3 [Styles]

This is equivalent to the [V4 Styles] (and subsequent variations) from the Sub Station Alpha format.
Like [Events], it has been greatly simplified when compared to the previous formats, and now each

7

entry contains only three fields. They are declared as:

Style: name,parent,overrides

Where:

• Name: The name of this style. Style names are not case-sensitive, but MUST be unique. A script
with conflicting style names MUST be rejected by the parser. If the style name is “Default”, it will
be used for all lines that omit the style name. If there is no “Default” line, the renderer default is
used.

• Parent: The style from which the current style derives from. See below for more information.
Leaving this field blank means that the style derives from the renderer’s default style.

• Overrides: A list of override tags to define this style. See below.

Styles work in a very different way from the way they did on previous formats (with the notable
exception of ASS3, which actually implements this very same style based on this format, as “StyleEx”).
Instead of setting multiple parameters across many commas, you simply specify override tags. When
a line uses a style, it’s as if the overrides of the style were inserted right before the start of the line
contents, with one exception: certain tags without parameters revert to the style default. For example,
\1c will revert the primary colour to the one specified in style. Such use of tags is invalid in the style
definition, and MUST be ignored if found in them; the parser MAY choose to emit a warning.

Also, a style can inherit from another style, and define new overrides which are then appended to
those of the parent style. The parent style MUST have been declared BEFORE the style trying to use it
as a parent. If the parent doesn’t exist or wasn’t declared yet, the parser must refuse to parse the script.
This is important because otherwise you could get a “inheritance loop”, where styles derive from each
other in a cycle.

For example, see the following [Styles] group:

[Styles]
Style: Default,,\fn(Arial)\fs20
Style: Speech,,\fn(Respublica)\fs24\bord2\shad2\4a#80\2c#000000
Style: Actor1,Speech,\1c#B9C5E3
Style: Actor2,Speech,\1c#FFB3CF
Style: UglinessItself,Default,\fn(Comic Sans MS)

In the above fragment, the first style defines the Default style that will be used on all lines that don’t
set any style and the second style defines a base speech style that will be used for all actors (note that
it doesn’t inherit from Default, even though Default overrode the renderer’s default, that one is still
used for style definitions.)

The third and fourth styles are based on the second, and simply assign different colours to it. They
will both have all properties of Speech, and only differ in primary colour. Finally, the last example
shows how to derive from the overriden default. In this case, font size would be 20 points, regardless
of renderer’s default.

The two Actor styles could have been defined without a parent style as follows:

8

[Styles]
Style: Actor1,,\fn(Respublica)\fs24\bord2\shad2\4a#80\2c#000000\1c#B9C5E3
Style: Actor2,,\fn(Respublica)\fs24\bord2\shad2\4a#80\2c#000000\1c#FFB3CF

Since all that deriving a style from another does is append the new tags to the end of the previous, this
way of declaring styles is identical to the one above, but is more verbose.

TODO: This is bad, we need to fix it with specified defaults to get consistent rendering If no Default
style is defined, the renderer MUST choose its own defaults to render the text with. The defaults
MUST also be used any for any properties not specified in a given style (in other words, styles with no
parent inherit from the renderer defaults). To ensure consistent rendering while still avoiding having
to explicitly define every single property, some of these defaults are mandatory and specified below;
some others have recommended values, also specified below, but a well-featured renderer MAY allow
the user to change these defaults at will.

The following default overrides are mandatory and MUST be set as following:

• \i(0)

• \b(0)

• \u(0)

• \s(0)

• \fe(Unicode)

• \bordstyle(0)

• \fscx(100)

• \fscy(100)

• \fsp() - undefined (font default)

• \fsvp() - undefined (font default)

• \1a(#00)

• \2a(#00)

• \3a(#00)

• \4a(#80)

• \left(12)

• \right(12)

• \top(12)

• \bottom(12)

• \ax(50)

• \ay(100)

• \nx(50)

9

• \ny(100)

• \rel(0)

• \vertical(0)

• \q(1)

