Sweden-Number/programs/taskmgr/perfdata.c

854 lines
24 KiB
C

/*
* ReactOS Task Manager
*
* perfdata.c
*
* Copyright (C) 1999 - 2001 Brian Palmer <brianp@reactos.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <commctrl.h>
#include <winnt.h>
#include "taskmgr.h"
#include "perfdata.h"
static PROCNTQSI pNtQuerySystemInformation = NULL;
static PROCGGR pGetGuiResources = NULL;
static PROCGPIC pGetProcessIoCounters = NULL;
static PROCISW64 pIsWow64Process = NULL;
static CRITICAL_SECTION PerfDataCriticalSection;
static PPERFDATA pPerfDataOld = NULL; /* Older perf data (saved to establish delta values) */
static PPERFDATA pPerfData = NULL; /* Most recent copy of perf data */
static ULONG ProcessCountOld = 0;
static ULONG ProcessCount = 0;
static double dbIdleTime;
static double dbKernelTime;
static double dbSystemTime;
static LARGE_INTEGER liOldIdleTime = {{0,0}};
static double OldKernelTime = 0;
static LARGE_INTEGER liOldSystemTime = {{0,0}};
static SYSTEM_PERFORMANCE_INFORMATION SystemPerfInfo;
static SYSTEM_BASIC_INFORMATION SystemBasicInfo;
static SYSTEM_CACHE_INFORMATION SystemCacheInfo;
static SYSTEM_HANDLE_INFORMATION SystemHandleInfo;
static PSYSTEM_PROCESSOR_PERFORMANCE_INFORMATION SystemProcessorTimeInfo = NULL;
static size_t size_diff(size_t x, size_t y)
{
return x > y ? x - y : y - x;
}
BOOL PerfDataInitialize(void)
{
LONG status;
static const WCHAR wszNtdll[] = {'n','t','d','l','l','.','d','l','l',0};
static const WCHAR wszUser32[] = {'u','s','e','r','3','2','.','d','l','l',0};
static const WCHAR wszKernel32[] = {'k','e','r','n','e','l','3','2','.','d','l','l',0};
pNtQuerySystemInformation = (PROCNTQSI)GetProcAddress(GetModuleHandleW(wszNtdll), "NtQuerySystemInformation");
pGetGuiResources = (PROCGGR)GetProcAddress(GetModuleHandleW(wszUser32), "GetGuiResources");
pGetProcessIoCounters = (PROCGPIC)GetProcAddress(GetModuleHandleW(wszKernel32), "GetProcessIoCounters");
pIsWow64Process = (PROCISW64)GetProcAddress(GetModuleHandleW(wszKernel32), "IsWow64Process");
InitializeCriticalSection(&PerfDataCriticalSection);
if (!pNtQuerySystemInformation)
return FALSE;
/*
* Get number of processors in the system
*/
status = pNtQuerySystemInformation(SystemBasicInformation, &SystemBasicInfo, sizeof(SystemBasicInfo), NULL);
if (status != NO_ERROR)
return FALSE;
return TRUE;
}
void PerfDataRefresh(void)
{
ULONG ulSize;
LONG status;
LPBYTE pBuffer;
ULONG BufferSize;
PSYSTEM_PROCESS_INFORMATION pSPI;
PPERFDATA pPDOld;
ULONG Idx, Idx2;
HANDLE hProcess;
HANDLE hProcessToken;
WCHAR wszTemp[MAX_PATH];
DWORD dwSize;
SYSTEM_PERFORMANCE_INFORMATION SysPerfInfo;
SYSTEM_TIMEOFDAY_INFORMATION SysTimeInfo;
SYSTEM_CACHE_INFORMATION SysCacheInfo;
LPBYTE SysHandleInfoData;
SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION *SysProcessorTimeInfo;
double CurrentKernelTime;
/* Get new system time */
status = pNtQuerySystemInformation(SystemTimeOfDayInformation, &SysTimeInfo, sizeof(SysTimeInfo), 0);
if (status != NO_ERROR)
return;
/* Get new CPU's idle time */
status = pNtQuerySystemInformation(SystemPerformanceInformation, &SysPerfInfo, sizeof(SysPerfInfo), NULL);
if (status != NO_ERROR)
return;
/* Get system cache information */
status = pNtQuerySystemInformation(SystemCacheInformation, &SysCacheInfo, sizeof(SysCacheInfo), NULL);
if (status != NO_ERROR)
return;
/* Get processor time information */
