4705 lines
147 KiB
C
4705 lines
147 KiB
C
/*
|
|
* VARIANT
|
|
*
|
|
* Copyright 1998 Jean-Claude Cote
|
|
* Copyright 2003 Jon Griffiths
|
|
* Copyright 2005 Daniel Remenak
|
|
*
|
|
* The alorithm for conversion from Julian days to day/month/year is based on
|
|
* that devised by Henry Fliegel, as implemented in PostgreSQL, which is
|
|
* Copyright 1994-7 Regents of the University of California
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
|
|
#define COBJMACROS
|
|
#define NONAMELESSUNION
|
|
#define NONAMELESSSTRUCT
|
|
|
|
#include "windef.h"
|
|
#include "winbase.h"
|
|
#include "wine/unicode.h"
|
|
#include "winerror.h"
|
|
#include "variant.h"
|
|
#include "wine/debug.h"
|
|
|
|
WINE_DEFAULT_DEBUG_CHANNEL(variant);
|
|
|
|
const char* wine_vtypes[VT_CLSID+1] =
|
|
{
|
|
"VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
|
|
"VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
|
|
"VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
|
|
"VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
|
|
"VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
|
|
"VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
|
|
"46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
|
|
"61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
|
|
"VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
|
|
};
|
|
|
|
const char* wine_vflags[16] =
|
|
{
|
|
"",
|
|
"|VT_VECTOR",
|
|
"|VT_ARRAY",
|
|
"|VT_VECTOR|VT_ARRAY",
|
|
"|VT_BYREF",
|
|
"|VT_VECTOR|VT_ARRAY",
|
|
"|VT_ARRAY|VT_BYREF",
|
|
"|VT_VECTOR|VT_ARRAY|VT_BYREF",
|
|
"|VT_HARDTYPE",
|
|
"|VT_VECTOR|VT_HARDTYPE",
|
|
"|VT_ARRAY|VT_HARDTYPE",
|
|
"|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
|
|
"|VT_BYREF|VT_HARDTYPE",
|
|
"|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
|
|
"|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
|
|
"|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
|
|
};
|
|
|
|
/* Convert a variant from one type to another */
|
|
static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
|
|
VARIANTARG* ps, VARTYPE vt)
|
|
{
|
|
HRESULT res = DISP_E_TYPEMISMATCH;
|
|
VARTYPE vtFrom = V_TYPE(ps);
|
|
DWORD dwFlags = 0;
|
|
|
|
TRACE("(%p->(%s%s),0x%08lx,0x%04x,%p->(%s%s),%s%s)\n", pd, debugstr_VT(pd),
|
|
debugstr_VF(pd), lcid, wFlags, ps, debugstr_VT(ps), debugstr_VF(ps),
|
|
debugstr_vt(vt), debugstr_vf(vt));
|
|
|
|
if (vt == VT_BSTR || vtFrom == VT_BSTR)
|
|
{
|
|
/* All flags passed to low level function are only used for
|
|
* changing to or from strings. Map these here.
|
|
*/
|
|
if (wFlags & VARIANT_LOCALBOOL)
|
|
dwFlags |= VAR_LOCALBOOL;
|
|
if (wFlags & VARIANT_CALENDAR_HIJRI)
|
|
dwFlags |= VAR_CALENDAR_HIJRI;
|
|
if (wFlags & VARIANT_CALENDAR_THAI)
|
|
dwFlags |= VAR_CALENDAR_THAI;
|
|
if (wFlags & VARIANT_CALENDAR_GREGORIAN)
|
|
dwFlags |= VAR_CALENDAR_GREGORIAN;
|
|
if (wFlags & VARIANT_NOUSEROVERRIDE)
|
|
dwFlags |= LOCALE_NOUSEROVERRIDE;
|
|
if (wFlags & VARIANT_USE_NLS)
|
|
dwFlags |= LOCALE_USE_NLS;
|
|
}
|
|
|
|
/* Map int/uint to i4/ui4 */
|
|
if (vt == VT_INT)
|
|
vt = VT_I4;
|
|
else if (vt == VT_UINT)
|
|
vt = VT_UI4;
|
|
|
|
if (vtFrom == VT_INT)
|
|
vtFrom = VT_I4;
|
|
else if (vtFrom == VT_UINT)
|
|
vtFrom = VT_UI4;
|
|
|
|
if (vt == vtFrom)
|
|
return VariantCopy(pd, ps);
|
|
|
|
if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
|
|
{
|
|
/* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
|
|
* accessing the default object property.
|
|
*/
|
|
return DISP_E_TYPEMISMATCH;
|
|
}
|
|
|
|
switch (vt)
|
|
{
|
|
case VT_EMPTY:
|
|
if (vtFrom == VT_NULL)
|
|
return DISP_E_TYPEMISMATCH;
|
|
/* ... Fall through */
|
|
case VT_NULL:
|
|
if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
|
|
{
|
|
res = VariantClear( pd );
|
|
if (vt == VT_NULL && SUCCEEDED(res))
|
|
V_VT(pd) = VT_NULL;
|
|
}
|
|
return res;
|
|
|
|
case VT_I1:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY: V_I1(pd) = 0; return S_OK;
|
|
case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
|
|
case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
|
|
case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
|
|
case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
|
|
case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
|
|
case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
|
|
case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
|
|
case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
|
|
case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
|
|
case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
|
|
case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
|
|
case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
|
|
case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
|
|
case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
|
|
case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
|
|
}
|
|
break;
|
|
|
|
case VT_I2:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY: V_I2(pd) = 0; return S_OK;
|
|
case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
|
|
case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
|
|
case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
|
|
case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
|
|
case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
|
|
case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
|
|
case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
|
|
case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
|
|
case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
|
|
case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
|
|
case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
|
|
case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
|
|
case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
|
|
case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
|
|
case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
|
|
}
|
|
break;
|
|
|
|
case VT_I4:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY: V_I4(pd) = 0; return S_OK;
|
|
case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
|
|
case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
|
|
case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
|
|
case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
|
|
case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
|
|
case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
|
|
case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
|
|
case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
|
|
case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
|
|
case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
|
|
case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
|
|
case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
|
|
case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
|
|
case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
|
|
case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
|
|
}
|
|
break;
|
|
|
|
case VT_UI1:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
|
|
case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
|
|
case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
|
|
case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
|
|
case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
|
|
case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
|
|
case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
|
|
case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
|
|
case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
|
|
case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
|
|
case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
|
|
case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
|
|
case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
|
|
case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
|
|
case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
|
|
case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
|
|
}
|
|
break;
|
|
|
|
case VT_UI2:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
|
|
case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
|
|
case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
|
|
case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
|
|
case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
|
|
case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
|
|
case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
|
|
case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
|
|
case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
|
|
case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
|
|
case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
|
|
case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
|
|
case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
|
|
case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
|
|
case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
|
|
case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
|
|
}
|
|
break;
|
|
|
|
case VT_UI4:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
|
|
case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
|
|
case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
|
|
case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
|
|
case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
|
|
case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
|
|
case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
|
|
case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
|
|
case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
|
|
case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
|
|
case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
|
|
case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
|
|
case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
|
|
case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
|
|
case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
|
|
case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
|
|
}
|
|
break;
|
|
|
|
case VT_UI8:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
|
|
case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
|
|
case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
|
|
case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
|
|
case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
|
|
case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
|
|
case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
|
|
case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
|
|
case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
|
|
case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
|
|
case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
|
|
case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
|
|
case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
|
|
case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
|
|
case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
|
|
case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
|
|
}
|
|
break;
|
|
|
|
case VT_I8:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY: V_I8(pd) = 0; return S_OK;
|
|
case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
|
|
case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
|
|
case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
|
|
case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
|
|
case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
|
|
case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
|
|
case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
|
|
case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
|
|
case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
|
|
case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
|
|
case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
|
|
case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
|
|
case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
|
|
case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
|
|
case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
|
|
}
|
|
break;
|
|
|
|
case VT_R4:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
|
|
case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
|
|
case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
|
|
case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
|
|
case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
|
|
case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
|
|
case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
|
|
case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
|
|
case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
|
|
case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
|
|
case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
|
|
case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
|
|
case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
|
|
case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
|
|
case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
|
|
case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
|
|
}
|
|
break;
|
|
|
|
case VT_R8:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
|
|
case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
|
|
case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
|
|
case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
|
|
case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
|
|
case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
|
|
case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
|
|
case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
|
|
case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
|
|
case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
|
|
case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
|
|
case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
|
|
case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
|
|
case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
|
|
case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
|
|
case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
|
|
}
|
|
break;
|
|
|
|
case VT_DATE:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
|
|
case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
|
|
case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
|
|
case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
|
|
case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
|
|
case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
|
|
case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
|
|
case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
|
|
case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
|
|
case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
|
|
case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
|
|
case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
|
|
case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
|
|
case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
|
|
case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
|
|
case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
|
|
}
|
|
break;
|
|
|
|
case VT_BOOL:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
|
|
case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
|
|
case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
|
|
case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
|
|
case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
|
|
case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
|
|
case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
|
|
case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
|
|
case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
|
|
case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
|
|
case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
|
|
case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
|
|
case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
|
|
case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
|
|
case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
|
|
case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
|
|
}
|
|
break;
|
|
|
|
case VT_BSTR:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY:
|
|
V_BSTR(pd) = SysAllocStringLen(NULL, 0);
|
|
return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
|
|
case VT_BOOL:
|
|
if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
|
|
return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
|
|
}
|
|
break;
|
|
|
|
case VT_CY:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
|
|
case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
|
|
case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
|
|
case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
|
|
case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
|
|
case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
|
|
case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
|
|
case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
|
|
case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
|
|
case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
|
|
case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
|
|
case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
|
|
case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
|
|
case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
|
|
case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
|
|
case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
|
|
}
|
|
break;
|
|
|
|
case VT_DECIMAL:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_EMPTY:
|
|
case VT_BOOL:
|
|
DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
|
|
DEC_HI32(&V_DECIMAL(pd)) = 0;
|
|
DEC_MID32(&V_DECIMAL(pd)) = 0;
|
|
/* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
|
|
* VT_NULL and VT_EMPTY always give a 0 value.
|
|
*/
|
|
DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
|
|
return S_OK;
|
|
case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
|
|
case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
|
|
case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
|
|
case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
|
|
case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
|
|
case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
|
|
case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
|
|
case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
|
|
case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
|
|
case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
|
|
case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
|
|
case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
|
|
case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
|
|
case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
|
|
}
|
|
break;
|
|
|
|
case VT_UNKNOWN:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_DISPATCH:
|
|
if (V_DISPATCH(ps) == NULL)
|
|
V_UNKNOWN(pd) = NULL;
|
|
else
|
|
res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case VT_DISPATCH:
|
|
switch (vtFrom)
|
|
{
|
|
case VT_UNKNOWN:
|
|
if (V_UNKNOWN(ps) == NULL)
|
|
V_DISPATCH(pd) = NULL;
|
|
else
|
|
res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case VT_RECORD:
|
|
break;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Coerce to/from an array */
|
|
static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
|
|
{
|
|
if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
|
|
return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
|
|
|
|
if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
|
|
return VectorFromBstr(V_BSTR(ps), &V_ARRAY(ps));
|
|
|
|
if (V_VT(ps) == vt)
|
|
return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
|
|
|
|
return DISP_E_TYPEMISMATCH;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Check if a variants type is valid.
|
|
*/
|
|
static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
|
|
{
|
|
VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
|
|
|
|
vt &= VT_TYPEMASK;
|
|
|
|
if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
|
|
{
|
|
if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
|
|
{
|
|
if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
|
|
return DISP_E_BADVARTYPE;
|
|
if (vt != (VARTYPE)15)
|
|
return S_OK;
|
|
}
|
|
}
|
|
return DISP_E_BADVARTYPE;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* VariantInit [OLEAUT32.8]
|
|
*
|
|
* Initialise a variant.
|
|
*
|
|
* PARAMS
|
|
* pVarg [O] Variant to initialise
|
|
*
|
|
* RETURNS
|
|
* Nothing.
|
|
*
|
|
* NOTES
|
|
* This function simply sets the type of the variant to VT_EMPTY. It does not
|
|
* free any existing value, use VariantClear() for that.
|
|
*/
|
|
void WINAPI VariantInit(VARIANTARG* pVarg)
|
|
{
|
|
TRACE("(%p)\n", pVarg);
|
|
|
|
V_VT(pVarg) = VT_EMPTY; /* Native doesn't set any other fields */
|
|
}
|
|
|
|
/******************************************************************************
|
|
* VariantClear [OLEAUT32.9]
|
|
*
|
|
* Clear a variant.
|
|
*
|
|
* PARAMS
|
|
* pVarg [I/O] Variant to clear
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
|
|
* Failure: DISP_E_BADVARTYPE, if the variant is a not a valid variant type.
|
|
*/
|
|
HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
|
|
{
|
|
HRESULT hres = S_OK;
|
|
|
|
TRACE("(%p->(%s%s))\n", pVarg, debugstr_VT(pVarg), debugstr_VF(pVarg));
|
|
|
|
hres = VARIANT_ValidateType(V_VT(pVarg));
|
|
|
|
if (SUCCEEDED(hres))
|
|
{
|
|
if (!V_ISBYREF(pVarg))
|
|
{
|
|
if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
|
|
{
|
|
if (V_ARRAY(pVarg))
|
|
hres = SafeArrayDestroy(V_ARRAY(pVarg));
|
|
}
|
|
else if (V_VT(pVarg) == VT_BSTR)
|
|
{
|
|
if (V_BSTR(pVarg))
|
|
SysFreeString(V_BSTR(pVarg));
|
|
}
|
|
else if (V_VT(pVarg) == VT_RECORD)
|
|
{
|
|
struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
|
|
if (pBr->pRecInfo)
|
|
{
|
|
IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
|
|
IRecordInfo_Release(pBr->pRecInfo);
|
|
}
|
|
}
|
|
else if (V_VT(pVarg) == VT_DISPATCH ||
|
|
V_VT(pVarg) == VT_UNKNOWN)
|
|
{
|
|
if (V_UNKNOWN(pVarg))
|
|
IUnknown_Release(V_UNKNOWN(pVarg));
|
|
}
|
|
}
|
|
V_VT(pVarg) = VT_EMPTY;
|
|
}
|
|
return hres;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Copy an IRecordInfo object contained in a variant.
|
|
*/
|
|
static HRESULT VARIANT_CopyIRecordInfo(struct __tagBRECORD* pBr)
|
|
{
|
|
HRESULT hres = S_OK;
|
|
|
|
if (pBr->pRecInfo)
|
|
{
|
|
ULONG ulSize;
|
|
|
|
hres = IRecordInfo_GetSize(pBr->pRecInfo, &ulSize);
|
|
if (SUCCEEDED(hres))
|
|
{
|
|
PVOID pvRecord = HeapAlloc(GetProcessHeap(), 0, ulSize);
|
|
if (!pvRecord)
|
|
hres = E_OUTOFMEMORY;
|
|
else
|
|
{
|
|
memcpy(pvRecord, pBr->pvRecord, ulSize);
|
|
pBr->pvRecord = pvRecord;
|
|
|
|
hres = IRecordInfo_RecordCopy(pBr->pRecInfo, pvRecord, pvRecord);
|
|
if (SUCCEEDED(hres))
|
|
IRecordInfo_AddRef(pBr->pRecInfo);
|
|
}
|
|
}
|
|
}
|
|
else if (pBr->pvRecord)
|
|
hres = E_INVALIDARG;
|
|
return hres;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* VariantCopy [OLEAUT32.10]
|
|
*
|
|
* Copy a variant.
|
|
*
|
|
* PARAMS
|
|
* pvargDest [O] Destination for copy
|
|
* pvargSrc [I] Source variant to copy
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pvargDest contains a copy of pvargSrc.
|
|
* Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
|
|
* E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
|
|
* HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
|
|
* or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
|
|
*
|
|
* NOTES
|
|
* - If pvargSrc == pvargDest, this function does nothing, and succeeds if
|
|
* pvargSrc is valid. Otherwise, pvargDest is always cleared using
|
|
* VariantClear() before pvargSrc is copied to it. If clearing pvargDest
|
|
* fails, so does this function.
|
|
* - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
|
|
* - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
|
|
* is copied rather than just any pointers to it.
|
|
* - For by-value object types the object pointer is copied and the objects
|
|
* reference count increased using IUnknown_AddRef().
|
|
* - For all by-reference types, only the referencing pointer is copied.
|
|
*/
|
|
HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
|
|
{
|
|
HRESULT hres = S_OK;
|
|
|
|
TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
|
|
debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
|
|
debugstr_VF(pvargSrc));
|
|
|
|
if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
|
|
FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
|
|
return DISP_E_BADVARTYPE;
|
|
|
|
if (pvargSrc != pvargDest &&
|
|
SUCCEEDED(hres = VariantClear(pvargDest)))
|
|
{
|
|
*pvargDest = *pvargSrc; /* Shallow copy the value */
|
|
|
|
if (!V_ISBYREF(pvargSrc))
|
|
{
|
|
if (V_ISARRAY(pvargSrc))
|
|
{
|
|
if (V_ARRAY(pvargSrc))
|
|
hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
|
|
}
|
|
else if (V_VT(pvargSrc) == VT_BSTR)
|
|
{
|
|
V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
|
|
if (!V_BSTR(pvargDest))
|
|
{
|
|
TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc)));
|
|
hres = E_OUTOFMEMORY;
|
|
}
|
|
}
|
|
else if (V_VT(pvargSrc) == VT_RECORD)
|
|
{
|
|
hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
|
|
}
|
|
else if (V_VT(pvargSrc) == VT_DISPATCH ||
|
|
V_VT(pvargSrc) == VT_UNKNOWN)
|
|
{
|
|
if (V_UNKNOWN(pvargSrc))
|
|
IUnknown_AddRef(V_UNKNOWN(pvargSrc));
|
|
}
|
|
}
|
|
}
|
|
return hres;
|
|
}
|
|
|
|
/* Return the byte size of a variants data */
|
|
static inline size_t VARIANT_DataSize(const VARIANT* pv)
|
|
{
|
|
switch (V_TYPE(pv))
|
|
{
|
|
case VT_I1:
|
|
case VT_UI1: return sizeof(BYTE);
|
|
case VT_I2:
|
|
case VT_UI2: return sizeof(SHORT);
|
|
case VT_INT:
|
|
case VT_UINT:
|
|
case VT_I4:
|
|
case VT_UI4: return sizeof(LONG);
|
|
case VT_I8:
|
|
case VT_UI8: return sizeof(LONGLONG);
|
|
case VT_R4: return sizeof(float);
|
|
case VT_R8: return sizeof(double);
|
|
case VT_DATE: return sizeof(DATE);
|
|
case VT_BOOL: return sizeof(VARIANT_BOOL);
|
|
case VT_DISPATCH:
|
|
case VT_UNKNOWN:
|
|
case VT_BSTR: return sizeof(void*);
|
|
case VT_CY: return sizeof(CY);
|
|
case VT_ERROR: return sizeof(SCODE);
|
|
}
|
|
TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv), debugstr_VF(pv));
|
|
return 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* VariantCopyInd [OLEAUT32.11]
|
|
*
|
|
* Copy a variant, dereferencing it it is by-reference.