• \pos() - undefined (defined by alignment, margins and script resolution)

• \org() - undefined (defined by alignment, margins and script resolution)

• \bls(0)

• \frx(0)

• \fry(0)

• \frz(0)

• \fax(0)

• \fay(0)

• \fad(0,0)

• \distort() - undefined (none)

• \baseline() - undefined (none)

• \blpos(0)

• \vc() - undefined (none)

• \blend(normal)

• \clip() - undefined (none)

• \iclip() - undefined (none)

• \$blur(0)

2.2.4 [Resources]

The new [Resources] section can be used to store information on external file resources, such as images
and fonts. The general syntax is:

Resource: type,name,path

Where:

• Type: Must be either “font” or “image”. Any other types MUST be ignored by the parser.

• Name: An unique name identifying this resource. For fonts, it must correspond to the font name,
e.g., “Verdana”. For images, it’s the name that the file will be reffered as in the rest of the script.
If there is already a resource with this same name, the parser MUST abort the parsing.

• Path: The location of the file relative to the subtitles. This MUST be a relative path for external
.as5 files, or a container-specific string for AS5 multiplexed into a container. The relative path
MUST use forward slashes and be case-sensitive, in order to avoid UNIX compatibility issues.

10

3 Style Overrides

3.1 General Information on Override Tags

As with previous formats, AS5 uses override tags to set the style for lines. Also, it uses those same tags
to set style definitions themselves (see above). Although many tags were imported from Advanced Sub
Station Alpha, do not assume that they behave exactly the same. Some had their behavior changed or
properly defined. Also, AS5 defines many new tags in addition to the old ones.

All tags must be inserted between a pair of curly brackets ({}), except on style definitions. A pair
can contain any number of override tags inside it. They should be listed one after the other, with no
spaces or any other kind of separator between them. Tags then affect all text that follows it, unless
re-overriden or reset by the \r tag. For example:

{\fn(Verdana)\fs26\c#FFA040}Welcome to {\b1}AS5{\b0}!

In the above example, the first override block affects the entire text, but only “AS5” is bolded.

Some tags begin with a $ in their names. This means that there are actually five variations of this
specific tag, the tag with $ replaced with a number from 1 to 4 (inclusive) or without it altogether -
in that case, the tag is assumed to mean the 1 variation. Those numbers represent the four different
colours available on any given line (see below). If no number is specified, the tag will affect all 4
colours. The 4 colurs are:

• 1 - Primary colour, used for the main face of the text.

• 2 - Secondary colour, used on karaoke. See the karaoke tags for more information.

• 3 - Border colour. This is the colour of the border that outlines the text. See the \bord tag for
more information.

• 4 - Shadow colour. This is the colour of the shadow dropped by the text. See the \shad tag for
more information.

So, for example, you would use \1c to set the primary colour, or \3c to set the colour of the border.
\$c, however, does not exist in itself.

When a tag requires a floating point parameter, the decimal part MUST be specified using a period (.);
never a comma. When a tag requires a colour parameter, it is given in HTML hexadecimal code, which
is # followed by a 6-digit hexadecimal string, where the first two digits represent the red component,
the next two the green component, and the last two the blue component (#RRGGBB). Sub Station
Alpha style (Visual Basic hexadecimal) is not supported.

In the tag specification in this document, optional parameters are denoted by being enclosed by square
brackets (“[]”), and may be ommitted. For example, \baseline(curve1[,curve2]) means that the second
parameter is entirely optional. It’s also possible that the entire parameter set is enclosed in square
brackets, e.g. \vc[(c1,c2,c3,c4)].

The parameters of a tag MUST be enclosed within parantheses, with exception for tags with only one
numerical parameter, for which the parantheses MAY be omitted.

