Sweden-Number/dlls/dbghelp/elf_module.c

1767 lines
59 KiB
C

/*
* File elf.c - processing of ELF files
*
* Copyright (C) 1996, Eric Youngdale.
* 1999-2007 Eric Pouech
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "config.h"
#include "wine/port.h"
#if defined(__svr4__) || defined(__sun)
#define __ELF__ 1
/* large files are not supported by libelf */
#undef _FILE_OFFSET_BITS
#define _FILE_OFFSET_BITS 32
#endif
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include "dbghelp_private.h"
#include "winternl.h"
#include "image_private.h"
#include "wine/debug.h"
#include "wine/heap.h"
#ifdef __ELF__
#define ELF_INFO_DEBUG_HEADER 0x0001
#define ELF_INFO_MODULE 0x0002
#define ELF_INFO_NAME 0x0004
#ifndef NT_GNU_BUILD_ID
#define NT_GNU_BUILD_ID 3
#endif
#ifndef HAVE_STRUCT_R_DEBUG
struct r_debug
{
int r_version;
struct link_map *r_map;
ElfW(Addr) r_brk;
enum
{
RT_CONSISTENT,
RT_ADD,
RT_DELETE
} r_state;
ElfW(Addr) r_ldbase;
};
#endif /* HAVE_STRUCT_R_DEBUG */
struct r_debug32
{
int r_version;
DWORD r_map;
Elf32_Addr r_brk;
int r_state;
Elf32_Addr r_ldbase;
};
#ifndef HAVE_STRUCT_LINK_MAP
struct link_map
{
ElfW(Addr) l_addr;
char *l_name;
ElfW(Dyn) *l_ld;
struct link_map *l_next, *l_prev;
};
#endif /* HAVE_STRUCT_LINK_MAP */
struct link_map32
{
Elf32_Addr l_addr;
DWORD l_name;
DWORD l_ld;
DWORD l_next, l_prev;
};
WINE_DEFAULT_DEBUG_CHANNEL(dbghelp);
struct elf_info
{
unsigned flags; /* IN one (or several) of the ELF_INFO constants */
DWORD_PTR dbg_hdr_addr; /* OUT address of debug header (if ELF_INFO_DEBUG_HEADER is set) */
struct module* module; /* OUT loaded module (if ELF_INFO_MODULE is set) */
const WCHAR* module_name; /* OUT found module name (if ELF_INFO_NAME is set) */
};
struct symtab_elt
{
struct hash_table_elt ht_elt;
Elf64_Sym sym;
struct symt_compiland* compiland;
unsigned used;
};
struct elf_thunk_area
{
const char* symname;
THUNK_ORDINAL ordinal;
unsigned long rva_start;
unsigned long rva_end;
};
struct elf_module_info
{
unsigned long elf_addr;
unsigned short elf_mark : 1,
elf_loader : 1;
struct image_file_map file_map;
};
/******************************************************************
* elf_map_section
*
* Maps a single section into memory from an ELF file
*/
static const char* elf_map_section(struct image_section_map* ism)
{
struct elf_file_map* fmap = &ism->fmap->u.elf;
SIZE_T ofst, size;
HANDLE mapping;
assert(ism->fmap->modtype == DMT_ELF);
if (ism->sidx < 0 || ism->sidx >= ism->fmap->u.elf.elfhdr.e_shnum ||
fmap->sect[ism->sidx].shdr.sh_type == SHT_NOBITS)
return IMAGE_NO_MAP;
if (fmap->target_copy)
{
return fmap->target_copy + fmap->sect[ism->sidx].shdr.sh_offset;
}
/* align required information on allocation granularity */
ofst = fmap->sect[ism->sidx].shdr.sh_offset & ~(sysinfo.dwAllocationGranularity - 1);
size = fmap->sect[ism->sidx].shdr.sh_offset + fmap->sect[ism->sidx].shdr.sh_size - ofst;
if (!(mapping = CreateFileMappingW(fmap->handle, NULL, PAGE_READONLY, 0, ofst + size, NULL)))
{
ERR("map creation %p failed %u offset %lu %lu size %lu\n", fmap->handle, GetLastError(), ofst, ofst % 4096, size);
return IMAGE_NO_MAP;
}
fmap->sect[ism->sidx].mapped = MapViewOfFile(mapping, FILE_MAP_READ, 0, ofst, size);
CloseHandle(mapping);
if (!fmap->sect[ism->sidx].mapped)
{
ERR("map %p failed %u offset %lu %lu size %lu\n", fmap->handle, GetLastError(), ofst, ofst % 4096, size);
return IMAGE_NO_MAP;
}
return fmap->sect[ism->sidx].mapped + (fmap->sect[ism->sidx].shdr.sh_offset & (sysinfo.dwAllocationGranularity - 1));
}
/******************************************************************
* elf_find_section
*
* Finds a section by name (and type) into memory from an ELF file
* or its alternate if any
*/
static BOOL elf_find_section(struct image_file_map* _fmap, const char* name, struct image_section_map* ism)
{
struct elf_file_map* fmap = &_fmap->u.elf;
unsigned i;
if (fmap->shstrtab == IMAGE_NO_MAP)
{
struct image_section_map hdr_ism = {_fmap, fmap->elfhdr.e_shstrndx};
if ((fmap->shstrtab = elf_map_section(&hdr_ism)) == IMAGE_NO_MAP) return FALSE;
}
for (i = 0; i < fmap->elfhdr.e_shnum; i++)
{
if (strcmp(fmap->shstrtab + fmap->sect[i].shdr.sh_name, name) == 0)
{
ism->fmap = _fmap;
ism->sidx = i;
return TRUE;
}
}
return FALSE;
}
static BOOL elf_find_section_type(struct image_file_map* _fmap, const char* name, unsigned sht, struct image_section_map* ism)
{
struct elf_file_map* fmap;
unsigned i;
while (_fmap)
{
if (_fmap->modtype != DMT_ELF) break;
fmap = &_fmap->u.elf;
if (fmap->shstrtab == IMAGE_NO_MAP)
{
struct image_section_map hdr_ism = {_fmap, fmap->elfhdr.e_shstrndx};
if ((fmap->shstrtab = elf_map_section(&hdr_ism)) == IMAGE_NO_MAP) break;
}
for (i = 0; i < fmap->elfhdr.e_shnum; i++)
{
if (strcmp(fmap->shstrtab + fmap->sect[i].shdr.sh_name, name) == 0 && sht == fmap->sect[i].shdr.sh_type)
{
ism->fmap = _fmap;
ism->sidx = i;
return TRUE;
}
}
_fmap = _fmap->alternate;
}
ism->fmap = NULL;
ism->sidx = -1;
return FALSE;
}
/******************************************************************
* elf_unmap_section
*
* Unmaps a single section from memory
*/
static void elf_unmap_section(struct image_section_map* ism)
{
struct elf_file_map* fmap = &ism->fmap->u.elf;
if (ism->sidx >= 0 && ism->sidx < fmap->elfhdr.e_shnum && !fmap->target_copy &&
fmap->sect[ism->sidx].mapped)
{
if (!UnmapViewOfFile(fmap->sect[ism->sidx].mapped))
WARN("Couldn't unmap the section\n");
fmap->sect[ism->sidx].mapped = NULL;
}
}
static void elf_end_find(struct image_file_map* fmap)
{
struct image_section_map ism;
while (fmap && fmap->modtype == DMT_ELF)
{
ism.fmap = fmap;