|
|
*
|
|
* PARAMS
|
|
* pvargDest [O] Destination for copy
|
|
* pvargSrc [I] Source variant to copy
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pvargDest contains a copy of pvargSrc.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTES
|
|
* Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
|
|
* E_INVALIDARG, if pvargSrc is an invalid by-reference type.
|
|
* E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
|
|
* HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
|
|
* or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
|
|
*
|
|
* NOTES
|
|
* - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
|
|
* - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
|
|
* value.
|
|
* - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
|
|
* pvargDest is always cleared using VariantClear() before pvargSrc is copied
|
|
* to it. If clearing pvargDest fails, so does this function.
|
|
*/
|
|
HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
|
|
{
|
|
VARIANTARG vTmp, *pSrc = pvargSrc;
|
|
VARTYPE vt;
|
|
HRESULT hres = S_OK;
|
|
|
|
TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
|
|
debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
|
|
debugstr_VF(pvargSrc));
|
|
|
|
if (!V_ISBYREF(pvargSrc))
|
|
return VariantCopy(pvargDest, pvargSrc);
|
|
|
|
/* Argument checking is more lax than VariantCopy()... */
|
|
vt = V_TYPE(pvargSrc);
|
|
if (V_ISARRAY(pvargSrc) ||
|
|
(vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
|
|
!(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
|
|
{
|
|
/* OK */
|
|
}
|
|
else
|
|
return E_INVALIDARG; /* ...And the return value for invalid types differs too */
|
|
|
|
if (pvargSrc == pvargDest)
|
|
{
|
|
/* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
|
|
* This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
|
|
*/
|
|
vTmp = *pvargSrc;
|
|
pSrc = &vTmp;
|
|
V_VT(pvargDest) = VT_EMPTY;
|
|
}
|
|
else
|
|
{
|
|
/* Copy into another variant. Free the variant in pvargDest */
|
|
if (FAILED(hres = VariantClear(pvargDest)))
|
|
{
|
|
TRACE("VariantClear() of destination failed\n");
|
|
return hres;
|
|
}
|
|
}
|
|
|
|
if (V_ISARRAY(pSrc))
|
|
{
|
|
/* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
|
|
hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
|
|
}
|
|
else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
|
|
{
|
|
/* Native doesn't check that *V_BSTRREF(pSrc) is valid */
|
|
V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
|
|
}
|
|
else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
|
|
{
|
|
V_UNION(pvargDest,brecVal) = V_UNION(pvargSrc,brecVal);
|
|
hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
|
|
}
|
|
else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
|
|
V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
|
|
{
|
|
/* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
|
|
V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
|
|
if (*V_UNKNOWNREF(pSrc))
|
|
IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
|
|
}
|
|
else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
|
|
{
|
|
/* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
|
|
if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
|
|
hres = E_INVALIDARG; /* Don't dereference more than one level */
|
|
else
|
|
hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
|
|
|
|
/* Use the dereferenced variants type value, not VT_VARIANT */
|
|
goto VariantCopyInd_Return;
|
|
}
|
|
else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
|
|
{
|
|
memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
|
|
sizeof(DECIMAL) - sizeof(USHORT));
|
|
}
|
|
else
|
|
{
|
|
/* Copy the pointed to data into this variant */
|
|
memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
|
|
}
|
|
|
|
V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
|
|
|
|
VariantCopyInd_Return:
|
|
|
|
if (pSrc != pvargSrc)
|
|
VariantClear(pSrc);
|
|
|
|
TRACE("returning 0x%08lx, %p->(%s%s)\n", hres, pvargDest,
|
|
debugstr_VT(pvargDest), debugstr_VF(pvargDest));
|
|
return hres;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* VariantChangeType [OLEAUT32.12]
|
|
*
|
|
* Change the type of a variant.
|
|
*
|
|
* PARAMS
|
|
* pvargDest [O] Destination for the converted variant
|
|
* pvargSrc [O] Source variant to change the type of
|
|
* wFlags [I] VARIANT_ flags from "oleauto.h"
|
|
* vt [I] Variant type to change pvargSrc into
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pvargDest contains the converted value.
|
|
* Failure: An HRESULT error code describing the failure.
|
|
*
|
|
* NOTES
|
|
* The LCID used for the conversion is LOCALE_USER_DEFAULT.
|
|
* See VariantChangeTypeEx.
|
|
*/
|
|
HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
|
|
USHORT wFlags, VARTYPE vt)
|
|
{
|
|
return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
|
|
}
|
|
|
|
/******************************************************************************
|
|
* VariantChangeTypeEx [OLEAUT32.147]
|
|
*
|
|
* Change the type of a variant.
|
|
*
|
|
* PARAMS
|
|
* pvargDest [O] Destination for the converted variant
|
|
* pvargSrc [O] Source variant to change the type of
|
|
* lcid [I] LCID for the conversion
|
|
* wFlags [I] VARIANT_ flags from "oleauto.h"
|
|
* vt [I] Variant type to change pvargSrc into
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pvargDest contains the converted value.
|
|
* Failure: An HRESULT error code describing the failure.
|
|
*
|
|
* NOTES
|
|
* pvargDest and pvargSrc can point to the same variant to perform an in-place
|
|
* conversion. If the conversion is successful, pvargSrc will be freed.
|
|
*/
|
|
HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
|
|
LCID lcid, USHORT wFlags, VARTYPE vt)
|
|
{
|
|
HRESULT res = S_OK;
|
|
|
|
TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%04x,%s%s)\n", pvargDest,
|
|
debugstr_VT(pvargDest), debugstr_VF(pvargDest), pvargSrc,
|
|
debugstr_VT(pvargSrc), debugstr_VF(pvargSrc), lcid, wFlags,
|
|
debugstr_vt(vt), debugstr_vf(vt));
|
|
|
|
if (vt == VT_CLSID)
|
|
res = DISP_E_BADVARTYPE;
|
|
else
|
|
{
|
|
res = VARIANT_ValidateType(V_VT(pvargSrc));
|
|
|
|
if (SUCCEEDED(res))
|
|
{
|
|
res = VARIANT_ValidateType(vt);
|
|
|
|
if (SUCCEEDED(res))
|
|
{
|
|
VARIANTARG vTmp, vSrcDeref;
|
|
|
|
if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
|
|
res = DISP_E_TYPEMISMATCH;
|
|
else
|
|
{
|
|
V_VT(&vTmp) = VT_EMPTY;
|
|
V_VT(&vSrcDeref) = VT_EMPTY;
|
|
VariantClear(&vTmp);
|
|
VariantClear(&vSrcDeref);
|
|
}
|
|
|
|
if (SUCCEEDED(res))
|
|
{
|
|
res = VariantCopyInd(&vSrcDeref, pvargSrc);
|
|
if (SUCCEEDED(res))
|
|
{
|
|
if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
|
|
res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
|
|
else
|
|
res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
|
|
|
|
if (SUCCEEDED(res)) {
|
|
V_VT(&vTmp) = vt;
|
|
VariantCopy(pvargDest, &vTmp);
|
|
}
|
|
VariantClear(&vTmp);
|
|
VariantClear(&vSrcDeref);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TRACE("returning 0x%08lx, %p->(%s%s)\n", res, pvargDest,
|
|
debugstr_VT(pvargDest), debugstr_VF(pvargDest));
|
|
return res;
|
|
}
|
|
|
|
/* Date Conversions */
|
|
|
|
#define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
|
|
|
|
/* Convert a VT_DATE value to a Julian Date */
|
|
static inline int VARIANT_JulianFromDate(int dateIn)
|
|
{
|
|
int julianDays = dateIn;
|
|
|
|
julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
|
|
julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
|
|
return julianDays;
|
|
}
|
|
|
|
/* Convert a Julian Date to a VT_DATE value */
|
|
static inline int VARIANT_DateFromJulian(int dateIn)
|
|
{
|
|
int julianDays = dateIn;
|
|
|
|
julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
|
|
julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
|
|
return julianDays;
|
|
}
|
|
|
|
/* Convert a Julian date to Day/Month/Year - from PostgreSQL */
|
|
static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
|
|
{
|
|
int j, i, l, n;
|
|
|
|
l = jd + 68569;
|
|
n = l * 4 / 146097;
|
|
l -= (n * 146097 + 3) / 4;
|
|
i = (4000 * (l + 1)) / 1461001;
|
|
l += 31 - (i * 1461) / 4;
|
|
j = (l * 80) / 2447;
|
|
*day = l - (j * 2447) / 80;
|
|
l = j / 11;
|
|
*month = (j + 2) - (12 * l);
|
|
*year = 100 * (n - 49) + i + l;
|
|
}
|
|
|
|
/* Convert Day/Month/Year to a Julian date - from PostgreSQL */
|
|
static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
|
|
{
|
|
int m12 = (month - 14) / 12;
|
|
|
|
return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
|
|
(3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
|
|
}
|
|
|
|
/* Macros for accessing DOS format date/time fields */
|
|
#define DOS_YEAR(x) (1980 + (x >> 9))
|
|
#define DOS_MONTH(x) ((x >> 5) & 0xf)
|
|
#define DOS_DAY(x) (x & 0x1f)
|
|
#define DOS_HOUR(x) (x >> 11)
|
|
#define DOS_MINUTE(x) ((x >> 5) & 0x3f)
|
|
#define DOS_SECOND(x) ((x & 0x1f) << 1)
|
|
/* Create a DOS format date/time */
|
|
#define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
|
|
#define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
|
|
|
|
/* Roll a date forwards or backwards to correct it */
|
|
static HRESULT VARIANT_RollUdate(UDATE *lpUd)
|
|
{
|
|
static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
|
|
|
TRACE("Raw date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
|
|
lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
|
|
|
|
/* Years < 100 are treated as 1900 + year */
|
|
if (lpUd->st.wYear < 100)
|
|
lpUd->st.wYear += 1900;
|
|
|
|
if (!lpUd->st.wMonth)
|
|
{
|
|
/* Roll back to December of the previous year */
|
|
lpUd->st.wMonth = 12;
|
|
lpUd->st.wYear--;
|
|
}
|
|
else while (lpUd->st.wMonth > 12)
|
|
{
|
|
/* Roll forward the correct number of months */
|
|
lpUd->st.wYear++;
|
|
lpUd->st.wMonth -= 12;
|
|
}
|
|
|
|
if (lpUd->st.wYear > 9999 || lpUd->st.wHour > 23 ||
|
|
lpUd->st.wMinute > 59 || lpUd->st.wSecond > 59)
|
|
return E_INVALIDARG; /* Invalid values */
|
|
|
|
if (!lpUd->st.wDay)
|
|
{
|
|
/* Roll back the date one day */
|
|
if (lpUd->st.wMonth == 1)
|
|
{
|
|
/* Roll back to December 31 of the previous year */
|
|
lpUd->st.wDay = 31;
|
|
lpUd->st.wMonth = 12;
|
|
lpUd->st.wYear--;
|
|
}
|
|
else
|
|
{
|
|
lpUd->st.wMonth--; /* Previous month */
|
|
if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
|
|
lpUd->st.wDay = 29; /* Februaury has 29 days on leap years */
|
|
else
|
|
lpUd->st.wDay = days[lpUd->st.wMonth]; /* Last day of the month */
|
|
}
|
|
}
|
|
else if (lpUd->st.wDay > 28)
|
|
{
|
|
int rollForward = 0;
|
|
|
|
/* Possibly need to roll the date forward */
|
|
if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
|
|
rollForward = lpUd->st.wDay - 29; /* Februaury has 29 days on leap years */
|
|
else
|
|
rollForward = lpUd->st.wDay - days[lpUd->st.wMonth];
|
|
|
|
if (rollForward > 0)
|
|
{
|
|
lpUd->st.wDay = rollForward;
|
|
lpUd->st.wMonth++;
|
|
if (lpUd->st.wMonth > 12)
|
|
{
|
|
lpUd->st.wMonth = 1; /* Roll forward into January of the next year */
|
|
lpUd->st.wYear++;
|
|
}
|
|
}
|
|
}
|
|
TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
|
|
lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
|
|
return S_OK;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* DosDateTimeToVariantTime [OLEAUT32.14]
|
|
*
|
|
* Convert a Dos format date and time into variant VT_DATE format.
|
|
*
|
|
* PARAMS
|
|
* wDosDate [I] Dos format date
|
|
* wDosTime [I] Dos format time
|
|
* pDateOut [O] Destination for VT_DATE format
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE. pDateOut contains the converted time.
|
|
* Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
|
|
*
|
|
* NOTES
|
|
* - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
|
|
* - Dos format times are accurate to only 2 second precision.
|
|
* - The format of a Dos Date is:
|
|
*| Bits Values Meaning
|
|
*| ---- ------ -------
|
|
*| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
|
|
*| the days in the month rolls forward the extra days.
|
|
*| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
|
|
*| year. 13-15 are invalid.
|
|
*| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
|
|
* - The format of a Dos Time is:
|
|
*| Bits Values Meaning
|
|
*| ---- ------ -------
|
|
*| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
|
|
*| 5-10 0-59 Minutes. 60-63 are invalid.
|
|
*| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
|
|
*/
|
|
INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
|
|
double *pDateOut)
|
|
{
|
|
UDATE ud;
|
|
|
|
TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
|
|
wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
|
|
wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
|
|
pDateOut);
|
|
|
|
ud.st.wYear = DOS_YEAR(wDosDate);
|
|
ud.st.wMonth = DOS_MONTH(wDosDate);
|
|
if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
|
|
return FALSE;
|
|
ud.st.wDay = DOS_DAY(wDosDate);
|
|
ud.st.wHour = DOS_HOUR(wDosTime);
|
|
ud.st.wMinute = DOS_MINUTE(wDosTime);
|
|
ud.st.wSecond = DOS_SECOND(wDosTime);
|
|
ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
|
|
|
|
return !VarDateFromUdate(&ud, 0, pDateOut);
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VariantTimeToDosDateTime [OLEAUT32.13]
|
|
*
|
|
* Convert a variant format date into a Dos format date and time.
|
|
*
|
|
* dateIn [I] VT_DATE time format
|
|
* pwDosDate [O] Destination for Dos format date
|
|
* pwDosTime [O] Destination for Dos format time
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE. pwDosDate and pwDosTime contains the converted values.
|
|
* Failure: FALSE, if dateIn cannot be represented in Dos format.
|
|
*
|
|
* NOTES
|
|
* See DosDateTimeToVariantTime() for Dos format details and bugs.
|
|
*/
|
|
INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
|
|
{
|
|
UDATE ud;
|
|
|
|
TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
|
|
|
|
if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
|
|
return FALSE;
|
|
|
|
if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
|
|
return FALSE;
|
|
|
|
*pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
|
|
*pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
|
|
|
|
TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
|
|
*pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
|
|
*pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
|
|
return TRUE;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* SystemTimeToVariantTime [OLEAUT32.184]
|
|
*
|
|
* Convert a System format date and time into variant VT_DATE format.
|
|
*
|
|
* PARAMS
|
|
* lpSt [I] System format date and time
|
|
* pDateOut [O] Destination for VT_DATE format date
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE. *pDateOut contains the converted value.
|
|
* Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
|
|
*/
|
|
INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
|
|
{
|
|
UDATE ud;
|
|
|
|
TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
|
|
lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
|
|
|
|
if (lpSt->wMonth > 12)
|
|
return FALSE;
|
|
|
|
memcpy(&ud.st, lpSt, sizeof(ud.st));
|
|
return !VarDateFromUdate(&ud, 0, pDateOut);
|
|
}
|
|
|
|
/***********************************************************************
|
|
* VariantTimeToSystemTime [OLEAUT32.185]
|
|
*
|
|
* Convert a variant VT_DATE into a System format date and time.
|
|
*
|
|
* PARAMS
|
|
* datein [I] Variant VT_DATE format date
|
|
* lpSt [O] Destination for System format date and time
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE. *lpSt contains the converted value.
|
|
* Failure: FALSE, if dateIn is too large or small.
|
|
*/
|
|
INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
|
|
{
|
|
UDATE ud;
|
|
|
|
TRACE("(%g,%p)\n", dateIn, lpSt);
|
|
|
|
if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
|
|
return FALSE;
|
|
|
|
memcpy(lpSt, &ud.st, sizeof(ud.st));
|
|
return TRUE;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* VarDateFromUdateEx [OLEAUT32.319]
|
|
*
|
|
* Convert an unpacked format date and time to a variant VT_DATE.
|
|
*
|
|
* PARAMS
|
|
* pUdateIn [I] Unpacked format date and time to convert
|
|
* lcid [I] Locale identifier for the conversion
|
|
* dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
|
|
* pDateOut [O] Destination for variant VT_DATE.