All tags MUST start with a backslash (\). If an override block (a pair of curly brackets) or any tag
starts with anything else than a backslash, it is considered a syntax error and the parser MUST ignore

11

the block or tag and SHOULD emit a warning (see the section ”Invalid or Malformed Tags and Syntax
Errors” below). Thus it is not possible, as it was in earlier formats, to hide inline comments inside
normal override blocks. There is, however a special kind of comment block that can be used for this.
Any curly opening brace that is immediately followed by an exclamation mark (!) starts a comment
block (ending with a matching closing curly brace), the contents of which MUST be ignored by the
parser and the renderer. For example:

{\fn(Verdana)\fs26\c#FFA040}Welcome to {\b1}AS5{\b0}!{!It’s a nifty format, isn’t it?}

3.2 Invalid or Malformed Tags and Syntax Errors

Any override tag (excluding the special character escape) that meets any of the following conditions:

• - is not specified in this document (that is, tags not present in the standard or just simply mis-
spelled variants of existing tags)

• - does not start with a backslash

• - is found outside an override block (that is, not within curly braces)

• - is missing parantheses where they should be present, or is missing a matching opening/closing
paranthesis

• - has arguments not matching those expected by the parser

is considered invalid or malformed. Invalid or malformed tags are syntax errors, and the renderer MUST

ignore them. The parser SHOULD also emit warnings about these errors, although it should be noted
that under certain circumstances it may be desirable to suppress warnings. The parser SHOULD include
an option to do so.

Any curly brace (start/end of an override block) which is missing its matching pair is also a syntax
error; the resulting line MUST be drawn as if it was just plain text without the override block. Naturally,
the parser SHOULD warn about this.

TODO: Finish this

3.3 Vector Path Format

TODO: Write me

TODO: Write detailed descriptions for all the override tags

3.4 Special Character Escapes

The following tags are not considered override tags, but rather escape codes for special characters.
They MUST NOT be inside an override block, but only in the middle of the text (i.e. not between { and
}).

12

3.4.1 \n

Usage:

Line 1\nLine 2

Description: Inserts a forced line break.

TODO: Should the presence of a forced line break in a line disable automatic line breaking for that
line?

3.4.2 \h

Usage:

Word1\hWord2

Description: Inserts a “hard” space. This is equivalent to Unicode character U+00A0 No-Break Space,
but script authors are recommended to use \h over U+00A0 since U+00A0 can visually easily be
mistaken for a regular space character.

3.4.3 \{, \}

Usage:

Text \textbackslash \{inside curly braces\textbackslash \}

Description: Insert respectively literal { and } into the rendered output.

3.4.4 \\

Usage:

A \textbackslash \textbackslash\ (backslash)

Description: Insert a literal \ into the rendered output.

3.5 Basic Typography Tags

3.5.1 \i

Usage:

\i(1)
\i(0)

13

Description: Enable (parameter 1) or disable (parameter 0) italics font style. If the selected font face
does not have a native italics variation, a simulated italics style MUST be used. If the selected font face
does not have a non-italics variation, the italics vatiation MUST be used even when \i(0) is specified.

3.5.2 \b

Usage:

\b(1)
\b(0)

Description: Enable (parameter 1) or disable (parameter 0) boldface font style. If the selected font
face does not have a native boldface variation, a simulated boldface MUST be used. If the selected font
face does not have a non-boldface variation, the boldface variation MUST be used even when \b(1) is
specified.

AS5 does not support specifying a specific font weight with \b and any other parameter than 0 or 1
(zero or one) is an error. To specify a specific weight version of a font that has more than two weight
variations, the textual name of the weight variation must be specified with the \fn override.

3.5.3 \u

Usage:

\u(1)
\u(0)

Description: Add an underline decoration to the text (parameter 1) or not (parameter 0.) The under-
line is a straight line parallel to the text baseline, placed slightly below the baseline.

3.5.4 \s

Usage:

\s(1)
\s(0)

Description: Add a strikeout decoration to the text (parameter 1) or not (parameter 0.) The strikeout
is a straight line parallel to the text baseline, which strikes through the letters.

3.5.5 \fn

Usage:

\fn(fontname1,fontname2,...,fontnameN)

14

Description: List of preferred fonts in descending order of preference

TODO: What about fonts that have commas or parentheses in their names?

