Sweden-Number/server/thread.c

1916 lines
60 KiB
C

/*
* Server-side thread management
*
* Copyright (C) 1998 Alexandre Julliard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "config.h"
#include "wine/port.h"
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <time.h>
#ifdef HAVE_POLL_H
#include <poll.h>
#endif
#ifdef HAVE_SCHED_H
#include <sched.h>
#endif
#include "ntstatus.h"
#define WIN32_NO_STATUS
#include "windef.h"
#include "winternl.h"
#include "file.h"
#include "handle.h"
#include "process.h"
#include "thread.h"
#include "request.h"
#include "user.h"
#include "security.h"
#ifdef __i386__
static const unsigned int supported_cpus = CPU_FLAG(CPU_x86);
#elif defined(__x86_64__)
static const unsigned int supported_cpus = CPU_FLAG(CPU_x86_64) | CPU_FLAG(CPU_x86);
#elif defined(__powerpc__)
static const unsigned int supported_cpus = CPU_FLAG(CPU_POWERPC);
#elif defined(__arm__)
static const unsigned int supported_cpus = CPU_FLAG(CPU_ARM);
#elif defined(__aarch64__)
static const unsigned int supported_cpus = CPU_FLAG(CPU_ARM64) | CPU_FLAG(CPU_ARM);
#else
#error Unsupported CPU
#endif
/* thread queues */
struct thread_wait
{
struct thread_wait *next; /* next wait structure for this thread */
struct thread *thread; /* owner thread */
int count; /* count of objects */
int flags;
int abandoned;
enum select_op select;
client_ptr_t key; /* wait key for keyed events */
client_ptr_t cookie; /* magic cookie to return to client */
abstime_t when;
struct timeout_user *user;
struct wait_queue_entry queues[1];
};
/* asynchronous procedure calls */
struct thread_apc
{
struct object obj; /* object header */
struct list entry; /* queue linked list */
struct thread *caller; /* thread that queued this apc */
struct object *owner; /* object that queued this apc */
int executed; /* has it been executed by the client? */
apc_call_t call; /* call arguments */
apc_result_t result; /* call results once executed */
};
static void dump_thread_apc( struct object *obj, int verbose );
static int thread_apc_signaled( struct object *obj, struct wait_queue_entry *entry );
static void thread_apc_destroy( struct object *obj );
static void clear_apc_queue( struct list *queue );
static const struct object_ops thread_apc_ops =
{
sizeof(struct thread_apc), /* size */
dump_thread_apc, /* dump */
no_get_type, /* get_type */
add_queue, /* add_queue */
remove_queue, /* remove_queue */
thread_apc_signaled, /* signaled */
no_satisfied, /* satisfied */
no_signal, /* signal */
no_get_fd, /* get_fd */
no_map_access, /* map_access */
default_get_sd, /* get_sd */
default_set_sd, /* set_sd */
no_get_full_name, /* get_full_name */
no_lookup_name, /* lookup_name */
no_link_name, /* link_name */
NULL, /* unlink_name */
no_open_file, /* open_file */
no_kernel_obj_list, /* get_kernel_obj_list */
no_close_handle, /* close_handle */
thread_apc_destroy /* destroy */
};
/* thread CPU context */
struct context
{
struct object obj; /* object header */
unsigned int status; /* status of the context */
context_t regs; /* context data */
};
static void dump_context( struct object *obj, int verbose );
static int context_signaled( struct object *obj, struct wait_queue_entry *entry );
static const struct object_ops context_ops =
{
sizeof(struct context), /* size */
dump_context, /* dump */
no_get_type, /* get_type */
add_queue, /* add_queue */
remove_queue, /* remove_queue */
context_signaled, /* signaled */
no_satisfied, /* satisfied */
no_signal, /* signal */
no_get_fd, /* get_fd */
no_map_access, /* map_access */
default_get_sd, /* get_sd */
default_set_sd, /* set_sd */
no_get_full_name, /* get_full_name */
no_lookup_name, /* lookup_name */
no_link_name, /* link_name */
NULL, /* unlink_name */
no_open_file, /* open_file */
no_kernel_obj_list, /* get_kernel_obj_list */
no_close_handle, /* close_handle */
no_destroy /* destroy */
};
/* thread operations */
static void dump_thread( struct object *obj, int verbose );
static struct object_type *thread_get_type( struct object *obj );
static int thread_signaled( struct object *obj, struct wait_queue_entry *entry );
static unsigned int thread_map_access( struct object *obj, unsigned int access );
static void thread_poll_event( struct fd *fd, int event );
static struct list *thread_get_kernel_obj_list( struct object *obj );
static void destroy_thread( struct object *obj );
static const struct object_ops thread_ops =
{
sizeof(struct thread), /* size */
dump_thread, /* dump */
thread_get_type, /* get_type */
add_queue, /* add_queue */
remove_queue, /* remove_queue */
thread_signaled, /* signaled */
no_satisfied, /* satisfied */
no_signal, /* signal */
no_get_fd, /* get_fd */
thread_map_access, /* map_access */
default_get_sd, /* get_sd */
default_set_sd, /* set_sd */
no_get_full_name, /* get_full_name */
no_lookup_name, /* lookup_name */
no_link_name, /* link_name */
NULL, /* unlink_name */
no_open_file, /* open_file */
thread_get_kernel_obj_list, /* get_kernel_obj_list */
no_close_handle, /* close_handle */
destroy_thread /* destroy */
};
static const struct fd_ops thread_fd_ops =
{
NULL, /* get_poll_events */
thread_poll_event, /* poll_event */
NULL, /* flush */
NULL, /* get_fd_type */
NULL, /* ioctl */
NULL, /* queue_async */
NULL /* reselect_async */
};
static struct list thread_list = LIST_INIT(thread_list);
/* initialize the structure for a newly allocated thread */
static inline void init_thread_structure( struct thread *thread )
{
int i;
thread->unix_pid = -1; /* not known yet */
thread->unix_tid = -1; /* not known yet */
thread->context = NULL;
thread->teb = 0;
thread->entry_point = 0;
thread->system_regs = 0;
thread->queue = NULL;
thread->wait = NULL;
thread->error = 0;
thread->req_data = NULL;
thread->req_toread = 0;
thread->reply_data = NULL;
thread->reply_towrite = 0;
thread->request_fd = NULL;
thread->reply_fd = NULL;
thread->wait_fd = NULL;
thread->state = RUNNING;
thread->exit_code = 0;
thread->priority = 0;
thread->suspend = 0;
thread->dbg_hidden = 0;
thread->desktop_users = 0;
thread->token = NULL;
thread->desc = NULL;
thread->desc_len = 0;
thread->creation_time = current_time;
thread->exit_time = 0;
list_init( &thread->mutex_list );
list_init( &thread->system_apc );
list_init( &thread->user_apc );
list_init( &thread->kernel_object );
