236 lines
5.4 KiB
C
236 lines
5.4 KiB
C
/*
|
|
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
|
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
|
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
|
*/
|
|
|
|
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/add.c,v 1.6 1996/07/02 09:57:33 jutta Exp $ */
|
|
|
|
/*
|
|
* See private.h for the more commonly used macro versions.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
|
|
#include "private.h"
|
|
#include "gsm.h"
|
|
#include "proto.h"
|
|
|
|
#define saturate(x) \
|
|
((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))
|
|
|
|
word gsm_add P2((a,b), word a, word b)
|
|
{
|
|
longword sum = (longword)a + (longword)b;
|
|
return saturate(sum);
|
|
}
|
|
|
|
word gsm_sub P2((a,b), word a, word b)
|
|
{
|
|
longword diff = (longword)a - (longword)b;
|
|
return saturate(diff);
|
|
}
|
|
|
|
word gsm_mult P2((a,b), word a, word b)
|
|
{
|
|
if (a == MIN_WORD && b == MIN_WORD) return MAX_WORD;
|
|
else return SASR( (longword)a * (longword)b, 15 );
|
|
}
|
|
|
|
word gsm_mult_r P2((a,b), word a, word b)
|
|
{
|
|
if (b == MIN_WORD && a == MIN_WORD) return MAX_WORD;
|
|
else {
|
|
longword prod = (longword)a * (longword)b + 16384;
|
|
prod >>= 15;
|
|
return prod & 0xFFFF;
|
|
}
|
|
}
|
|
|
|
word gsm_abs P1((a), word a)
|
|
{
|
|
return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
|
|
}
|
|
|
|
longword gsm_L_mult P2((a,b),word a, word b)
|
|
{
|
|
assert( a != MIN_WORD || b != MIN_WORD );
|
|
return ((longword)a * (longword)b) << 1;
|
|
}
|
|
|
|
longword gsm_L_add P2((a,b), longword a, longword b)
|
|
{
|
|
if (a < 0) {
|
|
if (b >= 0) return a + b;
|
|
else {
|
|
ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1);
|
|
return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2;
|
|
}
|
|
}
|
|
else if (b <= 0) return a + b;
|
|
else {
|
|
ulongword A = (ulongword)a + (ulongword)b;
|
|
return A > MAX_LONGWORD ? MAX_LONGWORD : A;
|
|
}
|
|
}
|
|
|
|
longword gsm_L_sub P2((a,b), longword a, longword b)
|
|
{
|
|
if (a >= 0) {
|
|
if (b >= 0) return a - b;
|
|
else {
|
|
/* a>=0, b<0 */
|
|
|
|
ulongword A = (ulongword)a + -(b + 1);
|
|
return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
|
|
}
|
|
}
|
|
else if (b <= 0) return a - b;
|
|
else {
|
|
/* a<0, b>0 */
|
|
|
|
ulongword A = (ulongword)-(a + 1) + b;
|
|
return A >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)A - 1;
|
|
}
|
|
}
|
|
|
|
static unsigned char const bitoff[ 256 ] = {
|
|
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
word gsm_norm P1((a), longword a )
|
|
/*
|
|
* the number of left shifts needed to normalize the 32 bit
|
|
* variable L_var1 for positive values on the interval
|
|
*
|
|
* with minimum of
|
|
* minimum of 1073741824 (01000000000000000000000000000000) and
|
|
* maximum of 2147483647 (01111111111111111111111111111111)
|
|
*
|
|
*
|
|
* and for negative values on the interval with
|
|
* minimum of -2147483648 (-10000000000000000000000000000000) and
|
|
* maximum of -1073741824 ( -1000000000000000000000000000000).
|
|
*
|
|
* in order to normalize the result, the following
|
|
* operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
|
|
*
|
|
* (That's 'ffs', only from the left, not the right..)
|
|
*/
|
|
{
|
|
assert(a != 0);
|
|
|
|
if (a < 0) {
|
|
if (a <= -1073741824) return 0;
|
|
a = ~a;
|
|
}
|
|
|
|
return a & 0xffff0000
|
|
? ( a & 0xff000000
|
|
? -1 + bitoff[ 0xFF & (a >> 24) ]
|
|
: 7 + bitoff[ 0xFF & (a >> 16) ] )
|
|
: ( a & 0xff00
|
|
? 15 + bitoff[ 0xFF & (a >> 8) ]
|
|
: 23 + bitoff[ 0xFF & a ] );
|
|
}
|
|
|
|
longword gsm_L_asl P2((a,n), longword a, int n)
|
|
{
|
|
if (n >= 32) return 0;
|
|
if (n <= -32) return -(a < 0);
|
|
if (n < 0) return gsm_L_asr(a, -n);
|
|
return a << n;
|
|
}
|
|
|
|
word gsm_asl P2((a,n), word a, int n)
|
|
{
|
|
if (n >= 16) return 0;
|
|
if (n <= -16) return -(a < 0);
|
|
if (n < 0) return gsm_asr(a, -n);
|
|
return a << n;
|
|
}
|
|
|
|
longword gsm_L_asr P2((a,n), longword a, int n)
|
|
{
|
|
if (n >= 32) return -(a < 0);
|
|
if (n <= -32) return 0;
|
|
if (n < 0) return a << -n;
|
|
|
|
# ifdef SASR
|
|
return a >> n;
|
|
# else
|
|
if (a >= 0) return a >> n;
|
|
else return -(longword)( -(ulongword)a >> n );
|
|
# endif
|
|
}
|
|
|
|
word gsm_asr P2((a,n), word a, int n)
|
|
{
|
|
if (n >= 16) return -(a < 0);
|
|
if (n <= -16) return 0;
|
|
if (n < 0) return a << -n;
|
|
|
|
# ifdef SASR
|
|
return a >> n;
|
|
# else
|
|
if (a >= 0) return a >> n;
|
|
else return -(word)( -(uword)a >> n );
|
|
# endif
|
|
}
|
|
|
|
/*
|
|
* (From p. 46, end of section 4.2.5)
|
|
*
|
|
* NOTE: The following lines gives [sic] one correct implementation
|
|
* of the div(num, denum) arithmetic operation. Compute div
|
|
* which is the integer division of num by denum: with denum
|
|
* >= num > 0
|
|
*/
|
|
|
|
word gsm_div P2((num,denum), word num, word denum)
|
|
{
|
|
longword L_num = num;
|
|
longword L_denum = denum;
|
|
word div = 0;
|
|
int k = 15;
|
|
|
|
/* The parameter num sometimes becomes zero.
|
|
* Although this is explicitly guarded against in 4.2.5,
|
|
* we assume that the result should then be zero as well.
|
|
*/
|
|
|
|
/* assert(num != 0); */
|
|
|
|
assert(num >= 0 && denum >= num);
|
|
if (num == 0)
|
|
return 0;
|
|
|
|
while (k--) {
|
|
div <<= 1;
|
|
L_num <<= 1;
|
|
|
|
if (L_num >= L_denum) {
|
|
L_num -= L_denum;
|
|
div++;
|
|
}
|
|
}
|
|
|
|
return div;
|
|
}
|