ism.sidx = fmap->u.elf.elfhdr.e_shstrndx;
elf_unmap_section(&ism);
fmap->u.elf.shstrtab = IMAGE_NO_MAP;
fmap = fmap->alternate;
}
}
/******************************************************************
* elf_get_map_rva
*
* Get the RVA of an ELF section
*/
static DWORD_PTR elf_get_map_rva(const struct image_section_map* ism)
{
if (ism->sidx < 0 || ism->sidx >= ism->fmap->u.elf.elfhdr.e_shnum)
return 0;
return ism->fmap->u.elf.sect[ism->sidx].shdr.sh_addr - ism->fmap->u.elf.elf_start;
}
/******************************************************************
* elf_get_map_size
*
* Get the size of an ELF section
*/
static unsigned elf_get_map_size(const struct image_section_map* ism)
{
if (ism->sidx < 0 || ism->sidx >= ism->fmap->u.elf.elfhdr.e_shnum)
return 0;
return ism->fmap->u.elf.sect[ism->sidx].shdr.sh_size;
}
/******************************************************************
* elf_unmap_file
*
* Unmaps an ELF file from memory (previously mapped with elf_map_file)
*/
static void elf_unmap_file(struct image_file_map* fmap)
{
if (fmap->u.elf.handle != INVALID_HANDLE_VALUE)
{
struct image_section_map ism;
ism.fmap = fmap;
for (ism.sidx = 0; ism.sidx < fmap->u.elf.elfhdr.e_shnum; ism.sidx++)
{
elf_unmap_section(&ism);
}
HeapFree(GetProcessHeap(), 0, fmap->u.elf.sect);
CloseHandle(fmap->u.elf.handle);
}
HeapFree(GetProcessHeap(), 0, fmap->u.elf.target_copy);
}
static const struct image_file_map_ops elf_file_map_ops =
{
elf_map_section,
elf_unmap_section,
elf_find_section,
elf_get_map_rva,
elf_get_map_size,
elf_unmap_file,
};
static inline void elf_reset_file_map(struct image_file_map* fmap)
{
fmap->ops = &elf_file_map_ops;
fmap->alternate = NULL;
fmap->u.elf.handle = INVALID_HANDLE_VALUE;
fmap->u.elf.shstrtab = IMAGE_NO_MAP;
fmap->u.elf.target_copy = NULL;
}
struct elf_map_file_data
{
enum {from_file, from_process, from_handle} kind;
union
{
struct
{
const WCHAR* filename;
} file;
struct
{
HANDLE handle;
void* load_addr;
} process;
HANDLE handle;
} u;
};
static BOOL elf_map_file_read(struct image_file_map* fmap, struct elf_map_file_data* emfd,
void* buf, size_t len, off_t off)
{
LARGE_INTEGER li;
DWORD bytes_read;
SIZE_T dw;
switch (emfd->kind)
{
case from_file:
case from_handle:
li.QuadPart = off;
if (!SetFilePointerEx(fmap->u.elf.handle, li, NULL, FILE_BEGIN)) return FALSE;
return ReadFile(fmap->u.elf.handle, buf, len, &bytes_read, NULL);
case from_process:
return ReadProcessMemory(emfd->u.process.handle,
(void*)((unsigned long)emfd->u.process.load_addr + (unsigned long)off),
buf, len, &dw) && dw == len;
default:
assert(0);
return FALSE;
}
}
static BOOL elf_map_shdr(struct elf_map_file_data* emfd, struct image_file_map* fmap, unsigned int i)
{
if (fmap->addr_size == 32)
{
Elf32_Shdr shdr32;
if (!elf_map_file_read(fmap, emfd, &shdr32, sizeof(shdr32),
fmap->u.elf.elfhdr.e_shoff + i * sizeof(Elf32_Shdr)))
return FALSE;
fmap->u.elf.sect[i].shdr.sh_name = shdr32.sh_name;
fmap->u.elf.sect[i].shdr.sh_type = shdr32.sh_type;
fmap->u.elf.sect[i].shdr.sh_flags = shdr32.sh_flags;
fmap->u.elf.sect[i].shdr.sh_addr = shdr32.sh_addr;
fmap->u.elf.sect[i].shdr.sh_offset = shdr32.sh_offset;
fmap->u.elf.sect[i].shdr.sh_size = shdr32.sh_size;
fmap->u.elf.sect[i].shdr.sh_link = shdr32.sh_link;
fmap->u.elf.sect[i].shdr.sh_info = shdr32.sh_info;
fmap->u.elf.sect[i].shdr.sh_addralign = shdr32.sh_addralign;
fmap->u.elf.sect[i].shdr.sh_entsize = shdr32.sh_entsize;
}
else
{
if (!elf_map_file_read(fmap, emfd, &fmap->u.elf.sect[i].shdr, sizeof(fmap->u.elf.sect[i].shdr),
fmap->u.elf.elfhdr.e_shoff + i * sizeof(Elf64_Shdr)))
return FALSE;
}
return TRUE;
}
/******************************************************************
* elf_map_file
*
* Maps an ELF file into memory (and checks it's a real ELF file)
*/
static BOOL elf_map_file(struct elf_map_file_data* emfd, struct image_file_map* fmap)
{
static const BYTE elf_signature[4] = { ELFMAG0, ELFMAG1, ELFMAG2, ELFMAG3 };
unsigned int i;
size_t tmp, page_mask = sysinfo.dwPageSize - 1;
WCHAR *dos_path;
unsigned char e_ident[EI_NIDENT];
elf_reset_file_map(fmap);
fmap->modtype = DMT_ELF;
fmap->u.elf.handle = INVALID_HANDLE_VALUE;
fmap->u.elf.target_copy = NULL;
switch (emfd->kind)
{
case from_file:
if (!(dos_path = get_dos_file_name(emfd->u.file.filename))) return FALSE;
fmap->u.elf.handle = CreateFileW(dos_path, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL);
heap_free(dos_path);
if (fmap->u.elf.handle == INVALID_HANDLE_VALUE) return FALSE;
break;
case from_handle:
if (!DuplicateHandle(GetCurrentProcess(), emfd->u.handle, GetCurrentProcess(), &fmap->u.elf.handle, GENERIC_READ, FALSE, 0))
return FALSE;
break;
case from_process:
break;
}
if (!elf_map_file_read(fmap, emfd, e_ident, sizeof(e_ident), 0))
return FALSE;
/* and check for an ELF header */
if (memcmp(e_ident, elf_signature, sizeof(elf_signature)))
return FALSE;
fmap->addr_size = e_ident[EI_CLASS] == ELFCLASS64 ? 64 : 32;
if (fmap->addr_size == 32)
{
Elf32_Ehdr elfhdr32;
if (!elf_map_file_read(fmap, emfd, &elfhdr32, sizeof(elfhdr32), 0))
return FALSE;
memcpy(fmap->u.elf.elfhdr.e_ident, elfhdr32.e_ident, EI_NIDENT);
fmap->u.elf.elfhdr.e_type = elfhdr32.e_type;
fmap->u.elf.elfhdr.e_machine = elfhdr32.e_machine;
fmap->u.elf.elfhdr.e_version = elfhdr32.e_version;
fmap->u.elf.elfhdr.e_entry = elfhdr32.e_entry;
fmap->u.elf.elfhdr.e_phoff = elfhdr32.e_phoff;
fmap->u.elf.elfhdr.e_shoff = elfhdr32.e_shoff;
fmap->u.elf.elfhdr.e_flags = elfhdr32.e_flags;
fmap->u.elf.elfhdr.e_ehsize = elfhdr32.e_ehsize;
fmap->u.elf.elfhdr.e_phentsize = elfhdr32.e_phentsize;
fmap->u.elf.elfhdr.e_phnum = elfhdr32.e_phnum;