for (i = 0; i < MAX_INFLIGHT_FDS; i++)
thread->inflight[i].server = thread->inflight[i].client = -1;
}
/* check if address looks valid for a client-side data structure (TEB etc.) */
static inline int is_valid_address( client_ptr_t addr )
{
return addr && !(addr % sizeof(int));
}
/* dump a context on stdout for debugging purposes */
static void dump_context( struct object *obj, int verbose )
{
struct context *context = (struct context *)obj;
assert( obj->ops == &context_ops );
fprintf( stderr, "context flags=%x\n", context->regs.flags );
}
static int context_signaled( struct object *obj, struct wait_queue_entry *entry )
{
struct context *context = (struct context *)obj;
return context->status != STATUS_PENDING;
}
static struct context *create_thread_context( struct thread *thread )
{
struct context *context;
if (!(context = alloc_object( &context_ops ))) return NULL;
context->status = STATUS_PENDING;
memset( &context->regs, 0, sizeof(context->regs) );
context->regs.cpu = thread->process->cpu;
return context;
}
/* create a new thread */
struct thread *create_thread( int fd, struct process *process, const struct security_descriptor *sd )
{
struct thread *thread;
int request_pipe[2];
if (fd == -1)
{
if (pipe( request_pipe ) == -1)
{
file_set_error();
return NULL;
}
if (send_client_fd( process, request_pipe[1], SERVER_PROTOCOL_VERSION ) == -1)
{
close( request_pipe[0] );
close( request_pipe[1] );
return NULL;
}
close( request_pipe[1] );
fd = request_pipe[0];
}
if (process->is_terminating)
{
close( fd );
set_error( STATUS_PROCESS_IS_TERMINATING );
return NULL;
}
if (!(thread = alloc_object( &thread_ops )))
{
close( fd );
return NULL;
}
init_thread_structure( thread );
thread->process = (struct process *)grab_object( process );
thread->desktop = process->desktop;
thread->affinity = process->affinity;
if (!current) current = thread;
list_add_tail( &thread_list, &thread->entry );
if (sd && !set_sd_defaults_from_token( &thread->obj, sd,
OWNER_SECURITY_INFORMATION | GROUP_SECURITY_INFORMATION |
DACL_SECURITY_INFORMATION | SACL_SECURITY_INFORMATION,
process->token ))
{
close( fd );
release_object( thread );
return NULL;
}
if (!(thread->id = alloc_ptid( thread )))
{
close( fd );
release_object( thread );
return NULL;
}
if (!(thread->request_fd = create_anonymous_fd( &thread_fd_ops, fd, &thread->obj, 0 )))
{
release_object( thread );
return NULL;
}
set_fd_events( thread->request_fd, POLLIN ); /* start listening to events */
add_process_thread( thread->process, thread );
return thread;
}
/* handle a client event */
static void thread_poll_event( struct fd *fd, int event )
{
struct thread *thread = get_fd_user( fd );
assert( thread->obj.ops == &thread_ops );
grab_object( thread );
if (event & (POLLERR | POLLHUP)) kill_thread( thread, 0 );
else if (event & POLLIN) read_request( thread );
else if (event & POLLOUT) write_reply( thread );
release_object( thread );
}
static struct list *thread_get_kernel_obj_list( struct object *obj )
{
struct thread *thread = (struct thread *)obj;
return &thread->kernel_object;
}
/* cleanup everything that is no longer needed by a dead thread */
/* used by destroy_thread and kill_thread */
static void cleanup_thread( struct thread *thread )
{
int i;
if (thread->context)
{
thread->context->status = STATUS_ACCESS_DENIED;
wake_up( &thread->context->obj, 0 );
release_object( thread->context );
thread->context = NULL;
}
clear_apc_queue( &thread->system_apc );
clear_apc_queue( &thread->user_apc );
free( thread->req_data );
free( thread->reply_data );
if (thread->request_fd) release_object( thread->request_fd );
if (thread->reply_fd) release_object( thread->reply_fd );
if (thread->wait_fd) release_object( thread->wait_fd );
cleanup_clipboard_thread(thread);
destroy_thread_windows( thread );
free_msg_queue( thread );
close_thread_desktop( thread );
for (i = 0; i < MAX_INFLIGHT_FDS; i++)
{
if (thread->inflight[i].client != -1)
{
close( thread->inflight[i].server );
thread->inflight[i].client = thread->inflight[i].server = -1;
}
}
free( thread->desc );
thread->req_data = NULL;
thread->reply_data = NULL;
thread->request_fd = NULL;
thread->reply_fd = NULL;
thread->wait_fd = NULL;
thread->desktop = 0;
thread->desc = NULL;
thread->desc_len = 0;
}
/* destroy a thread when its refcount is 0 */
static void destroy_thread( struct object *obj )
{
struct thread *thread = (struct thread *)obj;
assert( obj->ops == &thread_ops );
list_remove( &thread->entry );
cleanup_thread( thread );
release_object( thread->process );
if (thread->id) free_ptid( thread->id );
if (thread->token) release_object( thread->token );
}
/* dump a thread on stdout for debugging purposes */
static void dump_thread( struct object *obj, int verbose )
{
struct thread *thread = (struct thread *)obj;
assert( obj->ops == &thread_ops );
fprintf( stderr, "Thread id=%04x unix pid=%d unix tid=%d state=%d\n",
thread->id, thread->unix_pid, thread->unix_tid, thread->state );
}
static struct object_type *thread_get_type( struct object *obj )
{
static const WCHAR name[] = {'T','h','r','e','a','d'};
static const struct unicode_str str = { name, sizeof(name) };
return get_object_type( &str );
}
static int thread_signaled( struct object *obj, struct wait_queue_entry *entry )
{
struct thread *mythread = (struct thread *)obj;
return (mythread->state == TERMINATED);
}
static unsigned int thread_map_access( struct object *obj, unsigned int access )
{
if (access & GENERIC_READ) access |= STANDARD_RIGHTS_READ | THREAD_QUERY_INFORMATION | THREAD_GET_CONTEXT;
if (access & GENERIC_WRITE) access |= STANDARD_RIGHTS_WRITE | THREAD_SET_INFORMATION | THREAD_SET_CONTEXT |
THREAD_TERMINATE | THREAD_SUSPEND_RESUME;
if (access & GENERIC_EXECUTE) access |= STANDARD_RIGHTS_EXECUTE | SYNCHRONIZE | THREAD_QUERY_LIMITED_INFORMATION;
if (access & GENERIC_ALL) access |= THREAD_ALL_ACCESS;
if (access & THREAD_QUERY_INFORMATION) access |= THREAD_QUERY_LIMITED_INFORMATION;
if (access & THREAD_SET_INFORMATION) access |= THREAD_SET_LIMITED_INFORMATION;
return access & ~(GENERIC_READ | GENERIC_WRITE | GENERIC_EXECUTE | GENERIC_ALL);
}
static void dump_thread_apc( struct object *obj, int verbose )
{
struct thread_apc *apc = (struct thread_apc *)obj;
assert( obj->ops == &thread_apc_ops );