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. *pDateOut contains the converted value.
|
|
* Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
|
|
*/
|
|
HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
|
|
{
|
|
UDATE ud;
|
|
double dateVal;
|
|
|
|
TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08lx,0x%08lx,%p)\n", pUdateIn,
|
|
pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
|
|
pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
|
|
pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
|
|
pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
|
|
|
|
if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
|
|
FIXME("lcid possibly not handled, treating as en-us\n");
|
|
|
|
memcpy(&ud, pUdateIn, sizeof(ud));
|
|
|
|
if (dwFlags & VAR_VALIDDATE)
|
|
WARN("Ignoring VAR_VALIDDATE\n");
|
|
|
|
if (FAILED(VARIANT_RollUdate(&ud)))
|
|
return E_INVALIDARG;
|
|
|
|
/* Date */
|
|
dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
|
|
|
|
/* Time */
|
|
dateVal += ud.st.wHour / 24.0;
|
|
dateVal += ud.st.wMinute / 1440.0;
|
|
dateVal += ud.st.wSecond / 86400.0;
|
|
dateVal += ud.st.wMilliseconds / 86400000.0;
|
|
|
|
TRACE("Returning %g\n", dateVal);
|
|
*pDateOut = dateVal;
|
|
return S_OK;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* VarDateFromUdate [OLEAUT32.330]
|
|
*
|
|
* Convert an unpacked format date and time to a variant VT_DATE.
|
|
*
|
|
* PARAMS
|
|
* pUdateIn [I] Unpacked format date and time to convert
|
|
* dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
|
|
* pDateOut [O] Destination for variant VT_DATE.
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. *pDateOut contains the converted value.
|
|
* Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
|
|
*
|
|
* NOTES
|
|
* This function uses the United States English locale for the conversion. Use
|
|
* VarDateFromUdateEx() for alternate locales.
|
|
*/
|
|
HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
|
|
{
|
|
LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
|
|
|
|
return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
|
|
}
|
|
|
|
/***********************************************************************
|
|
* VarUdateFromDate [OLEAUT32.331]
|
|
*
|
|
* Convert a variant VT_DATE into an unpacked format date and time.
|
|
*
|
|
* PARAMS
|
|
* datein [I] Variant VT_DATE format date
|
|
* dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
|
|
* lpUdate [O] Destination for unpacked format date and time
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. *lpUdate contains the converted value.
|
|
* Failure: E_INVALIDARG, if dateIn is too large or small.
|
|
*/
|
|
HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
|
|
{
|
|
/* Cumulative totals of days per month */
|
|
static const USHORT cumulativeDays[] =
|
|
{
|
|
0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
|
|
};
|
|
double datePart, timePart;
|
|
int julianDays;
|
|
|
|
TRACE("(%g,0x%08lx,%p)\n", dateIn, dwFlags, lpUdate);
|
|
|
|
if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
|
|
return E_INVALIDARG;
|
|
|
|
datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
|
|
/* Compensate for int truncation (always downwards) */
|
|
timePart = dateIn - datePart + 0.00000000001;
|
|
if (timePart >= 1.0)
|
|
timePart -= 0.00000000001;
|
|
|
|
/* Date */
|
|
julianDays = VARIANT_JulianFromDate(dateIn);
|
|
VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
|
|
&lpUdate->st.wDay);
|
|
|
|
datePart = (datePart + 1.5) / 7.0;
|
|
lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
|
|
if (lpUdate->st.wDayOfWeek == 0)
|
|
lpUdate->st.wDayOfWeek = 5;
|
|
else if (lpUdate->st.wDayOfWeek == 1)
|
|
lpUdate->st.wDayOfWeek = 6;
|
|
else
|
|
lpUdate->st.wDayOfWeek -= 2;
|
|
|
|
if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
|
|
lpUdate->wDayOfYear = 1; /* After February, in a leap year */
|
|
else
|
|
lpUdate->wDayOfYear = 0;
|
|
|
|
lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
|
|
lpUdate->wDayOfYear += lpUdate->st.wDay;
|
|
|
|
/* Time */
|
|
timePart *= 24.0;
|
|
lpUdate->st.wHour = timePart;
|
|
timePart -= lpUdate->st.wHour;
|
|
timePart *= 60.0;
|
|
lpUdate->st.wMinute = timePart;
|
|
timePart -= lpUdate->st.wMinute;
|
|
timePart *= 60.0;
|
|
lpUdate->st.wSecond = timePart;
|
|
timePart -= lpUdate->st.wSecond;
|
|
lpUdate->st.wMilliseconds = 0;
|
|
if (timePart > 0.5)
|
|
{
|
|
/* Round the milliseconds, adjusting the time/date forward if needed */
|
|
if (lpUdate->st.wSecond < 59)
|
|
lpUdate->st.wSecond++;
|
|
else
|
|
{
|
|
lpUdate->st.wSecond = 0;
|
|
if (lpUdate->st.wMinute < 59)
|
|
lpUdate->st.wMinute++;
|
|
else
|
|
{
|
|
lpUdate->st.wMinute = 0;
|
|
if (lpUdate->st.wHour < 23)
|
|
lpUdate->st.wHour++;
|
|
else
|
|
{
|
|
lpUdate->st.wHour = 0;
|
|
/* Roll over a whole day */
|
|
if (++lpUdate->st.wDay > 28)
|
|
VARIANT_RollUdate(lpUdate);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return S_OK;
|
|
}
|
|
|
|
#define GET_NUMBER_TEXT(fld,name) \
|
|
buff[0] = 0; \
|
|
if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
|
|
WARN("buffer too small for " #fld "\n"); \
|
|
else \
|
|
if (buff[0]) lpChars->name = buff[0]; \
|
|
TRACE("lcid 0x%lx, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
|
|
|
|
/* Get the valid number characters for an lcid */
|
|
void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
|
|
{
|
|
static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
|
|
LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
|
|
WCHAR buff[4];
|
|
|
|
memcpy(lpChars, &defaultChars, sizeof(defaultChars));
|
|
GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
|
|
GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
|
|
GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
|
|
GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeperator);
|
|
GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
|
|
GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeperator);
|
|
|
|
/* Local currency symbols are often 2 characters */
|
|
lpChars->cCurrencyLocal2 = '\0';
|
|
switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
|
|
{
|
|
case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
|
|
case 2: lpChars->cCurrencyLocal = buff[0];
|
|
break;
|
|
default: WARN("buffer too small for LOCALE_SCURRENCY\n");
|
|
}
|
|
TRACE("lcid 0x%lx, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
|
|
lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
|
|
}
|
|
|
|
/* Number Parsing States */
|
|
#define B_PROCESSING_EXPONENT 0x1
|
|
#define B_NEGATIVE_EXPONENT 0x2
|
|
#define B_EXPONENT_START 0x4
|
|
#define B_INEXACT_ZEROS 0x8
|
|
#define B_LEADING_ZERO 0x10
|
|
#define B_PROCESSING_HEX 0x20
|
|
#define B_PROCESSING_OCT 0x40
|
|
|
|
/**********************************************************************
|
|
* VarParseNumFromStr [OLEAUT32.46]
|
|
*
|
|
* Parse a string containing a number into a NUMPARSE structure.
|
|
*
|
|
* PARAMS
|
|
* lpszStr [I] String to parse number from
|
|
* lcid [I] Locale Id for the conversion
|
|
* dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
|
|
* pNumprs [I/O] Destination for parsed number
|
|
* rgbDig [O] Destination for digits read in
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pNumprs and rgbDig contain the parsed representation of
|
|
* the number.
|
|
* Failure: E_INVALIDARG, if any parameter is invalid.
|
|
* DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
|
|
* incorrectly.
|
|
* DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
|
|
*
|
|
* NOTES
|
|
* pNumprs must have the following fields set:
|
|
* cDig: Set to the size of rgbDig.
|
|
* dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
|
|
* from "oleauto.h".
|
|
*
|
|
* FIXME
|
|
* - I am unsure if this function should parse non-arabic (e.g. Thai)
|
|
* numerals, so this has not been implemented.
|
|
*/
|
|
HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
|
|
NUMPARSE *pNumprs, BYTE *rgbDig)
|
|
{
|
|
VARIANT_NUMBER_CHARS chars;
|
|
BYTE rgbTmp[1024];
|
|
DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
|
|
int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
|
|
int cchUsed = 0;
|
|
|
|
TRACE("(%s,%ld,0x%08lx,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
|
|
|
|
if (!pNumprs || !rgbDig)
|
|
return E_INVALIDARG;
|
|
|
|
if (pNumprs->cDig < iMaxDigits)
|
|
iMaxDigits = pNumprs->cDig;
|
|
|
|
pNumprs->cDig = 0;
|
|
pNumprs->dwOutFlags = 0;
|
|
pNumprs->cchUsed = 0;
|
|
pNumprs->nBaseShift = 0;
|
|
pNumprs->nPwr10 = 0;
|
|
|
|
if (!lpszStr)
|
|
return DISP_E_TYPEMISMATCH;
|
|
|
|
VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
|
|
|
|
/* First consume all the leading symbols and space from the string */
|
|
while (1)
|
|
{
|
|
if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
|
|
{
|
|
pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
|
|
do
|
|
{
|
|
cchUsed++;
|
|
lpszStr++;
|
|
} while (isspaceW(*lpszStr));
|
|
}
|
|
else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
|
|
*lpszStr == chars.cPositiveSymbol &&
|
|
!(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
|
|
{
|
|
pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
|
|
cchUsed++;
|
|
lpszStr++;
|
|
}
|
|
else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
|
|
*lpszStr == chars.cNegativeSymbol &&
|
|
!(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
|
|
{
|
|
pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
|
|
cchUsed++;
|
|
lpszStr++;
|
|
}
|
|
else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
|
|
!(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
|
|
*lpszStr == chars.cCurrencyLocal &&
|
|
(!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
|
|
{
|
|
pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
|
|
cchUsed++;
|
|
lpszStr++;
|
|
/* Only accept currency characters */
|
|
chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
|
|
chars.cDigitSeperator = chars.cCurrencyDigitSeperator;
|
|
}
|
|
else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
|
|
!(pNumprs->dwOutFlags & NUMPRS_PARENS))
|
|
{
|
|
pNumprs->dwOutFlags |= NUMPRS_PARENS;
|
|
cchUsed++;
|
|
lpszStr++;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
|
|
{
|
|
/* Only accept non-currency characters */
|
|
chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
|
|
chars.cCurrencyDigitSeperator = chars.cDigitSeperator;
|
|
}
|
|
|
|
if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
|
|
pNumprs->dwInFlags & NUMPRS_HEX_OCT)
|
|
{
|
|
dwState |= B_PROCESSING_HEX;
|
|
pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
|
|
cchUsed=cchUsed+2;
|
|
lpszStr=lpszStr+2;
|
|
}
|
|
else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
|
|
pNumprs->dwInFlags & NUMPRS_HEX_OCT)
|
|
{
|
|
dwState |= B_PROCESSING_OCT;
|
|
pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
|
|
cchUsed=cchUsed+2;
|
|
lpszStr=lpszStr+2;
|
|
}
|
|
|
|
/* Strip Leading zeros */
|
|
while (*lpszStr == '0')
|
|
{
|
|
dwState |= B_LEADING_ZERO;
|
|
cchUsed++;
|
|
lpszStr++;
|
|
}
|
|
|
|
while (*lpszStr)
|
|
{
|
|
if (isdigitW(*lpszStr))
|
|
{
|
|
if (dwState & B_PROCESSING_EXPONENT)
|
|
{
|
|
int exponentSize = 0;
|
|
if (dwState & B_EXPONENT_START)
|
|
{
|
|
if (!isdigitW(*lpszStr))
|
|
break; /* No exponent digits - invalid */
|
|
while (*lpszStr == '0')
|
|
{
|
|
/* Skip leading zero's in the exponent */
|
|
cchUsed++;
|
|
lpszStr++;
|
|
}
|
|
}
|
|
|
|
while (isdigitW(*lpszStr))
|
|
{
|
|
exponentSize *= 10;
|
|
exponentSize += *lpszStr - '0';
|
|
cchUsed++;
|
|
lpszStr++;
|
|
}
|
|
if (dwState & B_NEGATIVE_EXPONENT)
|
|
exponentSize = -exponentSize;
|
|
/* Add the exponent into the powers of 10 */
|
|
pNumprs->nPwr10 += exponentSize;
|
|
dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
|
|
lpszStr--; /* back up to allow processing of next char */
|
|
}
|
|
else
|
|
{
|
|
if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
|
|
&& !(dwState & B_PROCESSING_OCT))
|
|
{
|
|
pNumprs->dwOutFlags |= NUMPRS_INEXACT;
|
|
|
|
if (*lpszStr != '0')
|
|
dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
|
|
|
|
/* This digit can't be represented, but count it in nPwr10 */
|
|
if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
|
|
pNumprs->nPwr10--;
|
|
else
|
|
pNumprs->nPwr10++;
|
|
}
|
|
else
|
|
{
|
|
if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
|
|
return DISP_E_TYPEMISMATCH;
|
|
}
|
|
|
|
if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
|
|
pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
|
|
|
|
rgbTmp[pNumprs->cDig] = *lpszStr - '0';
|
|
}
|
|
pNumprs->cDig++;
|
|
cchUsed++;
|
|
}
|
|
}
|
|
else if (*lpszStr == chars.cDigitSeperator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
|
|
{
|
|
pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
|
|
cchUsed++;
|
|
}
|
|
else if (*lpszStr == chars.cDecimalPoint &&
|
|
pNumprs->dwInFlags & NUMPRS_DECIMAL &&
|
|
!(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
|
|
{
|
|
pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
|
|
cchUsed++;
|
|
|
|
/* If we have no digits so far, skip leading zeros */
|
|
if (!pNumprs->cDig)
|
|
{
|
|
while (lpszStr[1] == '0')
|
|
{
|
|
dwState |= B_LEADING_ZERO;
|
|
cchUsed++;
|
|
lpszStr++;
|
|
pNumprs->nPwr10--;
|
|
}
|
|
}
|
|
}
|
|
else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
|
|
(*lpszStr >= 'A' && *lpszStr <= 'F')) &&
|
|
dwState & B_PROCESSING_HEX)
|
|
{
|
|
if (pNumprs->cDig >= iMaxDigits)
|
|
{
|
|
return DISP_E_OVERFLOW;
|
|
}
|
|
else
|
|
{
|
|
if (*lpszStr >= 'a')
|
|
rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
|
|
else
|
|
rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
|
|
}
|
|
pNumprs->cDig++;
|
|
cchUsed++;
|
|
}
|
|
else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
|
|
pNumprs->dwInFlags & NUMPRS_EXPONENT &&
|
|
!(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
|
|
{
|
|
dwState |= B_PROCESSING_EXPONENT;
|
|
pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
|
|
cchUsed++;
|
|
}
|
|
else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
|
|
{
|
|
cchUsed++; /* Ignore positive exponent */
|
|
}
|
|
else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
|
|
{
|
|
dwState |= B_NEGATIVE_EXPONENT;
|
|
cchUsed++;
|
|
}
|
|
else
|
|
break; /* Stop at an unrecognised character */
|
|
|
|
lpszStr++;
|
|
}
|
|
|
|
if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
|
|
{
|
|
/* Ensure a 0 on its own gets stored */
|
|
pNumprs->cDig = 1;
|
|
rgbTmp[0] = 0;
|
|
}
|
|
|
|
if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
|
|
{
|
|
pNumprs->cchUsed = cchUsed;
|
|
WARN("didn't completely parse exponent\n");
|
|
return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
|
|
}
|
|
|
|
if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
|
|
{
|
|
if (dwState & B_INEXACT_ZEROS)
|
|
pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
|
|
} else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
|
|
{
|
|
/* copy all of the digits into the output digit buffer */
|
|
/* this is exactly what windows does although it also returns */
|
|
/* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
|
|
memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
|
|
|
|
if (dwState & B_PROCESSING_HEX) {
|
|
/* hex numbers have always the same format */
|
|
pNumprs->nPwr10=0;
|
|
pNumprs->nBaseShift=4;
|
|
} else {
|
|
if (dwState & B_PROCESSING_OCT) {
|
|
/* oct numbers have always the same format */
|
|
pNumprs->nPwr10=0;
|
|
pNumprs->nBaseShift=3;
|
|
} else {
|
|
while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
|
|
{
|
|
pNumprs->nPwr10++;
|
|
pNumprs->cDig--;
|
|
}
|
|
}
|
|
}
|
|
} else
|
|
{
|
|
/* Remove trailing zeros from the last (whole number or decimal) part */
|
|
while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
|
|
{
|
|
pNumprs->nPwr10++;
|
|
pNumprs->cDig--;
|
|
}
|
|
}
|
|
|
|
if (pNumprs->cDig <= iMaxDigits)
|
|
pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
|
|
else
|
|
pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
|
|
|
|
/* Copy the digits we processed into rgbDig */
|
|
memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
|
|
|
|
/* Consume any trailing symbols and space */
|
|
while (1)
|
|
{
|
|
if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
|
|
{
|
|
pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
|
|
do
|
|
{
|
|
cchUsed++;
|
|
lpszStr++;
|
|
} while (isspaceW(*lpszStr));
|
|
}
|
|
else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
|
|
!(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
|
|
*lpszStr == chars.cPositiveSymbol)
|
|
{
|
|
pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
|
|
cchUsed++;
|
|
lpszStr++;
|
|
}
|
|
else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
|
|
!(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
|
|
*lpszStr == chars.cNegativeSymbol)
|
|
{
|
|
pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
|
|
cchUsed++;
|
|
lpszStr++;
|
|
}
|
|
else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
|
|
pNumprs->dwOutFlags & NUMPRS_PARENS)
|
|
{
|
|
cchUsed++;
|
|
lpszStr++;
|
|
pNumprs->dwOutFlags |= NUMPRS_NEG;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
|
|
{
|
|
pNumprs->cchUsed = cchUsed;
|
|
return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
|
|
}
|
|
|
|
if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
|
|
return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
|
|
|
|
if (!pNumprs->cDig)
|
|
return DISP_E_TYPEMISMATCH; /* No Number found */
|
|
|
|
pNumprs->cchUsed = cchUsed;
|
|
return S_OK;
|
|
}
|
|
|
|
/* VTBIT flags indicating an integer value */
|
|
#define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
|
|
/* VTBIT flags indicating a real number value */
|
|
#define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
|
|
|
|
/* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
|
|
#define FITS_AS_I1(x) ((x) >> 8 == 0)
|
|
#define FITS_AS_I2(x) ((x) >> 16 == 0)
|
|
#define FITS_AS_I4(x) ((x) >> 32 == 0)
|
|
|
|
/**********************************************************************
|
|
* VarNumFromParseNum [OLEAUT32.47]
|
|
*
|
|
* Convert a NUMPARSE structure into a numeric Variant type.
|
|
*
|
|
* PARAMS
|
|
* pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
|
|
* rgbDig [I] Source for the numbers digits
|
|
* dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
|
|
* pVarDst [O] Destination for the converted Variant value.
