Sweden-Number/debugger/stabs.c

1379 lines
38 KiB
C

/* -*- tab-width: 8; c-basic-offset: 4 -*- */
/*
* File stabs.c - read stabs information from the wine executable itself.
*
* Copyright (C) 1996, Eric Youngdale.
* 1999, 2000 Eric Pouech
*/
#include "config.h"
#include <sys/types.h>
#include <fcntl.h>
#include <sys/stat.h>
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#ifndef PATH_MAX
#define PATH_MAX _MAX_PATH
#endif
#include "debugger.h"
#if defined(__svr4__) || defined(__sun)
#define __ELF__
#endif
#ifdef __ELF__
#ifdef HAVE_ELF_H
# include <elf.h>
#endif
#ifdef HAVE_LINK_H
# include <link.h>
#endif
#endif
#ifndef N_UNDF
#define N_UNDF 0x00
#endif
#ifndef STN_UNDEF
# define STN_UNDEF 0
#endif
#define N_GSYM 0x20
#define N_FUN 0x24
#define N_STSYM 0x26
#define N_LCSYM 0x28
#define N_MAIN 0x2a
#define N_ROSYM 0x2c
#define N_OPT 0x3c
#define N_RSYM 0x40
#define N_SLINE 0x44
#define N_SO 0x64
#define N_LSYM 0x80
#define N_BINCL 0x82
#define N_SOL 0x84
#define N_PSYM 0xa0
#define N_EINCL 0xa2
#define N_LBRAC 0xc0
#define N_EXCL 0xc2
#define N_RBRAC 0xe0
typedef struct tagELF_DBG_INFO {
unsigned long elf_addr;
} ELF_DBG_INFO;
struct stab_nlist {
union {
char *n_name;
struct stab_nlist *n_next;
long n_strx;
} n_un;
unsigned char n_type;
char n_other;
short n_desc;
unsigned long n_value;
};
static void stab_strcpy(char * dest, int sz, const char * source)
{
/*
* A strcpy routine that stops when we hit the ':' character.
* Faster than copying the whole thing, and then nuking the
* ':'.
*/
while(*source != '\0' && *source != ':' && sz-- > 0)
*dest++ = *source++;
*dest = '\0';
assert(sz > 0);
}
typedef struct {
char* name;
unsigned long value;
int idx;
struct datatype** vector;
int nrofentries;
} include_def;
#define MAX_INCLUDES 256
static include_def* include_defs = NULL;
static int num_include_def = 0;
static int num_alloc_include_def = 0;
static int cu_include_stack[MAX_INCLUDES];
static int cu_include_stk_idx = 0;
static struct datatype** cu_vector = NULL;
static int cu_nrofentries = 0;
static
int
DEBUG_CreateInclude(const char* file, unsigned long val)
{
if (num_include_def == num_alloc_include_def)
{
num_alloc_include_def += 256;
include_defs = DBG_realloc(include_defs, sizeof(include_defs[0])*num_alloc_include_def);
memset(include_defs+num_include_def, 0, sizeof(include_defs[0])*256);
}
include_defs[num_include_def].name = DBG_strdup(file);
include_defs[num_include_def].value = val;
include_defs[num_include_def].vector = NULL;
include_defs[num_include_def].nrofentries = 0;
return num_include_def++;
}
static
int
DEBUG_FindInclude(const char* file, unsigned long val)
{
int i;
for (i = 0; i < num_include_def; i++)
{
if (val == include_defs[i].value &&
strcmp(file, include_defs[i].name) == 0)
return i;
}
return -1;
}
static
int
DEBUG_AddInclude(int idx)
{
++cu_include_stk_idx;
/* is this happen, just bump MAX_INCLUDES */
/* we could also handle this as another dynarray */
assert(cu_include_stk_idx < MAX_INCLUDES);
cu_include_stack[cu_include_stk_idx] = idx;
return cu_include_stk_idx;
}
static
void
DEBUG_ResetIncludes(void)
{
/*
* The datatypes that we would need to use are reset when
* we start a new file. (at least the ones in filenr == 0
*/
cu_include_stk_idx = 0;/* keep 0 as index for the .c file itself */
memset(cu_vector, 0, sizeof(cu_vector[0]) * cu_nrofentries);
}
static
void
DEBUG_FreeIncludes(void)
{
int i;
DEBUG_ResetIncludes();
for (i = 0; i < num_include_def; i++)
{
DBG_free(include_defs[i].name);
DBG_free(include_defs[i].vector);
}
DBG_free(include_defs);