fprintf( stderr, "APC owner=%p type=%u\n", apc->owner, apc->call.type );
}
static int thread_apc_signaled( struct object *obj, struct wait_queue_entry *entry )
{
struct thread_apc *apc = (struct thread_apc *)obj;
return apc->executed;
}
static void thread_apc_destroy( struct object *obj )
{
struct thread_apc *apc = (struct thread_apc *)obj;
if (apc->caller) release_object( apc->caller );
if (apc->owner) release_object( apc->owner );
}
/* queue an async procedure call */
static struct thread_apc *create_apc( struct object *owner, const apc_call_t *call_data )
{
struct thread_apc *apc;
if ((apc = alloc_object( &thread_apc_ops )))
{
apc->call = *call_data;
apc->caller = NULL;
apc->owner = owner;
apc->executed = 0;
apc->result.type = APC_NONE;
if (owner) grab_object( owner );
}
return apc;
}
/* get a thread pointer from a thread id (and increment the refcount) */
struct thread *get_thread_from_id( thread_id_t id )
{
struct object *obj = get_ptid_entry( id );
if (obj && obj->ops == &thread_ops) return (struct thread *)grab_object( obj );
set_error( STATUS_INVALID_CID );
return NULL;
}
/* get a thread from a handle (and increment the refcount) */
struct thread *get_thread_from_handle( obj_handle_t handle, unsigned int access )
{
return (struct thread *)get_handle_obj( current->process, handle,
access, &thread_ops );
}
/* find a thread from a Unix tid */
struct thread *get_thread_from_tid( int tid )
{
struct thread *thread;
LIST_FOR_EACH_ENTRY( thread, &thread_list, struct thread, entry )
{
if (thread->unix_tid == tid) return thread;
}
return NULL;
}
/* find a thread from a Unix pid */
struct thread *get_thread_from_pid( int pid )
{
struct thread *thread;
LIST_FOR_EACH_ENTRY( thread, &thread_list, struct thread, entry )
{
if (thread->unix_pid == pid) return thread;
}
return NULL;
}
int set_thread_affinity( struct thread *thread, affinity_t affinity )
{
int ret = 0;
#ifdef HAVE_SCHED_SETAFFINITY
if (thread->unix_tid != -1)
{
cpu_set_t set;
int i;
affinity_t mask;
CPU_ZERO( &set );
for (i = 0, mask = 1; mask; i++, mask <<= 1)
if (affinity & mask) CPU_SET( i, &set );
ret = sched_setaffinity( thread->unix_tid, sizeof(set), &set );
}
#endif
if (!ret) thread->affinity = affinity;
return ret;
}
affinity_t get_thread_affinity( struct thread *thread )
{
affinity_t mask = 0;
#ifdef HAVE_SCHED_SETAFFINITY
if (thread->unix_tid != -1)
{
cpu_set_t set;
unsigned int i;
if (!sched_getaffinity( thread->unix_tid, sizeof(set), &set ))
for (i = 0; i < 8 * sizeof(mask); i++)
if (CPU_ISSET( i, &set )) mask |= (affinity_t)1 << i;
}
#endif
if (!mask) mask = ~(affinity_t)0;
return mask;
}
#define THREAD_PRIORITY_REALTIME_HIGHEST 6
#define THREAD_PRIORITY_REALTIME_LOWEST -7
/* set all information about a thread */
static void set_thread_info( struct thread *thread,
const struct set_thread_info_request *req )
{
if (req->mask & SET_THREAD_INFO_PRIORITY)
{
int max = THREAD_PRIORITY_HIGHEST;
int min = THREAD_PRIORITY_LOWEST;
if (thread->process->priority == PROCESS_PRIOCLASS_REALTIME)
{
max = THREAD_PRIORITY_REALTIME_HIGHEST;
min = THREAD_PRIORITY_REALTIME_LOWEST;
}
if ((req->priority >= min && req->priority <= max) ||
req->priority == THREAD_PRIORITY_IDLE ||
req->priority == THREAD_PRIORITY_TIME_CRITICAL)
thread->priority = req->priority;
else
set_error( STATUS_INVALID_PARAMETER );
}
if (req->mask & SET_THREAD_INFO_AFFINITY)
{
if ((req->affinity & thread->process->affinity) != req->affinity)
set_error( STATUS_INVALID_PARAMETER );
else if (thread->state == TERMINATED)
set_error( STATUS_THREAD_IS_TERMINATING );
else if (set_thread_affinity( thread, req->affinity ))
file_set_error();
}
if (req->mask & SET_THREAD_INFO_TOKEN)
security_set_thread_token( thread, req->token );
if (req->mask & SET_THREAD_INFO_ENTRYPOINT)
thread->entry_point = req->entry_point;
if (req->mask & SET_THREAD_INFO_DBG_HIDDEN)
thread->dbg_hidden = 1;
if (req->mask & SET_THREAD_INFO_DESCRIPTION)
{
WCHAR *desc;
data_size_t desc_len = get_req_data_size();
if (desc_len)
{
if ((desc = mem_alloc( desc_len )))
{
memcpy( desc, get_req_data(), desc_len );
free( thread->desc );
thread->desc = desc;
thread->desc_len = desc_len;
}
}
else
{
free( thread->desc );
thread->desc = NULL;
thread->desc_len = 0;
}
}
}
/* stop a thread (at the Unix level) */
void stop_thread( struct thread *thread )
{
if (thread->context) return; /* already suspended, no need for a signal */
if (!(thread->context = create_thread_context( thread ))) return;
/* can't stop a thread while initialisation is in progress */
if (is_process_init_done(thread->process)) send_thread_signal( thread, SIGUSR1 );
}
/* suspend a thread */
int suspend_thread( struct thread *thread )
{
int old_count = thread->suspend;
if (thread->suspend < MAXIMUM_SUSPEND_COUNT)
{
if (!(thread->process->suspend + thread->suspend++)) stop_thread( thread );
}
else set_error( STATUS_SUSPEND_COUNT_EXCEEDED );
return old_count;
}
/* resume a thread */
int resume_thread( struct thread *thread )
{
int old_count = thread->suspend;
if (thread->suspend > 0)
{
if (!(--thread->suspend)) resume_delayed_debug_events( thread );
if (!(thread->suspend + thread->process->suspend)) wake_thread( thread );
}
return old_count;
}
/* add a thread to an object wait queue; return 1 if OK, 0 on error */
int add_queue( struct object *obj, struct wait_queue_entry *entry )
{
grab_object( obj );
entry->obj = obj;
list_add_tail( &obj->wait_queue, &entry->entry );
return 1;
}
/* remove a thread from an object wait queue */
void remove_queue( struct object *obj, struct wait_queue_entry *entry )
{
list_remove( &entry->entry );
release_object( obj );
}
struct thread *get_wait_queue_thread( struct wait_queue_entry *entry )
{
return entry->wait->thread;
}
enum select_op get_wait_queue_select_op( struct wait_queue_entry *entry )
{
return entry->wait->select;
}
client_ptr_t get_wait_queue_key( struct wait_queue_entry *entry )
{
return entry->wait->key;
}
void make_wait_abandoned( struct wait_queue_entry *entry )
{
entry->wait->abandoned = 1;
}
/* finish waiting */
static unsigned int end_wait( struct thread *thread, unsigned int status )
{
struct thread_wait *wait = thread->wait;
struct wait_queue_entry *entry;
int i;
assert( wait );
thread->wait = wait->next;
if (status < wait->count) /* wait satisfied, tell it to the objects */
{