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pVarDst contains the converted value.
|
|
* Failure: E_INVALIDARG, if any parameter is invalid.
|
|
* DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
|
|
*
|
|
* NOTES
|
|
* - The smallest favoured type present in dwVtBits that can represent the
|
|
* number in pNumprs without losing precision is used.
|
|
* - Signed types are preferrred over unsigned types of the same size.
|
|
* - Preferred types in order are: integer, float, double, currency then decimal.
|
|
* - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
|
|
* for details of the rounding method.
|
|
* - pVarDst is not cleared before the result is stored in it.
|
|
* - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
|
|
* design?): If some other VTBIT's for integers are specified together
|
|
* with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
|
|
* the number to the smallest requested integer truncating this way the
|
|
* number. Wine dosn't implement this "feature" (yet?).
|
|
*/
|
|
HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
|
|
ULONG dwVtBits, VARIANT *pVarDst)
|
|
{
|
|
/* Scale factors and limits for double arithmetic */
|
|
static const double dblMultipliers[11] = {
|
|
1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
|
|
1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
|
|
};
|
|
static const double dblMinimums[11] = {
|
|
R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
|
|
R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
|
|
R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
|
|
};
|
|
static const double dblMaximums[11] = {
|
|
R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
|
|
R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
|
|
R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
|
|
};
|
|
|
|
int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
|
|
|
|
TRACE("(%p,%p,0x%lx,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
|
|
|
|
if (pNumprs->nBaseShift)
|
|
{
|
|
/* nBaseShift indicates a hex or octal number */
|
|
ULONG64 ul64 = 0;
|
|
LONG64 l64;
|
|
int i;
|
|
|
|
/* Convert the hex or octal number string into a UI64 */
|
|
for (i = 0; i < pNumprs->cDig; i++)
|
|
{
|
|
if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
|
|
{
|
|
TRACE("Overflow multiplying digits\n");
|
|
return DISP_E_OVERFLOW;
|
|
}
|
|
ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
|
|
}
|
|
|
|
/* also make a negative representation */
|
|
l64=-ul64;
|
|
|
|
/* Try signed and unsigned types in size order */
|
|
if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
|
|
{
|
|
V_VT(pVarDst) = VT_I1;
|
|
V_I1(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
|
|
{
|
|
V_VT(pVarDst) = VT_UI1;
|
|
V_UI1(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
|
|
{
|
|
V_VT(pVarDst) = VT_I2;
|
|
V_I2(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
|
|
{
|
|
V_VT(pVarDst) = VT_UI2;
|
|
V_UI2(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
|
|
{
|
|
V_VT(pVarDst) = VT_I4;
|
|
V_I4(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
|
|
{
|
|
V_VT(pVarDst) = VT_UI4;
|
|
V_UI4(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
|
|
{
|
|
V_VT(pVarDst) = VT_I8;
|
|
V_I8(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_UI8)
|
|
{
|
|
V_VT(pVarDst) = VT_UI8;
|
|
V_UI8(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
|
|
{
|
|
V_VT(pVarDst) = VT_DECIMAL;
|
|
DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
|
|
DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
|
|
DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
|
|
{
|
|
V_VT(pVarDst) = VT_R4;
|
|
if (ul64 <= I4_MAX)
|
|
V_R4(pVarDst) = ul64;
|
|
else
|
|
V_R4(pVarDst) = l64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
|
|
{
|
|
V_VT(pVarDst) = VT_R8;
|
|
if (ul64 <= I4_MAX)
|
|
V_R8(pVarDst) = ul64;
|
|
else
|
|
V_R8(pVarDst) = l64;
|
|
return S_OK;
|
|
}
|
|
|
|
TRACE("Overflow: possible return types: 0x%lx, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
|
|
return DISP_E_OVERFLOW;
|
|
}
|
|
|
|
/* Count the number of relevant fractional and whole digits stored,
|
|
* And compute the divisor/multiplier to scale the number by.
|
|
*/
|
|
if (pNumprs->nPwr10 < 0)
|
|
{
|
|
if (-pNumprs->nPwr10 >= pNumprs->cDig)
|
|
{
|
|
/* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
|
|
wholeNumberDigits = 0;
|
|
fractionalDigits = pNumprs->cDig;
|
|
divisor10 = -pNumprs->nPwr10;
|
|
}
|
|
else
|
|
{
|
|
/* An exactly represented real number e.g. 1.024 */
|
|
wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
|
|
fractionalDigits = pNumprs->cDig - wholeNumberDigits;
|
|
divisor10 = pNumprs->cDig - wholeNumberDigits;
|
|
}
|
|
}
|
|
else if (pNumprs->nPwr10 == 0)
|
|
{
|
|
/* An exactly represented whole number e.g. 1024 */
|
|
wholeNumberDigits = pNumprs->cDig;
|
|
fractionalDigits = 0;
|
|
}
|
|
else /* pNumprs->nPwr10 > 0 */
|
|
{
|
|
/* A whole number followed by nPwr10 0's e.g. 102400 */
|
|
wholeNumberDigits = pNumprs->cDig;
|
|
fractionalDigits = 0;
|
|
multiplier10 = pNumprs->nPwr10;
|
|
}
|
|
|
|
TRACE("cDig %d; nPwr10 %d, whole %d, frac %d ", pNumprs->cDig,
|
|
pNumprs->nPwr10, wholeNumberDigits, fractionalDigits);
|
|
TRACE("mult %d; div %d\n", multiplier10, divisor10);
|
|
|
|
if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
|
|
(!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
|
|
{
|
|
/* We have one or more integer output choices, and either:
|
|
* 1) An integer input value, or
|
|
* 2) A real number input value but no floating output choices.
|
|
* Alternately, we have a DECIMAL output available and an integer input.
|
|
*
|
|
* So, place the integer value into pVarDst, using the smallest type
|
|
* possible and preferring signed over unsigned types.
|
|
*/
|
|
BOOL bOverflow = FALSE, bNegative;
|
|
ULONG64 ul64 = 0;
|
|
int i;
|
|
|
|
/* Convert the integer part of the number into a UI8 */
|
|
for (i = 0; i < wholeNumberDigits; i++)
|
|
{
|
|
if (ul64 > (UI8_MAX / 10 - rgbDig[i]))
|
|
{
|
|
TRACE("Overflow multiplying digits\n");
|
|
bOverflow = TRUE;
|
|
break;
|
|
}
|
|
ul64 = ul64 * 10 + rgbDig[i];
|
|
}
|
|
|
|
/* Account for the scale of the number */
|
|
if (!bOverflow && multiplier10)
|
|
{
|
|
for (i = 0; i < multiplier10; i++)
|
|
{
|
|
if (ul64 > (UI8_MAX / 10))
|
|
{
|
|
TRACE("Overflow scaling number\n");
|
|
bOverflow = TRUE;
|
|
break;
|
|
}
|
|
ul64 = ul64 * 10;
|
|
}
|
|
}
|
|
|
|
/* If we have any fractional digits, round the value.
|
|
* Note we don't have to do this if divisor10 is < 1,
|
|
* because this means the fractional part must be < 0.5
|
|
*/
|
|
if (!bOverflow && fractionalDigits && divisor10 > 0)
|
|
{
|
|
const BYTE* fracDig = rgbDig + wholeNumberDigits;
|
|
BOOL bAdjust = FALSE;
|
|
|
|
TRACE("first decimal value is %d\n", *fracDig);
|
|
|
|
if (*fracDig > 5)
|
|
bAdjust = TRUE; /* > 0.5 */
|
|
else if (*fracDig == 5)
|
|
{
|
|
for (i = 1; i < fractionalDigits; i++)
|
|
{
|
|
if (fracDig[i])
|
|
{
|
|
bAdjust = TRUE; /* > 0.5 */
|
|
break;
|
|
}
|
|
}
|
|
/* If exactly 0.5, round only odd values */
|
|
if (i == fractionalDigits && (ul64 & 1))
|
|
bAdjust = TRUE;
|
|
}
|
|
|
|
if (bAdjust)
|
|
{
|
|
if (ul64 == UI8_MAX)
|
|
{
|
|
TRACE("Overflow after rounding\n");
|
|
bOverflow = TRUE;
|
|
}
|
|
ul64++;
|
|
}
|
|
}
|
|
|
|
/* Zero is not a negative number */
|
|
bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64 ? TRUE : FALSE;
|
|
|
|
TRACE("Integer value is %lld, bNeg %d\n", ul64, bNegative);
|
|
|
|
/* For negative integers, try the signed types in size order */
|
|
if (!bOverflow && bNegative)
|
|
{
|
|
if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
|
|
{
|
|
if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
|
|
{
|
|
V_VT(pVarDst) = VT_I1;
|
|
V_I1(pVarDst) = -ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
|
|
{
|
|
V_VT(pVarDst) = VT_I2;
|
|
V_I2(pVarDst) = -ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
|
|
{
|
|
V_VT(pVarDst) = VT_I4;
|
|
V_I4(pVarDst) = -ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
|
|
{
|
|
V_VT(pVarDst) = VT_I8;
|
|
V_I8(pVarDst) = -ul64;
|
|
return S_OK;
|
|
}
|
|
else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
|
|
{
|
|
/* Decimal is only output choice left - fast path */
|
|
V_VT(pVarDst) = VT_DECIMAL;
|
|
DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
|
|
DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
|
|
DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
|
|
return S_OK;
|
|
}
|
|
}
|
|
}
|
|
else if (!bOverflow)
|
|
{
|
|
/* For positive integers, try signed then unsigned types in size order */
|
|
if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
|
|
{
|
|
V_VT(pVarDst) = VT_I1;
|
|
V_I1(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
|
|
{
|
|
V_VT(pVarDst) = VT_UI1;
|
|
V_UI1(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
|
|
{
|
|
V_VT(pVarDst) = VT_I2;
|
|
V_I2(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
|
|
{
|
|
V_VT(pVarDst) = VT_UI2;
|
|
V_UI2(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
|
|
{
|
|
V_VT(pVarDst) = VT_I4;
|
|
V_I4(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
|
|
{
|
|
V_VT(pVarDst) = VT_UI4;
|
|
V_UI4(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
|
|
{
|
|
V_VT(pVarDst) = VT_I8;
|
|
V_I8(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if (dwVtBits & VTBIT_UI8)
|
|
{
|
|
V_VT(pVarDst) = VT_UI8;
|
|
V_UI8(pVarDst) = ul64;
|
|
return S_OK;
|
|
}
|
|
else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
|
|
{
|
|
/* Decimal is only output choice left - fast path */
|
|
V_VT(pVarDst) = VT_DECIMAL;
|
|
DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
|
|
DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
|
|
DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
|
|
return S_OK;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dwVtBits & REAL_VTBITS)
|
|
{
|
|
/* Try to put the number into a float or real */
|
|
BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
|
|
double whole = 0.0;
|
|
int i;
|
|
|
|
/* Convert the number into a double */
|
|
for (i = 0; i < pNumprs->cDig; i++)
|
|
whole = whole * 10.0 + rgbDig[i];
|
|
|
|
TRACE("Whole double value is %16.16g\n", whole);
|
|
|
|
/* Account for the scale */
|
|
while (multiplier10 > 10)
|
|
{
|
|
if (whole > dblMaximums[10])
|
|
{
|
|
dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
|
|
bOverflow = TRUE;
|
|
break;
|
|
}
|
|
whole = whole * dblMultipliers[10];
|
|
multiplier10 -= 10;
|
|
}
|
|
if (multiplier10)
|
|
{
|
|
if (whole > dblMaximums[multiplier10])
|
|
{
|
|
dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
|
|
bOverflow = TRUE;
|
|
}
|
|
else
|
|
whole = whole * dblMultipliers[multiplier10];
|
|
}
|
|
|
|
TRACE("Scaled double value is %16.16g\n", whole);
|
|
|
|
while (divisor10 > 10)
|
|
{
|
|
if (whole < dblMinimums[10] && whole != 0)
|
|
{
|
|
dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
|
|
bOverflow = TRUE;
|
|
break;
|
|
}
|
|
whole = whole / dblMultipliers[10];
|
|
divisor10 -= 10;
|
|
}
|
|
if (divisor10)
|
|
{
|
|
if (whole < dblMinimums[divisor10] && whole != 0)
|
|
{
|
|
dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
|
|
bOverflow = TRUE;
|
|
}
|
|
else
|
|
whole = whole / dblMultipliers[divisor10];
|
|
}
|
|
if (!bOverflow)
|
|
TRACE("Final double value is %16.16g\n", whole);
|
|
|
|
if (dwVtBits & VTBIT_R4 &&
|
|
((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
|
|
{
|
|
TRACE("Set R4 to final value\n");
|
|
V_VT(pVarDst) = VT_R4; /* Fits into a float */
|
|
V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
|
|
return S_OK;
|
|
}
|
|
|
|
if (dwVtBits & VTBIT_R8)
|
|
{
|
|
TRACE("Set R8 to final value\n");
|
|
V_VT(pVarDst) = VT_R8; /* Fits into a double */
|
|
V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
|
|
return S_OK;
|
|
}
|
|
|
|
if (dwVtBits & VTBIT_CY)
|
|
{
|
|
if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
|
|
{
|
|
V_VT(pVarDst) = VT_CY; /* Fits into a currency */
|
|
TRACE("Set CY to final value\n");
|
|
return S_OK;
|
|
}
|
|
TRACE("Value Overflows CY\n");
|
|
}
|
|
}
|
|
|
|
if (dwVtBits & VTBIT_DECIMAL)
|
|
{
|
|
int i;
|
|
ULONG carry;
|
|
ULONG64 tmp;
|
|
DECIMAL* pDec = &V_DECIMAL(pVarDst);
|
|
|
|
DECIMAL_SETZERO(*pDec);
|
|
DEC_LO32(pDec) = 0;
|
|
|
|
if (pNumprs->dwOutFlags & NUMPRS_NEG)
|
|
DEC_SIGN(pDec) = DECIMAL_NEG;
|
|
else
|
|
DEC_SIGN(pDec) = DECIMAL_POS;
|
|
|
|
/* Factor the significant digits */
|
|
for (i = 0; i < pNumprs->cDig; i++)
|
|
{
|
|
tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
|
|
carry = (ULONG)(tmp >> 32);
|
|
DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
|
|
tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
|
|
carry = (ULONG)(tmp >> 32);
|
|
DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
|
|
tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
|
|
DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
|
|
|
|
if (tmp >> 32 & UI4_MAX)
|
|
{
|
|
VarNumFromParseNum_DecOverflow:
|
|
TRACE("Overflow\n");
|
|
DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
|
|
return DISP_E_OVERFLOW;
|
|
}
|
|
}
|
|
|
|
/* Account for the scale of the number */
|
|
while (multiplier10 > 0)
|
|
{
|
|
tmp = (ULONG64)DEC_LO32(pDec) * 10;
|
|
carry = (ULONG)(tmp >> 32);
|
|
DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
|
|
tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
|
|
carry = (ULONG)(tmp >> 32);
|
|
DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
|
|
tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
|
|
DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
|
|
|
|
if (tmp >> 32 & UI4_MAX)
|
|
goto VarNumFromParseNum_DecOverflow;
|
|
multiplier10--;
|
|
}
|
|
DEC_SCALE(pDec) = divisor10;
|
|
|
|
V_VT(pVarDst) = VT_DECIMAL;
|
|
return S_OK;
|
|
}
|
|
return DISP_E_OVERFLOW; /* No more output choices */
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarCat [OLEAUT32.318]
|
|
*
|
|
* Concatenates one variant onto another.
|
|
*
|
|
* PARAMS
|
|
* left [I] First variant
|
|
* right [I] Second variant
|
|
* result [O] Result variant
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*/
|
|
HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
|
|
{
|
|
TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
|
|
debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), out);
|
|
|
|
/* Should we VariantClear out? */
|
|
/* Can we handle array, vector, by ref etc. */
|
|
if ((V_VT(left)&VT_TYPEMASK) == VT_NULL &&
|
|
(V_VT(right)&VT_TYPEMASK) == VT_NULL)
|
|
{
|
|
V_VT(out) = VT_NULL;
|
|
return S_OK;
|
|
}
|
|
|
|
if (V_VT(left) == VT_BSTR && V_VT(right) == VT_BSTR)
|
|
{
|
|
V_VT(out) = VT_BSTR;
|
|
VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
|
|
return S_OK;
|
|
}
|
|
if (V_VT(left) == VT_BSTR) {
|
|
VARIANT bstrvar;
|
|
HRESULT hres;
|
|
|
|
V_VT(out) = VT_BSTR;
|
|
VariantInit(&bstrvar);
|
|
hres = VariantChangeTypeEx(&bstrvar,right,0,0,VT_BSTR);
|
|
if (hres) {
|
|
FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
|
|
return hres;
|
|
}
|
|
VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar), &V_BSTR(out));
|
|
return S_OK;
|
|
}
|
|
if (V_VT(right) == VT_BSTR) {
|
|
VARIANT bstrvar;
|
|
HRESULT hres;
|
|
|
|
V_VT(out) = VT_BSTR;
|
|
VariantInit(&bstrvar);
|
|
hres = VariantChangeTypeEx(&bstrvar,left,0,0,VT_BSTR);
|
|
if (hres) {
|
|
FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
|
|
return hres;
|
|
}
|
|
VarBstrCat (V_BSTR(&bstrvar), V_BSTR(right), &V_BSTR(out));
|
|
return S_OK;
|
|
}
|
|
FIXME ("types %d / %d not supported\n",V_VT(left)&VT_TYPEMASK, V_VT(right)&VT_TYPEMASK);
|
|
return S_OK;
|
|
}
|
|
|
|
/* Wrapper around VariantChangeTypeEx() which permits changing a
|
|
variant with VT_RESERVED flag set. Needed by VarCmp. */
|
|
static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
|
|
VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
|
|
{
|
|
HRESULT res;
|
|
VARTYPE flags;
|
|
|
|
flags = V_VT(pvargSrc) & ~VT_TYPEMASK;
|
|
V_VT(pvargSrc) &= ~VT_RESERVED;
|
|
res = VariantChangeTypeEx(pvargDest,pvargSrc,lcid,wFlags,vt);
|
|
V_VT(pvargSrc) |= flags;
|
|
|
|
return res;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarCmp [OLEAUT32.176]
|
|
*
|
|
* Compare two variants.