fmap->u.elf.elfhdr.e_shentsize = elfhdr32.e_shentsize;
fmap->u.elf.elfhdr.e_shnum = elfhdr32.e_shnum;
fmap->u.elf.elfhdr.e_shstrndx = elfhdr32.e_shstrndx;
}
else
{
if (!elf_map_file_read(fmap, emfd, &fmap->u.elf.elfhdr, sizeof(fmap->u.elf.elfhdr), 0))
return FALSE;
}
fmap->u.elf.sect = HeapAlloc(GetProcessHeap(), 0,
fmap->u.elf.elfhdr.e_shnum * sizeof(fmap->u.elf.sect[0]));
if (!fmap->u.elf.sect) return FALSE;
for (i = 0; i < fmap->u.elf.elfhdr.e_shnum; i++)
{
if (!elf_map_shdr(emfd, fmap, i))
{
HeapFree(GetProcessHeap(), 0, fmap->u.elf.sect);
fmap->u.elf.sect = NULL;
return FALSE;
}
fmap->u.elf.sect[i].mapped = NULL;
}
/* grab size of module once loaded in memory */
fmap->u.elf.elf_size = 0;
fmap->u.elf.elf_start = ~0L;
for (i = 0; i < fmap->u.elf.elfhdr.e_phnum; i++)
{
if (fmap->addr_size == 32)
{
Elf32_Phdr phdr;
if (elf_map_file_read(fmap, emfd, &phdr, sizeof(phdr),
fmap->u.elf.elfhdr.e_phoff + i * sizeof(phdr)) &&
phdr.p_type == PT_LOAD)
{
tmp = (phdr.p_vaddr + phdr.p_memsz + page_mask) & ~page_mask;
if (fmap->u.elf.elf_size < tmp) fmap->u.elf.elf_size = tmp;
if (phdr.p_vaddr < fmap->u.elf.elf_start) fmap->u.elf.elf_start = phdr.p_vaddr;
}
}
else
{
Elf64_Phdr phdr;
if (elf_map_file_read(fmap, emfd, &phdr, sizeof(phdr),
fmap->u.elf.elfhdr.e_phoff + i * sizeof(phdr)) &&
phdr.p_type == PT_LOAD)
{
tmp = (phdr.p_vaddr + phdr.p_memsz + page_mask) & ~page_mask;
if (fmap->u.elf.elf_size < tmp) fmap->u.elf.elf_size = tmp;
if (phdr.p_vaddr < fmap->u.elf.elf_start) fmap->u.elf.elf_start = phdr.p_vaddr;
}
}
}
/* if non relocatable ELF, then remove fixed address from computation
* otherwise, all addresses are zero based and start has no effect
*/
fmap->u.elf.elf_size -= fmap->u.elf.elf_start;
switch (emfd->kind)
{
case from_handle:
case from_file: break;
case from_process:
if (!(fmap->u.elf.target_copy = HeapAlloc(GetProcessHeap(), 0, fmap->u.elf.elf_size)))
{
HeapFree(GetProcessHeap(), 0, fmap->u.elf.sect);
return FALSE;
}
if (!ReadProcessMemory(emfd->u.process.handle, emfd->u.process.load_addr, fmap->u.elf.target_copy,
fmap->u.elf.elf_size, NULL))
{
HeapFree(GetProcessHeap(), 0, fmap->u.elf.target_copy);
HeapFree(GetProcessHeap(), 0, fmap->u.elf.sect);
return FALSE;
}
break;
}
return TRUE;
}
BOOL elf_map_handle(HANDLE handle, struct image_file_map* fmap)
{
struct elf_map_file_data emfd;
emfd.kind = from_handle;
emfd.u.handle = handle;
return elf_map_file(&emfd, fmap);
}
static void elf_module_remove(struct process* pcs, struct module_format* modfmt)
{
image_unmap_file(&modfmt->u.elf_info->file_map);
HeapFree(GetProcessHeap(), 0, modfmt);
}
/******************************************************************
* elf_is_in_thunk_area
*
* Check whether an address lies within one of the thunk area we
* know of.
*/
int elf_is_in_thunk_area(unsigned long addr,
const struct elf_thunk_area* thunks)
{
unsigned i;
if (thunks) for (i = 0; thunks[i].symname; i++)
{
if (addr >= thunks[i].rva_start && addr < thunks[i].rva_end)
return i;
}
return -1;
}
/******************************************************************
* elf_hash_symtab
*
* creating an internal hash table to ease use ELF symtab information lookup
*/
static void elf_hash_symtab(struct module* module, struct pool* pool,
struct hash_table* ht_symtab, struct image_file_map* fmap,
struct elf_thunk_area* thunks)
{
int i, j, nsym;
const char* strp;
const char* symname;
struct symt_compiland* compiland = NULL;
const char* ptr;
struct symtab_elt* ste;
struct image_section_map ism, ism_str;
const char *symtab;
if (!elf_find_section_type(fmap, ".symtab", SHT_SYMTAB, &ism) &&
!elf_find_section_type(fmap, ".dynsym", SHT_DYNSYM, &ism)) return;
if ((symtab = image_map_section(&ism)) == IMAGE_NO_MAP) return;
ism_str.fmap = ism.fmap;
ism_str.sidx = fmap->u.elf.sect[ism.sidx].shdr.sh_link;
if ((strp = image_map_section(&ism_str)) == IMAGE_NO_MAP)
{
image_unmap_section(&ism);
return;
}
nsym = image_get_map_size(&ism) /
(fmap->addr_size == 32 ? sizeof(Elf32_Sym) : sizeof(Elf64_Sym));
for (j = 0; thunks[j].symname; j++)
thunks[j].rva_start = thunks[j].rva_end = 0;
for (i = 0; i < nsym; i++)
{
Elf64_Sym sym;
if (fmap->addr_size == 32)
{
Elf32_Sym *sym32 = &((Elf32_Sym *)symtab)[i];
sym.st_name = sym32->st_name;
sym.st_value = sym32->st_value;
sym.st_size = sym32->st_size;
sym.st_info = sym32->st_info;
sym.st_other = sym32->st_other;
sym.st_shndx = sym32->st_shndx;
}
else
sym = ((Elf64_Sym *)symtab)[i];
/* Ignore certain types of entries which really aren't of that much
* interest.
*/
if ((ELF32_ST_TYPE(sym.st_info) != STT_NOTYPE &&
ELF32_ST_TYPE(sym.st_info) != STT_FILE &&
ELF32_ST_TYPE(sym.st_info) != STT_OBJECT &&
ELF32_ST_TYPE(sym.st_info) != STT_FUNC) ||
sym.st_shndx == SHN_UNDEF)
{
continue;
}
symname = strp + sym.st_name;
/* handle some specific symtab (that we'll throw away when done) */
switch (ELF32_ST_TYPE(sym.st_info))
{
case STT_FILE:
if (symname)
compiland = symt_new_compiland(module, sym.st_value,
source_new(module, NULL, symname));
else
compiland = NULL;
continue;
case STT_NOTYPE:
/* we are only interested in wine markers inserted by winebuild */
for (j = 0; thunks[j].symname; j++)
{
if (!strcmp(symname, thunks[j].symname))
{
thunks[j].rva_start = sym.st_value;
thunks[j].rva_end = sym.st_value + sym.st_size;
break;
}
}
continue;
}
/* FIXME: we don't need to handle them (GCC internals)
* Moreover, they screw up our symbol lookup :-/
*/
if (symname[0] == '.' && symname[1] == 'L' && isdigit(symname[2]))
continue;
ste = pool_alloc(pool, sizeof(*ste));
ste->ht_elt.name = symname;
/* GCC emits, in some cases, a .<digit>+ suffix.