if (wait->select == SELECT_WAIT_ALL)
{
for (i = 0, entry = wait->queues; i < wait->count; i++, entry++)
entry->obj->ops->satisfied( entry->obj, entry );
}
else
{
entry = wait->queues + status;
entry->obj->ops->satisfied( entry->obj, entry );
}
if (wait->abandoned) status += STATUS_ABANDONED_WAIT_0;
}
for (i = 0, entry = wait->queues; i < wait->count; i++, entry++)
entry->obj->ops->remove_queue( entry->obj, entry );
if (wait->user) remove_timeout_user( wait->user );
free( wait );
return status;
}
/* build the thread wait structure */
static int wait_on( const select_op_t *select_op, unsigned int count, struct object *objects[],
int flags, abstime_t when )
{
struct thread_wait *wait;
struct wait_queue_entry *entry;
unsigned int i;
if (!(wait = mem_alloc( FIELD_OFFSET(struct thread_wait, queues[count]) ))) return 0;
wait->next = current->wait;
wait->thread = current;
wait->count = count;
wait->flags = flags;
wait->select = select_op->op;
wait->cookie = 0;
wait->user = NULL;
wait->when = when;
wait->abandoned = 0;
current->wait = wait;
for (i = 0, entry = wait->queues; i < count; i++, entry++)
{
struct object *obj = objects[i];
entry->wait = wait;
if (!obj->ops->add_queue( obj, entry ))
{
wait->count = i;
end_wait( current, get_error() );
return 0;
}
}
return 1;
}
static int wait_on_handles( const select_op_t *select_op, unsigned int count, const obj_handle_t *handles,
int flags, abstime_t when )
{
struct object *objects[MAXIMUM_WAIT_OBJECTS];
unsigned int i;
int ret = 0;
assert( count <= MAXIMUM_WAIT_OBJECTS );
for (i = 0; i < count; i++)
if (!(objects[i] = get_handle_obj( current->process, handles[i], SYNCHRONIZE, NULL )))
break;
if (i == count) ret = wait_on( select_op, count, objects, flags, when );
while (i > 0) release_object( objects[--i] );
return ret;
}
/* check if the thread waiting condition is satisfied */
static int check_wait( struct thread *thread )
{
int i;
struct thread_wait *wait = thread->wait;
struct wait_queue_entry *entry;
assert( wait );
if ((wait->flags & SELECT_INTERRUPTIBLE) && !list_empty( &thread->system_apc ))
return STATUS_KERNEL_APC;
/* Suspended threads may not acquire locks, but they can run system APCs */
if (thread->process->suspend + thread->suspend > 0) return -1;
if (wait->select == SELECT_WAIT_ALL)
{
int not_ok = 0;
/* Note: we must check them all anyway, as some objects may
* want to do something when signaled, even if others are not */
for (i = 0, entry = wait->queues; i < wait->count; i++, entry++)
not_ok |= !entry->obj->ops->signaled( entry->obj, entry );
if (!not_ok) return STATUS_WAIT_0;
}
else
{
for (i = 0, entry = wait->queues; i < wait->count; i++, entry++)
if (entry->obj->ops->signaled( entry->obj, entry )) return i;
}
if ((wait->flags & SELECT_ALERTABLE) && !list_empty(&thread->user_apc)) return STATUS_USER_APC;
if (wait->when >= 0 && wait->when <= current_time) return STATUS_TIMEOUT;
if (wait->when < 0 && -wait->when <= monotonic_time) return STATUS_TIMEOUT;
return -1;
}
/* send the wakeup signal to a thread */
static int send_thread_wakeup( struct thread *thread, client_ptr_t cookie, int signaled )
{
struct wake_up_reply reply;
int ret;
/* check if we're waking current suspend wait */
if (thread->context && thread->suspend_cookie == cookie
&& signaled != STATUS_KERNEL_APC && signaled != STATUS_USER_APC)
{
if (!thread->context->regs.flags)
{
release_object( thread->context );
thread->context = NULL;
}
else signaled = STATUS_KERNEL_APC; /* signal a fake APC so that client calls select to get a new context */
}
memset( &reply, 0, sizeof(reply) );
reply.cookie = cookie;
reply.signaled = signaled;
if ((ret = write( get_unix_fd( thread->wait_fd ), &reply, sizeof(reply) )) == sizeof(reply))
return 0;
if (ret >= 0)
fatal_protocol_error( thread, "partial wakeup write %d\n", ret );
else if (errno == EPIPE)
kill_thread( thread, 0 ); /* normal death */
else
fatal_protocol_error( thread, "write: %s\n", strerror( errno ));
return -1;
}
/* attempt to wake up a thread */
/* return >0 if OK, 0 if the wait condition is still not satisfied and -1 on error */
int wake_thread( struct thread *thread )
{
int signaled, count;
client_ptr_t cookie;
for (count = 0; thread->wait; count++)
{
if ((signaled = check_wait( thread )) == -1) break;
cookie = thread->wait->cookie;
signaled = end_wait( thread, signaled );
if (debug_level) fprintf( stderr, "%04x: *wakeup* signaled=%d\n", thread->id, signaled );
if (cookie && send_thread_wakeup( thread, cookie, signaled ) == -1) /* error */
{
if (!count) count = -1;
break;
}
}
return count;
}
/* attempt to wake up a thread from a wait queue entry, assuming that it is signaled */
int wake_thread_queue_entry( struct wait_queue_entry *entry )
{
struct thread_wait *wait = entry->wait;
struct thread *thread = wait->thread;
int signaled;
client_ptr_t cookie;
if (thread->wait != wait) return 0; /* not the current wait */
if (thread->process->suspend + thread->suspend > 0) return 0; /* cannot acquire locks */
assert( wait->select != SELECT_WAIT_ALL );
cookie = wait->cookie;
signaled = end_wait( thread, entry - wait->queues );
if (debug_level) fprintf( stderr, "%04x: *wakeup* signaled=%d\n", thread->id, signaled );
if (!cookie || send_thread_wakeup( thread, cookie, signaled ) != -1)
wake_thread( thread ); /* check other waits too */
return 1;
}
/* thread wait timeout */
static void thread_timeout( void *ptr )
{
struct thread_wait *wait = ptr;
struct thread *thread = wait->thread;
client_ptr_t cookie = wait->cookie;
wait->user = NULL;
if (thread->wait != wait) return; /* not the top-level wait, ignore it */
if (thread->suspend + thread->process->suspend > 0) return; /* suspended, ignore it */
if (debug_level) fprintf( stderr, "%04x: *wakeup* signaled=TIMEOUT\n", thread->id );
end_wait( thread, STATUS_TIMEOUT );
assert( cookie );
if (send_thread_wakeup( thread, cookie, STATUS_TIMEOUT ) == -1) return;
/* check if other objects have become signaled in the meantime */
wake_thread( thread );
}
/* try signaling an event flag, a semaphore or a mutex */
static int signal_object( obj_handle_t handle )
{
struct object *obj;
int ret = 0;
obj = get_handle_obj( current->process, handle, 0, NULL );
if (obj)
{
ret = obj->ops->signal( obj, get_handle_access( current->process, handle ));
release_object( obj );
}
return ret;