include_defs = NULL;
num_include_def = 0;
num_alloc_include_def = 0;
DBG_free(cu_vector);
cu_vector = NULL;
cu_nrofentries = 0;
}
static
struct datatype**
DEBUG_FileSubNr2StabEnum(int filenr, int subnr)
{
struct datatype** ret;
/* DEBUG_Printf(DBG_CHN_MESG, "creating type id for (%d,%d)\n", filenr, subnr); */
/* FIXME: I could perhaps create a dummy include_def for each compilation
* unit which would allow not to handle those two cases separately
*/
if (filenr == 0)
{
if (cu_nrofentries <= subnr)
{
cu_vector = DBG_realloc(cu_vector, sizeof(cu_vector[0])*(subnr+1));
memset(cu_vector+cu_nrofentries, 0, sizeof(cu_vector[0])*(subnr+1-cu_nrofentries));
cu_nrofentries = subnr + 1;
}
ret = &cu_vector[subnr];
}
else
{
include_def* idef;
assert(filenr <= cu_include_stk_idx);
idef = &include_defs[cu_include_stack[filenr]];
if (idef->nrofentries <= subnr)
{
idef->vector = DBG_realloc(idef->vector, sizeof(idef->vector[0])*(subnr+1));
memset(idef->vector + idef->nrofentries, 0, sizeof(idef->vector[0])*(subnr+1-idef->nrofentries));
idef->nrofentries = subnr + 1;
}
ret = &idef->vector[subnr];
}
/* DEBUG_Printf(DBG_CHN_MESG,"(%d,%d) is %d\n",filenr,subnr,ret); */
return ret;
}
static
struct datatype**
DEBUG_ReadTypeEnum(char **x) {
int filenr,subnr;
if (**x=='(') {
(*x)++; /* '(' */
filenr=strtol(*x,x,10); /* <int> */
(*x)++; /* ',' */
subnr=strtol(*x,x,10); /* <int> */
(*x)++; /* ')' */
} else {
filenr = 0;
subnr = strtol(*x,x,10); /* <int> */
}
return DEBUG_FileSubNr2StabEnum(filenr,subnr);
}
struct ParseTypedefData {
char* ptr;
char buf[1024];
int idx;
};
static int DEBUG_PTS_ReadTypedef(struct ParseTypedefData* ptd, const char* typename,
struct datatype** dt);
static int DEBUG_PTS_ReadID(struct ParseTypedefData* ptd)
{
char* first = ptd->ptr;
int len;
if ((ptd->ptr = strchr(ptd->ptr, ':')) == NULL) return -1;
len = ptd->ptr - first;
if (len >= sizeof(ptd->buf) - ptd->idx) return -1;
memcpy(ptd->buf + ptd->idx, first, len);
ptd->buf[ptd->idx + len] = '\0';
ptd->idx += len + 1;
ptd->ptr++; /* ':' */
return 0;
}
static int DEBUG_PTS_ReadNum(struct ParseTypedefData* ptd, int* v)
{
char* last;
*v = strtol(ptd->ptr, &last, 10);
if (last == ptd->ptr) return -1;
ptd->ptr = last;
return 0;
}
static int DEBUG_PTS_ReadTypeReference(struct ParseTypedefData* ptd,
int* filenr, int* subnr)
{
if (*ptd->ptr == '(') {
/* '(' <int> ',' <int> ')' */
ptd->ptr++;
if (DEBUG_PTS_ReadNum(ptd, filenr) == -1) return -1;
if (*ptd->ptr++ != ',') return -1;
if (DEBUG_PTS_ReadNum(ptd, subnr) == -1) return -1;
if (*ptd->ptr++ != ')') return -1;
} else {
*filenr = 0;
if (DEBUG_PTS_ReadNum(ptd, subnr) == -1) return -1;
}
return 0;
}
static int DEBUG_PTS_ReadRange(struct ParseTypedefData* ptd, struct datatype** dt,
int* lo, int* hi)
{
/* type ';' <int> ';' <int> ';' */
if (DEBUG_PTS_ReadTypedef(ptd, NULL, dt) == -1) return -1;
if (*ptd->ptr++ != ';') return -1; /* ';' */
if (DEBUG_PTS_ReadNum(ptd, lo) == -1) return -1;
if (*ptd->ptr++ != ';') return -1; /* ';' */
if (DEBUG_PTS_ReadNum(ptd, hi) == -1) return -1;
if (*ptd->ptr++ != ';') return -1; /* ';' */
return 0;
}
static int inline DEBUG_PTS_ReadAggregate(struct ParseTypedefData* ptd, struct datatype* sdt)
{
int sz, ofs;
char* last;
struct datatype* adt;
int idx;
int doadd;
sz = strtol(ptd->ptr, &last, 10);
if (last == ptd->ptr) return -1;
ptd->ptr = last;
doadd = DEBUG_SetStructSize(sdt, sz);
/* if the structure has already been filled, just redo the parsing
* but don't store results into the struct
* FIXME: there's a quite ugly memory leak in there...