SysProcessorTimeInfo = HeapAlloc(GetProcessHeap(), 0,
sizeof(*SysProcessorTimeInfo) * SystemBasicInfo.NumberOfProcessors);
status = pNtQuerySystemInformation(SystemProcessorPerformanceInformation, SysProcessorTimeInfo, sizeof(*SysProcessorTimeInfo) * SystemBasicInfo.NumberOfProcessors, &ulSize);
if (status != NO_ERROR) {
HeapFree(GetProcessHeap(), 0, SysProcessorTimeInfo);
return;
}
/* Get handle information
* We don't know how much data there is so just keep
* increasing the buffer size until the call succeeds
*/
BufferSize = 0;
do
{
BufferSize += 0x10000;
SysHandleInfoData = HeapAlloc(GetProcessHeap(), 0, BufferSize);
status = pNtQuerySystemInformation(SystemHandleInformation, SysHandleInfoData, BufferSize, &ulSize);
if (status == 0xC0000004 /*STATUS_INFO_LENGTH_MISMATCH*/) {
HeapFree(GetProcessHeap(), 0, SysHandleInfoData);
}
} while (status == 0xC0000004 /*STATUS_INFO_LENGTH_MISMATCH*/);
/* Get process information
* We don't know how much data there is so just keep
* increasing the buffer size until the call succeeds
*/
BufferSize = 0;
do
{
BufferSize += 0x10000;
pBuffer = HeapAlloc(GetProcessHeap(), 0, BufferSize);
status = pNtQuerySystemInformation(SystemProcessInformation, pBuffer, BufferSize, &ulSize);
if (status == 0xC0000004 /*STATUS_INFO_LENGTH_MISMATCH*/) {
HeapFree(GetProcessHeap(), 0, pBuffer);
}
} while (status == 0xC0000004 /*STATUS_INFO_LENGTH_MISMATCH*/);
EnterCriticalSection(&PerfDataCriticalSection);
/*
* Save system performance info
*/
memcpy(&SystemPerfInfo, &SysPerfInfo, sizeof(SYSTEM_PERFORMANCE_INFORMATION));
/*
* Save system cache info
*/
memcpy(&SystemCacheInfo, &SysCacheInfo, sizeof(SYSTEM_CACHE_INFORMATION));
/*
* Save system processor time info
*/
HeapFree(GetProcessHeap(), 0, SystemProcessorTimeInfo);
SystemProcessorTimeInfo = SysProcessorTimeInfo;
/*
* Save system handle info
*/
memcpy(&SystemHandleInfo, SysHandleInfoData, sizeof(SYSTEM_HANDLE_INFORMATION));
HeapFree(GetProcessHeap(), 0, SysHandleInfoData);
for (CurrentKernelTime=0, Idx=0; Idx<SystemBasicInfo.NumberOfProcessors; Idx++) {
CurrentKernelTime += Li2Double(SystemProcessorTimeInfo[Idx].KernelTime);
CurrentKernelTime += Li2Double(SystemProcessorTimeInfo[Idx].Reserved1[0]);
CurrentKernelTime += Li2Double(SystemProcessorTimeInfo[Idx].Reserved1[1]);
}
/* If it's a first call - skip idle time calcs */
if (liOldIdleTime.QuadPart != 0) {
/* CurrentValue = NewValue - OldValue */
dbIdleTime = Li2Double(SysPerfInfo.IdleTime) - Li2Double(liOldIdleTime);
dbKernelTime = CurrentKernelTime - OldKernelTime;
dbSystemTime = Li2Double(SysTimeInfo.SystemTime) - Li2Double(liOldSystemTime);
/* CurrentCpuIdle = IdleTime / SystemTime */
dbIdleTime = dbIdleTime / dbSystemTime;
dbKernelTime = dbKernelTime / dbSystemTime;
/* CurrentCpuUsage% = 100 - (CurrentCpuIdle * 100) / NumberOfProcessors */
dbIdleTime = 100.0 - dbIdleTime * 100.0 / (double)SystemBasicInfo.NumberOfProcessors; /* + 0.5; */
dbKernelTime = 100.0 - dbKernelTime * 100.0 / (double)SystemBasicInfo.NumberOfProcessors; /* + 0.5; */
}
/* Store new CPU's idle and system time */
liOldIdleTime = SysPerfInfo.IdleTime;
liOldSystemTime = SysTimeInfo.SystemTime;
OldKernelTime = CurrentKernelTime;
/* Determine the process count
* We loop through the data we got from NtQuerySystemInformation
* and count how many structures there are (until RelativeOffset is 0)