3.5.6 \fe

Usage:

\fe(fontencoding)

Description: Set font encoding in some ISO code

TODO: What does this affect? Apart from possibly selecting national variations of some characters and
possibly fixing things in Windows.

3.5.7 \fs

Usage:

\fs(size)

Description: Set font height in pixels. The font nominal character width is also set by \fs to the default
of the font face.

The parameter can also be interpreted as a typographic point value, when the script resolution is
assumed to be 72 dpi and the size of a typographic point is defined as 1/72 inch.

TODO: Can this be defined more clearly?

A negative font size must be considered an error and MUST be ignored.

3.5.8 \bord

Usage:

\bord(bordersize)

Description: Set the width of the text outline. The outline width MUST NOT be negative.

The text outline can be defined by a morphological dilation operation using the rasterised text and a
circular element with the radius specified by the \bord tag. The outline is the original rasterised text
subtracted from the result of the dilation operation. Ie.:

O = (T ⊕ Ebord)− T

Where O is the image of the outline, T is the image of the text,Ebord is the image of the circular
element with radius bord and ⊕ is the morphological dilation operation.

The border can also be calculated from the vector outlines of the text.

15

TODO: Define border by vector operations?

TODO: Is the outline calculated before or after applying other transformations? Ie. does X/Y axis
rotations affect it?

3.5.9 \shad

Usage:

\shad(shadowsize)

Description: Set shadow depth in script resolution pixels. The shadow depth MUST NOT be negative.

TODO: Or define what a negative shadow depth should mean instead?

The shadow can be defined as a shadow image offset from the text and outline images. The shadow
image MUST be rendered visually “further away” than the text and outline images, ie. “behind” them.

The shadow image is the sum of the text and outline images, rendered entirely in the fourth color.

The shadow image offset from the text and outline images is shadowsize script resolution pixels in
both X and Y direction.

After offsetting the shadow image, the text and outline images are subtracted from it at its new posi-
tion.

3.5.10 \bordstyle

Usage:

\bordstyle(0)
\bordstyle(1)

Description: Set border style; 0 means normal, 1 means solid bounding box.

When border style is 1 the outline image defined by the \bord override MUST NOT be used and instead
an opaque box of the border color must be drawn behind the text.

TODO: Define that box further

3.6 Font Scaling Tags

3.6.1 \fsc, \fscx, \fscy

Usage:

\fsc(scale)
\fscx(xscale)
\fscy(yscale)

16

Description: Set font X/Y scaling in percent.

TODO: Implementation for this should probably go in a section that deals with transformation pipeline.

3.6.2 \fsp

Usage:

\fsp(fontspacing)

Description: Set additional spacing between characters in pixels. When the spacing is non-zero, an
additional number of script pixels equal to the parameter given to \fsp are skipped after rendering
each glyph in the text. When the spacing is non-zero, any ligatures defined by the font face MUST NOT

be used.

TODO: Does non-zero spacing have further implications? How about complex scripts? TODO: What
about negative spacing?

3.6.3 \fsvp

Usage:

\fsp(verticalspacing)

Description: Set font spacing between vertical baselines in pixels. This is an additional number of
script pixels to skip after each rendered line of text.

TODO: Any further implications on text rendering? What about negative values?

3.7 Colouring Tags

3.7.1 \$c

Usage:

\$c(colour)

Description: Set font colouring in hexadecimal RGB.

3.7.2 \$a

Usage:

\$a(alpha)

Description: Set font alpha channel (transparency) in hexadecimal RGB.

17

3.8 Positioning and Rotation Tags

3.8.1 \left, \right, \top, \bottom

Usage:

\left(distance)
\right(distance)
\top(distance)
\bottom(distance)

Description: Margins are the distance between the subtitle text and the edge of the frame. They are
used for improved aesthetics, readability, and to avoid issues with overscan. Unless manually overriden
by another tag (such as \pos), the text should always be contained inside the box defined by the script
area minus the four borders, as long as automatic line breaking mode is set (see the section on [AS5]).

