Sweden-Number/tools/winebuild/winebuild.man.in

468 lines
13 KiB
Groff

.\" -*- nroff -*-
.TH WINEBUILD 1 "March 2003" "@PACKAGE_STRING@" "Wine dll builder"
.SH NAME
winebuild \- Wine dll builder
.SH SYNOPSIS
.BI winebuild\ [options]\ [input\ files]
.SH DESCRIPTION
.B winebuild
generates the C and assembly files that are necessary to build a Wine
dll, which is basically a Win32 dll encapsulated inside a Unix
library.
.PP
.B winebuild
has different modes, depending on what kind of file it is asked to
generate. The mode is specified by one of the mode options specified
below. In addition to the mode option, various other command-line
option can be specified, as described in the \fBOPTIONS\fR section.
.SH "MODE OPTIONS"
You have to specify exactly one of the following options, depending on
what you want winebuild to generate.
.TP
.BI \--spec=\ file.spec
Build a C file from a spec file (see \fBSPEC FILE SYNTAX\fR for
details). The resulting C file must be compiled and linked to the
other object files to build a working Wine dll.
.br
In that mode, the
.I input files
should be the list of all object files that will be linked into the
final dll, to allow
.B winebuild
to get the list of all undefined symbols that need to be imported from
other dlls.
.TP
.BI \--exe=\ name
Build a C file for the named executable. This is basically the same as
the --spec mode except that it doesn't require a .spec file as input,
since an executable doesn't export functions. The resulting C file
must be compiled and linked to the other object files to build a
working Wine executable, and all the other object files must be listed
as
.I input files.
.TP
.BI \--def=\ file.spec
Build a .def file from a spec file. This is used when building dlls
with a PE (Win32) compiler.
.TP
.B \--debug
Build a C file containing the definitions for debugging channels. In
that mode the
.I input files
should be a list of C files to search for debug channel
definitions. The resulting C file must be compiled and linked with the
dll.
.TP
.B \--glue
Build a C file containing the glue code for the 16-bit calls contained
in the
.I input files.
These calls must be specified in the source files using special
markers, as described in the \fBGLUE FUNCTIONS\fR section.
.TP
.B \--relay16
Generate the assembly code for the 16-bit relay routines. This is for
Wine internal usage only, you should never need to use this option.
.TP
.B \--relay32
Generate the assembly code for the 32-bit relay routines. This is for
Wine internal usage only, you should never need to use this option.
.SH OPTIONS
.TP
.BI \-C,\ --source-dir= directory
Change to the specified directory before reading source files. Only
meaningful in
.BR \--debug\ and\ --glue\ modes.
.TP
.BI \-D\ symbol
Ignored for compatibility with the C compiler.
.TP
.BI \-e,\ --entry= function
Specify the module entry point function; if not specified, the default
is
.B DllMain
for dlls, and
.B main
or
.B WinMain
for CUI or GUI executables respectively. This is only valid for Win32
modules.
.TP
.BI \-f\ flags
Ignored for compatibility with the C compiler.
.TP
.BI \-F,\ --filename= filename
Set the file name of the module. The default is to use the base name
of the spec file (without any extension).
.TP
.B \-h, --help
Display a usage message and exit.
.TP
.BI \-H,\ --heap= size
Specify the size of the module local heap in bytes (only valid for
Win16 modules); default is no local heap.
.TP
.BI \-i,\ --ignore= [-]symbol[,[-]symbol]
Specify a list of symbols that should be ignored when resolving
undefined symbols against the imported libraries. This forces these
symbols to be resolved from the Unix C library (or from another Unix
library linked with the application). If a symbol is prefixed by '-'
it is removed from the list instead of being added; a stand-alone '-'
clears the whole list.
.TP
.BI \-I\ directory
Ignored for compatibility with the C compiler.
.TP
.B \-k, --kill-at
Remove the stdcall decorations from the symbol names in the
generated .def file. Only meaningful in \fB--def\fR mode.
.TP
.BI \-K\ flags
Ignored for compatibility with the C compiler.
.TP
.BI \-L,\ --library-path= directory
Append the specified directory to the list of directories that are
searched for import libraries.
.TP
.BI \-l,\ --library= name
Import the specified library, looking for a corresponding
\fIlibname.def\fR file in the directories specified with the \fB-L\fR
option.
.TP
.BI \-d,\ --delay-lib= name
Same as the \fB-l\fR option, but import the specified library in
delayed mode (i.e. the library won't be loaded until a function
imported from it is actually called).
.TP
.BI \-M,\ --main-module= module
Specify that we are building a 16-bit dll, that will ultimately be
linked together with the 32-bit dll specified in \fImodule\fR. Only
meaningful in \fB--spec\fR mode.