*/
/* Now parse the individual elements of the structure/union. */
while (*ptd->ptr != ';') {
/* agg_name : type ',' <int:offset> ',' <int:size> */
idx = ptd->idx;
if (DEBUG_PTS_ReadID(ptd) == -1) return -1;
if (DEBUG_PTS_ReadTypedef(ptd, NULL, &adt) == -1) return -1;
if (!adt) return -1;
if (*ptd->ptr++ != ',') return -1;
if (DEBUG_PTS_ReadNum(ptd, &ofs) == -1) return -1;
if (*ptd->ptr++ != ',') return -1;
if (DEBUG_PTS_ReadNum(ptd, &sz) == -1) return -1;
if (*ptd->ptr++ != ';') return -1;
if (doadd) DEBUG_AddStructElement(sdt, ptd->buf + idx, adt, ofs, sz);
ptd->idx = idx;
}
ptd->ptr++; /* ';' */
return 0;
}
static int inline DEBUG_PTS_ReadEnum(struct ParseTypedefData* ptd, struct datatype* edt)
{
int ofs;
int idx;
while (*ptd->ptr != ';') {
idx = ptd->idx;
if (DEBUG_PTS_ReadID(ptd) == -1) return -1;
if (DEBUG_PTS_ReadNum(ptd, &ofs) == -1) return -1;
if (*ptd->ptr++ != ',') return -1;
DEBUG_AddStructElement(edt, ptd->buf + idx, NULL, ofs, 0);
ptd->idx = idx;
}
ptd->ptr++;
return 0;
}
static int inline DEBUG_PTS_ReadArray(struct ParseTypedefData* ptd, struct datatype* adt)
{
int lo, hi;
struct datatype* rdt;
/* ar<typeinfo_nodef>;<int>;<int>;<typeinfo> */
if (*ptd->ptr++ != 'r') return -1;
/* FIXME: range type is lost, always assume int */
if (DEBUG_PTS_ReadRange(ptd, &rdt, &lo, &hi) == -1) return -1;
if (DEBUG_PTS_ReadTypedef(ptd, NULL, &rdt) == -1) return -1;
DEBUG_SetArrayParams(adt, lo, hi, rdt);
return 0;
}
static int DEBUG_PTS_ReadTypedef(struct ParseTypedefData* ptd, const char* typename,
struct datatype** ret_dt)
{
int idx, lo, hi;
struct datatype* new_dt = NULL; /* newly created data type */
struct datatype* ref_dt; /* referenced data type (pointer...) */
struct datatype* dt1; /* intermediate data type (scope is limited) */
struct datatype* dt2; /* intermediate data type: t1=t2=new_dt */
int filenr1, subnr1;
int filenr2 = 0, subnr2 = 0;
/* things are a bit complicated because of the way the typedefs are stored inside
* the file (we cannot keep the struct datatype** around, because address can
* change when realloc is done, so we must call over and over
* DEBUG_FileSubNr2StabEnum to keep the correct values around
* (however, keeping struct datatype* is valid
*/
if (DEBUG_PTS_ReadTypeReference(ptd, &filenr1, &subnr1) == -1) return -1;
while (*ptd->ptr == '=') {
ptd->ptr++;
if (new_dt) {
DEBUG_Printf(DBG_CHN_MESG, "Bad recursion (1) in typedef\n");
return -1;
}
/* first handle attribute if any */
switch (*ptd->ptr) {
case '@':
if (*++ptd->ptr == 's') {
ptd->ptr++;
if (DEBUG_PTS_ReadNum(ptd, &lo) == -1) {
DEBUG_Printf(DBG_CHN_MESG, "Not an attribute... NIY\n");
ptd->ptr -= 2;
return -1;
}
if (*ptd->ptr++ != ';') return -1;
}
break;
}
/* then the real definitions */
switch (*ptd->ptr++) {
case '*':
new_dt = DEBUG_NewDataType(DT_POINTER, NULL);
if (DEBUG_PTS_ReadTypedef(ptd, NULL, &ref_dt) == -1) return -1;
DEBUG_SetPointerType(new_dt, ref_dt);
break;
case '(':
ptd->ptr--;
/* doit a two level by hand, otherwise we'd need a stack */
if (filenr2 || subnr2) {
DEBUG_Printf(DBG_CHN_MESG, "Bad recursion (2) in typedef\n");
return -1;
}
if (DEBUG_PTS_ReadTypeReference(ptd, &filenr2, &subnr2) == -1) return -1;
dt1 = *DEBUG_FileSubNr2StabEnum(filenr1, subnr1);
dt2 = *DEBUG_FileSubNr2StabEnum(filenr2, subnr2);
if (!dt1 && dt2) {
new_dt = dt2;
filenr2 = subnr2 = 0;
} else if (!dt1 && !dt2) {
new_dt = NULL;
} else {
DEBUG_Printf(DBG_CHN_MESG, "Unknown condition %08lx %08lx (%s)\n",
(unsigned long)dt1, (unsigned long)dt2, ptd->ptr);
return -1;
}
break;
case 'a':
new_dt = DEBUG_NewDataType(DT_ARRAY, NULL);
if (DEBUG_PTS_ReadArray(ptd, new_dt) == -1) return -1;
break;
case 'r':
new_dt = DEBUG_NewDataType(DT_BASIC, typename);
assert(!*DEBUG_FileSubNr2StabEnum(filenr1, subnr1));
*DEBUG_FileSubNr2StabEnum(filenr1, subnr1) = new_dt;
if (DEBUG_PTS_ReadRange(ptd, &ref_dt, &lo, &hi) == -1) return -1;
/* should perhaps do more here... */
break;
case 'f':
new_dt = DEBUG_NewDataType(DT_FUNC, NULL);
if (DEBUG_PTS_ReadTypedef(ptd, NULL, &ref_dt) == -1) return -1;
DEBUG_SetPointerType(new_dt, ref_dt);
break;
case 'e':
new_dt = DEBUG_NewDataType(DT_ENUM, NULL);
if (DEBUG_PTS_ReadEnum(ptd, new_dt) == -1) return -1;
break;
case 's':
case 'u':
/* dt1 can have been already defined in a forward definition */
dt1 = *DEBUG_FileSubNr2StabEnum(filenr1, subnr1);
dt2 = DEBUG_TypeCast(DT_STRUCT, typename);
if (!dt1) {
new_dt = DEBUG_NewDataType(DT_STRUCT, typename);
/* we need to set it here, because a struct can hold a pointer
* to itself
*/
*DEBUG_FileSubNr2StabEnum(filenr1, subnr1) = new_dt;