All distance values are specified in script coordinates. The default value for all borders is 12. Margin
tags can only be present once per line, and will affect all of it, not just the following block. Margin
tags cannot be animated.

Implementation: The default positioning of the pivot point of the subtitles box is also determined by
the margins. On left-align, the x of pivot is set to the left margin; on right-align, to w − r, and on
middle-align, to w+r−l

2 , where w is the script width, r is the value of the right margin and l is the value
of the left margin, that is, it is put halfway between the edges defined by the margins. The rules are
analogous to the y coordinate.

See the alignment tags for more information regarding screen alignment.

3.8.2 \an, \ax, \ay, \nx, \ny

Usage:

\an(numpadalignment)
\ax(xalignment)
\ay(yalignment)
\nx(xinneralignment)
\ny(yinneralignment)

Description: Set alignment in various ways

TODO: How about an alignment mode where the position set controls the text baseline position instead
of an edge of the text bounding box?

3.8.3 \rel

Usage:

\rel(0)
\rel(1)

18

Description: Script resolution relative to video area (0) or not (1)

TODO: Is this really a good tag name?

3.8.4 \vertical

Usage:

\vertical(0)
\vertical(1)

Description: Makes text vertical. This in particular affects the use of some glyph variations in CJK
scripts.

TODO: Does vertical imply that the baseline is vertical, ie. {\vertical1\fscx0}this is vertical text
is indeed shown top-down?

3.8.5 \q

Usage:

\q(0)
\q(1)

Description: Set wrap style to manual (0) or automatic (1)

3.8.6 \pos

Usage:

\pos(x,y)

Description: Set line position to x,y in script coordinates.

Can be animated with \t.

3.8.7 \org

Usage:

\org(x,y)

Description: Set origin to x,y in script coordinates.

Can be animated with \t.

19

3.8.8 \bls

Usage:

\bls[#]

Description: This sets the baseline shift, that is, the vertical spacing between each character and the
baseline in which it is supposed to be sitting on. The default value is 0, and the parameter is given in
script coordinates.

This tag can be animated with \t, and can be reverted to style default by ommitting its parameter.

3.8.9 \frx, \fry, \frz

Usage:

\frx(xrotation)
\fry(yrotation)
\frz(zrotation)

Description: Set font rotation around x/y/z axis in degrees.

TODO: Define the axes

3.8.10 \fax, \fay

Usage:

\fax(xshearing)
\fay(yshearing)

Description: Set shearing in x and y axis. 0 means no shearing takes place. Negative values allowed.
The parameters are multipliers in a shearing matrix.

3.9 Animation Tags

3.9.1 \fad

Usage:

\fad(t1,t2)

Description: Fading text

20

3.9.2 \t

Usage:

\t([t1,t2,]tags)

Description: Animate tags between t1 and t2

3.10 Shape Transformation Tags

These are tags characterized by the fact that they distort the shape of the text itself. They were designed
to enhance the flexibility of the format while dealing with unusually-shaped imagery.

3.10.1 \distort

Usage:

\distort(x1,y1,x2,y2,x3,y3)

Description: The distort tag allows you to apply an arbitrary distortion to the block that follows it.
It takes three coordinate pairs that, along with the origin (at the current baseline position) specify a
quadrilateral.

P0 is the origin, P1 = (x1, y1) is the corner at the end of the baseline for the affected text, P2 = (x2, y2)
is the point above that, and P3 = (x3, y3) is the point above P0. That is, they are listed clockwise from
origin (P0).

The following picture illustrates how this tag works:

If the parameter list is ommitted, the distort reverts to the style’s default (none by default). This tag
can be animated with \t.

Implementation: This tag cannot be reduced to an affine transformation, so it cannot be expressed in
Matrix form. In order to transform a given (x,y) coordinate pair to it:

1. Normalize the (x,y) coordinates to a (u,v) system, so that P0 = (0,0) and P2 = (1,1). This can
be done by dividing x by the block’s baseline length (bl) and y by the block height (h). The affine
3D transformation matrix for this operation is:

21

1
bl 0 0 −P0x

bl

0 1
h 0 −P0y

h
0 0 1 0
0 0 0 1

That is, u =

Px − P0x

bl
; v =

Py − P0y

h
.