*/
ProcessCountOld = ProcessCount;
ProcessCount = 0;
pSPI = (PSYSTEM_PROCESS_INFORMATION)pBuffer;
while (pSPI) {
ProcessCount++;
if (pSPI->NextEntryOffset == 0)
break;
pSPI = (PSYSTEM_PROCESS_INFORMATION)((LPBYTE)pSPI + pSPI->NextEntryOffset);
}
/* Now alloc a new PERFDATA array and fill in the data */
HeapFree(GetProcessHeap(), 0, pPerfDataOld);
pPerfDataOld = pPerfData;
pPerfData = HeapAlloc(GetProcessHeap(), 0, sizeof(PERFDATA) * ProcessCount);
pSPI = (PSYSTEM_PROCESS_INFORMATION)pBuffer;
for (Idx=0; Idx<ProcessCount; Idx++) {
/* Get the old perf data for this process (if any) */
/* so that we can establish delta values */
pPDOld = NULL;
for (Idx2=0; Idx2<ProcessCountOld; Idx2++) {
if (pPerfDataOld[Idx2].ProcessId == (DWORD_PTR)pSPI->UniqueProcessId) {
pPDOld = &pPerfDataOld[Idx2];
break;
}
}
/* Clear out process perf data structure */
memset(&pPerfData[Idx], 0, sizeof(PERFDATA));
if (pSPI->ProcessName.Buffer)
lstrcpyW(pPerfData[Idx].ImageName, pSPI->ProcessName.Buffer);
else
{
WCHAR idleW[255];
LoadStringW(hInst, IDS_SYSTEM_IDLE_PROCESS, idleW, ARRAY_SIZE(idleW));
lstrcpyW(pPerfData[Idx].ImageName, idleW );
}
pPerfData[Idx].ProcessId = (DWORD_PTR)pSPI->UniqueProcessId;
if (pPDOld) {
double CurTime = Li2Double(pSPI->KernelTime) + Li2Double(pSPI->UserTime);
double OldTime = Li2Double(pPDOld->KernelTime) + Li2Double(pPDOld->UserTime);
double CpuTime = (CurTime - OldTime) / dbSystemTime;
CpuTime = CpuTime * 100.0 / (double)SystemBasicInfo.NumberOfProcessors; /* + 0.5; */
pPerfData[Idx].CPUUsage = (ULONG)CpuTime;
}
pPerfData[Idx].CPUTime.QuadPart = pSPI->UserTime.QuadPart + pSPI->KernelTime.QuadPart;
pPerfData[Idx].vmCounters.WorkingSetSize = pSPI->vmCounters.WorkingSetSize;
pPerfData[Idx].vmCounters.PeakWorkingSetSize = pSPI->vmCounters.PeakWorkingSetSize;
if (pPDOld)
pPerfData[Idx].WorkingSetSizeDelta = size_diff(pSPI->vmCounters.WorkingSetSize, pPDOld->vmCounters.WorkingSetSize);
else
pPerfData[Idx].WorkingSetSizeDelta = 0;
pPerfData[Idx].vmCounters.PageFaultCount = pSPI->vmCounters.PageFaultCount;
if (pPDOld)
pPerfData[Idx].PageFaultCountDelta = size_diff(pSPI->vmCounters.PageFaultCount, pPDOld->vmCounters.PageFaultCount);
else
pPerfData[Idx].PageFaultCountDelta = 0;
pPerfData[Idx].vmCounters.VirtualSize = pSPI->vmCounters.VirtualSize;
pPerfData[Idx].vmCounters.QuotaPagedPoolUsage = pSPI->vmCounters.QuotaPagedPoolUsage;
pPerfData[Idx].vmCounters.QuotaNonPagedPoolUsage = pSPI->vmCounters.QuotaNonPagedPoolUsage;
pPerfData[Idx].BasePriority = pSPI->dwBasePriority;
pPerfData[Idx].HandleCount = pSPI->HandleCount;
pPerfData[Idx].ThreadCount = pSPI->dwThreadCount;
pPerfData[Idx].SessionId = pSPI->SessionId;
hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, (DWORD_PTR)pSPI->UniqueProcessId);
if (hProcess) {
if (OpenProcessToken(hProcess, TOKEN_QUERY|TOKEN_DUPLICATE|TOKEN_IMPERSONATE, &hProcessToken)) {
ImpersonateLoggedOnUser(hProcessToken);
memset(wszTemp, 0, sizeof(wszTemp));
dwSize = MAX_PATH;
GetUserNameW(wszTemp, &dwSize);
RevertToSelf();
CloseHandle(hProcessToken);
}
if (pGetGuiResources) {
pPerfData[Idx].USERObjectCount = pGetGuiResources(hProcess, GR_USEROBJECTS);
pPerfData[Idx].GDIObjectCount = pGetGuiResources(hProcess, GR_GDIOBJECTS);
}
if (pGetProcessIoCounters)
pGetProcessIoCounters(hProcess, &pPerfData[Idx].IOCounters);
if (pIsWow64Process)