} else {
if (DEBUG_GetType(dt1) != DT_STRUCT) {
DEBUG_Printf(DBG_CHN_MESG,
"Forward declaration is not an aggregate\n");
return -1;
}
/* should check typename is the same too */
new_dt = dt1;
}
if (DEBUG_PTS_ReadAggregate(ptd, new_dt) == -1) return -1;
break;
case 'x':
switch (*ptd->ptr++) {
case 'e': lo = DT_ENUM; break;
case 's': case 'u': lo = DT_STRUCT; break;
default: return -1;
}
idx = ptd->idx;
if (DEBUG_PTS_ReadID(ptd) == -1) return -1;
new_dt = DEBUG_NewDataType(lo, ptd->buf + idx);
ptd->idx = idx;
break;
default:
DEBUG_Printf(DBG_CHN_MESG, "Unknown type '%c'\n", *ptd->ptr);
return -1;
}
}
if ((filenr2 || subnr2) && !*DEBUG_FileSubNr2StabEnum(filenr2, subnr2)) {
if (!new_dt) {
/* this should be a basic type, define it, or even void */
new_dt = DEBUG_NewDataType(DT_BASIC, typename);
}
*DEBUG_FileSubNr2StabEnum(filenr2, subnr2) = new_dt;
}
if (!new_dt) {
dt1 = *DEBUG_FileSubNr2StabEnum(filenr1, subnr1);
if (!dt1) {
DEBUG_Printf(DBG_CHN_MESG, "Nothing has been defined <%s>\n", ptd->ptr);
return -1;
}
*ret_dt = dt1;
return 0;
}
*DEBUG_FileSubNr2StabEnum(filenr1, subnr1) = *ret_dt = new_dt;
#if 0
if (typename) {
DEBUG_Printf(DBG_CHN_MESG, "Adding (%d,%d) %s => ", filenr1, subnr1, typename);
DEBUG_PrintTypeCast(new_dt);
DEBUG_Printf(DBG_CHN_MESG, "\n");
}
#endif
return 0;
}
static int DEBUG_ParseTypedefStab(char* ptr, const char* typename)
{
struct ParseTypedefData ptd;
struct datatype* dt;
int ret = -1;
/* check for already existing definition */
ptd.idx = 0;
if ((ptd.ptr = strchr(ptr, ':'))) {
ptd.ptr++;
if (*ptd.ptr != '(') ptd.ptr++;
ret = DEBUG_PTS_ReadTypedef(&ptd, typename, &dt);
}
if (ret == -1 || *ptd.ptr) {
DEBUG_Printf(DBG_CHN_MESG, "failure on %s at %s\n", ptr, ptd.ptr);
return FALSE;
}
return TRUE;
}
static struct datatype *
DEBUG_ParseStabType(const char * stab)
{
char * c;
/*
* Look through the stab definition, and figure out what datatype
* this represents. If we have something we know about, assign the
* type.
*/
c = strchr(stab, ':');
if( c == NULL )
return NULL;
c++;
/*
* The next character says more about the type (i.e. data, function, etc)
* of symbol. Skip it.
*/
if (*c != '(')
c++;
/*
* The next is either an integer or a (integer,integer).
* The DEBUG_ReadTypeEnum takes care that stab_types is large enough.
*/
return *DEBUG_ReadTypeEnum(&c);
}
enum DbgInfoLoad DEBUG_ParseStabs(char * addr, unsigned int load_offset,
unsigned int staboff, int stablen,
unsigned int strtaboff, int strtablen)
{
struct name_hash * curr_func = NULL;
struct wine_locals * curr_loc = NULL;
struct name_hash * curr_sym = NULL;
char currpath[PATH_MAX];
int i;
int in_external_file = FALSE;
int last_nso = -1;
int len;
DBG_VALUE new_value;
int nstab;
char * ptr;
char * stabbuff;
int stabbufflen;
struct stab_nlist * stab_ptr;
char * strs;
int strtabinc;
char * subpath = NULL;
char symname[4096];
nstab = stablen / sizeof(struct stab_nlist);
stab_ptr = (struct stab_nlist *) (addr + staboff);
strs = (char *) (addr + strtaboff);
memset(currpath, 0, sizeof(currpath));
/*
* Allocate a buffer into which we can build stab strings for cases
* where the stab is continued over multiple lines.
*/
stabbufflen = 65536;
stabbuff = (char *) DBG_alloc(stabbufflen);
strtabinc = 0;
stabbuff[0] = '\0';
for(i=0; i < nstab; i++, stab_ptr++ )
{
ptr = strs + (unsigned int) stab_ptr->n_un.n_name;
if( ptr[strlen(ptr) - 1] == '\\' )
{
/*
* Indicates continuation. Append this to the buffer, and go onto the
* next record. Repeat the process until we find a stab without the
* '/' character, as this indicates we have the whole thing.
*/
len = strlen(ptr);
if( strlen(stabbuff) + len > stabbufflen )
{
stabbufflen += 65536;
stabbuff = (char *) DBG_realloc(stabbuff, stabbufflen);
}
strncat(stabbuff, ptr, len - 1);
continue;
}
else if( stabbuff[0] != '\0' )
{
strcat( stabbuff, ptr);
ptr = stabbuff;
}
if( strchr(ptr, '=') != NULL )
{
/*
* The stabs aren't in writable memory, so copy it over so we are
* sure we can scribble on it.
*/
if( ptr != stabbuff )
{
strcpy(stabbuff, ptr);
ptr = stabbuff;
}
stab_strcpy(symname, sizeof(symname), ptr);
if (!DEBUG_ParseTypedefStab(ptr, symname)) {
/* skip this definition */
stabbuff[0] = '\0';
continue;
}
}
switch(stab_ptr->n_type)
{
case N_GSYM:
/*
* These are useless with ELF. They have no value, and you have to
* read the normal symbol table to get the address. Thus we
* ignore them, and when we process the normal symbol table
* we should do the right thing.
*
* With a.out or mingw, they actually do make some amount of sense.