}
/* select on a list of handles */
static void select_on( const select_op_t *select_op, data_size_t op_size, client_ptr_t cookie,
int flags, abstime_t when )
{
int ret;
unsigned int count;
struct object *object;
switch (select_op->op)
{
case SELECT_NONE:
if (!wait_on( select_op, 0, NULL, flags, when )) return;
break;
case SELECT_WAIT:
case SELECT_WAIT_ALL:
count = (op_size - offsetof( select_op_t, wait.handles )) / sizeof(select_op->wait.handles[0]);
if (op_size < offsetof( select_op_t, wait.handles ) || count > MAXIMUM_WAIT_OBJECTS)
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (!wait_on_handles( select_op, count, select_op->wait.handles, flags, when ))
return;
break;
case SELECT_SIGNAL_AND_WAIT:
if (!wait_on_handles( select_op, 1, &select_op->signal_and_wait.wait, flags, when ))
return;
if (select_op->signal_and_wait.signal)
{
if (!signal_object( select_op->signal_and_wait.signal ))
{
end_wait( current, get_error() );
return;
}
/* check if we woke ourselves up */
if (!current->wait) return;
}
break;
case SELECT_KEYED_EVENT_WAIT:
case SELECT_KEYED_EVENT_RELEASE:
object = (struct object *)get_keyed_event_obj( current->process, select_op->keyed_event.handle,
select_op->op == SELECT_KEYED_EVENT_WAIT ? KEYEDEVENT_WAIT : KEYEDEVENT_WAKE );
if (!object) return;
ret = wait_on( select_op, 1, &object, flags, when );
release_object( object );
if (!ret) return;
current->wait->key = select_op->keyed_event.key;
break;
default:
set_error( STATUS_INVALID_PARAMETER );
return;
}
if ((ret = check_wait( current )) != -1)
{
/* condition is already satisfied */
set_error( end_wait( current, ret ));
return;
}
/* now we need to wait */
if (current->wait->when != TIMEOUT_INFINITE)
{
if (!(current->wait->user = add_timeout_user( abstime_to_timeout(current->wait->when),
thread_timeout, current->wait )))
{
end_wait( current, get_error() );
return;
}
}
current->wait->cookie = cookie;
set_error( STATUS_PENDING );
return;
}
/* attempt to wake threads sleeping on the object wait queue */
void wake_up( struct object *obj, int max )
{
struct list *ptr;
int ret;
LIST_FOR_EACH( ptr, &obj->wait_queue )
{
struct wait_queue_entry *entry = LIST_ENTRY( ptr, struct wait_queue_entry, entry );
if (!(ret = wake_thread( get_wait_queue_thread( entry )))) continue;
if (ret > 0 && max && !--max) break;
/* restart at the head of the list since a wake up can change the object wait queue */
ptr = &obj->wait_queue;
}
}
/* return the apc queue to use for a given apc type */
static inline struct list *get_apc_queue( struct thread *thread, enum apc_type type )
{
switch(type)
{
case APC_NONE:
case APC_USER:
case APC_TIMER:
return &thread->user_apc;
default:
return &thread->system_apc;
}
}
/* check if thread is currently waiting for a (system) apc */
static inline int is_in_apc_wait( struct thread *thread )
{
return (thread->process->suspend || thread->suspend ||
(thread->wait && (thread->wait->flags & SELECT_INTERRUPTIBLE)));
}
/* queue an existing APC to a given thread */
static int queue_apc( struct process *process, struct thread *thread, struct thread_apc *apc )
{
struct list *queue;
if (thread && thread->state == TERMINATED && process)
thread = NULL;
if (!thread) /* find a suitable thread inside the process */
{
struct thread *candidate;
/* first try to find a waiting thread */
LIST_FOR_EACH_ENTRY( candidate, &process->thread_list, struct thread, proc_entry )
{
if (candidate->state == TERMINATED) continue;
if (is_in_apc_wait( candidate ))
{
thread = candidate;
break;
}
}
if (!thread)
{
/* then use the first one that accepts a signal */
LIST_FOR_EACH_ENTRY( candidate, &process->thread_list, struct thread, proc_entry )
{
if (send_thread_signal( candidate, SIGUSR1 ))
{
thread = candidate;
break;
}
}
}
if (!thread) return 0; /* nothing found */
queue = get_apc_queue( thread, apc->call.type );
}
else
{
if (thread->state == TERMINATED) return 0;
queue = get_apc_queue( thread, apc->call.type );
/* send signal for system APCs if needed */
if (queue == &thread->system_apc && list_empty( queue ) && !is_in_apc_wait( thread ))
{
if (!send_thread_signal( thread, SIGUSR1 )) return 0;
}
/* cancel a possible previous APC with the same owner */
if (apc->owner) thread_cancel_apc( thread, apc->owner, apc->call.type );
}
grab_object( apc );
list_add_tail( queue, &apc->entry );
if (!list_prev( queue, &apc->entry )) /* first one */
wake_thread( thread );
return 1;
}
/* queue an async procedure call */
int thread_queue_apc( struct process *process, struct thread *thread, struct object *owner, const apc_call_t *call_data )
{
struct thread_apc *apc;
int ret = 0;
if ((apc = create_apc( owner, call_data )))
{
ret = queue_apc( process, thread, apc );
release_object( apc );
}
return ret;
}
/* cancel the async procedure call owned by a specific object */
void thread_cancel_apc( struct thread *thread, struct object *owner, enum apc_type type )
{
struct thread_apc *apc;
struct list *queue = get_apc_queue( thread, type );
LIST_FOR_EACH_ENTRY( apc, queue, struct thread_apc, entry )
{
if (apc->owner != owner) continue;
list_remove( &apc->entry );
apc->executed = 1;
wake_up( &apc->obj, 0 );
release_object( apc );
return;
}
}
/* remove the head apc from the queue; the returned object must be released by the caller */
static struct thread_apc *thread_dequeue_apc( struct thread *thread, int system )
{
struct thread_apc *apc = NULL;
struct list *ptr = list_head( system ? &thread->system_apc : &thread->user_apc );
if (ptr)
{
apc = LIST_ENTRY( ptr, struct thread_apc, entry );
list_remove( ptr );
}
return apc;
}
/* clear an APC queue, cancelling all the APCs on it */
static void clear_apc_queue( struct list *queue )
{
struct list *ptr;
while ((ptr = list_head( queue )))
{
struct thread_apc *apc = LIST_ENTRY( ptr, struct thread_apc, entry );
list_remove( &apc->entry );
apc->executed = 1;
wake_up( &apc->obj, 0 );
release_object( apc );
}
}
/* add an fd to the inflight list */
/* return list index, or -1 on error */
int thread_add_inflight_fd( struct thread *thread, int client, int server )
{
int i;
if (server == -1) return -1;
if (client == -1)
{
close( server );
return -1;
}
/* first check if we already have an entry for this fd */
for (i = 0; i < MAX_INFLIGHT_FDS; i++)
if (thread->inflight[i].client == client)
{