* This is used for static variable inside functions, so
* that we can have several such variables with same name in
* the same compilation unit
* We simply ignore that suffix when present (we also get rid
* of it in stabs parsing)
*/
ptr = symname + strlen(symname) - 1;
if (isdigit(*ptr))
{
while (isdigit(*ptr) && ptr >= symname) ptr--;
if (ptr > symname && *ptr == '.')
{
char* n = pool_alloc(pool, ptr - symname + 1);
memcpy(n, symname, ptr - symname + 1);
n[ptr - symname] = '\0';
ste->ht_elt.name = n;
}
}
ste->sym = sym;
ste->compiland = compiland;
ste->used = 0;
hash_table_add(ht_symtab, &ste->ht_elt);
}
/* as we added in the ht_symtab pointers to the symbols themselves,
* we cannot unmap yet the sections, it will be done when we're over
* with this ELF file
*/
}
/******************************************************************
* elf_lookup_symtab
*
* lookup a symbol by name in our internal hash table for the symtab
*/
static const Elf64_Sym *elf_lookup_symtab(const struct module* module,
const struct hash_table* ht_symtab,
const char* name, const struct symt* compiland)
{
struct symtab_elt* weak_result = NULL; /* without compiland name */
struct symtab_elt* result = NULL;
struct hash_table_iter hti;
struct symtab_elt* ste;
const char* compiland_name;
const char* compiland_basename;
const char* base;
/* we need weak match up (at least) when symbols of same name,
* defined several times in different compilation units,
* are merged in a single one (hence a different filename for c.u.)
*/
if (compiland)
{
compiland_name = source_get(module,
((const struct symt_compiland*)compiland)->source);
compiland_basename = file_nameA(compiland_name);
}
else compiland_name = compiland_basename = NULL;
hash_table_iter_init(ht_symtab, &hti, name);
while ((ste = hash_table_iter_up(&hti)))
{
if (ste->used || strcmp(ste->ht_elt.name, name)) continue;
weak_result = ste;
if ((ste->compiland && !compiland_name) || (!ste->compiland && compiland_name))
continue;
if (ste->compiland && compiland_name)
{
const char* filename = source_get(module, ste->compiland->source);
if (strcmp(filename, compiland_name))
{
base = file_nameA(filename);
if (strcmp(base, compiland_basename)) continue;
}
}
if (result)
{
FIXME("Already found symbol %s (%s) in symtab %s @%08x and %s @%08x\n",
name, compiland_name,
source_get(module, result->compiland->source), (unsigned int)result->sym.st_value,
source_get(module, ste->compiland->source), (unsigned int)ste->sym.st_value);
}
else
{
result = ste;
ste->used = 1;
}
}
if (!result && !(result = weak_result))
{
FIXME("Couldn't find symbol %s!%s in symtab\n",
debugstr_w(module->module.ModuleName), name);
return NULL;
}
return &result->sym;
}
/******************************************************************
* elf_finish_stabs_info
*
* - get any relevant information (address & size) from the bits we got from the
* stabs debugging information
*/
static void elf_finish_stabs_info(struct module* module, const struct hash_table* symtab)
{
struct hash_table_iter hti;
void* ptr;
struct symt_ht* sym;
const Elf64_Sym* symp;
struct elf_module_info* elf_info = module->format_info[DFI_ELF]->u.elf_info;
hash_table_iter_init(&module->ht_symbols, &hti, NULL);
while ((ptr = hash_table_iter_up(&hti)))
{
sym = CONTAINING_RECORD(ptr, struct symt_ht, hash_elt);
switch (sym->symt.tag)
{
case SymTagFunction:
if (((struct symt_function*)sym)->address != elf_info->elf_addr &&
((struct symt_function*)sym)->size)
{
break;
}
symp = elf_lookup_symtab(module, symtab, sym->hash_elt.name,
((struct symt_function*)sym)->container);
if (symp)
{
if (((struct symt_function*)sym)->address != elf_info->elf_addr &&
((struct symt_function*)sym)->address != elf_info->elf_addr + symp->st_value)
FIXME("Changing address for %p/%s!%s from %08lx to %s\n",
sym, debugstr_w(module->module.ModuleName), sym->hash_elt.name,
((struct symt_function*)sym)->address,
wine_dbgstr_longlong(elf_info->elf_addr + symp->st_value));
if (((struct symt_function*)sym)->size && ((struct symt_function*)sym)->size != symp->st_size)
FIXME("Changing size for %p/%s!%s from %08lx to %08x\n",
sym, debugstr_w(module->module.ModuleName), sym->hash_elt.name,
((struct symt_function*)sym)->size, (unsigned int)symp->st_size);
((struct symt_function*)sym)->address = elf_info->elf_addr + symp->st_value;
((struct symt_function*)sym)->size = symp->st_size;
} else
FIXME("Couldn't find %s!%s\n",
debugstr_w(module->module.ModuleName), sym->hash_elt.name);
break;
case SymTagData:
switch (((struct symt_data*)sym)->kind)
{
case DataIsGlobal:
case DataIsFileStatic:
if (((struct symt_data*)sym)->u.var.kind != loc_absolute ||
((struct symt_data*)sym)->u.var.offset != elf_info->elf_addr)
break;
symp = elf_lookup_symtab(module, symtab, sym->hash_elt.name,
((struct symt_data*)sym)->container);
if (symp)
{
if (((struct symt_data*)sym)->u.var.offset != elf_info->elf_addr &&
((struct symt_data*)sym)->u.var.offset != elf_info->elf_addr + symp->st_value)
FIXME("Changing address for %p/%s!%s from %08lx to %s\n",
sym, debugstr_w(module->module.ModuleName), sym->hash_elt.name,
((struct symt_function*)sym)->address,
wine_dbgstr_longlong(elf_info->elf_addr + symp->st_value));
((struct symt_data*)sym)->u.var.offset = elf_info->elf_addr + symp->st_value;
((struct symt_data*)sym)->kind = (ELF32_ST_BIND(symp->st_info) == STB_LOCAL) ?