*/
new_value.addr.seg = 0;
new_value.type = DEBUG_ParseStabType(ptr);
new_value.addr.off = load_offset + stab_ptr->n_value;
new_value.cookie = DV_TARGET;
stab_strcpy(symname, sizeof(symname), ptr);
#ifdef __ELF__
curr_sym = DEBUG_AddSymbol( symname, &new_value, currpath,
SYM_WINE | SYM_DATA | SYM_INVALID );
#else
curr_sym = DEBUG_AddSymbol( symname, &new_value, currpath,
SYM_WINE | SYM_DATA );
#endif
break;
case N_RBRAC:
case N_LBRAC:
/*
* We need to keep track of these so we get symbol scoping
* right for local variables. For now, we just ignore them.
* The hooks are already there for dealing with this however,
* so all we need to do is to keep count of the nesting level,
* and find the RBRAC for each matching LBRAC.
*/
break;
case N_LCSYM:
case N_STSYM:
/*
* These are static symbols and BSS symbols.
*/
new_value.addr.seg = 0;
new_value.type = DEBUG_ParseStabType(ptr);
new_value.addr.off = load_offset + stab_ptr->n_value;
new_value.cookie = DV_TARGET;
stab_strcpy(symname, sizeof(symname), ptr);
curr_sym = DEBUG_AddSymbol( symname, &new_value, currpath,
SYM_WINE | SYM_DATA );
break;
case N_PSYM:
/*
* These are function parameters.
*/
if( curr_func != NULL && !in_external_file )
{
stab_strcpy(symname, sizeof(symname), ptr);
curr_loc = DEBUG_AddLocal( curr_func, 0,
stab_ptr->n_value, 0, 0, symname );
DEBUG_SetLocalSymbolType( curr_loc, DEBUG_ParseStabType(ptr) );
}
break;
case N_RSYM:
if( curr_func != NULL && !in_external_file )
{
stab_strcpy(symname, sizeof(symname), ptr);
curr_loc = DEBUG_AddLocal( curr_func, stab_ptr->n_value + 1,
0, 0, 0, symname );
DEBUG_SetLocalSymbolType( curr_loc, DEBUG_ParseStabType(ptr) );
}
break;
case N_LSYM:
if( curr_func != NULL && !in_external_file )
{
stab_strcpy(symname, sizeof(symname), ptr);
curr_loc = DEBUG_AddLocal( curr_func, 0,
stab_ptr->n_value, 0, 0, symname );
DEBUG_SetLocalSymbolType( curr_loc, DEBUG_ParseStabType(ptr) );
}
break;
case N_SLINE:
/*
* This is a line number. These are always relative to the start
* of the function (N_FUN), and this makes the lookup easier.
*/
if( curr_func != NULL && !in_external_file )
{
#ifdef __ELF__
DEBUG_AddLineNumber(curr_func, stab_ptr->n_desc,
stab_ptr->n_value);
#else
#if 0
/*
* This isn't right. The order of the stabs is different under
* a.out, and as a result we would end up attaching the line
* number to the wrong function.
*/
DEBUG_AddLineNumber(curr_func, stab_ptr->n_desc,
stab_ptr->n_value - curr_func->addr.off);
#endif
#endif
}
break;
case N_FUN:
/*
* First, clean up the previous function we were working on.
*/
DEBUG_Normalize(curr_func);
/*
* For now, just declare the various functions. Later
* on, we will add the line number information and the
* local symbols.
*/
if( !in_external_file)
{
stab_strcpy(symname, sizeof(symname), ptr);
if (*symname)
{
new_value.addr.seg = 0;
new_value.type = DEBUG_ParseStabType(ptr);
new_value.addr.off = load_offset + stab_ptr->n_value;
new_value.cookie = DV_TARGET;
/*
* Copy the string to a temp buffer so we
* can kill everything after the ':'. We do
* it this way because otherwise we end up dirtying
* all of the pages related to the stabs, and that
* sucks up swap space like crazy.
*/
#ifdef __ELF__
curr_func = DEBUG_AddSymbol( symname, &new_value, currpath,
SYM_WINE | SYM_FUNC | SYM_INVALID );
#else
curr_func = DEBUG_AddSymbol( symname, &new_value, currpath,
SYM_WINE | SYM_FUNC );
#endif
}
else
{
/* some GCC seem to use a N_FUN "" to mark the end of a function */
curr_func = NULL;
}
}
else
{
/*
* Don't add line number information for this function
* any more.
*/
curr_func = NULL;
}
break;
case N_SO:
/*
* This indicates a new source file. Append the records
* together, to build the correct path name.
*/
#ifndef __ELF__
/*
* With a.out, there is no NULL string N_SO entry at the end of
* the file. Thus when we find non-consecutive entries,
* we consider that a new file is started.
*/
if( last_nso < i-1 )
{
currpath[0] = '\0';
DEBUG_Normalize(curr_func);
curr_func = NULL;
}
#endif
if( *ptr == '\0' )
{
/*
* Nuke old path.
*/
currpath[0] = '\0';
DEBUG_Normalize(curr_func);
curr_func = NULL;
}
else
{
if (*ptr != '/')
strcat(currpath, ptr);
else
strcpy(currpath, ptr);
subpath = ptr;
DEBUG_ResetIncludes();
}
last_nso = i;
break;
case N_SOL:
/*
* This indicates we are including stuff from an include file.
* If this is the main source, enable the debug stuff, otherwise
* ignore it.
*/
in_external_file = !(subpath == NULL || strcmp(ptr, subpath) == 0);
break;
case N_UNDF:
strs += strtabinc;
strtabinc = stab_ptr->n_value;
DEBUG_Normalize(curr_func);
curr_func = NULL;
break;
case N_OPT:
/*
* Ignore this. We don't care what it points to.