close( thread->inflight[i].server );
thread->inflight[i].server = server;
return i;
}
/* now find a free spot to store it */
for (i = 0; i < MAX_INFLIGHT_FDS; i++)
if (thread->inflight[i].client == -1)
{
thread->inflight[i].client = client;
thread->inflight[i].server = server;
return i;
}
close( server );
return -1;
}
/* get an inflight fd and purge it from the list */
/* the fd must be closed when no longer used */
int thread_get_inflight_fd( struct thread *thread, int client )
{
int i, ret;
if (client == -1) return -1;
do
{
for (i = 0; i < MAX_INFLIGHT_FDS; i++)
{
if (thread->inflight[i].client == client)
{
ret = thread->inflight[i].server;
thread->inflight[i].server = thread->inflight[i].client = -1;
return ret;
}
}
} while (!receive_fd( thread->process )); /* in case it is still in the socket buffer */
return -1;
}
/* kill a thread on the spot */
void kill_thread( struct thread *thread, int violent_death )
{
if (thread->state == TERMINATED) return; /* already killed */
thread->state = TERMINATED;
thread->exit_time = current_time;
if (current == thread) current = NULL;
if (debug_level)
fprintf( stderr,"%04x: *killed* exit_code=%d\n",
thread->id, thread->exit_code );
if (thread->wait)
{
while (thread->wait) end_wait( thread, STATUS_THREAD_IS_TERMINATING );
send_thread_wakeup( thread, 0, thread->exit_code );
/* if it is waiting on the socket, we don't need to send a SIGQUIT */
violent_death = 0;
}
kill_console_processes( thread, 0 );
abandon_mutexes( thread );
wake_up( &thread->obj, 0 );
if (violent_death) send_thread_signal( thread, SIGQUIT );
cleanup_thread( thread );
remove_process_thread( thread->process, thread );
release_object( thread );
}
/* copy parts of a context structure */
static void copy_context( context_t *to, const context_t *from, unsigned int flags )
{
assert( to->cpu == from->cpu );
if (flags & SERVER_CTX_CONTROL) to->ctl = from->ctl;
if (flags & SERVER_CTX_INTEGER) to->integer = from->integer;
if (flags & SERVER_CTX_SEGMENTS) to->seg = from->seg;
if (flags & SERVER_CTX_FLOATING_POINT) to->fp = from->fp;
if (flags & SERVER_CTX_DEBUG_REGISTERS) to->debug = from->debug;
if (flags & SERVER_CTX_EXTENDED_REGISTERS) to->ext = from->ext;
if (flags & SERVER_CTX_YMM_REGISTERS) to->ymm = from->ymm;
}
/* return the context flags that correspond to system regs */
/* (system regs are the ones we can't access on the client side) */
static unsigned int get_context_system_regs( enum cpu_type cpu )
{
switch (cpu)
{
case CPU_x86: return SERVER_CTX_DEBUG_REGISTERS;
case CPU_x86_64: return SERVER_CTX_DEBUG_REGISTERS;
case CPU_POWERPC: return 0;
case CPU_ARM: return SERVER_CTX_DEBUG_REGISTERS;
case CPU_ARM64: return SERVER_CTX_DEBUG_REGISTERS;
}
return 0;
}
/* gets the current impersonation token */
struct token *thread_get_impersonation_token( struct thread *thread )
{
if (thread->token)
return thread->token;
else
return thread->process->token;
}
/* check if a cpu type can be supported on this server */
int is_cpu_supported( enum cpu_type cpu )
{
unsigned int prefix_cpu_mask = get_prefix_cpu_mask();
if (supported_cpus & prefix_cpu_mask & CPU_FLAG(cpu)) return 1;
if (!(supported_cpus & prefix_cpu_mask))
set_error( STATUS_NOT_SUPPORTED );
else if (supported_cpus & CPU_FLAG(cpu))
set_error( STATUS_INVALID_IMAGE_WIN_64 ); /* server supports it but not the prefix */
else
set_error( STATUS_INVALID_IMAGE_FORMAT );
return 0;
}
/* return the cpu mask for supported cpus */
unsigned int get_supported_cpu_mask(void)
{
return supported_cpus & get_prefix_cpu_mask();
}
/* create a new thread */
DECL_HANDLER(new_thread)
{
struct thread *thread;
struct process *process;
struct unicode_str name;
const struct security_descriptor *sd;
const struct object_attributes *objattr = get_req_object_attributes( &sd, &name, NULL );
int request_fd = thread_get_inflight_fd( current, req->request_fd );
if (!(process = get_process_from_handle( req->process, PROCESS_CREATE_THREAD )))
{
if (request_fd != -1) close( request_fd );
return;
}
if (process != current->process)
{
if (request_fd != -1) /* can't create a request fd in a different process */
{
close( request_fd );
set_error( STATUS_INVALID_PARAMETER );
goto done;
}
if (process->running_threads) /* only the initial thread can be created in another process */
{
set_error( STATUS_ACCESS_DENIED );
goto done;
}
}
else if (request_fd == -1 || fcntl( request_fd, F_SETFL, O_NONBLOCK ) == -1)
{
if (request_fd != -1) close( request_fd );
set_error( STATUS_INVALID_HANDLE );
goto done;
}
if ((thread = create_thread( request_fd, process, sd )))
{
thread->system_regs = current->system_regs;
if (req->suspend) thread->suspend++;
reply->tid = get_thread_id( thread );
if ((reply->handle = alloc_handle_no_access_check( current->process, thread,
req->access, objattr->attributes )))
{
/* thread object will be released when the thread gets killed */
goto done;
}
kill_thread( thread, 1 );
}
done:
release_object( process );
}
static int init_thread( struct thread *thread, int reply_fd, int wait_fd )
{
if ((reply_fd = thread_get_inflight_fd( thread, reply_fd )) == -1)
{
set_error( STATUS_TOO_MANY_OPENED_FILES );
return 0;
}
if ((wait_fd = thread_get_inflight_fd( thread, wait_fd )) == -1)
{
set_error( STATUS_TOO_MANY_OPENED_FILES );
goto error;
}
if (thread->reply_fd) /* already initialised */
{
set_error( STATUS_INVALID_PARAMETER );
goto error;
}
if (fcntl( reply_fd, F_SETFL, O_NONBLOCK ) == -1) goto error;
thread->reply_fd = create_anonymous_fd( &thread_fd_ops, reply_fd, &thread->obj, 0 );
thread->wait_fd = create_anonymous_fd( &thread_fd_ops, wait_fd, &thread->obj, 0 );
return thread->reply_fd && thread->wait_fd;
error:
if (reply_fd != -1) close( reply_fd );
if (wait_fd != -1) close( wait_fd );
return 0;
}
/* initialize the first thread of a new process */
DECL_HANDLER(init_first_thread)
{
struct process *process = current->process;
if (!init_thread( current, req->reply_fd, req->wait_fd )) return;
if (!is_valid_address(req->teb) || !is_valid_address(req->peb))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (!is_cpu_supported( req->cpu )) return;
current->unix_pid = process->unix_pid = req->unix_pid;
current->unix_tid = req->unix_tid;
current->teb = req->teb;
process->peb = req->peb;
process->ldt_copy = req->ldt_copy;
process->cpu = req->cpu;