DataIsFileStatic : DataIsGlobal;
} else
FIXME("Couldn't find %s!%s\n",
debugstr_w(module->module.ModuleName), sym->hash_elt.name);
break;
default:;
}
break;
default:
FIXME("Unsupported tag %u\n", sym->symt.tag);
break;
}
}
/* since we may have changed some addresses & sizes, mark the module to be resorted */
module->sortlist_valid = FALSE;
}
/******************************************************************
* elf_load_wine_thunks
*
* creating the thunk objects for a wine native DLL
*/
static int elf_new_wine_thunks(struct module* module, const struct hash_table* ht_symtab,
const struct elf_thunk_area* thunks)
{
int j;
struct hash_table_iter hti;
struct symtab_elt* ste;
DWORD_PTR addr;
struct symt_ht* symt;
hash_table_iter_init(ht_symtab, &hti, NULL);
while ((ste = hash_table_iter_up(&hti)))
{
if (ste->used) continue;
addr = module->reloc_delta + ste->sym.st_value;
j = elf_is_in_thunk_area(ste->sym.st_value, thunks);
if (j >= 0) /* thunk found */
{
symt_new_thunk(module, ste->compiland, ste->ht_elt.name, thunks[j].ordinal,
addr, ste->sym.st_size);
}
else
{
ULONG64 ref_addr;
struct location loc;
symt = symt_find_nearest(module, addr);
if (symt && !symt_get_address(&symt->symt, &ref_addr))
ref_addr = addr;
if (!symt || addr != ref_addr)
{
/* creating public symbols for all the ELF symbols which haven't been
* used yet (ie we have no debug information on them)
* That's the case, for example, of the .spec.c files
*/
switch (ELF32_ST_TYPE(ste->sym.st_info))
{
case STT_FUNC:
symt_new_function(module, ste->compiland, ste->ht_elt.name,
addr, ste->sym.st_size, NULL);
break;
case STT_OBJECT:
loc.kind = loc_absolute;
loc.reg = 0;
loc.offset = addr;
symt_new_global_variable(module, ste->compiland, ste->ht_elt.name,
ELF32_ST_BIND(ste->sym.st_info) == STB_LOCAL,
loc, ste->sym.st_size, NULL);
break;
default:
FIXME("Shouldn't happen\n");
break;
}
/* FIXME: this is a hack !!!
* we are adding new symbols, but as we're parsing a symbol table
* (hopefully without duplicate symbols) we delay rebuilding the sorted
* module table until we're done with the symbol table
* Otherwise, as we intertwine symbols' add and lookup, performance
* is rather bad
*/
module->sortlist_valid = TRUE;
}
}
}
/* see comment above */
module->sortlist_valid = FALSE;
return TRUE;
}
/******************************************************************
* elf_new_public_symbols
*
* Creates a set of public symbols from an ELF symtab
*/
static int elf_new_public_symbols(struct module* module, const struct hash_table* symtab)
{
struct hash_table_iter hti;
struct symtab_elt* ste;
if (dbghelp_options & SYMOPT_NO_PUBLICS) return TRUE;
/* FIXME: we're missing the ELF entry point here */
hash_table_iter_init(symtab, &hti, NULL);
while ((ste = hash_table_iter_up(&hti)))
{
symt_new_public(module, ste->compiland, ste->ht_elt.name,
FALSE,
module->reloc_delta + ste->sym.st_value,
ste->sym.st_size);
}
return TRUE;
}
/******************************************************************
* elf_load_debug_info_from_map
*
* Loads the symbolic information from ELF module which mapping is described
* in fmap
* the module has been loaded at 'load_offset' address, so symbols' address
* relocation is performed.
* CRC is checked if fmap->with_crc is TRUE
* returns
* 0 if the file doesn't contain symbolic info (or this info cannot be
* read or parsed)
* 1 on success
*/
static BOOL elf_load_debug_info_from_map(struct module* module,
struct image_file_map* fmap,
struct pool* pool,
struct hash_table* ht_symtab)
{
BOOL ret = FALSE, lret;
struct elf_thunk_area thunks[] =
{
{"__wine_spec_import_thunks", THUNK_ORDINAL_NOTYPE, 0, 0}, /* inter DLL calls */
{"__wine_spec_delayed_import_loaders", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */
{"__wine_spec_delayed_import_thunks", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */
{"__wine_delay_load", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */
{"__wine_spec_thunk_text_16", -16, 0, 0}, /* 16 => 32 thunks */
{"__wine_spec_thunk_text_32", -32, 0, 0}, /* 32 => 16 thunks */
{NULL, 0, 0, 0}
};
module->module.SymType = SymExport;
/* create a hash table for the symtab */
elf_hash_symtab(module, pool, ht_symtab, fmap, thunks);
if (!(dbghelp_options & SYMOPT_PUBLICS_ONLY))
{
struct image_section_map stab_sect, stabstr_sect;
/* check if we need an alternate file (from debuglink or build-id) */
ret = image_check_alternate(fmap, module);
if (image_find_section(fmap, ".stab", &stab_sect) &&
image_find_section(fmap, ".stabstr", &stabstr_sect))
{
const char* stab;
const char* stabstr;
stab = image_map_section(&stab_sect);
stabstr = image_map_section(&stabstr_sect);
if (stab != IMAGE_NO_MAP && stabstr != IMAGE_NO_MAP)
{
/* OK, now just parse all of the stabs. */
lret = stabs_parse(module, module->format_info[DFI_ELF]->u.elf_info->elf_addr,
stab, image_get_map_size(&stab_sect),
stabstr, image_get_map_size(&stabstr_sect),
NULL, NULL);
if (lret)
/* and fill in the missing information for stabs */
elf_finish_stabs_info(module, ht_symtab);
else
WARN("Couldn't correctly read stabs\n");
ret = ret || lret;
}
image_unmap_section(&stab_sect);
image_unmap_section(&stabstr_sect);
}
lret = dwarf2_parse(module, module->reloc_delta, thunks, fmap);
ret = ret || lret;
}
if (strstrW(module->module.ModuleName, S_ElfW) ||
!strcmpW(module->module.ModuleName, S_WineLoaderW))
{
/* add the thunks for native libraries */
if (!(dbghelp_options & SYMOPT_PUBLICS_ONLY))
elf_new_wine_thunks(module, ht_symtab, thunks);
}
/* add all the public symbols from symtab */
if (elf_new_public_symbols(module, ht_symtab) && !ret) ret = TRUE;
return ret;
}
/******************************************************************
* elf_load_debug_info
*
* Loads ELF debugging information from the module image file.