*/
break;
case N_BINCL:
DEBUG_AddInclude(DEBUG_CreateInclude(ptr, stab_ptr->n_value));
break;
case N_EINCL:
break;
case N_EXCL:
DEBUG_AddInclude(DEBUG_FindInclude(ptr, stab_ptr->n_value));
break;
case N_MAIN:
/*
* Always ignore these. GCC doesn't even generate them.
*/
break;
default:
DEBUG_Printf(DBG_CHN_MESG, "Unknown stab type 0x%02x\n", stab_ptr->n_type);
break;
}
stabbuff[0] = '\0';
#if 0
DEBUG_Printf(DBG_CHN_MESG, "%d %x %s\n", stab_ptr->n_type,
(unsigned int) stab_ptr->n_value,
strs + (unsigned int) stab_ptr->n_un.n_name);
#endif
}
DEBUG_FreeIncludes();
return DIL_LOADED;
}
#ifdef __ELF__
/*
* Walk through the entire symbol table and add any symbols we find there.
* This can be used in cases where we have stripped ELF shared libraries,
* or it can be used in cases where we have data symbols for which the address
* isn't encoded in the stabs.
*
* This is all really quite easy, since we don't have to worry about line
* numbers or local data variables.
*/
static int DEBUG_ProcessElfSymtab(DBG_MODULE* module, char* addr,
u_long load_addr, Elf32_Shdr* symtab,
Elf32_Shdr* strtab)
{
char * curfile = NULL;
struct name_hash * curr_sym = NULL;
int flags;
int i;
DBG_VALUE new_value;
int nsym;
char * strp;
char * symname;
Elf32_Sym * symp;
symp = (Elf32_Sym *) (addr + symtab->sh_offset);
nsym = symtab->sh_size / sizeof(*symp);
strp = (char *) (addr + strtab->sh_offset);
for(i=0; i < nsym; i++, symp++)
{
/*
* Ignore certain types of entries which really aren't of that much
* interest.
*/
if( ELF32_ST_TYPE(symp->st_info) == STT_SECTION ||
symp->st_shndx == STN_UNDEF )
{
continue;
}
symname = strp + symp->st_name;
/*
* Save the name of the current file, so we have a way of tracking
* static functions/data.
*/
if( ELF32_ST_TYPE(symp->st_info) == STT_FILE )
{
curfile = symname;
continue;
}
/*
* See if we already have something for this symbol.
* If so, ignore this entry, because it would have come from the
* stabs or from a previous symbol. If the value is different,
* we will have to keep the darned thing, because there can be
* multiple local symbols by the same name.
*/
if( (DEBUG_GetSymbolValue(symname, -1, &new_value, FALSE ) == TRUE)
&& (new_value.addr.off == (load_addr + symp->st_value)) )
continue;
new_value.addr.seg = 0;
new_value.type = NULL;
new_value.addr.off = load_addr + symp->st_value;
new_value.cookie = DV_TARGET;
flags = SYM_WINE | ((ELF32_ST_TYPE(symp->st_info) == STT_FUNC)
? SYM_FUNC : SYM_DATA);
if( ELF32_ST_BIND(symp->st_info) == STB_GLOBAL )
curr_sym = DEBUG_AddSymbol( symname, &new_value, NULL, flags );
else
curr_sym = DEBUG_AddSymbol( symname, &new_value, curfile, flags );
/*
* Record the size of the symbol. This can come in handy in
* some cases. Not really used yet, however.
*/
if( symp->st_size != 0 )
DEBUG_SetSymbolSize(curr_sym, symp->st_size);
}
return TRUE;
}
/*
* Loads the symbolic information from ELF module stored in 'filename'
* the module has been loaded at 'load_offset' address, so symbols' address
* relocation is performed
* returns
* -1 if the file cannot be found/opened
* 0 if the file doesn't contain symbolic info (or this info cannot be
* read or parsed)
* 1 on success
*/
enum DbgInfoLoad DEBUG_LoadElfStabs(DBG_MODULE* module)
{
enum DbgInfoLoad dil = DIL_ERROR;
char* addr = (char*)0xffffffff;
int fd = -1;
struct stat statbuf;
Elf32_Ehdr* ehptr;
Elf32_Shdr* spnt;
char* shstrtab;
int i;
int stabsect;
int stabstrsect;
if (module->type != DMT_ELF || ! module->elf_info) {
DEBUG_Printf(DBG_CHN_ERR, "Bad elf module '%s'\n", module->module_name);
return DIL_ERROR;
}
/* check that the file exists, and that the module hasn't been loaded yet */
if (stat(module->module_name, &statbuf) == -1) goto leave;
if (S_ISDIR(statbuf.st_mode)) goto leave;
/*
* Now open the file, so that we can mmap() it.
*/
if ((fd = open(module->module_name, O_RDONLY)) == -1) goto leave;
dil = DIL_NOINFO;
/*
* Now mmap() the file.
*/
addr = mmap(0, statbuf.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
if (addr == (char*)0xffffffff) goto leave;
/*
* Next, we need to find a few of the internal ELF headers within
* this thing. We need the main executable header, and the section
* table.