2. Apply the following formula: P = P0 + (P1 − P0)u + (P3 − P0)v + (P0 + P2 − P1 − P3)uv.
This can be interpreted as simple vector operations, that is, apply that once using the x coordi-
nates and another using the y coordinates. Since the four points are constant, the coeficients can
be precalculated, resulting in a very fast transformation.

3.10.2 \baseline

Usage:

\baseline(path1[,path2])

Description: Similarly to \distort, this tag distorts the text, however, it does so by curving the baseline
into a vector path, so you can write curved text. Alternatively, you can specify a second path to work
as the “ceiling” of the text. The format of both path parameters is the standard vector path format (see
above).

Implementation: Implementation of this tag can be summarized by the conversion of a generic Pn =
(x, y) point into P ′

n = (x′, y′). Let c1(t) and c2(t) be the parametric equations of the two paths specified.
The conversion can then be done in the following manner:

1. Find the parameter t along the baseline path that corresponds to the x position of the point being
converted. This can be done with a function that calculates the length from the beginning of the
path until an arbitrary point Pt = c1(t) along it.

2. Calculate the base point along path1: P0 = c1(t)

3. Calculate u so that u = y−y0
h , where y0 is the y coordinate of the original baseline and h is the

height of the block box.

Now, for the single curve version:

1. Find the tangent vector of path1 at point c1(t) and find the V unit vector that is perpendicular
to the curve at that point, by rotating the tangent vector by -90 degrees along the Z axis. This
should give you a vector pointing “up”, towards where the letters go. This can be summarized
as:
V = (lim

h→0
(c1y(t)− c1y(t + h)), lim

h→0
(c1x(t)− c1x(t + h)))

V =
V

‖V ‖
TODO: Is that correct?

2. Multiply u by the vector to find the offset from P0, that is, P ′
n = P0 + uV .

22

And for the two-curve version:

1. Calculate the ceiling point along path2: P1 = c2(t)

2. Get P with the parametric equation of the line defined by (P0, P1): P = (1− u)P0 + uP1.

3.10.3 \blpos

Usage:

\blpos#

Description: This sets the position of the text relative to the baseline start. This tag can be animated.
TODO: Write proper specs for this.

3.11 Rastering Tags

These tags affect how the subtitles are rasterized, that is, they affect things such as colour, blurring,
etc.

3.11.1 \$vc

Usage:

\$vc(colour1,colour2,colour3,colour4)

Description: Sets the primary colour to blend with each of the four vertices of draw polygon. The
primary use for this is to make smooth gradients easily, which are often required for proper blending
with the background. Note that you can also set alpha using this tag.

3.11.2 \$blend

Usage:

\$blend(mode)

Description: Sets the blending mode for the colour specified. Acceptable values are ”normal”, ”add”
and ”multiply”.

3.11.3 \clip

Usage:

\clip(x1,y1,x2,x2)

Description: Clips so only text inside the rectangle formed by x1,y1,x2,y2 will be drawn

23

3.11.4 \iclip

Usage:

\iclip(x1,y1,x2,x2)

Description: The inverse of \clip, i.e. clips so only text outside the rectangle formed by x1,y1,x2,y2
will be drawn.

3.11.5 \$blur

Usage:

\$blur(???)

Description: Blurs stuff. Animatable.

TODO: Gaussian kernel or a number of applications of box blur?

3.12 Advanced Typography Tags

These are more advanced tags, which might prove to be fairly complex to implement. They include
things such as ruby text support (also known as furigana, when used with Japanese Kanji.)