|
|
*
|
|
* PARAMS
|
|
* left [I] First variant
|
|
* right [I] Second variant
|
|
* lcid [I] LCID (locale identifier) for the comparison
|
|
* flags [I] Flags to be used in the comparision:
|
|
* NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
|
|
* NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
|
|
*
|
|
* RETURNS
|
|
* VARCMP_LT: left variant is less than right variant.
|
|
* VARCMP_EQ: input variants are equal.
|
|
* VARCMP_LT: left variant is greater than right variant.
|
|
* VARCMP_NULL: either one of the input variants is NULL.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTES
|
|
* Native VarCmp up to and including WinXP dosn't like as input variants
|
|
* I1, UI2, VT_UI4, UI8 and UINT. INT is accepted only as left variant.
|
|
*
|
|
* If both input variants are ERROR then VARCMP_EQ will be returned, else
|
|
* an ERROR variant will trigger an error.
|
|
*
|
|
* Both input variants can have VT_RESERVED flag set which is ignored
|
|
* unless one and only one of the variants is a BSTR and the other one
|
|
* is not an EMPTY variant. All four VT_RESERVED combinations have a
|
|
* different meaning:
|
|
* - BSTR and other: BSTR is always greater than the other variant.
|
|
* - BSTR|VT_RESERVED and other: a string comparision is performed.
|
|
* - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
|
|
* comparision will take place else the BSTR is always greater.
|
|
* - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
|
|
* variant is ignored and the return value depends only on the sign
|
|
* of the BSTR if it is a number else the BSTR is always greater. A
|
|
* positive BSTR is greater, a negative one is smaller than the other
|
|
* variant.
|
|
*
|
|
* SEE
|
|
* VarBstrCmp for the lcid and flags usage.
|
|
*/
|
|
HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
|
|
{
|
|
VARTYPE lvt, rvt, vt;
|
|
VARIANT rv,lv;
|
|
DWORD xmask;
|
|
HRESULT rc;
|
|
|
|
TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%08lx)\n", left, debugstr_VT(left),
|
|
debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), lcid, flags);
|
|
|
|
lvt = V_VT(left) & VT_TYPEMASK;
|
|
rvt = V_VT(right) & VT_TYPEMASK;
|
|
xmask = (1 << lvt) | (1 << rvt);
|
|
|
|
/* If we have any flag set except VT_RESERVED bail out.
|
|
Same for the left input variant type > VT_INT and for the
|
|
right input variant type > VT_I8. Yes, VT_INT is only supported
|
|
as left variant. Go figure */
|
|
if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
|
|
lvt > VT_INT || rvt > VT_I8) {
|
|
return DISP_E_BADVARTYPE;
|
|
}
|
|
|
|
/* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
|
|
VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
|
|
if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
|
|
VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
|
|
return DISP_E_TYPEMISMATCH;
|
|
|
|
/* If both variants are VT_ERROR return VARCMP_EQ */
|
|
if (xmask == VTBIT_ERROR)
|
|
return VARCMP_EQ;
|
|
else if (xmask & VTBIT_ERROR)
|
|
return DISP_E_TYPEMISMATCH;
|
|
|
|
if (xmask & VTBIT_NULL)
|
|
return VARCMP_NULL;
|
|
|
|
VariantInit(&lv);
|
|
VariantInit(&rv);
|
|
|
|
/* Two BSTRs, ignore VT_RESERVED */
|
|
if (xmask == VTBIT_BSTR)
|
|
return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
|
|
|
|
/* A BSTR and an other variant; we have to take care of VT_RESERVED */
|
|
if (xmask & VTBIT_BSTR) {
|
|
VARIANT *bstrv, *nonbv;
|
|
VARTYPE nonbvt;
|
|
int swap = 0;
|
|
|
|
/* Swap the variants so the BSTR is always on the left */
|
|
if (lvt == VT_BSTR) {
|
|
bstrv = left;
|
|
nonbv = right;
|
|
nonbvt = rvt;
|
|
} else {
|
|
swap = 1;
|
|
bstrv = right;
|
|
nonbv = left;
|
|
nonbvt = lvt;
|
|
}
|
|
|
|
/* BSTR and EMPTY: ignore VT_RESERVED */
|
|
if (nonbvt == VT_EMPTY)
|
|
rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
|
|
else {
|
|
VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
|
|
VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
|
|
|
|
if (!breserv && !nreserv)
|
|
/* No VT_RESERVED set ==> BSTR always greater */
|
|
rc = VARCMP_GT;
|
|
else if (breserv && !nreserv) {
|
|
/* BSTR has VT_RESERVED set. Do a string comparision */
|
|
rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
|
|
if (FAILED(rc))
|
|
return rc;
|
|
rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
|
|
} else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
|
|
/* Non NULL nor empty BSTR */
|
|
/* If the BSTR is not a number the BSTR is greater */
|
|
rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
|
|
if (FAILED(rc))
|
|
rc = VARCMP_GT;
|
|
else if (breserv && nreserv)
|
|
/* FIXME: This is strange: with both VT_RESERVED set it
|
|
looks like the result depends only on the sign of
|
|
the BSTR number */
|
|
rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
|
|
else
|
|
/* Numeric comparision, will be handled below.
|
|
VARCMP_NULL used only to break out. */
|
|
rc = VARCMP_NULL;
|
|
VariantClear(&lv);
|
|
VariantClear(&rv);
|
|
} else
|
|
/* Empty or NULL BSTR */
|
|
rc = VARCMP_GT;
|
|
}
|
|
/* Fixup the return code if we swapped left and right */
|
|
if (swap) {
|
|
if (rc == VARCMP_GT)
|
|
rc = VARCMP_LT;
|
|
else if (rc == VARCMP_LT)
|
|
rc = VARCMP_GT;
|
|
}
|
|
if (rc != VARCMP_NULL)
|
|
return rc;
|
|
}
|
|
|
|
if (xmask & VTBIT_DECIMAL)
|
|
vt = VT_DECIMAL;
|
|
else if (xmask & VTBIT_BSTR)
|
|
vt = VT_R8;
|
|
else if (xmask & VTBIT_R4)
|
|
vt = VT_R4;
|
|
else if (xmask & (VTBIT_R8 | VTBIT_DATE))
|
|
vt = VT_R8;
|
|
else if (xmask & VTBIT_CY)
|
|
vt = VT_CY;
|
|
else
|
|
/* default to I8 */
|
|
vt = VT_I8;
|
|
|
|
/* Coerce the variants */
|
|
rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
|
|
if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
|
|
/* Overflow, change to R8 */
|
|
vt = VT_R8;
|
|
rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
|
|
}
|
|
if (FAILED(rc))
|
|
return rc;
|
|
rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
|
|
if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
|
|
/* Overflow, change to R8 */
|
|
vt = VT_R8;
|
|
rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
|
|
if (FAILED(rc))
|
|
return rc;
|
|
rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
|
|
}
|
|
if (FAILED(rc))
|
|
return rc;
|
|
|
|
#define _VARCMP(a,b) \
|
|
(((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
|
|
|
|
switch (vt) {
|
|
case VT_CY:
|
|
return VarCyCmp(V_CY(&lv), V_CY(&rv));
|
|
case VT_DECIMAL:
|
|
return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
|
|
case VT_I8:
|
|
return _VARCMP(V_I8(&lv), V_I8(&rv));
|
|
case VT_R4:
|
|
return _VARCMP(V_R4(&lv), V_R4(&rv));
|
|
case VT_R8:
|
|
return _VARCMP(V_R8(&lv), V_R8(&rv));
|
|
default:
|
|
/* We should never get here */
|
|
return E_FAIL;
|
|
}
|
|
#undef _VARCMP
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarAnd [OLEAUT32.142]
|
|
*
|
|
* Computes the logical AND of two variants.
|
|
*
|
|
* PARAMS
|
|
* left [I] First variant
|
|
* right [I] Second variant
|
|
* result [O] Result variant
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*/
|
|
HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
|
|
{
|
|
HRESULT rc = E_FAIL;
|
|
|
|
TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
|
|
debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
|
|
|
|
if ((V_VT(left)&VT_TYPEMASK) == VT_BOOL &&
|
|
(V_VT(right)&VT_TYPEMASK) == VT_BOOL) {
|
|
|
|
V_VT(result) = VT_BOOL;
|
|
if (V_BOOL(left) && V_BOOL(right)) {
|
|
V_BOOL(result) = VARIANT_TRUE;
|
|
} else {
|
|
V_BOOL(result) = VARIANT_FALSE;
|
|
}
|
|
rc = S_OK;
|
|
|
|
} else {
|
|
/* Integers */
|
|
BOOL lOk = TRUE;
|
|
BOOL rOk = TRUE;
|
|
LONGLONG lVal = -1;
|
|
LONGLONG rVal = -1;
|
|
LONGLONG res = -1;
|
|
int resT = 0; /* Testing has shown I2 & I2 == I2, all else
|
|
becomes I4, even unsigned ints (incl. UI2) */
|
|
|
|
lOk = TRUE;
|
|
switch (V_VT(left)&VT_TYPEMASK) {
|
|
case VT_I1 : lVal = V_I1(left); resT=VT_I4; break;
|
|
case VT_I2 : lVal = V_I2(left); resT=VT_I2; break;
|
|
case VT_I4 :
|
|
case VT_INT : lVal = V_I4(left); resT=VT_I4; break;
|
|
case VT_UI1 : lVal = V_UI1(left); resT=VT_I4; break;
|
|
case VT_UI2 : lVal = V_UI2(left); resT=VT_I4; break;
|
|
case VT_UI4 :
|
|
case VT_UINT : lVal = V_UI4(left); resT=VT_I4; break;
|
|
case VT_BOOL : rVal = V_BOOL(left); resT=VT_I4; break;
|
|
default: lOk = FALSE;
|
|
}
|
|
|
|
rOk = TRUE;
|
|
switch (V_VT(right)&VT_TYPEMASK) {
|
|
case VT_I1 : rVal = V_I1(right); resT=VT_I4; break;
|
|
case VT_I2 : rVal = V_I2(right); resT=max(VT_I2, resT); break;
|
|
case VT_I4 :
|
|
case VT_INT : rVal = V_I4(right); resT=VT_I4; break;
|
|
case VT_UI1 : rVal = V_UI1(right); resT=VT_I4; break;
|
|
case VT_UI2 : rVal = V_UI2(right); resT=VT_I4; break;
|
|
case VT_UI4 :
|
|
case VT_UINT : rVal = V_UI4(right); resT=VT_I4; break;
|
|
case VT_BOOL : rVal = V_BOOL(right); resT=VT_I4; break;
|
|
default: rOk = FALSE;
|
|
}
|
|
|
|
if (lOk && rOk) {
|
|
res = (lVal & rVal);
|
|
V_VT(result) = resT;
|
|
switch (resT) {
|
|
case VT_I2 : V_I2(result) = res; break;
|
|
case VT_I4 : V_I4(result) = res; break;
|
|
default:
|
|
FIXME("Unexpected result variant type %x\n", resT);
|
|
V_I4(result) = res;
|
|
}
|
|
rc = S_OK;
|
|
|
|
} else {
|
|
FIXME("VarAnd stub\n");
|
|
}
|
|
}
|
|
|
|
TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
|
|
debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
|
|
return rc;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarAdd [OLEAUT32.141]
|
|
*
|
|
* Add two variants.
|
|
*
|
|
* PARAMS
|
|
* left [I] First variant
|
|
* right [I] Second variant
|
|
* result [O] Result variant
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTES
|
|
* Native VarAdd up to and including WinXP dosn't like as input variants
|
|
* I1, UI2, UI4, UI8, INT and UINT.
|
|
*
|
|
* Native VarAdd dosn't check for NULL in/out pointers and crashes. We do the
|
|
* same here.
|
|
*
|
|
* FIXME
|
|
* Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
|
|
* case.
|
|
*/
|
|
HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
|
|
{
|
|
HRESULT hres;
|
|
VARTYPE lvt, rvt, resvt, tvt;
|
|
VARIANT lv, rv, tv;
|
|
double r8res;
|
|
|
|
/* Variant priority for coercion. Sorted from lowest to highest.
|
|
VT_ERROR shows an invalid input variant type. */
|
|
enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
|
|
vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
|
|
vt_ERROR };
|
|
/* Mapping from priority to variant type. Keep in sync with coerceprio! */
|
|
VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
|
|
VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
|
|
VT_NULL, VT_ERROR };
|
|
|
|
/* Mapping for coercion from input variant to priority of result variant. */
|
|
static VARTYPE coerce[] = {
|
|
/* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
|
|
vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
|
|
/* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
|
|
vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
|
|
/* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
|
|
vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
|
|
/* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
|
|
vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
|
|
};
|
|
|
|
TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
|
|
debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right),
|
|
result);
|
|
|
|
VariantInit(&lv);
|
|
VariantInit(&rv);
|
|
VariantInit(&tv);
|
|
lvt = V_VT(left)&VT_TYPEMASK;
|
|
rvt = V_VT(right)&VT_TYPEMASK;
|
|
|
|
/* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
|
|
Same for any input variant type > VT_I8 */
|
|
if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
|
|
lvt > VT_I8 || rvt > VT_I8) {
|
|
hres = DISP_E_BADVARTYPE;
|
|
goto end;
|
|
}
|
|
|
|
/* Determine the variant type to coerce to. */
|
|
if (coerce[lvt] > coerce[rvt]) {
|
|
resvt = prio2vt[coerce[lvt]];
|
|
tvt = prio2vt[coerce[rvt]];
|
|
} else {
|
|
resvt = prio2vt[coerce[rvt]];
|
|
tvt = prio2vt[coerce[lvt]];
|
|
}
|
|
|
|
/* Special cases where the result variant type is defined by both
|
|
input variants and not only that with the highest priority */
|
|
if (resvt == VT_BSTR) {
|
|
if (tvt == VT_EMPTY || tvt == VT_BSTR)
|
|
resvt = VT_BSTR;
|
|
else
|
|
resvt = VT_R8;
|
|
}
|
|
if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
|
|
resvt = VT_R8;
|
|
|
|
/* For overflow detection use the biggest compatible type for the
|
|
addition */
|
|
switch (resvt) {
|
|
case VT_ERROR:
|
|
hres = DISP_E_BADVARTYPE;
|
|
goto end;
|
|
case VT_NULL:
|
|
hres = S_OK;
|
|
V_VT(result) = VT_NULL;
|
|
goto end;
|
|
case VT_DISPATCH:
|
|
FIXME("cannot handle variant type VT_DISPATCH\n");
|
|
hres = DISP_E_TYPEMISMATCH;
|
|
goto end;
|
|
case VT_EMPTY:
|
|
resvt = VT_I2;
|
|
/* Fall through */
|
|
case VT_UI1:
|
|
case VT_I2:
|
|
case VT_I4:
|
|
case VT_I8:
|
|
tvt = VT_I8;
|
|
break;
|
|
case VT_DATE:
|
|
case VT_R4:
|
|
tvt = VT_R8;
|
|
break;
|
|
default:
|
|
tvt = resvt;
|
|
}
|
|
|
|
/* Now coerce the variants */
|
|
hres = VariantChangeType(&lv, left, 0, tvt);
|
|
if (FAILED(hres))
|
|
goto end;
|
|
hres = VariantChangeType(&rv, right, 0, tvt);
|
|
if (FAILED(hres))
|
|
goto end;
|
|
|
|
/* Do the math */
|
|
hres = S_OK;
|
|
V_VT(result) = resvt;
|
|
switch (tvt) {
|
|
case VT_DECIMAL:
|
|
hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
|
|
&V_DECIMAL(result));
|
|
goto end;
|
|
case VT_CY:
|
|
hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
|
|
goto end;
|
|
case VT_BSTR:
|
|
/* We do not add those, we concatenate them. */
|
|
hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
|
|
goto end;
|
|
case VT_I8:
|
|
/* Overflow detection */
|
|
r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
|
|
if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
|
|
V_VT(result) = VT_R8;
|
|
V_R8(result) = r8res;
|
|
goto end;
|
|
} else {
|
|
V_VT(&tv) = tvt;
|
|
V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
|
|
}
|
|
break;
|
|
case VT_R8:
|
|
V_VT(&tv) = tvt;
|
|
/* FIXME: overflow detection */
|
|
V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
|
|
break;
|
|
default:
|
|
ERR("We shouldn't get here! tvt = %d!\n", tvt);
|
|
break;
|
|
}
|
|
if (resvt != tvt) {
|
|
if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
|
|
/* Overflow! Change to the vartype with the next higher priority.