*/
BOOL elf_load_debug_info(struct module* module)
{
BOOL ret = TRUE;
struct pool pool;
struct hash_table ht_symtab;
struct module_format* modfmt;
if (module->type != DMT_ELF || !(modfmt = module->format_info[DFI_ELF]) || !modfmt->u.elf_info)
{
ERR("Bad elf module '%s'\n", debugstr_w(module->module.LoadedImageName));
return FALSE;
}
pool_init(&pool, 65536);
hash_table_init(&pool, &ht_symtab, 256);
ret = elf_load_debug_info_from_map(module, &modfmt->u.elf_info->file_map, &pool, &ht_symtab);
pool_destroy(&pool);
return ret;
}
/******************************************************************
* elf_fetch_file_info
*
* Gathers some more information for an ELF module from a given file
*/
BOOL elf_fetch_file_info(const WCHAR* name, DWORD_PTR* base,
DWORD* size, DWORD* checksum)
{
struct image_file_map fmap;
struct elf_map_file_data emfd;
emfd.kind = from_file;
emfd.u.file.filename = name;
if (!elf_map_file(&emfd, &fmap)) return FALSE;
if (base) *base = fmap.u.elf.elf_start;
*size = fmap.u.elf.elf_size;
*checksum = calc_crc32(fmap.u.elf.handle);
image_unmap_file(&fmap);
return TRUE;
}
static BOOL elf_load_file_from_fmap(struct process* pcs, const WCHAR* filename,
struct image_file_map* fmap, unsigned long load_offset,
unsigned long dyn_addr, struct elf_info* elf_info)
{
BOOL ret = FALSE;
if (elf_info->flags & ELF_INFO_DEBUG_HEADER)
{
struct image_section_map ism;
if (elf_find_section_type(fmap, ".dynamic", SHT_DYNAMIC, &ism))
{
char* ptr = (char*)(ULONG_PTR)fmap->u.elf.sect[ism.sidx].shdr.sh_addr;
unsigned long len;
if (load_offset) ptr += load_offset - fmap->u.elf.elf_start;
if (fmap->addr_size == 32)
{
Elf32_Dyn dyn;
do
{
if (!ReadProcessMemory(pcs->handle, ptr, &dyn, sizeof(dyn), &len) ||
len != sizeof(dyn))
return ret;
if (dyn.d_tag == DT_DEBUG)
{
elf_info->dbg_hdr_addr = dyn.d_un.d_ptr;
if (load_offset == 0 && dyn_addr == 0) /* likely the case */
/* Assume this module (the Wine loader) has been
* loaded at its preferred address */
dyn_addr = ism.fmap->u.elf.sect[ism.sidx].shdr.sh_addr;
break;
}
ptr += sizeof(dyn);
} while (dyn.d_tag != DT_NULL);
if (dyn.d_tag == DT_NULL) return ret;
}
else
{
Elf64_Dyn dyn;
do
{
if (!ReadProcessMemory(pcs->handle, ptr, &dyn, sizeof(dyn), &len) ||
len != sizeof(dyn))
return ret;
if (dyn.d_tag == DT_DEBUG)
{
elf_info->dbg_hdr_addr = dyn.d_un.d_ptr;
if (load_offset == 0 && dyn_addr == 0) /* likely the case */
/* Assume this module (the Wine loader) has been
* loaded at its preferred address */
dyn_addr = ism.fmap->u.elf.sect[ism.sidx].shdr.sh_addr;
break;
}
ptr += sizeof(dyn);
} while (dyn.d_tag != DT_NULL);
if (dyn.d_tag == DT_NULL) return ret;
}
}
elf_end_find(fmap);
}
if (elf_info->flags & ELF_INFO_MODULE)
{
struct elf_module_info *elf_module_info;
struct module_format* modfmt;
struct image_section_map ism;
unsigned long modbase = load_offset;
if (elf_find_section_type(fmap, ".dynamic", SHT_DYNAMIC, &ism))
{
unsigned long rva_dyn = elf_get_map_rva(&ism);
TRACE("For module %s, got ELF (start=%lx dyn=%lx), link_map (start=%lx dyn=%lx)\n",
debugstr_w(filename), (unsigned long)fmap->u.elf.elf_start, rva_dyn,
load_offset, dyn_addr);
if (dyn_addr && load_offset + rva_dyn != dyn_addr)
{
WARN("\thave to relocate: %lx\n", dyn_addr - rva_dyn);
modbase = dyn_addr - rva_dyn;
}
} else WARN("For module %s, no .dynamic section\n", debugstr_w(filename));
elf_end_find(fmap);
modfmt = HeapAlloc(GetProcessHeap(), 0,
sizeof(struct module_format) + sizeof(struct elf_module_info));
if (!modfmt) return FALSE;
elf_info->module = module_new(pcs, filename, DMT_ELF, FALSE, modbase,
fmap->u.elf.elf_size, 0, calc_crc32(fmap->u.elf.handle));
if (!elf_info->module)
{
HeapFree(GetProcessHeap(), 0, modfmt);
return FALSE;
}
elf_info->module->reloc_delta = elf_info->module->module.BaseOfImage - fmap->u.elf.elf_start;
elf_module_info = (void*)(modfmt + 1);
elf_info->module->format_info[DFI_ELF] = modfmt;
modfmt->module = elf_info->module;
modfmt->remove = elf_module_remove;
modfmt->loc_compute = NULL;
modfmt->u.elf_info = elf_module_info;
elf_module_info->elf_addr = load_offset;
elf_module_info->file_map = *fmap;
elf_reset_file_map(fmap);
if (dbghelp_options & SYMOPT_DEFERRED_LOADS)
{
elf_info->module->module.SymType = SymDeferred;
ret = TRUE;
}
else ret = elf_load_debug_info(elf_info->module);
elf_module_info->elf_mark = 1;
elf_module_info->elf_loader = 0;
} else ret = TRUE;
if (elf_info->flags & ELF_INFO_NAME)
{
WCHAR* ptr;
ptr = HeapAlloc(GetProcessHeap(), 0, (lstrlenW(filename) + 1) * sizeof(WCHAR));
if (ptr)
{
strcpyW(ptr, filename);
elf_info->module_name = ptr;
}
else ret = FALSE;
}
return ret;
}
/******************************************************************
* elf_load_file
*
* Loads the information for ELF module stored in 'filename'
* the module has been loaded at 'load_offset' address
* returns
* -1 if the file cannot be found/opened
* 0 if the file doesn't contain symbolic info (or this info cannot be
* read or parsed)
* 1 on success
*/
static BOOL elf_load_file(struct process* pcs, const WCHAR* filename,
unsigned long load_offset, unsigned long dyn_addr,
struct elf_info* elf_info)
{
BOOL ret = FALSE;
struct image_file_map fmap;
struct elf_map_file_data emfd;
TRACE("Processing elf file '%s' at %08lx\n", debugstr_w(filename), load_offset);
emfd.kind = from_file;
emfd.u.file.filename = filename;
if (!elf_map_file(&emfd, &fmap)) return ret;
/* Next, we need to find a few of the internal ELF headers within
* this thing. We need the main executable header, and the section
* table.
*/
if (!fmap.u.elf.elf_start && !load_offset)
ERR("Relocatable ELF %s, but no load address. Loading at 0x0000000\n",
debugstr_w(filename));
ret = elf_load_file_from_fmap(pcs, filename, &fmap, load_offset, dyn_addr, elf_info);
image_unmap_file(&fmap);
return ret;
}
struct elf_load_file_params
{
struct process *process;
ULONG_PTR load_offset;
ULONG_PTR dyn_addr;
struct elf_info *elf_info;
};
static BOOL elf_load_file_cb(void *param, HANDLE handle, const WCHAR *filename)
{
struct elf_load_file_params *load_file = param;
return elf_load_file(load_file->process, filename, load_file->load_offset, load_file->dyn_addr, load_file->elf_info);
}
#ifdef AT_SYSINFO_EHDR
/******************************************************************
* elf_search_auxv
*
* locate some a value from the debuggee auxiliary vector
*/
static BOOL elf_search_auxv(const struct process* pcs, unsigned type, unsigned long* val)
{
char buffer[sizeof(SYMBOL_INFO) + MAX_SYM_NAME];
SYMBOL_INFO*si = (SYMBOL_INFO*)buffer;
void* addr;
void* str;
void* str_max;
si->SizeOfStruct = sizeof(*si);
si->MaxNameLen = MAX_SYM_NAME;
if (!SymFromName(pcs->handle, "libwine.so.1!__wine_main_environ", si) ||
!(addr = (void*)(DWORD_PTR)si->Address) ||
!ReadProcessMemory(pcs->handle, addr, &addr, sizeof(addr), NULL) ||
!addr)
{
FIXME("can't find symbol in module\n");
return FALSE;
}
/* walk through envp[] */
/* envp[] strings are located after the auxiliary vector, so protect the walk */
str_max = (void*)(DWORD_PTR)~0L;
while (ReadProcessMemory(pcs->handle, addr, &str, sizeof(str), NULL) &&
(addr = (void*)((DWORD_PTR)addr + sizeof(str))) != NULL && str != NULL)
str_max = min(str_max, str);
/* Walk through the end of envp[] array.