pIsWow64Process(hProcess, &pPerfData[Idx].Wow64Process);
CloseHandle(hProcess);
}
pPerfData[Idx].UserTime.QuadPart = pSPI->UserTime.QuadPart;
pPerfData[Idx].KernelTime.QuadPart = pSPI->KernelTime.QuadPart;
pSPI = (PSYSTEM_PROCESS_INFORMATION)((LPBYTE)pSPI + pSPI->NextEntryOffset);
}
HeapFree(GetProcessHeap(), 0, pBuffer);
LeaveCriticalSection(&PerfDataCriticalSection);
}
ULONG PerfDataGetProcessCount(void)
{
return ProcessCount;
}
ULONG PerfDataGetProcessorUsage(void)
{
if( dbIdleTime < 0.0 )
return 0;
if( dbIdleTime > 100.0 )
return 100;
return (ULONG)dbIdleTime;
}
ULONG PerfDataGetProcessorSystemUsage(void)
{
if( dbKernelTime < 0.0 )
return 0;
if( dbKernelTime > 100.0 )
return 100;
return (ULONG)dbKernelTime;
}
BOOL PerfDataGetImageName(ULONG Index, LPWSTR lpImageName, int nMaxCount)
{
static const WCHAR proc32W[] = {' ','*','3','2',0};
BOOL bSuccessful;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount) {
wcsncpy(lpImageName, pPerfData[Index].ImageName, nMaxCount);
if (pPerfData[Index].Wow64Process &&
nMaxCount - lstrlenW(lpImageName) > 4 /* =lstrlenW(proc32W) */)
lstrcatW(lpImageName, proc32W);
bSuccessful = TRUE;
} else {
bSuccessful = FALSE;
}
LeaveCriticalSection(&PerfDataCriticalSection);
return bSuccessful;
}
ULONG PerfDataGetProcessId(ULONG Index)
{
ULONG ProcessId;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
ProcessId = pPerfData[Index].ProcessId;
else
ProcessId = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return ProcessId;
}
BOOL PerfDataGetUserName(ULONG Index, LPWSTR lpUserName, int nMaxCount)
{
BOOL bSuccessful;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount) {
wcsncpy(lpUserName, pPerfData[Index].UserName, nMaxCount);
bSuccessful = TRUE;
} else {
bSuccessful = FALSE;
}
LeaveCriticalSection(&PerfDataCriticalSection);
return bSuccessful;
}
ULONG PerfDataGetSessionId(ULONG Index)
{
ULONG SessionId;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
SessionId = pPerfData[Index].SessionId;
else
SessionId = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return SessionId;
}
ULONG PerfDataGetCPUUsage(ULONG Index)
{
ULONG CpuUsage;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
CpuUsage = pPerfData[Index].CPUUsage;
else
CpuUsage = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return CpuUsage;
}
TIME PerfDataGetCPUTime(ULONG Index)
{
TIME CpuTime = {{0,0}};
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
CpuTime = pPerfData[Index].CPUTime;
LeaveCriticalSection(&PerfDataCriticalSection);
return CpuTime;
}
ULONG PerfDataGetWorkingSetSizeBytes(ULONG Index)
{
ULONG WorkingSetSizeBytes;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
WorkingSetSizeBytes = pPerfData[Index].vmCounters.WorkingSetSize;
else
WorkingSetSizeBytes = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return WorkingSetSizeBytes;
}
ULONG PerfDataGetPeakWorkingSetSizeBytes(ULONG Index)
{
ULONG PeakWorkingSetSizeBytes;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
PeakWorkingSetSizeBytes = pPerfData[Index].vmCounters.PeakWorkingSetSize;
else
PeakWorkingSetSizeBytes = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return PeakWorkingSetSizeBytes;
}
ULONG PerfDataGetWorkingSetSizeDelta(ULONG Index)
{
ULONG WorkingSetSizeDelta;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
WorkingSetSizeDelta = pPerfData[Index].WorkingSetSizeDelta;