|
|
With one exception: I4 ==> R8 even if it would fit in I8 */
|
|
if (resvt == VT_I4)
|
|
resvt = VT_R8;
|
|
else
|
|
resvt = prio2vt[coerce[resvt] + 1];
|
|
hres = VariantChangeType(result, &tv, 0, resvt);
|
|
}
|
|
} else
|
|
hres = VariantCopy(result, &tv);
|
|
|
|
end:
|
|
if (hres != S_OK) {
|
|
V_VT(result) = VT_EMPTY;
|
|
V_I4(result) = 0; /* No V_EMPTY */
|
|
}
|
|
VariantClear(&lv);
|
|
VariantClear(&rv);
|
|
VariantClear(&tv);
|
|
TRACE("returning 0x%8lx (variant type %s)\n", hres, debugstr_VT(result));
|
|
return hres;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarMul [OLEAUT32.156]
|
|
*
|
|
* Multiply two variants.
|
|
*
|
|
* PARAMS
|
|
* left [I] First variant
|
|
* right [I] Second variant
|
|
* result [O] Result variant
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTES
|
|
* Native VarMul up to and including WinXP dosn't like as input variants
|
|
* I1, UI2, UI4, UI8, INT and UINT. But it can multiply apples with oranges.
|
|
*
|
|
* Native VarMul dosn't check for NULL in/out pointers and crashes. We do the
|
|
* same here.
|
|
*
|
|
* FIXME
|
|
* Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
|
|
* case.
|
|
*/
|
|
HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
|
|
{
|
|
HRESULT hres;
|
|
VARTYPE lvt, rvt, resvt, tvt;
|
|
VARIANT lv, rv, tv;
|
|
double r8res;
|
|
|
|
/* Variant priority for coercion. Sorted from lowest to highest.
|
|
VT_ERROR shows an invalid input variant type. */
|
|
enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
|
|
vt_DECIMAL, vt_NULL, vt_ERROR };
|
|
/* Mapping from priority to variant type. Keep in sync with coerceprio! */
|
|
VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
|
|
VT_DECIMAL, VT_NULL, VT_ERROR };
|
|
|
|
/* Mapping for coercion from input variant to priority of result variant. */
|
|
static VARTYPE coerce[] = {
|
|
/* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
|
|
vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
|
|
/* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
|
|
vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
|
|
/* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
|
|
vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
|
|
/* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
|
|
vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
|
|
};
|
|
|
|
TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
|
|
debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right),
|
|
result);
|
|
|
|
VariantInit(&lv);
|
|
VariantInit(&rv);
|
|
VariantInit(&tv);
|
|
lvt = V_VT(left)&VT_TYPEMASK;
|
|
rvt = V_VT(right)&VT_TYPEMASK;
|
|
|
|
/* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
|
|
Same for any input variant type > VT_I8 */
|
|
if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
|
|
lvt > VT_I8 || rvt > VT_I8) {
|
|
hres = DISP_E_BADVARTYPE;
|
|
goto end;
|
|
}
|
|
|
|
/* Determine the variant type to coerce to. */
|
|
if (coerce[lvt] > coerce[rvt]) {
|
|
resvt = prio2vt[coerce[lvt]];
|
|
tvt = prio2vt[coerce[rvt]];
|
|
} else {
|
|
resvt = prio2vt[coerce[rvt]];
|
|
tvt = prio2vt[coerce[lvt]];
|
|
}
|
|
|
|
/* Special cases where the result variant type is defined by both
|
|
input variants and not only that with the highest priority */
|
|
if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
|
|
resvt = VT_R8;
|
|
if (lvt == VT_EMPTY && rvt == VT_EMPTY)
|
|
resvt = VT_I2;
|
|
|
|
/* For overflow detection use the biggest compatible type for the
|
|
multiplication */
|
|
switch (resvt) {
|
|
case VT_ERROR:
|
|
hres = DISP_E_BADVARTYPE;
|
|
goto end;
|
|
case VT_NULL:
|
|
hres = S_OK;
|
|
V_VT(result) = VT_NULL;
|
|
goto end;
|
|
case VT_UI1:
|
|
case VT_I2:
|
|
case VT_I4:
|
|
case VT_I8:
|
|
tvt = VT_I8;
|
|
break;
|
|
case VT_R4:
|
|
tvt = VT_R8;
|
|
break;
|
|
default:
|
|
tvt = resvt;
|
|
}
|
|
|
|
/* Now coerce the variants */
|
|
hres = VariantChangeType(&lv, left, 0, tvt);
|
|
if (FAILED(hres))
|
|
goto end;
|
|
hres = VariantChangeType(&rv, right, 0, tvt);
|
|
if (FAILED(hres))
|
|
goto end;
|
|
|
|
/* Do the math */
|
|
hres = S_OK;
|
|
V_VT(&tv) = tvt;
|
|
V_VT(result) = resvt;
|
|
switch (tvt) {
|
|
case VT_DECIMAL:
|
|
hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
|
|
&V_DECIMAL(result));
|
|
goto end;
|
|
case VT_CY:
|
|
hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
|
|
goto end;
|
|
case VT_I8:
|
|
/* Overflow detection */
|
|
r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
|
|
if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
|
|
V_VT(result) = VT_R8;
|
|
V_R8(result) = r8res;
|
|
goto end;
|
|
} else
|
|
V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
|
|
break;
|
|
case VT_R8:
|
|
/* FIXME: overflow detection */
|
|
V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
|
|
break;
|
|
default:
|
|
ERR("We shouldn't get here! tvt = %d!\n", tvt);
|
|
break;
|
|
}
|
|
if (resvt != tvt) {
|
|
while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
|
|
/* Overflow! Change to the vartype with the next higher priority.
|
|
With one exception: I4 ==> R8 even if it would fit in I8 */
|
|
if (resvt == VT_I4)
|
|
resvt = VT_R8;
|
|
else
|
|
resvt = prio2vt[coerce[resvt] + 1];
|
|
}
|
|
} else
|
|
hres = VariantCopy(result, &tv);
|
|
|
|
end:
|
|
if (hres != S_OK) {
|
|
V_VT(result) = VT_EMPTY;
|
|
V_I4(result) = 0; /* No V_EMPTY */
|
|
}
|
|
VariantClear(&lv);
|
|
VariantClear(&rv);
|
|
VariantClear(&tv);
|
|
TRACE("returning 0x%8lx (variant type %s)\n", hres, debugstr_VT(result));
|
|
return hres;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarDiv [OLEAUT32.143]
|
|
*
|
|
* Divides one variant with another.
|
|
*
|
|
* PARAMS
|
|
* left [I] First variant
|
|
* right [I] Second variant
|
|
* result [O] Result variant
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*/
|
|
HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
|
|
{
|
|
HRESULT rc = E_FAIL;
|
|
VARTYPE lvt,rvt,resvt;
|
|
VARIANT lv,rv;
|
|
BOOL found;
|
|
|
|
TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
|
|
debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
|
|
|
|
VariantInit(&lv);VariantInit(&rv);
|
|
lvt = V_VT(left)&VT_TYPEMASK;
|
|
rvt = V_VT(right)&VT_TYPEMASK;
|
|
found = FALSE;resvt = VT_VOID;
|
|
if (((1<<lvt) | (1<<rvt)) & (VTBIT_R4|VTBIT_R8|VTBIT_CY)) {
|
|
found = TRUE;
|
|
resvt = VT_R8;
|
|
}
|
|
if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_DECIMAL))) {
|
|
found = TRUE;
|
|
resvt = VT_DECIMAL;
|
|
}
|
|
if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_I1|VTBIT_I2|VTBIT_UI1|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_INT|VTBIT_UINT))) {
|
|
found = TRUE;
|
|
resvt = VT_I4;
|
|
}
|
|
if (!found) {
|
|
FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
|
|
return E_FAIL;
|
|
}
|
|
rc = VariantChangeType(&lv, left, 0, resvt);
|
|
if (FAILED(rc)) {
|
|
FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
|
|
return rc;
|
|
}
|
|
rc = VariantChangeType(&rv, right, 0, resvt);
|
|
if (FAILED(rc)) {
|
|
FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
|
|
return rc;
|
|
}
|
|
switch (resvt) {
|
|
case VT_R8:
|
|
if (V_R8(&rv) == 0) return DISP_E_DIVBYZERO;
|
|
V_VT(result) = resvt;
|
|
V_R8(result) = V_R8(&lv) / V_R8(&rv);
|
|
rc = S_OK;
|
|
break;
|
|
case VT_DECIMAL:
|
|
rc = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
|
|
V_VT(result) = resvt;
|
|
break;
|
|
case VT_I4:
|
|
if (V_I4(&rv) == 0) return DISP_E_DIVBYZERO;
|
|
V_VT(result) = resvt;
|
|
V_I4(result) = V_I4(&lv) / V_I4(&rv);
|
|
rc = S_OK;
|
|
break;
|
|
}
|
|
TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
|
|
debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
|
|
return rc;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarSub [OLEAUT32.159]
|
|
*
|
|
* Subtract two variants.
|
|
*
|
|
* PARAMS
|
|
* left [I] First variant
|
|
* right [I] Second variant
|
|
* result [O] Result variant
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*/
|
|
HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
|
|
{
|
|
HRESULT rc = E_FAIL;
|
|
VARTYPE lvt,rvt,resvt;
|
|
VARIANT lv,rv;
|
|
BOOL found;
|
|
|
|
TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
|
|
debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
|
|
|
|
VariantInit(&lv);VariantInit(&rv);
|
|
lvt = V_VT(left)&VT_TYPEMASK;
|
|
rvt = V_VT(right)&VT_TYPEMASK;
|
|
found = FALSE;resvt = VT_VOID;
|
|
if (((1<<lvt) | (1<<rvt)) & (VTBIT_DATE|VTBIT_R4|VTBIT_R8)) {
|
|
found = TRUE;
|
|
resvt = VT_R8;
|
|
}
|
|
if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_DECIMAL))) {
|
|
found = TRUE;
|
|
resvt = VT_DECIMAL;
|
|
}
|
|
if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_I1|VTBIT_I2|VTBIT_UI1|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_INT|VTBIT_UINT))) {
|
|
found = TRUE;
|
|
resvt = VT_I4;
|
|
}
|
|
if (!found) {
|
|
FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
|
|
return E_FAIL;
|
|
}
|
|
rc = VariantChangeType(&lv, left, 0, resvt);
|
|
if (FAILED(rc)) {
|
|
FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
|
|
return rc;
|
|
}
|
|
rc = VariantChangeType(&rv, right, 0, resvt);
|
|
if (FAILED(rc)) {
|
|
FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
|
|
return rc;
|
|
}
|
|
switch (resvt) {
|
|
case VT_R8:
|
|
V_VT(result) = resvt;
|
|
V_R8(result) = V_R8(&lv) - V_R8(&rv);
|
|
rc = S_OK;
|
|
break;
|
|
case VT_DECIMAL:
|
|
rc = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
|
|
V_VT(result) = resvt;
|
|
break;
|
|
case VT_I4:
|
|
V_VT(result) = resvt;
|
|
V_I4(result) = V_I4(&lv) - V_I4(&rv);
|
|
rc = S_OK;
|
|
break;
|
|
}
|
|
TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
|
|
debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
|
|
return rc;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarOr [OLEAUT32.157]
|
|
*
|
|
* Perform a logical or (OR) operation on two variants.
|
|
*
|
|
* PARAMS
|
|
* pVarLeft [I] First variant
|
|
* pVarRight [I] Variant to OR with pVarLeft
|
|
* pVarOut [O] Destination for OR result
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pVarOut contains the result of the operation with its type
|
|
* taken from the table listed under VarXor().
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTES
|
|
* See the Notes section of VarXor() for further information.
|
|
*/
|
|
HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
|
|
{
|
|
VARTYPE vt = VT_I4;
|
|
VARIANT varLeft, varRight, varStr;
|
|
HRESULT hRet;
|
|
|
|
TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
|
|
debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
|
|
debugstr_VF(pVarRight), pVarOut);
|
|
|
|
if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
|
|
V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
|
|
V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
|
|
V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
|
|
return DISP_E_BADVARTYPE;
|
|
|
|
V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
|
|
|
|
if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
|
|
{
|
|
/* NULL OR Zero is NULL, NULL OR value is value */
|
|
if (V_VT(pVarLeft) == VT_NULL)
|
|
pVarLeft = pVarRight; /* point to the non-NULL var */
|
|
|
|
V_VT(pVarOut) = VT_NULL;
|
|
V_I4(pVarOut) = 0;
|
|
|
|
switch (V_VT(pVarLeft))
|
|
{
|
|
case VT_DATE: case VT_R8:
|
|
if (V_R8(pVarLeft))
|
|
goto VarOr_AsEmpty;
|
|
return S_OK;
|
|
case VT_BOOL:
|
|
if (V_BOOL(pVarLeft))
|
|
*pVarOut = *pVarLeft;
|
|
return S_OK;
|
|
case VT_I2: case VT_UI2:
|
|
if (V_I2(pVarLeft))
|
|
goto VarOr_AsEmpty;
|
|
return S_OK;
|
|
case VT_I1:
|
|
if (V_I1(pVarLeft))
|
|
goto VarOr_AsEmpty;
|
|
return S_OK;
|
|
case VT_UI1:
|
|
if (V_UI1(pVarLeft))
|
|
*pVarOut = *pVarLeft;
|
|
return S_OK;
|
|
case VT_R4:
|
|
if (V_R4(pVarLeft))
|
|
goto VarOr_AsEmpty;
|
|
return S_OK;
|
|
case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
|
|
if (V_I4(pVarLeft))
|
|
goto VarOr_AsEmpty;
|
|
return S_OK;
|
|
case VT_CY:
|
|
if (V_CY(pVarLeft).int64)
|
|
goto VarOr_AsEmpty;
|
|
return S_OK;
|
|
case VT_I8: case VT_UI8:
|
|
if (V_I8(pVarLeft))
|
|
goto VarOr_AsEmpty;
|
|
return S_OK;
|
|
case VT_DECIMAL:
|
|
if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
|
|
goto VarOr_AsEmpty;
|
|
return S_OK;
|
|
case VT_BSTR:
|
|
{
|
|
VARIANT_BOOL b;
|
|
|
|
if (!V_BSTR(pVarLeft))
|
|
return DISP_E_BADVARTYPE;
|
|
|
|
hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
|
|
if (SUCCEEDED(hRet) && b)
|
|
{
|
|
V_VT(pVarOut) = VT_BOOL;
|
|
V_BOOL(pVarOut) = b;
|
|
}
|
|
return hRet;
|
|
}
|
|
case VT_NULL: case VT_EMPTY:
|
|
V_VT(pVarOut) = VT_NULL;
|
|
return S_OK;
|
|
default:
|
|
return DISP_E_BADVARTYPE;
|
|
}
|
|
}
|
|
|
|
if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
|
|
{
|
|
if (V_VT(pVarLeft) == VT_EMPTY)
|
|
pVarLeft = pVarRight; /* point to the non-EMPTY var */
|
|
|
|
VarOr_AsEmpty:
|
|
/* Since one argument is empty (0), OR'ing it with the other simply
|
|
* gives the others value (as 0|x => x). So just convert the other
|
|
* argument to the required result type.
|
|
*/
|
|
switch (V_VT(pVarLeft))
|
|
{
|
|
case VT_BSTR:
|
|
if (!V_BSTR(pVarLeft))
|
|
return DISP_E_BADVARTYPE;
|
|
|
|
hRet = VariantCopy(&varStr, pVarLeft);
|
|
if (FAILED(hRet))
|
|
goto VarOr_Exit;
|
|
pVarLeft = &varStr;
|
|
hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
|
|
if (FAILED(hRet))
|
|
goto VarOr_Exit;
|
|
/* Fall Through ... */
|
|
case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
|
|
V_VT(pVarOut) = VT_I2;
|
|
break;
|
|
case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
|
|
case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
|
|
case VT_INT: case VT_UINT: case VT_UI8:
|
|
V_VT(pVarOut) = VT_I4;
|
|
break;
|
|
case VT_I8:
|
|
V_VT(pVarOut) = VT_I8;
|
|
break;
|
|
default:
|
|
return DISP_E_BADVARTYPE;
|
|
}
|
|
hRet = VariantCopy(&varLeft, pVarLeft);
|
|
if (FAILED(hRet))
|
|
goto VarOr_Exit;
|
|
pVarLeft = &varLeft;
|
|
hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
|
|
goto VarOr_Exit;
|
|
}
|
|
|
|
if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
|
|
{
|
|
V_VT(pVarOut) = VT_BOOL;
|
|
V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
|
|
return S_OK;
|
|
}
|
|
|
|
if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
|
|
{
|
|
V_VT(pVarOut) = VT_UI1;
|
|
V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
|
|
return S_OK;
|
|
}
|
|
|
|
if (V_VT(pVarLeft) == VT_BSTR)
|
|
{
|
|
hRet = VariantCopy(&varStr, pVarLeft);
|
|
if (FAILED(hRet))
|
|
goto VarOr_Exit;
|
|
pVarLeft = &varStr;
|
|
hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
|
|
if (FAILED(hRet))
|
|
goto VarOr_Exit;
|
|
}
|
|
|
|
if (V_VT(pVarLeft) == VT_BOOL &&
|
|
(V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
|
|
{
|
|
vt = VT_BOOL;
|
|
}
|
|
else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
|
|
V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
|
|
(V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
|
|
V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
|
|
{
|
|
vt = VT_I2;
|
|
}
|
|
else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
|
|
{
|
|
if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
|
|
return DISP_E_TYPEMISMATCH;
|
|
vt = VT_I8;
|
|
}
|
|
|
|
hRet = VariantCopy(&varLeft, pVarLeft);
|
|
if (FAILED(hRet))
|
|
goto VarOr_Exit;
|
|
|
|
hRet = VariantCopy(&varRight, pVarRight);
|
|
if (FAILED(hRet))
|
|
goto VarOr_Exit;
|
|
|
|
if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
|
|
V_VT(&varLeft) = VT_I4; /* Don't overflow */
|
|
else
|
|
{
|
|
double d;
|
|
|
|
if (V_VT(&varLeft) == VT_BSTR &&
|
|
FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
|
|
hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
|
|
if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
|
|
hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
|
|
if (FAILED(hRet))
|
|
goto VarOr_Exit;
|
|
}
|
|
|
|
if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
|
|
V_VT(&varRight) = VT_I4; /* Don't overflow */
|
|
else
|
|
{
|
|
double d;
|
|
|
|
if (V_VT(&varRight) == VT_BSTR &&
|
|
FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
|
|
hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
|
|
if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
|
|
hRet = VariantChangeType(&varRight, &varRight, 0, vt);
|
|
if (FAILED(hRet))
|
|
goto VarOr_Exit;
|
|
}
|
|
|
|
V_VT(pVarOut) = vt;
|
|
if (vt == VT_I8)
|
|
{
|
|
V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
|
|
}
|
|
else if (vt == VT_I4)
|
|
{
|
|
V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
|
|
}
|
|
else
|
|
{
|
|
V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
|
|
}
|
|
|
|
VarOr_Exit:
|
|
VariantClear(&varStr);
|
|
VariantClear(&varLeft);
|
|
VariantClear(&varRight);
|
|
return hRet;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarAbs [OLEAUT32.168]
|
|
*
|
|
* Convert a variant to its absolute value.