*/
ehptr = (Elf32_Ehdr*) addr;
spnt = (Elf32_Shdr*) (addr + ehptr->e_shoff);
shstrtab = (addr + spnt[ehptr->e_shstrndx].sh_offset);
stabsect = stabstrsect = -1;
for (i = 0; i < ehptr->e_shnum; i++) {
if (strcmp(shstrtab + spnt[i].sh_name, ".stab") == 0)
stabsect = i;
if (strcmp(shstrtab + spnt[i].sh_name, ".stabstr") == 0)
stabstrsect = i;
}
if (stabsect == -1 || stabstrsect == -1) {
DEBUG_Printf(DBG_CHN_WARN, "no .stab section\n");
goto leave;
}
/*
* OK, now just parse all of the stabs.
*/
if (DEBUG_ParseStabs(addr,
module->elf_info->elf_addr,
spnt[stabsect].sh_offset,
spnt[stabsect].sh_size,
spnt[stabstrsect].sh_offset,
spnt[stabstrsect].sh_size)) {
dil = DIL_LOADED;
} else {
dil = DIL_ERROR;
DEBUG_Printf(DBG_CHN_WARN, "bad stabs\n");
goto leave;
}
for (i = 0; i < ehptr->e_shnum; i++) {
if ( (strcmp(shstrtab + spnt[i].sh_name, ".symtab") == 0)
&& (spnt[i].sh_type == SHT_SYMTAB))
DEBUG_ProcessElfSymtab(module, addr, module->elf_info->elf_addr,
spnt + i, spnt + spnt[i].sh_link);
if ( (strcmp(shstrtab + spnt[i].sh_name, ".dynsym") == 0)
&& (spnt[i].sh_type == SHT_DYNSYM))
DEBUG_ProcessElfSymtab(module, addr, module->elf_info->elf_addr,
spnt + i, spnt + spnt[i].sh_link);
}
leave:
if (addr != (char*)0xffffffff) munmap(addr, statbuf.st_size);
if (fd != -1) close(fd);
return dil;
}
/*
* Loads the information for ELF module stored in 'filename'
* the module has been loaded at 'load_offset' address
* returns
* -1 if the file cannot be found/opened
* 0 if the file doesn't contain symbolic info (or this info cannot be
* read or parsed)
* 1 on success
*/
static enum DbgInfoLoad DEBUG_ProcessElfFile(const char* filename,
unsigned int load_offset,
unsigned int* dyn_addr)
{
enum DbgInfoLoad dil = DIL_ERROR;
char* addr = (char*)0xffffffff;
int fd = -1;
struct stat statbuf;
Elf32_Ehdr* ehptr;
Elf32_Shdr* spnt;
Elf32_Phdr* ppnt;
char * shstrtab;
int i;
DBG_MODULE* module = NULL;
DWORD size;
DWORD delta;
DEBUG_Printf(DBG_CHN_TRACE, "Processing elf file '%s'\n", filename);
/* check that the file exists, and that the module hasn't been loaded yet */
if (stat(filename, &statbuf) == -1) goto leave;
/*
* Now open the file, so that we can mmap() it.
*/
if ((fd = open(filename, O_RDONLY)) == -1) goto leave;
/*
* Now mmap() the file.
*/
addr = mmap(0, statbuf.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
if (addr == (char*)0xffffffff) goto leave;
dil = DIL_NOINFO;
/*
* Next, we need to find a few of the internal ELF headers within
* this thing. We need the main executable header, and the section
* table.
*/
ehptr = (Elf32_Ehdr*) addr;
spnt = (Elf32_Shdr*) (addr + ehptr->e_shoff);
shstrtab = (addr + spnt[ehptr->e_shstrndx].sh_offset);
/* if non relocatable ELF, then remove fixed address from computation
* otherwise, all addresses are zero based
*/
delta = (load_offset == 0) ? ehptr->e_entry : 0;
/* grab size of module once loaded in memory */
ppnt = (Elf32_Phdr*) (addr + ehptr->e_phoff);
size = 0;
for (i = 0; i < ehptr->e_phnum; i++) {
if (ppnt[i].p_type != PT_LOAD) continue;
if (size < ppnt[i].p_vaddr - delta + ppnt[i].p_memsz)
size = ppnt[i].p_vaddr - delta + ppnt[i].p_memsz;
}
for (i = 0; i < ehptr->e_shnum; i++) {
if (strcmp(shstrtab + spnt[i].sh_name, ".bss") == 0 &&
spnt[i].sh_type == SHT_NOBITS) {
if (size < spnt[i].sh_addr - delta + spnt[i].sh_size)
size = spnt[i].sh_addr - delta + spnt[i].sh_size;
}
if (strcmp(shstrtab + spnt[i].sh_name, ".dynamic") == 0 &&
spnt[i].sh_type == SHT_DYNAMIC) {
if (dyn_addr) *dyn_addr = spnt[i].sh_addr;
}
}
module = DEBUG_RegisterELFModule((load_offset == 0) ? ehptr->e_entry : load_offset,
size, filename);
if (!module) {
dil = DIL_ERROR;
goto leave;
}
if ((module->elf_info = DBG_alloc(sizeof(ELF_DBG_INFO))) == NULL) {
DEBUG_Printf(DBG_CHN_ERR, "OOM\n");
exit(0);
}
module->elf_info->elf_addr = load_offset;
dil = DEBUG_LoadElfStabs(module);
leave:
if (addr != (char*)0xffffffff) munmap(addr, statbuf.st_size);
if (fd != -1) close(fd);