else
WorkingSetSizeDelta = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return WorkingSetSizeDelta;
}
ULONG PerfDataGetPageFaultCount(ULONG Index)
{
ULONG PageFaultCount;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
PageFaultCount = pPerfData[Index].vmCounters.PageFaultCount;
else
PageFaultCount = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return PageFaultCount;
}
ULONG PerfDataGetPageFaultCountDelta(ULONG Index)
{
ULONG PageFaultCountDelta;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
PageFaultCountDelta = pPerfData[Index].PageFaultCountDelta;
else
PageFaultCountDelta = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return PageFaultCountDelta;
}
ULONG PerfDataGetVirtualMemorySizeBytes(ULONG Index)
{
ULONG VirtualMemorySizeBytes;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
VirtualMemorySizeBytes = pPerfData[Index].vmCounters.VirtualSize;
else
VirtualMemorySizeBytes = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return VirtualMemorySizeBytes;
}
ULONG PerfDataGetPagedPoolUsagePages(ULONG Index)
{
ULONG PagedPoolUsagePages;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
PagedPoolUsagePages = pPerfData[Index].vmCounters.QuotaPagedPoolUsage;
else
PagedPoolUsagePages = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return PagedPoolUsagePages;
}
ULONG PerfDataGetNonPagedPoolUsagePages(ULONG Index)
{
ULONG NonPagedPoolUsagePages;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
NonPagedPoolUsagePages = pPerfData[Index].vmCounters.QuotaNonPagedPoolUsage;
else
NonPagedPoolUsagePages = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return NonPagedPoolUsagePages;
}
ULONG PerfDataGetBasePriority(ULONG Index)
{
ULONG BasePriority;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
BasePriority = pPerfData[Index].BasePriority;
else
BasePriority = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return BasePriority;
}
ULONG PerfDataGetHandleCount(ULONG Index)
{
ULONG HandleCount;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
HandleCount = pPerfData[Index].HandleCount;
else
HandleCount = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return HandleCount;
}
ULONG PerfDataGetThreadCount(ULONG Index)
{
ULONG ThreadCount;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
ThreadCount = pPerfData[Index].ThreadCount;
else
ThreadCount = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return ThreadCount;
}
ULONG PerfDataGetUSERObjectCount(ULONG Index)
{
ULONG USERObjectCount;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
USERObjectCount = pPerfData[Index].USERObjectCount;
else
USERObjectCount = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return USERObjectCount;
}
ULONG PerfDataGetGDIObjectCount(ULONG Index)
{
ULONG GDIObjectCount;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
GDIObjectCount = pPerfData[Index].GDIObjectCount;
else
GDIObjectCount = 0;
LeaveCriticalSection(&PerfDataCriticalSection);
return GDIObjectCount;
}
BOOL PerfDataGetIOCounters(ULONG Index, PIO_COUNTERS pIoCounters)
{
BOOL bSuccessful;
EnterCriticalSection(&PerfDataCriticalSection);
if (Index < ProcessCount)
{
memcpy(pIoCounters, &pPerfData[Index].IOCounters, sizeof(IO_COUNTERS));
bSuccessful = TRUE;
}
else
bSuccessful = FALSE;
LeaveCriticalSection(&PerfDataCriticalSection);
return bSuccessful;