|
|
*
|
|
* PARAMS
|
|
* pVarIn [I] Source variant
|
|
* pVarOut [O] Destination for converted value
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pVarOut contains the absolute value of pVarIn.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTES
|
|
* - This function does not process by-reference variants.
|
|
* - The type of the value stored in pVarOut depends on the type of pVarIn,
|
|
* according to the following table:
|
|
*| Input Type Output Type
|
|
*| ---------- -----------
|
|
*| VT_BOOL VT_I2
|
|
*| VT_BSTR VT_R8
|
|
*| (All others) Unchanged
|
|
*/
|
|
HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
|
|
{
|
|
VARIANT varIn;
|
|
HRESULT hRet = S_OK;
|
|
|
|
TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
|
|
debugstr_VF(pVarIn), pVarOut);
|
|
|
|
if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
|
|
V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
|
|
V_VT(pVarIn) == VT_ERROR)
|
|
return DISP_E_TYPEMISMATCH;
|
|
|
|
*pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
|
|
|
|
#define ABS_CASE(typ,min) \
|
|
case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
|
|
else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
|
|
break
|
|
|
|
switch (V_VT(pVarIn))
|
|
{
|
|
ABS_CASE(I1,I1_MIN);
|
|
case VT_BOOL:
|
|
V_VT(pVarOut) = VT_I2;
|
|
/* BOOL->I2, Fall through ... */
|
|
ABS_CASE(I2,I2_MIN);
|
|
case VT_INT:
|
|
ABS_CASE(I4,I4_MIN);
|
|
ABS_CASE(I8,I8_MIN);
|
|
ABS_CASE(R4,R4_MIN);
|
|
case VT_BSTR:
|
|
hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
|
|
if (FAILED(hRet))
|
|
break;
|
|
V_VT(pVarOut) = VT_R8;
|
|
pVarIn = &varIn;
|
|
/* Fall through ... */
|
|
case VT_DATE:
|
|
ABS_CASE(R8,R8_MIN);
|
|
case VT_CY:
|
|
hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
|
|
break;
|
|
case VT_DECIMAL:
|
|
DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
|
|
break;
|
|
case VT_UI1:
|
|
case VT_UI2:
|
|
case VT_UINT:
|
|
case VT_UI4:
|
|
case VT_UI8:
|
|
/* No-Op */
|
|
break;
|
|
case VT_EMPTY:
|
|
V_VT(pVarOut) = VT_I2;
|
|
case VT_NULL:
|
|
V_I2(pVarOut) = 0;
|
|
break;
|
|
default:
|
|
hRet = DISP_E_BADVARTYPE;
|
|
}
|
|
|
|
return hRet;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarFix [OLEAUT32.169]
|
|
*
|
|
* Truncate a variants value to a whole number.
|
|
*
|
|
* PARAMS
|
|
* pVarIn [I] Source variant
|
|
* pVarOut [O] Destination for converted value
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pVarOut contains the converted value.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTES
|
|
* - The type of the value stored in pVarOut depends on the type of pVarIn,
|
|
* according to the following table:
|
|
*| Input Type Output Type
|
|
*| ---------- -----------
|
|
*| VT_BOOL VT_I2
|
|
*| VT_EMPTY VT_I2
|
|
*| VT_BSTR VT_R8
|
|
*| All Others Unchanged
|
|
* - The difference between this function and VarInt() is that VarInt() rounds
|
|
* negative numbers away from 0, while this function rounds them towards zero.
|
|
*/
|
|
HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
|
|
{
|
|
HRESULT hRet = S_OK;
|
|
|
|
TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
|
|
debugstr_VF(pVarIn), pVarOut);
|
|
|
|
V_VT(pVarOut) = V_VT(pVarIn);
|
|
|
|
switch (V_VT(pVarIn))
|
|
{
|
|
case VT_UI1:
|
|
V_UI1(pVarOut) = V_UI1(pVarIn);
|
|
break;
|
|
case VT_BOOL:
|
|
V_VT(pVarOut) = VT_I2;
|
|
/* Fall through */
|
|
case VT_I2:
|
|
V_I2(pVarOut) = V_I2(pVarIn);
|
|
break;
|
|
case VT_I4:
|
|
V_I4(pVarOut) = V_I4(pVarIn);
|
|
break;
|
|
case VT_I8:
|
|
V_I8(pVarOut) = V_I8(pVarIn);
|
|
break;
|
|
case VT_R4:
|
|
if (V_R4(pVarIn) < 0.0f)
|
|
V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
|
|
else
|
|
V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
|
|
break;
|
|
case VT_BSTR:
|
|
V_VT(pVarOut) = VT_R8;
|
|
hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
|
|
pVarIn = pVarOut;
|
|
/* Fall through */
|
|
case VT_DATE:
|
|
case VT_R8:
|
|
if (V_R8(pVarIn) < 0.0)
|
|
V_R8(pVarOut) = ceil(V_R8(pVarIn));
|
|
else
|
|
V_R8(pVarOut) = floor(V_R8(pVarIn));
|
|
break;
|
|
case VT_CY:
|
|
hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
|
|
break;
|
|
case VT_DECIMAL:
|
|
hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
|
|
break;
|
|
case VT_EMPTY:
|
|
V_VT(pVarOut) = VT_I2;
|
|
V_I2(pVarOut) = 0;
|
|
break;
|
|
case VT_NULL:
|
|
/* No-Op */
|
|
break;
|
|
default:
|
|
if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
|
|
FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
|
|
hRet = DISP_E_BADVARTYPE;
|
|
else
|
|
hRet = DISP_E_TYPEMISMATCH;
|
|
}
|
|
if (FAILED(hRet))
|
|
V_VT(pVarOut) = VT_EMPTY;
|
|
|
|
return hRet;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarInt [OLEAUT32.172]
|
|
*
|
|
* Truncate a variants value to a whole number.
|
|
*
|
|
* PARAMS
|
|
* pVarIn [I] Source variant
|
|
* pVarOut [O] Destination for converted value
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pVarOut contains the converted value.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTES
|
|
* - The type of the value stored in pVarOut depends on the type of pVarIn,
|
|
* according to the following table:
|
|
*| Input Type Output Type
|
|
*| ---------- -----------
|
|
*| VT_BOOL VT_I2
|
|
*| VT_EMPTY VT_I2
|
|
*| VT_BSTR VT_R8
|
|
*| All Others Unchanged
|
|
* - The difference between this function and VarFix() is that VarFix() rounds
|
|
* negative numbers towards 0, while this function rounds them away from zero.
|
|
*/
|
|
HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
|
|
{
|
|
HRESULT hRet = S_OK;
|
|
|
|
TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
|
|
debugstr_VF(pVarIn), pVarOut);
|
|
|
|
V_VT(pVarOut) = V_VT(pVarIn);
|
|
|
|
switch (V_VT(pVarIn))
|
|
{
|
|
case VT_R4:
|
|
V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
|
|
break;
|
|
case VT_BSTR:
|
|
V_VT(pVarOut) = VT_R8;
|
|
hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
|
|
pVarIn = pVarOut;
|
|
/* Fall through */
|
|
case VT_DATE:
|
|
case VT_R8:
|
|
V_R8(pVarOut) = floor(V_R8(pVarIn));
|
|
break;
|
|
case VT_CY:
|
|
hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
|
|
break;
|
|
case VT_DECIMAL:
|
|
hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
|
|
break;
|
|
default:
|
|
return VarFix(pVarIn, pVarOut);
|
|
}
|
|
|
|
return hRet;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarXor [OLEAUT32.167]
|
|
*
|
|
* Perform a logical exclusive-or (XOR) operation on two variants.
|
|
*
|
|
* PARAMS
|
|
* pVarLeft [I] First variant
|
|
* pVarRight [I] Variant to XOR with pVarLeft
|
|
* pVarOut [O] Destination for XOR result
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pVarOut contains the result of the operation with its type
|
|
* taken from the table below).
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTES
|
|
* - Neither pVarLeft or pVarRight are modified by this function.
|
|
* - This function does not process by-reference variants.
|
|
* - Input types of VT_BSTR may be numeric strings or boolean text.
|
|
* - The type of result stored in pVarOut depends on the types of pVarLeft
|
|
* and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
|
|
* or VT_NULL if the function succeeds.
|
|
* - Type promotion is inconsistent and as a result certain combinations of
|
|
* values will return DISP_E_OVERFLOW even when they could be represented.
|
|
* This matches the behaviour of native oleaut32.
|
|
*/
|
|
HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
|
|
{
|
|
VARTYPE vt;
|
|
VARIANT varLeft, varRight;
|
|
double d;
|
|
HRESULT hRet;
|
|
|
|
TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
|
|
debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
|
|
debugstr_VF(pVarRight), pVarOut);
|
|
|
|
if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
|
|
V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
|
|
V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
|
|
V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
|
|
V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
|
|
V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
|
|
return DISP_E_BADVARTYPE;
|
|
|
|
if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
|
|
{
|
|
/* NULL XOR anything valid is NULL */
|
|
V_VT(pVarOut) = VT_NULL;
|
|
return S_OK;
|
|
}
|
|
|
|
/* Copy our inputs so we don't disturb anything */
|
|
V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
|
|
|
|
hRet = VariantCopy(&varLeft, pVarLeft);
|
|
if (FAILED(hRet))
|
|
goto VarXor_Exit;
|
|
|
|
hRet = VariantCopy(&varRight, pVarRight);
|
|
if (FAILED(hRet))
|
|
goto VarXor_Exit;
|
|
|
|
/* Try any strings first as numbers, then as VT_BOOL */
|
|
if (V_VT(&varLeft) == VT_BSTR)
|
|
{
|
|
hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
|
|
hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
|
|
FAILED(hRet) ? VT_BOOL : VT_I4);
|
|
if (FAILED(hRet))
|
|
goto VarXor_Exit;
|
|
}
|
|
|
|
if (V_VT(&varRight) == VT_BSTR)
|
|
{
|
|
hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
|
|
hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
|
|
FAILED(hRet) ? VT_BOOL : VT_I4);
|
|
if (FAILED(hRet))
|
|
goto VarXor_Exit;
|
|
}
|
|
|
|
/* Determine the result type */
|
|
if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
|
|
{
|
|
if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
|
|
return DISP_E_TYPEMISMATCH;
|
|
vt = VT_I8;
|
|
}
|
|
else
|
|
{
|
|
switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
|
|
{
|
|
case (VT_BOOL << 16) | VT_BOOL:
|
|
vt = VT_BOOL;
|
|
break;
|
|
case (VT_UI1 << 16) | VT_UI1:
|
|
vt = VT_UI1;
|
|
break;
|
|
case (VT_EMPTY << 16) | VT_EMPTY:
|
|
case (VT_EMPTY << 16) | VT_UI1:
|
|
case (VT_EMPTY << 16) | VT_I2:
|
|
case (VT_EMPTY << 16) | VT_BOOL:
|
|
case (VT_UI1 << 16) | VT_EMPTY:
|
|
case (VT_UI1 << 16) | VT_I2:
|
|
case (VT_UI1 << 16) | VT_BOOL:
|
|
case (VT_I2 << 16) | VT_EMPTY:
|
|
case (VT_I2 << 16) | VT_UI1:
|
|
case (VT_I2 << 16) | VT_I2:
|
|
case (VT_I2 << 16) | VT_BOOL:
|
|
case (VT_BOOL << 16) | VT_EMPTY:
|
|
case (VT_BOOL << 16) | VT_UI1:
|
|
case (VT_BOOL << 16) | VT_I2:
|
|
vt = VT_I2;
|
|
break;
|
|
default:
|
|
vt = VT_I4;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* VT_UI4 does not overflow */
|
|
if (vt != VT_I8)
|
|
{
|
|
if (V_VT(&varLeft) == VT_UI4)
|
|
V_VT(&varLeft) = VT_I4;
|
|
if (V_VT(&varRight) == VT_UI4)
|
|
V_VT(&varRight) = VT_I4;
|
|
}
|
|
|
|
/* Convert our input copies to the result type */
|
|
if (V_VT(&varLeft) != vt)
|
|
hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
|
|
if (FAILED(hRet))
|
|
goto VarXor_Exit;
|
|
|
|
if (V_VT(&varRight) != vt)
|
|
hRet = VariantChangeType(&varRight, &varRight, 0, vt);
|
|
if (FAILED(hRet))
|
|
goto VarXor_Exit;
|
|
|
|
V_VT(pVarOut) = vt;
|
|
|
|
/* Calculate the result */
|
|
switch (vt)
|
|
{
|
|
case VT_I8:
|
|
V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
|
|
break;
|
|
case VT_I4:
|
|
V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
|
|
break;
|
|
case VT_BOOL:
|
|
case VT_I2:
|
|
V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
|
|
break;
|
|
case VT_UI1:
|
|
V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
|
|
break;
|
|
}
|
|
|
|
VarXor_Exit:
|
|
VariantClear(&varLeft);
|
|
VariantClear(&varRight);
|
|
return hRet;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarEqv [OLEAUT32.172]
|
|
*
|
|
* Determine if two variants contain the same value.
|
|
*
|
|
* PARAMS
|
|
* pVarLeft [I] First variant to compare
|
|
* pVarRight [I] Variant to compare to pVarLeft
|
|
* pVarOut [O] Destination for comparison result
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
|
|
* if equivalent or non-zero otherwise.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTES
|
|
* - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
|
|
* the result.
|
|
*/
|
|
HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
|
|
{
|
|
HRESULT hRet;
|
|
|
|
TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
|
|
debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
|
|
debugstr_VF(pVarRight), pVarOut);
|
|
|
|
hRet = VarXor(pVarLeft, pVarRight, pVarOut);
|
|
if (SUCCEEDED(hRet))
|
|
{
|
|
if (V_VT(pVarOut) == VT_I8)
|
|
V_I8(pVarOut) = ~V_I8(pVarOut);
|
|
else
|
|
V_UI4(pVarOut) = ~V_UI4(pVarOut);
|
|
}
|
|
return hRet;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarNeg [OLEAUT32.173]
|
|
*
|
|
* Negate the value of a variant.
|
|
*
|
|
* PARAMS
|
|
* pVarIn [I] Source variant
|
|
* pVarOut [O] Destination for converted value
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pVarOut contains the converted value.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTES
|
|
* - The type of the value stored in pVarOut depends on the type of pVarIn,
|
|
* according to the following table:
|
|
*| Input Type Output Type
|
|
*| ---------- -----------
|
|
*| VT_EMPTY VT_I2
|
|
*| VT_UI1 VT_I2
|
|
*| VT_BOOL VT_I2
|
|
*| VT_BSTR VT_R8
|
|
*| All Others Unchanged (unless promoted)
|
|
* - Where the negated value of a variant does not fit in its base type, the type
|
|
* is promoted according to the following table:
|
|
*| Input Type Promoted To
|
|
*| ---------- -----------
|
|
*| VT_I2 VT_I4
|
|
*| VT_I4 VT_R8
|
|
*| VT_I8 VT_R8
|
|
* - The native version of this function returns DISP_E_BADVARTYPE for valid
|
|
* variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
|
|
* for types which are not valid. Since this is in contravention of the
|
|
* meaning of those error codes and unlikely to be relied on by applications,
|
|
* this implementation returns errors consistent with the other high level
|
|
* variant math functions.
|
|
*/
|
|
HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
|
|
{
|
|
HRESULT hRet = S_OK;
|
|
|
|
TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
|
|
debugstr_VF(pVarIn), pVarOut);
|
|
|
|
V_VT(pVarOut) = V_VT(pVarIn);
|
|
|
|
switch (V_VT(pVarIn))
|
|
{
|
|
case VT_UI1:
|
|
V_VT(pVarOut) = VT_I2;
|
|
V_I2(pVarOut) = -V_UI1(pVarIn);
|
|
break;
|
|
case VT_BOOL:
|
|
V_VT(pVarOut) = VT_I2;
|
|
/* Fall through */
|
|
case VT_I2:
|
|
if (V_I2(pVarIn) == I2_MIN)
|
|
{
|
|
V_VT(pVarOut) = VT_I4;
|
|
V_I4(pVarOut) = -(int)V_I2(pVarIn);
|
|
}
|
|
else
|
|
V_I2(pVarOut) = -V_I2(pVarIn);
|
|
break;
|
|
case VT_I4:
|
|
if (V_I4(pVarIn) == I4_MIN)
|
|
{
|
|
V_VT(pVarOut) = VT_R8;
|
|
V_R8(pVarOut) = -(double)V_I4(pVarIn);
|
|
}
|
|
else
|
|
V_I4(pVarOut) = -V_I4(pVarIn);
|
|
break;
|
|
case VT_I8:
|
|
if (V_I8(pVarIn) == I8_MIN)
|
|
{
|
|
V_VT(pVarOut) = VT_R8;
|
|
hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
|
|
V_R8(pVarOut) *= -1.0;
|
|
}
|
|
else
|
|
V_I8(pVarOut) = -V_I8(pVarIn);
|
|
break;
|
|
case VT_R4:
|
|
V_R4(pVarOut) = -V_R4(pVarIn);
|
|
break;
|
|
case VT_DATE:
|
|
case VT_R8:
|
|
V_R8(pVarOut) = -V_R8(pVarIn);
|
|
break;
|
|
case VT_CY:
|
|
hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
|
|
break;
|
|
case VT_DECIMAL:
|
|
hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
|
|
break;
|
|
case VT_BSTR:
|
|
V_VT(pVarOut) = VT_R8;
|
|
hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
|
|
V_R8(pVarOut) = -V_R8(pVarOut);
|
|
break;
|
|
case VT_EMPTY:
|
|
V_VT(pVarOut) = VT_I2;
|
|
V_I2(pVarOut) = 0;
|
|
break;
|
|
case VT_NULL:
|
|
/* No-Op */
|
|
break;
|
|
default:
|
|
if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
|
|
FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
|
|
hRet = DISP_E_BADVARTYPE;
|
|
else
|
|
hRet = DISP_E_TYPEMISMATCH;
|
|
}
|
|
if (FAILED(hRet))
|
|
V_VT(pVarOut) = VT_EMPTY;
|
|
|
|
return hRet;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarNot [OLEAUT32.174]
|
|
*
|
|
* Perform a not operation on a variant.