* Actually, there can be several NULLs at the end of envp[]. This happens when an env variable is
* deleted, the last entry is replaced by an extra NULL.
*/
while (addr < str_max && ReadProcessMemory(pcs->handle, addr, &str, sizeof(str), NULL) && str == NULL)
addr = (void*)((DWORD_PTR)addr + sizeof(str));
if (pcs->is_64bit)
{
Elf64_auxv_t auxv;
while (ReadProcessMemory(pcs->handle, addr, &auxv, sizeof(auxv), NULL) && auxv.a_type != AT_NULL)
{
if (auxv.a_type == type)
{
*val = auxv.a_un.a_val;
return TRUE;
}
addr = (void*)((DWORD_PTR)addr + sizeof(auxv));
}
}
else
{
Elf32_auxv_t auxv;
while (ReadProcessMemory(pcs->handle, addr, &auxv, sizeof(auxv), NULL) && auxv.a_type != AT_NULL)
{
if (auxv.a_type == type)
{
*val = auxv.a_un.a_val;
return TRUE;
}
addr = (void*)((DWORD_PTR)addr + sizeof(auxv));
}
}
return FALSE;
}
#endif
/******************************************************************
* elf_search_and_load_file
*
* lookup a file in standard ELF locations, and if found, load it
*/
static BOOL elf_search_and_load_file(struct process* pcs, const WCHAR* filename,
unsigned long load_offset, unsigned long dyn_addr,
struct elf_info* elf_info)
{
BOOL ret = FALSE;
struct module* module;
static const WCHAR S_libstdcPPW[] = {'l','i','b','s','t','d','c','+','+','\0'};
if (filename == NULL || *filename == '\0') return FALSE;
if ((module = module_is_already_loaded(pcs, filename)))
{
elf_info->module = module;
elf_info->module->format_info[DFI_ELF]->u.elf_info->elf_mark = 1;
return module->module.SymType;
}
if (strstrW(filename, S_libstdcPPW)) return FALSE; /* We know we can't do it */
ret = elf_load_file(pcs, filename, load_offset, dyn_addr, elf_info);
/* if relative pathname, try some absolute base dirs */
if (!ret && filename == file_name(filename))
{
struct elf_load_file_params load_elf;
load_elf.process = pcs;
load_elf.load_offset = load_offset;
load_elf.dyn_addr = dyn_addr;
load_elf.elf_info = elf_info;
ret = search_unix_path(filename, getenv("PATH"), elf_load_file_cb, &load_elf)
|| search_unix_path(filename, getenv("LD_LIBRARY_PATH"), elf_load_file_cb, &load_elf)
|| search_dll_path(filename, elf_load_file_cb, &load_elf);
}
return ret;
}
typedef BOOL (*enum_elf_modules_cb)(const WCHAR*, unsigned long load_addr,
unsigned long dyn_addr, BOOL is_system, void* user);
/******************************************************************
* elf_enum_modules_internal
*
* Enumerate ELF modules from a running process
*/
static BOOL elf_enum_modules_internal(const struct process* pcs,
const WCHAR* main_name,
enum_elf_modules_cb cb, void* user)
{
WCHAR bufstrW[MAX_PATH];
char bufstr[256];
void *lm_addr;
if (pcs->is_64bit)
{
struct r_debug dbg_hdr;
struct link_map lm;
if (!pcs->dbg_hdr_addr ||
!ReadProcessMemory(pcs->handle, (void*)pcs->dbg_hdr_addr,
&dbg_hdr, sizeof(dbg_hdr), NULL))
return FALSE;
/* Now walk the linked list. In all known ELF implementations,
* the dynamic loader maintains this linked list for us. In some
* cases the first entry doesn't appear with a name, in other cases it
* does.
*/
for (lm_addr = (void*)dbg_hdr.r_map; lm_addr; lm_addr = (void*)lm.l_next)
{
if (!ReadProcessMemory(pcs->handle, lm_addr, &lm, sizeof(lm), NULL))
return FALSE;
if (lm.l_prev != NULL && /* skip first entry, normally debuggee itself */
lm.l_name != NULL &&
ReadProcessMemory(pcs->handle, lm.l_name, bufstr, sizeof(bufstr), NULL))
{
bufstr[sizeof(bufstr) - 1] = '\0';
MultiByteToWideChar(CP_UNIXCP, 0, bufstr, -1, bufstrW, ARRAY_SIZE(bufstrW));
if (main_name && !bufstrW[0]) strcpyW(bufstrW, main_name);
if (!cb(bufstrW, (unsigned long)lm.l_addr, (unsigned long)lm.l_ld, FALSE, user))
break;
}
}
}
else
{
struct r_debug32 dbg_hdr;
struct link_map32 lm;
if (!pcs->dbg_hdr_addr ||
!ReadProcessMemory(pcs->handle, (void*)pcs->dbg_hdr_addr,
&dbg_hdr, sizeof(dbg_hdr), NULL))
return FALSE;
/* Now walk the linked list. In all known ELF implementations,
* the dynamic loader maintains this linked list for us. In some
* cases the first entry doesn't appear with a name, in other cases it
* does.
*/
for (lm_addr = (void *)(DWORD_PTR)dbg_hdr.r_map; lm_addr;
lm_addr = (void *)(DWORD_PTR)lm.l_next)
{
if (!ReadProcessMemory(pcs->handle, lm_addr, &lm, sizeof(lm), NULL))
return FALSE;
if (lm.l_prev && /* skip first entry, normally debuggee itself */
lm.l_name &&
ReadProcessMemory(pcs->handle, (void *)(DWORD_PTR)lm.l_name,
bufstr, sizeof(bufstr), NULL))
{
bufstr[sizeof(bufstr) - 1] = '\0';
MultiByteToWideChar(CP_UNIXCP, 0, bufstr, -1, bufstrW, ARRAY_SIZE(bufstrW));
if (main_name && !bufstrW[0]) strcpyW(bufstrW, main_name);
if (!cb(bufstrW, (unsigned long)lm.l_addr, (unsigned long)lm.l_ld, FALSE, user))
break;
}
}
}
#ifdef AT_SYSINFO_EHDR
if (!lm_addr)
{
unsigned long ehdr_addr;
if (elf_search_auxv(pcs, AT_SYSINFO_EHDR, &ehdr_addr))
{
static const WCHAR vdsoW[] = {'[','v','d','s','o',']','.','s','o',0};
cb(vdsoW, ehdr_addr, 0, TRUE, user);
}
}
#endif
return TRUE;
}
struct elf_enum_user
{
enum_modules_cb cb;
void* user;
};
static BOOL elf_enum_modules_translate(const WCHAR* name, unsigned long load_addr,
unsigned long dyn_addr, BOOL is_system, void* user)
{
struct elf_enum_user* eeu = user;
return eeu->cb(name, load_addr, eeu->user);
}
/******************************************************************
* elf_enum_modules
*
* Enumerates the ELF loaded modules from a running target (hProc)
* This function doesn't require that someone has called SymInitialize
* on this very process.