TODO: Write me

24

4 Renderer Behaviour Specification

TODO: Write this section

25

5 Container Multiplexing Specification

5.1 Matroska

Storage of AS5 files in Matroska files is similar to how similar formats are stored.[11] The Codec ID
used is S TEXT/AS5

First, the entire file is converted to UTF-8 (if it isn’t already UTF-8). Then, all sections other than
[Events] and [Resources] are stored on the CodecPrivate element. For the [Resources] section, each line
is parsed and files are converted to Matroska file attachments. TODO: Specify this more clearly.

Finally, each line in the [Events] section is read and stored each in a block. The start and end fields
are parsed (see the specifications on the section describing [Events]) and set as the TimeStamp and
BlockDuration elements. The line itself is then stored in the following format:

Line: readOrder,style,userData,contents

Where readOrder is the number that the line had on the file. This is necessary so the file can be
demultiplexed back in its original order, since lines will be stored in chronological order while inside
the Matroska file. The remaining fields should just be copied from the original line.

26

References

[1] Rodrigo Braz Monteiro, Niels Martin Hansen, David Lamparter et al., Aegisub. Application, 2005-
2007.
http://www.aegisub.net/

[2] David Lamparter, asa. Application, 2004-2007.
http://asa.diac24.net/

[3] Kotus, Sub Station Alpha. Website, 1997-2003.
http://web.archive.org/web/*/http://www.eswat.demon.co.uk/substation.html

[4] #Anime-Fansubs, Advanced Sub Station Alpha.
http://www.anime-fansubs.org
http://moodub.free.fr/video/ass-specs.doc

[5] Gabest, VSFilter. Application, 2003-2007.
http://sourceforge.net/projects/guliverkli/

[6] David Lamparter, Advanced Sub Station Alpha 3. Website, 2007.
http://asa.diac24.net/ass3.pdf

[7] The Matroska project. Website.
http://www.matroska.org/

[8] The Internet Society, RFC 3629, “UTF-8, a transformation format of ISO 10646”. Website, 2003.
http://tools.ietf.org/html/rfc3629

[9] The Internet Society, RFC 2781, “UTF-16, an encoding of ISO 10646”. Website, 2000.
http://tools.ietf.org/html/rfc2781

[10] Unicode, Inc, The Unicode Standard, Chapter 13. PDF, 1991-2000.
http://www.unicode.org/unicode/uni2book/ch13.pdf

[11] The Matroska project, specification for SSA/ASS subtitle formats. Website.
http://www.matroska.org/technical/specs/subtitles/ssa.html

27

http://www.aegisub.net/
http://asa.diac24.net/
http://web.archive.org/web/*/http://www.eswat.demon.co.uk/substation.html
http://www.anime-fansubs.org
http://moodub.free.fr/video/ass-specs.doc
http://sourceforge.net/projects/guliverkli/
http://asa.diac24.net/ass3.pdf
http://www.matroska.org/
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc2781
http://www.unicode.org/unicode/uni2book/ch13.pdf
http://www.matroska.org/technical/specs/subtitles/ssa.html

	Abstract
	AS5 Files
	File Format
	File Structure
	[AS5]
	[Events]
	[Styles]
	[Resources]

	Style Overrides
	General Information on Override Tags
	Invalid or Malformed Tags and Syntax Errors
	Vector Path Format
	Special Character Escapes
	\n
	\h
	\{, \}
	\\

	Basic Typography Tags
	\i
	\b
	\u
	\s
	\fn
	\fe
	\fs
	\bord
	\shad
	\bordstyle

	Font Scaling Tags
	\fsc, \fscx, \fscy
	\fsp
	\fsvp

	Colouring Tags
	\$c
	\$a

	Positioning and Rotation Tags
	\left, \right, \top, \bottom
	\an, \ax, \ay, \nx, \ny
	\rel
	\vertical
	\q
	\pos
	\org
	\bls
	\frx, \fry, \frz
	\fax, \fay

	Animation Tags
	\fad
	\t

	Shape Transformation Tags
	\distort
	\baseline
	\blpos

	Rastering Tags
	\$vc
	\$blend
	\clip
	\iclip
	\$blur

	Advanced Typography Tags

	Renderer Behaviour Specification
	Container Multiplexing Specification
	Matroska

	References