if (module) module->dil = dil;
return dil;
}
static enum DbgInfoLoad DEBUG_ProcessElfFileFromPath(const char * filename,
unsigned int load_offset,
unsigned int* dyn_addr,
const char* path)
{
enum DbgInfoLoad dil = DIL_ERROR;
char *s, *t, *fn;
char* paths = NULL;
if (!path) return -1;
for (s = paths = DBG_strdup(path); s && *s; s = (t) ? (t+1) : NULL) {
t = strchr(s, ':');
if (t) *t = '\0';
fn = (char*)DBG_alloc(strlen(filename) + 1 + strlen(s) + 1);
if (!fn) break;
strcpy(fn, s );
strcat(fn, "/");
strcat(fn, filename);
dil = DEBUG_ProcessElfFile(fn, load_offset, dyn_addr);
DBG_free(fn);
if (dil != DIL_ERROR) break;
s = (t) ? (t+1) : NULL;
}
DBG_free(paths);
return dil;
}
static enum DbgInfoLoad DEBUG_ProcessElfObject(const char* filename,
unsigned int load_offset,
unsigned int* dyn_addr)
{
enum DbgInfoLoad dil = DIL_ERROR;
if (filename == NULL) return DIL_ERROR;
if (DEBUG_FindModuleByName(filename, DMT_ELF)) return DIL_LOADED;
dil = DEBUG_ProcessElfFile(filename, load_offset, dyn_addr);
/* if relative pathname, try some absolute base dirs */
if (dil == DIL_ERROR && !strchr(filename, '/')) {
dil = DEBUG_ProcessElfFileFromPath(filename, load_offset, dyn_addr, getenv("PATH"));
if (dil == DIL_ERROR)
dil = DEBUG_ProcessElfFileFromPath(filename, load_offset, dyn_addr, getenv("LD_LIBRARY_PATH"));
}
DEBUG_ReportDIL(dil, "ELF", filename, load_offset);
return dil;
}
static BOOL DEBUG_WalkList(struct r_debug* dbg_hdr)
{
u_long lm_addr;
struct link_map lm;
Elf32_Ehdr ehdr;
char bufstr[256];
/*
* Now walk the linked list. In all known ELF implementations,
* the dynamic loader maintains this linked list for us. In some
* cases the first entry doesn't appear with a name, in other cases it
* does.
*/
for (lm_addr = (u_long)dbg_hdr->r_map; lm_addr; lm_addr = (u_long)lm.l_next) {
if (!DEBUG_READ_MEM_VERBOSE((void*)lm_addr, &lm, sizeof(lm)))
return FALSE;
if (lm.l_addr != 0 &&
DEBUG_READ_MEM_VERBOSE((void*)lm.l_addr, &ehdr, sizeof(ehdr)) &&
ehdr.e_type == ET_DYN && /* only look at dynamic modules */
lm.l_name != NULL &&
DEBUG_READ_MEM_VERBOSE((void*)lm.l_name, bufstr, sizeof(bufstr))) {
bufstr[sizeof(bufstr) - 1] = '\0';
DEBUG_ProcessElfObject(bufstr, (unsigned)lm.l_addr, NULL);
}
}
return TRUE;
}
static BOOL DEBUG_RescanElf(void)
{
struct r_debug dbg_hdr;
if (!DEBUG_CurrProcess ||
!DEBUG_READ_MEM_VERBOSE((void*)DEBUG_CurrProcess->dbg_hdr_addr, &dbg_hdr, sizeof(dbg_hdr)))
return FALSE;
switch (dbg_hdr.r_state) {
case RT_CONSISTENT:
DEBUG_WalkList(&dbg_hdr);
break;
case RT_ADD:
break;
case RT_DELETE:
/* FIXME: this is not currently handled, would need some kind of mark&sweep algo */
break;
}
return FALSE;
}
enum DbgInfoLoad DEBUG_ReadExecutableDbgInfo(const char* exe_name)
{
Elf32_Dyn dyn;
struct r_debug dbg_hdr;
enum DbgInfoLoad dil = DIL_NOINFO;
unsigned int dyn_addr;
/*
* Make sure we can stat and open this file.
*/
if (exe_name == NULL) goto leave;
DEBUG_ProcessElfObject(exe_name, 0, &dyn_addr);
do {
if (!DEBUG_READ_MEM_VERBOSE((void*)dyn_addr, &dyn, sizeof(dyn)))
goto leave;
dyn_addr += sizeof(dyn);
} while (dyn.d_tag != DT_DEBUG && dyn.d_tag != DT_NULL);
if (dyn.d_tag == DT_NULL) goto leave;
/*
* OK, now dig into the actual tables themselves.
*/
if (!DEBUG_READ_MEM_VERBOSE((void*)dyn.d_un.d_ptr, &dbg_hdr, sizeof(dbg_hdr)))
goto leave;
assert(!DEBUG_CurrProcess->dbg_hdr_addr);
DEBUG_CurrProcess->dbg_hdr_addr = (u_long)dyn.d_un.d_ptr;
if (dbg_hdr.r_brk) {
DBG_VALUE value;
DEBUG_Printf(DBG_CHN_TRACE, "Setting up a breakpoint on r_brk(%lx)\n",
(unsigned long)dbg_hdr.r_brk);
DEBUG_SetBreakpoints(FALSE);
value.type = NULL;
value.cookie = DV_TARGET;
value.addr.seg = 0;
value.addr.off = (DWORD)dbg_hdr.r_brk;
DEBUG_AddBreakpoint(&value, DEBUG_RescanElf);
DEBUG_SetBreakpoints(TRUE);
}
dil = DEBUG_WalkList(&dbg_hdr);
leave:
return dil;
}
#else /* !__ELF__ */
enum DbgInfoLoad DEBUG_ReadExecutableDbgInfo(const char* exe_name)
{
return FALSE;
}
#endif /* __ELF__ */