*/
BOOL elf_enum_modules(struct process* process, enum_modules_cb cb, void* user)
{
struct elf_info elf_info;
BOOL ret;
struct elf_enum_user eeu;
elf_info.flags = ELF_INFO_DEBUG_HEADER | ELF_INFO_NAME;
elf_info.module_name = NULL;
eeu.cb = cb;
eeu.user = user;
ret = elf_enum_modules_internal(process, elf_info.module_name, elf_enum_modules_translate, &eeu);
HeapFree(GetProcessHeap(), 0, (char*)elf_info.module_name);
return ret;
}
struct elf_load
{
struct process* pcs;
struct elf_info elf_info;
const WCHAR* name;
BOOL ret;
};
/******************************************************************
* elf_load_cb
*
* Callback for elf_load_module, used to walk the list of loaded
* modules.
*/
static BOOL elf_load_cb(const WCHAR* name, unsigned long load_addr,
unsigned long dyn_addr, BOOL is_system, void* user)
{
struct elf_load* el = user;
BOOL ret = TRUE;
const WCHAR* p;
if (is_system) /* virtual ELF module, created by system. handle it from memory */
{
struct module* module;
struct elf_map_file_data emfd;
struct image_file_map fmap;
if ((module = module_is_already_loaded(el->pcs, name)))
{
el->elf_info.module = module;
el->elf_info.module->format_info[DFI_ELF]->u.elf_info->elf_mark = 1;
return module->module.SymType;
}
emfd.kind = from_process;
emfd.u.process.handle = el->pcs->handle;
emfd.u.process.load_addr = (void*)load_addr;
if (elf_map_file(&emfd, &fmap))
el->ret = elf_load_file_from_fmap(el->pcs, name, &fmap, load_addr, 0, &el->elf_info);
return TRUE;
}
if (el->name)
{
/* memcmp is needed for matches when bufstr contains also version information
* el->name: libc.so, name: libc.so.6.0
*/
p = file_name(name);
}
if (!el->name || !memcmp(p, el->name, lstrlenW(el->name) * sizeof(WCHAR)))
{
el->ret = elf_search_and_load_file(el->pcs, name, load_addr, dyn_addr, &el->elf_info);
if (el->name) ret = FALSE;
}
return ret;
}
/******************************************************************
* elf_load_module
*
* loads an ELF module and stores it in process' module list
* Also, find module real name and load address from
* the real loaded modules list in pcs address space
*/
struct module* elf_load_module(struct process* pcs, const WCHAR* name, unsigned long addr)
{
struct elf_load el;
TRACE("(%p %s %08lx)\n", pcs, debugstr_w(name), addr);
el.elf_info.flags = ELF_INFO_MODULE;
el.ret = FALSE;
if (pcs->dbg_hdr_addr) /* we're debugging a life target */
{
el.pcs = pcs;
/* do only the lookup from the filename, not the path (as we lookup module
* name in the process' loaded module list)
*/
el.name = file_name(name);
el.ret = FALSE;
if (!elf_enum_modules_internal(pcs, NULL, elf_load_cb, &el))
return NULL;
}
else if (addr)
{
el.name = name;
el.ret = elf_search_and_load_file(pcs, el.name, addr, 0, &el.elf_info);
}
if (!el.ret) return NULL;
assert(el.elf_info.module);
return el.elf_info.module;
}
/******************************************************************
* elf_synchronize_module_list
*
* this function rescans the debuggee module's list and synchronizes it with
* the one from 'pcs', i.e.:
* - if a module is in debuggee and not in pcs, it's loaded into pcs
* - if a module is in pcs and not in debuggee, it's unloaded from pcs
*/
BOOL elf_synchronize_module_list(struct process* pcs)
{
struct module* module;
struct elf_load el;
for (module = pcs->lmodules; module; module = module->next)
{
if (module->type == DMT_ELF && !module->is_virtual)
module->format_info[DFI_ELF]->u.elf_info->elf_mark = 0;
}
el.pcs = pcs;
el.elf_info.flags = ELF_INFO_MODULE;
el.ret = FALSE;
el.name = NULL; /* fetch all modules */
if (!elf_enum_modules_internal(pcs, NULL, elf_load_cb, &el))
return FALSE;
module = pcs->lmodules;
while (module)
{
if (module->type == DMT_ELF && !module->is_virtual)
{
struct elf_module_info* elf_info = module->format_info[DFI_ELF]->u.elf_info;
if (!elf_info->elf_mark && !elf_info->elf_loader)
{
module_remove(pcs, module);
/* restart all over */
module = pcs->lmodules;
continue;
}
}
module = module->next;
}
return TRUE;
}
/******************************************************************
* elf_search_loader
*
* Lookup in a running ELF process the loader, and sets its ELF link
* address (for accessing the list of loaded .so libs) in pcs.
* If flags is ELF_INFO_MODULE, the module for the loader is also
* added as a module into pcs.
*/
static BOOL elf_search_loader(struct process* pcs, struct elf_info* elf_info)
{
WCHAR *loader = get_wine_loader_name(pcs);
PROCESS_BASIC_INFORMATION pbi;
ULONG_PTR base = 0;
BOOL ret;
if (NtQueryInformationProcess( pcs->handle, ProcessBasicInformation,
&pbi, sizeof(pbi), NULL ))
return FALSE;
if (!pcs->is_64bit)
{
PEB32 *peb32 = (PEB32 *)pbi.PebBaseAddress;
DWORD base32;
if (!ReadProcessMemory( pcs->handle, &peb32->Reserved[0], &base32,
sizeof(base32), NULL ))
return FALSE;
base = base32;
}
else
{
if (!ReadProcessMemory( pcs->handle, &pbi.PebBaseAddress->Reserved[0],
&base, sizeof(base), NULL ))
return FALSE;
}
ret = elf_search_and_load_file(pcs, loader, base, 0, elf_info);
heap_free(loader);
return ret;
}
/******************************************************************
* elf_read_wine_loader_dbg_info
*
* Try to find a decent wine executable which could have loaded the debuggee
*/
BOOL elf_read_wine_loader_dbg_info(struct process* pcs)
{
struct elf_info elf_info;
elf_info.flags = ELF_INFO_DEBUG_HEADER | ELF_INFO_MODULE;
if (!elf_search_loader(pcs, &elf_info)) return FALSE;
elf_info.module->format_info[DFI_ELF]->u.elf_info->elf_loader = 1;
module_set_module(elf_info.module, S_WineLoaderW);
return (pcs->dbg_hdr_addr = elf_info.dbg_hdr_addr) != 0;
}
#else /* !__ELF__ */
BOOL elf_map_handle(HANDLE handle, struct image_file_map* fmap)
{
return FALSE;
}
BOOL elf_synchronize_module_list(struct process* pcs)
{
return FALSE;
}
BOOL elf_fetch_file_info(const WCHAR* name, DWORD_PTR* base,
DWORD* size, DWORD* checksum)
{
return FALSE;
}
BOOL elf_read_wine_loader_dbg_info(struct process* pcs)
{
return FALSE;
}
BOOL elf_enum_modules(struct process *process, enum_modules_cb cb, void* user)
{
return FALSE;
}
struct module* elf_load_module(struct process* pcs, const WCHAR* name, unsigned long addr)
{
return NULL;
}
BOOL elf_load_debug_info(struct module* module)
{
return FALSE;
}
int elf_is_in_thunk_area(unsigned long addr,
const struct elf_thunk_area* thunks)
{
return -1;
}
#endif /* __ELF__ */