|
|
*
|
|
* PARAMS
|
|
* pVarIn [I] Source variant
|
|
* pVarOut [O] Destination for converted value
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pVarOut contains the converted value.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTES
|
|
* - Strictly speaking, this function performs a bitwise ones complement
|
|
* on the variants value (after possibly converting to VT_I4, see below).
|
|
* This only behaves like a boolean not operation if the value in
|
|
* pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
|
|
* - To perform a genuine not operation, convert the variant to a VT_BOOL
|
|
* before calling this function.
|
|
* - This function does not process by-reference variants.
|
|
* - The type of the value stored in pVarOut depends on the type of pVarIn,
|
|
* according to the following table:
|
|
*| Input Type Output Type
|
|
*| ---------- -----------
|
|
*| VT_EMPTY VT_I2
|
|
*| VT_R4 VT_I4
|
|
*| VT_R8 VT_I4
|
|
*| VT_BSTR VT_I4
|
|
*| VT_DECIMAL VT_I4
|
|
*| VT_CY VT_I4
|
|
*| (All others) Unchanged
|
|
*/
|
|
HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
|
|
{
|
|
VARIANT varIn;
|
|
HRESULT hRet = S_OK;
|
|
|
|
TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
|
|
debugstr_VF(pVarIn), pVarOut);
|
|
|
|
V_VT(pVarOut) = V_VT(pVarIn);
|
|
|
|
switch (V_VT(pVarIn))
|
|
{
|
|
case VT_I1:
|
|
V_I4(pVarOut) = ~V_I1(pVarIn);
|
|
V_VT(pVarOut) = VT_I4;
|
|
break;
|
|
case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
|
|
case VT_BOOL:
|
|
case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
|
|
case VT_UI2:
|
|
V_I4(pVarOut) = ~V_UI2(pVarIn);
|
|
V_VT(pVarOut) = VT_I4;
|
|
break;
|
|
case VT_DECIMAL:
|
|
hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
|
|
if (FAILED(hRet))
|
|
break;
|
|
pVarIn = &varIn;
|
|
/* Fall through ... */
|
|
case VT_INT:
|
|
V_VT(pVarOut) = VT_I4;
|
|
/* Fall through ... */
|
|
case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
|
|
case VT_UINT:
|
|
case VT_UI4:
|
|
V_I4(pVarOut) = ~V_UI4(pVarIn);
|
|
V_VT(pVarOut) = VT_I4;
|
|
break;
|
|
case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
|
|
case VT_UI8:
|
|
V_I4(pVarOut) = ~V_UI8(pVarIn);
|
|
V_VT(pVarOut) = VT_I4;
|
|
break;
|
|
case VT_R4:
|
|
hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
|
|
V_I4(pVarOut) = ~V_I4(pVarOut);
|
|
V_VT(pVarOut) = VT_I4;
|
|
break;
|
|
case VT_BSTR:
|
|
hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
|
|
if (FAILED(hRet))
|
|
break;
|
|
pVarIn = &varIn;
|
|
/* Fall through ... */
|
|
case VT_DATE:
|
|
case VT_R8:
|
|
hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
|
|
V_I4(pVarOut) = ~V_I4(pVarOut);
|
|
V_VT(pVarOut) = VT_I4;
|
|
break;
|
|
case VT_CY:
|
|
hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
|
|
V_I4(pVarOut) = ~V_I4(pVarOut);
|
|
V_VT(pVarOut) = VT_I4;
|
|
break;
|
|
case VT_EMPTY:
|
|
V_I2(pVarOut) = ~0;
|
|
V_VT(pVarOut) = VT_I2;
|
|
break;
|
|
case VT_NULL:
|
|
/* No-Op */
|
|
break;
|
|
default:
|
|
if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
|
|
FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
|
|
hRet = DISP_E_BADVARTYPE;
|
|
else
|
|
hRet = DISP_E_TYPEMISMATCH;
|
|
}
|
|
if (FAILED(hRet))
|
|
V_VT(pVarOut) = VT_EMPTY;
|
|
|
|
return hRet;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarRound [OLEAUT32.175]
|
|
*
|
|
* Perform a round operation on a variant.
|
|
*
|
|
* PARAMS
|
|
* pVarIn [I] Source variant
|
|
* deci [I] Number of decimals to round to
|
|
* pVarOut [O] Destination for converted value
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. pVarOut contains the converted value.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTES
|
|
* - Floating point values are rounded to the desired number of decimals.
|
|
* - Some integer types are just copied to the return variable.
|
|
* - Some other integer types are not handled and fail.
|
|
*/
|
|
HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
|
|
{
|
|
VARIANT varIn;
|
|
HRESULT hRet = S_OK;
|
|
float factor;
|
|
|
|
TRACE("(%p->(%s%s),%d)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), deci);
|
|
|
|
switch (V_VT(pVarIn))
|
|
{
|
|
/* cases that fail on windows */
|
|
case VT_I1:
|
|
case VT_I8:
|
|
case VT_UI2:
|
|
case VT_UI4:
|
|
hRet = DISP_E_BADVARTYPE;
|
|
break;
|
|
|
|
/* cases just copying in to out */
|
|
case VT_UI1:
|
|
V_VT(pVarOut) = V_VT(pVarIn);
|
|
V_UI1(pVarOut) = V_UI1(pVarIn);
|
|
break;
|
|
case VT_I2:
|
|
V_VT(pVarOut) = V_VT(pVarIn);
|
|
V_I2(pVarOut) = V_I2(pVarIn);
|
|
break;
|
|
case VT_I4:
|
|
V_VT(pVarOut) = V_VT(pVarIn);
|
|
V_I4(pVarOut) = V_I4(pVarIn);
|
|
break;
|
|
case VT_NULL:
|
|
V_VT(pVarOut) = V_VT(pVarIn);
|
|
/* value unchanged */
|
|
break;
|
|
|
|
/* cases that change type */
|
|
case VT_EMPTY:
|
|
V_VT(pVarOut) = VT_I2;
|
|
V_I2(pVarOut) = 0;
|
|
break;
|
|
case VT_BOOL:
|
|
V_VT(pVarOut) = VT_I2;
|
|
V_I2(pVarOut) = V_BOOL(pVarIn);
|
|
break;
|
|
case VT_BSTR:
|
|
hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
|
|
if (FAILED(hRet))
|
|
break;
|
|
V_VT(&varIn)=VT_R8;
|
|
pVarIn = &varIn;
|
|
/* Fall through ... */
|
|
|
|
/* cases we need to do math */
|
|
case VT_R8:
|
|
if (V_R8(pVarIn)>0) {
|
|
V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
|
|
} else {
|
|
V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
|
|
}
|
|
V_VT(pVarOut) = V_VT(pVarIn);
|
|
break;
|
|
case VT_R4:
|
|
if (V_R4(pVarIn)>0) {
|
|
V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
|
|
} else {
|
|
V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
|
|
}
|
|
V_VT(pVarOut) = V_VT(pVarIn);
|
|
break;
|
|
case VT_DATE:
|
|
if (V_DATE(pVarIn)>0) {
|
|
V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
|
|
} else {
|
|
V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
|
|
}
|
|
V_VT(pVarOut) = V_VT(pVarIn);
|
|
break;
|
|
case VT_CY:
|
|
if (deci>3)
|
|
factor=1;
|
|
else
|
|
factor=pow(10, 4-deci);
|
|
|
|
if (V_CY(pVarIn).int64>0) {
|
|
V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
|
|
} else {
|
|
V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
|
|
}
|
|
V_VT(pVarOut) = V_VT(pVarIn);
|
|
break;
|
|
|
|
/* cases we don't know yet */
|
|
default:
|
|
FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
|
|
V_VT(pVarIn) & VT_TYPEMASK, deci);
|
|
hRet = DISP_E_BADVARTYPE;
|
|
}
|
|
|
|
if (FAILED(hRet))
|
|
V_VT(pVarOut) = VT_EMPTY;
|
|
|
|
TRACE("returning 0x%08lx (%s%s),%f\n", hRet, debugstr_VT(pVarOut),
|
|
debugstr_VF(pVarOut), (V_VT(pVarOut) == VT_R4) ? V_R4(pVarOut) :
|
|
(V_VT(pVarOut) == VT_R8) ? V_R8(pVarOut) : 0);
|
|
|
|
return hRet;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarIdiv [OLEAUT32.153]
|
|
*
|
|
* Converts input variants to integers and divides them.
|
|
*
|
|
* PARAMS
|
|
* left [I] Left hand variant
|
|
* right [I] Right hand variant
|
|
* result [O] Destination for quotient
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. result contains the quotient.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTES
|
|
* If either expression is null, null is returned, as per MSDN
|
|
*/
|
|
HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
|
|
{
|
|
VARIANT lv, rv;
|
|
HRESULT hr;
|
|
|
|
VariantInit(&lv);
|
|
VariantInit(&rv);
|
|
|
|
if ((V_VT(left) == VT_NULL) || (V_VT(right) == VT_NULL)) {
|
|
hr = VariantChangeType(result, result, 0, VT_NULL);
|
|
if (FAILED(hr)) {
|
|
/* This should never happen */
|
|
FIXME("Failed to convert return value to VT_NULL.\n");
|
|
return hr;
|
|
}
|
|
return S_OK;
|
|
}
|
|
|
|
hr = VariantChangeType(&lv, left, 0, VT_I4);
|
|
if (FAILED(hr)) {
|
|
return hr;
|
|
}
|
|
hr = VariantChangeType(&rv, right, 0, VT_I4);
|
|
if (FAILED(hr)) {
|
|
return hr;
|
|
}
|
|
|
|
hr = VarDiv(&lv, &rv, result);
|
|
return hr;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* VarMod [OLEAUT32.155]
|
|
*
|
|
* Perform the modulus operation of the right hand variant on the left
|
|
*
|
|
* PARAMS
|
|
* left [I] Left hand variant
|
|
* right [I] Right hand variant
|
|
* result [O] Destination for converted value
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK. result contains the remainder.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*
|
|
* NOTE:
|
|
* If an error occurs the type of result will be modified but the value will not be.
|
|
* Doesn't support arrays or any special flags yet.
|
|
*/
|
|
HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
|
|
{
|
|
BOOL lOk = TRUE;
|
|
BOOL rOk = TRUE;
|
|
HRESULT rc = E_FAIL;
|
|
int resT = 0;
|
|
VARIANT lv,rv;
|
|
|
|
VariantInit(&lv);
|
|
VariantInit(&rv);
|
|
|
|
TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
|
|
debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
|
|
|
|
/* check for invalid inputs */
|
|
lOk = TRUE;
|
|
switch (V_VT(left) & VT_TYPEMASK) {
|
|
case VT_BOOL :
|
|
case VT_I1 :
|
|
case VT_I2 :
|
|
case VT_I4 :
|
|
case VT_I8 :
|
|
case VT_INT :
|
|
case VT_UI1 :
|
|
case VT_UI2 :
|
|
case VT_UI4 :
|
|
case VT_UI8 :
|
|
case VT_UINT :
|
|
case VT_R4 :
|
|
case VT_R8 :
|
|
case VT_CY :
|
|
case VT_EMPTY:
|
|
case VT_DATE :
|
|
case VT_BSTR :
|
|
break;
|
|
case VT_VARIANT:
|
|
case VT_UNKNOWN:
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_TYPEMISMATCH;
|
|
case VT_DECIMAL:
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_OVERFLOW;
|
|
case VT_ERROR:
|
|
return DISP_E_TYPEMISMATCH;
|
|
case VT_RECORD:
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_TYPEMISMATCH;
|
|
case VT_NULL:
|
|
break;
|
|
default:
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_BADVARTYPE;
|
|
}
|
|
|
|
|
|
rOk = TRUE;
|
|
switch (V_VT(right) & VT_TYPEMASK) {
|
|
case VT_BOOL :
|
|
case VT_I1 :
|
|
case VT_I2 :
|
|
case VT_I4 :
|
|
case VT_I8 :
|
|
if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
|
|
{
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_TYPEMISMATCH;
|
|
}
|
|
case VT_INT :
|
|
if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
|
|
{
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_TYPEMISMATCH;
|
|
}
|
|
case VT_UI1 :
|
|
case VT_UI2 :
|
|
case VT_UI4 :
|
|
case VT_UI8 :
|
|
case VT_UINT :
|
|
case VT_R4 :
|
|
case VT_R8 :
|
|
case VT_CY :
|
|
if(V_VT(left) == VT_EMPTY)
|
|
{
|
|
V_VT(result) = VT_I4;
|
|
return S_OK;
|
|
}
|
|
case VT_EMPTY:
|
|
case VT_DATE :
|
|
case VT_BSTR:
|
|
if(V_VT(left) == VT_NULL)
|
|
{
|
|
V_VT(result) = VT_NULL;
|
|
return S_OK;
|
|
}
|
|
break;
|
|
|
|
case VT_VOID:
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_BADVARTYPE;
|
|
case VT_NULL:
|
|
if(V_VT(left) == VT_VOID)
|
|
{
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_BADVARTYPE;
|
|
} else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
|
|
lOk)
|
|
{
|
|
V_VT(result) = VT_NULL;
|
|
return S_OK;
|
|
} else
|
|
{
|
|
V_VT(result) = VT_NULL;
|
|
return DISP_E_BADVARTYPE;
|
|
}
|
|
case VT_VARIANT:
|
|
case VT_UNKNOWN:
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_TYPEMISMATCH;
|
|
case VT_DECIMAL:
|
|
if(V_VT(left) == VT_ERROR)
|
|
{
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_TYPEMISMATCH;
|
|
} else
|
|
{
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_OVERFLOW;
|
|
}
|
|
case VT_ERROR:
|
|
return DISP_E_TYPEMISMATCH;
|
|
case VT_RECORD:
|
|
if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
|
|
{
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_BADVARTYPE;
|
|
} else
|
|
{
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_TYPEMISMATCH;
|
|
}
|
|
default:
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_BADVARTYPE;
|
|
}
|
|
|
|
/* determine the result type */
|
|
if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
|
|
else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
|
|
else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
|
|
else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
|
|
else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
|
|
else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
|
|
else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
|
|
else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
|
|
else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
|
|
else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
|
|
else resT = VT_I4; /* most outputs are I4 */
|
|
|
|
/* convert to I8 for the modulo */
|
|
rc = VariantChangeType(&lv, left, 0, VT_I8);
|
|
if(FAILED(rc))
|
|
{
|
|
FIXME("Could not convert left type %d to %d? rc == 0x%lX\n", V_VT(left), VT_I8, rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = VariantChangeType(&rv, right, 0, VT_I8);
|
|
if(FAILED(rc))
|
|
{
|
|
FIXME("Could not convert right type %d to %d? rc == 0x%lX\n", V_VT(right), VT_I8, rc);
|
|
return rc;
|
|
}
|
|
|
|
/* if right is zero set VT_EMPTY and return divide by zero */
|
|
if(V_I8(&rv) == 0)
|
|
{
|
|
V_VT(result) = VT_EMPTY;
|
|
return DISP_E_DIVBYZERO;
|
|
}
|
|
|
|
/* perform the modulo operation */
|
|
V_VT(result) = VT_I8;
|
|
V_I8(result) = V_I8(&lv) % V_I8(&rv);
|
|
|
|
TRACE("V_I8(left) == %ld, V_I8(right) == %ld, V_I8(result) == %ld\n", (long)V_I8(&lv), (long)V_I8(&rv), (long)V_I8(result));
|
|
|
|
/* convert left and right to the destination type */
|
|
rc = VariantChangeType(result, result, 0, resT);
|
|
if(FAILED(rc))
|
|
{
|
|
FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
|
|
return rc;
|
|
}
|
|
|
|
return S_OK;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* VarPow [OLEAUT32.158]
|
|
*
|
|
* Computes the power of one variant to another variant.
|
|
*
|
|
* PARAMS
|
|
* left [I] First variant
|
|
* right [I] Second variant
|
|
* result [O] Result variant
|
|
*
|
|
* RETURNS
|
|
* Success: S_OK.
|
|
* Failure: An HRESULT error code indicating the error.
|
|
*/
|
|
HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
|
|
{
|
|
HRESULT hr;
|
|
VARIANT dl,dr;
|
|
|
|
TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left),
|
|
right, debugstr_VT(right), debugstr_VF(right), result);
|
|
|
|
hr = VariantChangeType(&dl,left,0,VT_R8);
|
|
if (!SUCCEEDED(hr)) {
|
|
ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
|
|
return E_FAIL;
|
|
}
|
|
hr = VariantChangeType(&dr,right,0,VT_R8);
|
|
if (!SUCCEEDED(hr)) {
|
|
ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
|
|
return E_FAIL;
|
|
}
|
|
V_VT(result) = VT_R8;
|
|
V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
|
|
return S_OK;
|
|
}
|