if (!process->parent_id)
process->affinity = current->affinity = get_thread_affinity( current );
else
set_thread_affinity( current, current->affinity );
debug_level = max( debug_level, req->debug_level );
reply->pid = get_process_id( process );
reply->tid = get_thread_id( current );
reply->info_size = get_process_startup_info_size( process );
reply->server_start = server_start_time;
reply->all_cpus = supported_cpus & get_prefix_cpu_mask();
}
/* initialize a new thread */
DECL_HANDLER(init_thread)
{
if (!init_thread( current, req->reply_fd, req->wait_fd )) return;
if (!is_valid_address(req->teb))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
current->unix_pid = current->process->unix_pid;
current->unix_tid = req->unix_tid;
current->teb = req->teb;
current->entry_point = req->entry;
init_thread_context( current );
generate_debug_event( current, DbgCreateThreadStateChange, &req->entry );
set_thread_affinity( current, current->affinity );
reply->pid = get_process_id( current->process );
reply->tid = get_thread_id( current );
reply->suspend = (current->suspend || current->process->suspend || current->context != NULL);
}
/* terminate a thread */
DECL_HANDLER(terminate_thread)
{
struct thread *thread;
if ((thread = get_thread_from_handle( req->handle, THREAD_TERMINATE )))
{
thread->exit_code = req->exit_code;
if (thread != current) kill_thread( thread, 1 );
else reply->self = 1;
release_object( thread );
}
}
/* open a handle to a thread */
DECL_HANDLER(open_thread)
{
struct thread *thread = get_thread_from_id( req->tid );
reply->handle = 0;
if (thread)
{
reply->handle = alloc_handle( current->process, thread, req->access, req->attributes );
release_object( thread );
}
}
/* fetch information about a thread */
DECL_HANDLER(get_thread_info)
{
struct thread *thread;
unsigned int access = req->access & (THREAD_QUERY_INFORMATION | THREAD_QUERY_LIMITED_INFORMATION);
if (!access) access = THREAD_QUERY_LIMITED_INFORMATION;
thread = get_thread_from_handle( req->handle, access );
if (thread)
{
reply->pid = get_process_id( thread->process );
reply->tid = get_thread_id( thread );
reply->teb = thread->teb;
reply->entry_point = thread->entry_point;
reply->exit_code = (thread->state == TERMINATED) ? thread->exit_code : STATUS_PENDING;
reply->priority = thread->priority;
reply->affinity = thread->affinity;
reply->last = thread->process->running_threads == 1;
reply->suspend_count = thread->suspend;
reply->dbg_hidden = thread->dbg_hidden;
reply->desc_len = thread->desc_len;
if (thread->desc && get_reply_max_size())
{
if (thread->desc_len <= get_reply_max_size())
set_reply_data( thread->desc, thread->desc_len );
else
set_error( STATUS_BUFFER_TOO_SMALL );
}
release_object( thread );
}
}
/* fetch information about thread times */
DECL_HANDLER(get_thread_times)
{
struct thread *thread;
if ((thread = get_thread_from_handle( req->handle, THREAD_QUERY_LIMITED_INFORMATION )))
{
reply->creation_time = thread->creation_time;
reply->exit_time = thread->exit_time;
reply->unix_pid = thread->unix_pid;
reply->unix_tid = thread->unix_tid;
release_object( thread );
}
}
/* set information about a thread */
DECL_HANDLER(set_thread_info)
{
struct thread *thread;
if ((thread = get_thread_from_handle( req->handle, THREAD_SET_INFORMATION )))
{
set_thread_info( thread, req );
release_object( thread );
}
}
/* suspend a thread */
DECL_HANDLER(suspend_thread)
{
struct thread *thread;
if ((thread = get_thread_from_handle( req->handle, THREAD_SUSPEND_RESUME )))
{
if (thread->state == TERMINATED) set_error( STATUS_ACCESS_DENIED );
else reply->count = suspend_thread( thread );
release_object( thread );
}
}
/* resume a thread */
DECL_HANDLER(resume_thread)
{
struct thread *thread;
if ((thread = get_thread_from_handle( req->handle, THREAD_SUSPEND_RESUME )))
{
reply->count = resume_thread( thread );
release_object( thread );
}
}
/* select on a handle list */
DECL_HANDLER(select)
{
select_op_t select_op;
data_size_t op_size;
struct thread_apc *apc;
const apc_result_t *result = get_req_data();
if (get_req_data_size() < sizeof(*result) ||
get_req_data_size() - sizeof(*result) < req->size ||
req->size & 3)
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (get_req_data_size() - sizeof(*result) - req->size == sizeof(context_t))
{
const context_t *context = (const context_t *)((const char *)(result + 1) + req->size);
if ((current->context && current->context->status != STATUS_PENDING) || context->cpu != current->process->cpu)
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (!current->context && !(current->context = create_thread_context( current ))) return;
copy_context( &current->context->regs, context,
context->flags & ~(current->context->regs.flags | get_context_system_regs(current->process->cpu)) );
current->context->status = STATUS_SUCCESS;
current->suspend_cookie = req->cookie;
wake_up( &current->context->obj, 0 );
}
if (!req->cookie)
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
op_size = min( req->size, sizeof(select_op) );
memset( &select_op, 0, sizeof(select_op) );
memcpy( &select_op, result + 1, op_size );
/* first store results of previous apc */
if (req->prev_apc)
{
if (!(apc = (struct thread_apc *)get_handle_obj( current->process, req->prev_apc,
0, &thread_apc_ops ))) return;
apc->result = *result;
apc->executed = 1;
if (apc->result.type == APC_CREATE_THREAD) /* transfer the handle to the caller process */
{
obj_handle_t handle = duplicate_handle( current->process, apc->result.create_thread.handle,
apc->caller->process, 0, 0, DUP_HANDLE_SAME_ACCESS );
close_handle( current->process, apc->result.create_thread.handle );
apc->result.create_thread.handle = handle;
clear_error(); /* ignore errors from the above calls */
}
else if (apc->result.type == APC_ASYNC_IO)
{
if (apc->owner)
async_set_result( apc->owner, apc->result.async_io.status, apc->result.async_io.total );
}
wake_up( &apc->obj, 0 );
close_handle( current->process, req->prev_apc );
release_object( apc );
}
select_on( &select_op, op_size, req->cookie, req->flags, req->timeout );
while (get_error() == STATUS_USER_APC)
{
if (!(apc = thread_dequeue_apc( current, 0 )))
break;
/* Optimization: ignore APC_NONE calls, they are only used to
* wake up a thread, but since we got here the thread woke up already.