}
ULONG PerfDataGetCommitChargeTotalK(void)
{
ULONG Total;
ULONG PageSize;
EnterCriticalSection(&PerfDataCriticalSection);
Total = SystemPerfInfo.TotalCommittedPages;
PageSize = SystemBasicInfo.PageSize;
LeaveCriticalSection(&PerfDataCriticalSection);
Total = Total * (PageSize / 1024);
return Total;
}
ULONG PerfDataGetCommitChargeLimitK(void)
{
ULONG Limit;
ULONG PageSize;
EnterCriticalSection(&PerfDataCriticalSection);
Limit = SystemPerfInfo.TotalCommitLimit;
PageSize = SystemBasicInfo.PageSize;
LeaveCriticalSection(&PerfDataCriticalSection);
Limit = Limit * (PageSize / 1024);
return Limit;
}
ULONG PerfDataGetCommitChargePeakK(void)
{
ULONG Peak;
ULONG PageSize;
EnterCriticalSection(&PerfDataCriticalSection);
Peak = SystemPerfInfo.PeakCommitment;
PageSize = SystemBasicInfo.PageSize;
LeaveCriticalSection(&PerfDataCriticalSection);
Peak = Peak * (PageSize / 1024);
return Peak;
}
ULONG PerfDataGetKernelMemoryTotalK(void)
{
ULONG Total;
ULONG Paged;
ULONG NonPaged;
ULONG PageSize;
EnterCriticalSection(&PerfDataCriticalSection);
Paged = SystemPerfInfo.PagedPoolUsage;
NonPaged = SystemPerfInfo.NonPagedPoolUsage;
PageSize = SystemBasicInfo.PageSize;
LeaveCriticalSection(&PerfDataCriticalSection);
Paged = Paged * (PageSize / 1024);
NonPaged = NonPaged * (PageSize / 1024);
Total = Paged + NonPaged;
return Total;
}
ULONG PerfDataGetKernelMemoryPagedK(void)
{
ULONG Paged;
ULONG PageSize;
EnterCriticalSection(&PerfDataCriticalSection);
Paged = SystemPerfInfo.PagedPoolUsage;
PageSize = SystemBasicInfo.PageSize;
LeaveCriticalSection(&PerfDataCriticalSection);
Paged = Paged * (PageSize / 1024);
return Paged;
}
ULONG PerfDataGetKernelMemoryNonPagedK(void)
{
ULONG NonPaged;
ULONG PageSize;
EnterCriticalSection(&PerfDataCriticalSection);
NonPaged = SystemPerfInfo.NonPagedPoolUsage;
PageSize = SystemBasicInfo.PageSize;
LeaveCriticalSection(&PerfDataCriticalSection);
NonPaged = NonPaged * (PageSize / 1024);
return NonPaged;
}
ULONG PerfDataGetPhysicalMemoryTotalK(void)
{
ULONG Total;
ULONG PageSize;
EnterCriticalSection(&PerfDataCriticalSection);
Total = SystemBasicInfo.MmNumberOfPhysicalPages;
PageSize = SystemBasicInfo.PageSize;
LeaveCriticalSection(&PerfDataCriticalSection);
Total = Total * (PageSize / 1024);
return Total;
}
ULONG PerfDataGetPhysicalMemoryAvailableK(void)
{
ULONG Available;
ULONG PageSize;
EnterCriticalSection(&PerfDataCriticalSection);
Available = SystemPerfInfo.AvailablePages;
PageSize = SystemBasicInfo.PageSize;
LeaveCriticalSection(&PerfDataCriticalSection);
Available = Available * (PageSize / 1024);
return Available;
}
ULONG PerfDataGetPhysicalMemorySystemCacheK(void)
{
ULONG SystemCache;
EnterCriticalSection(&PerfDataCriticalSection);
SystemCache = SystemCacheInfo.CurrentSize;
LeaveCriticalSection(&PerfDataCriticalSection);
SystemCache = SystemCache / 1024;
return SystemCache;
}
ULONG PerfDataGetSystemHandleCount(void)
{
ULONG HandleCount;
EnterCriticalSection(&PerfDataCriticalSection);
HandleCount = SystemHandleInfo.Count;
LeaveCriticalSection(&PerfDataCriticalSection);
return HandleCount;
}
ULONG PerfDataGetTotalThreadCount(void)
{
ULONG ThreadCount = 0;
ULONG i;
EnterCriticalSection(&PerfDataCriticalSection);
for (i=0; i<ProcessCount; i++)
{
ThreadCount += pPerfData[i].ThreadCount;
}
LeaveCriticalSection(&PerfDataCriticalSection);
return ThreadCount;
}