*/
if (apc->call.type != APC_NONE &&
(reply->apc_handle = alloc_handle( current->process, apc, SYNCHRONIZE, 0 )))
{
reply->call = apc->call;
release_object( apc );
break;
}
apc->executed = 1;
wake_up( &apc->obj, 0 );
release_object( apc );
}
if (get_error() == STATUS_KERNEL_APC)
{
apc = thread_dequeue_apc( current, 1 );
if ((reply->apc_handle = alloc_handle( current->process, apc, SYNCHRONIZE, 0 )))
reply->call = apc->call;
else
{
apc->executed = 1;
wake_up( &apc->obj, 0 );
}
release_object( apc );
}
else if (get_error() != STATUS_PENDING && get_reply_max_size() == sizeof(context_t) &&
current->context && current->suspend_cookie == req->cookie)
{
if (current->context->regs.flags)
{
unsigned int system_flags = get_context_system_regs(current->process->cpu) &
current->context->regs.flags;
if (system_flags) set_thread_context( current, &current->context->regs, system_flags );
set_reply_data( &current->context->regs, sizeof(context_t) );
}
release_object( current->context );
current->context = NULL;
}
}
/* queue an APC for a thread or process */
DECL_HANDLER(queue_apc)
{
struct thread *thread = NULL;
struct process *process = NULL;
struct thread_apc *apc;
if (!(apc = create_apc( NULL, &req->call ))) return;
switch (apc->call.type)
{
case APC_NONE:
case APC_USER:
thread = get_thread_from_handle( req->handle, THREAD_SET_CONTEXT );
break;
case APC_VIRTUAL_ALLOC:
case APC_VIRTUAL_FREE:
case APC_VIRTUAL_PROTECT:
case APC_VIRTUAL_FLUSH:
case APC_VIRTUAL_LOCK:
case APC_VIRTUAL_UNLOCK:
case APC_UNMAP_VIEW:
process = get_process_from_handle( req->handle, PROCESS_VM_OPERATION );
break;
case APC_VIRTUAL_QUERY:
process = get_process_from_handle( req->handle, PROCESS_QUERY_INFORMATION );
break;
case APC_MAP_VIEW:
process = get_process_from_handle( req->handle, PROCESS_VM_OPERATION );
if (process && process != current->process)
{
/* duplicate the handle into the target process */
obj_handle_t handle = duplicate_handle( current->process, apc->call.map_view.handle,
process, 0, 0, DUP_HANDLE_SAME_ACCESS );
if (handle) apc->call.map_view.handle = handle;
else
{
release_object( process );
process = NULL;
}
}
break;
case APC_CREATE_THREAD:
case APC_BREAK_PROCESS:
process = get_process_from_handle( req->handle, PROCESS_CREATE_THREAD );
break;
default:
set_error( STATUS_INVALID_PARAMETER );
break;
}
if (thread)
{
if (!queue_apc( NULL, thread, apc )) set_error( STATUS_THREAD_IS_TERMINATING );
release_object( thread );
}
else if (process)
{
reply->self = (process == current->process);
if (!reply->self)
{
obj_handle_t handle = alloc_handle( current->process, apc, SYNCHRONIZE, 0 );
if (handle)
{
if (queue_apc( process, NULL, apc ))
{
apc->caller = (struct thread *)grab_object( current );
reply->handle = handle;
}
else
{
close_handle( current->process, handle );
set_error( STATUS_PROCESS_IS_TERMINATING );
}
}
}
release_object( process );
}
release_object( apc );
}
/* Get the result of an APC call */
DECL_HANDLER(get_apc_result)
{
struct thread_apc *apc;
if (!(apc = (struct thread_apc *)get_handle_obj( current->process, req->handle,
0, &thread_apc_ops ))) return;
if (apc->executed) reply->result = apc->result;
else set_error( STATUS_PENDING );
/* close the handle directly to avoid an extra round-trip */
close_handle( current->process, req->handle );
release_object( apc );
}
/* retrieve the current context of a thread */
DECL_HANDLER(get_thread_context)
{
struct context *thread_context = NULL;
unsigned int system_flags;
struct thread *thread;
context_t *context;
if (get_reply_max_size() < sizeof(context_t))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if ((thread_context = (struct context *)get_handle_obj( current->process, req->handle, 0, &context_ops )))
{
close_handle( current->process, req->handle ); /* avoid extra server call */
system_flags = get_context_system_regs( thread_context->regs.cpu );
}
else if ((thread = get_thread_from_handle( req->handle, THREAD_GET_CONTEXT )))
{
clear_error();
system_flags = get_context_system_regs( thread->process->cpu );
if (thread->state == RUNNING)
{
reply->self = (thread == current);
if (thread != current) stop_thread( thread );
if (thread->context)
{
/* make sure that system regs are valid in thread context */
if (thread->unix_tid != -1 && (req->flags & system_flags & ~thread->context->regs.flags))
get_thread_context( thread, &thread->context->regs, req->flags & system_flags );
if (!get_error()) thread_context = (struct context *)grab_object( thread->context );
}
else if (!get_error() && (context = set_reply_data_size( sizeof(context_t) )))
{
assert( reply->self );
memset( context, 0, sizeof(context_t) );
context->cpu = thread->process->cpu;
if (req->flags & system_flags)
{
get_thread_context( thread, context, req->flags & system_flags );
context->flags |= req->flags & system_flags;
}
}
}
else set_error( STATUS_UNSUCCESSFUL );
release_object( thread );
}
if (get_error() || !thread_context) return;
set_error( thread_context->status );
if (!thread_context->status && (context = set_reply_data_size( sizeof(context_t) )))
{
memset( context, 0, sizeof(context_t) );
context->cpu = thread_context->regs.cpu;
copy_context( context, &thread_context->regs, req->flags );
context->flags = req->flags;
}
else if (thread_context->status == STATUS_PENDING)
{
reply->handle = alloc_handle( current->process, thread_context, SYNCHRONIZE, 0 );
}
release_object( thread_context );
}
/* set the current context of a thread */
DECL_HANDLER(set_thread_context)
{
struct thread *thread;
const context_t *context = get_req_data();
if (get_req_data_size() < sizeof(context_t))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (!(thread = get_thread_from_handle( req->handle, THREAD_SET_CONTEXT ))) return;
reply->self = (thread == current);
if (thread->state == TERMINATED) set_error( STATUS_UNSUCCESSFUL );
else if (context->cpu != thread->process->cpu) set_error( STATUS_INVALID_PARAMETER );
else
{
unsigned int system_flags = get_context_system_regs(context->cpu) & context->flags;
if (thread != current) stop_thread( thread );
else if (system_flags) set_thread_context( thread, context, system_flags );
if (thread->context && !get_error())
{
copy_context( &thread->context->regs, context, context->flags );
thread->context->regs.flags |= context->flags;
}
}
release_object( thread );
}
/* fetch a selector entry for a thread */
DECL_HANDLER(get_selector_entry)
{
struct thread *thread;
if ((thread = get_thread_from_handle( req->handle, THREAD_QUERY_INFORMATION )))
{
get_selector_entry( thread, req->entry, &reply->base, &reply->limit, &reply->flags );
release_object( thread );
}
}