.TP
.BI \-m,\ --exe-mode= mode
Set the executable mode, which can be one of the following:
.br
.B cui
for a command line ASCII executable,
.br
.B gui
for a graphical ASCII executable,
.br
.B cuiw
for a command line Unicode executable,
.br
.B guiw
for a graphical Unicode executable.
.br
A command line executable entry point is a normal C \fBmain\fR
function. A graphical executable has a \fBWinMain\fR entry point
instead. The ASCII/Unicode distinction applies to the strings that are
passed to the entry point.
.br
This option is only meaningful in \fB--exe\fR mode.
.TP
.BI \-N,\ --dll-name= dllname
Set the internal name of the module. It is only used in Win16
modules. The default is to use the base name of the spec file (without
any extension). This is used for KERNEL, since it lives in
KRNL386.EXE. It shouldn't be needed otherwise.
.TP
.BI \-o,\ --output= file
Set the name of the output file (default is standard output).
.TP
.BI \-r,\ --res= rsrc.res
Load resources from the specified binary resource file. The
\fIrsrc.res\fR can be produced from a source resource file with
.BR wrc(1)
(or with a Windows resource compiler).
.br
This option is only necessary for Win16 resource files, the Win32 ones
can simply listed as
.I input files
and will automatically be handled correctly (though the
.B \-r
option will also work for Win32 files).
.TP
.B \--version
Display the program version and exit.
.TP
.B \-w, --warnings
Turn on warnings.
.SH "SPEC FILE SYNTAX"
.SS "General syntax"
A spec file should contain a list of ordinal declarations. The general
syntax is the following:
.PP
.I ordinal functype
.RI [ flags ]\ exportname \ \fB(\fR\ [ args... ] \ \fB) \ [ handler ]
.br
.IB ordinal\ variable
.RI [ flags ]\ exportname \ \fB(\fR\ [ data... ] \ \fB)
.br
.IB ordinal\ extern
.RI [ flags ]\ exportname \ [ symbolname ]
.br
.IB ordinal\ stub
.RI [ flags ]\ exportname
.br
.IB ordinal\ equate
.RI [ flags ]\ exportname\ data
.br
.BI #\ comments
.PP
Declarations must fit on a single line, except if the end of line is
escaped using a backslash character. The
.B #
character anywhere in a line causes the rest of the line to be ignored
as a comment.
.PP
.I ordinal
specifies the ordinal number corresponding to the entry point, or '@'
for automatic ordinal allocation (Win32 only).
.PP
.I flags
is a series of optional flags, preceded by a '-' character. The
supported flags are:
.RS
.TP
.B -norelay
The entry point is not displayed in relay debugging traces (Win32
only).
.TP
.B -noname
The entry point will be imported by ordinal instead of by name.
.TP
.B -ret64
The function returns a 64-bit value (Win32 only).
.TP
.B -i386
The entry point is only available on i386 platforms.
.TP
.B -register
The function uses CPU register to pass arguments.
.TP
.B -interrupt
The function is an interrupt handler routine.
.SS "Function ordinals"
Syntax:
.br
.I ordinal functype
.RI [ flags ]\ exportname \ \fB(\fR\ [ args... ] \ \fB) \ [ handler ]
.br
This declaration defines a function entry point. The prototype defined by
.IR exportname \ \fB(\fR\ [ args... ] \ \fB)
specifies the name available for dynamic linking and the format of the
arguments. '@' can be used instead of
.I exportname
for ordinal-only exports.
.PP
.I functype
should be one of:
.RS
.TP
.B stdcall
for a normal Win32 function
.TP
.B cdecl
for a Win32 function using the C calling convention
.TP
.B varargs
for a Win32 function taking a variable number of arguments
.TP
.B pascal
for a Win16 function returning a 32-bit value
.TP
.B pascal16
for a Win16 function returning a 16-bit value.
.RE
.PP
.I args
should be one or several of:
.RS
.TP
.B word
(16-bit unsigned value)
.TP
.B s_word
(16-bit signed word)
.TP
.B long
(32-bit value)
.TP
.B double
(64-bit value)
.TP
.B ptr
(linear pointer)
.TP
.B str
(linear pointer to a null-terminated ASCII string)
.TP
.B wstr
(linear pointer to a null-terminated Unicode string)
.TP
.B segptr
(segmented pointer)
.TP
.B segstr
(segmented pointer to a null-terminated ASCII string).
.HP
.RB Only\ ptr ,\ str ,\ wstr ,\ long\ and\ double
are valid for Win32 functions.
.RE
.PP
.I handler
is the name of the actual C function that will implement that entry
point in 32-bit mode. The handler can also be specified as
.IB dllname . function
to define a forwarded function (one whose implementation is in another
dll). If
.I handler
is not specified, it is assumed to be identical to
.I exportname.
.PP
This first example defines an entry point for the 32-bit GetFocus()
call:
.IP
@ stdcall GetFocus() GetFocus
.PP
This second example defines an entry point for the 16-bit
CreateWindow() call (the ordinal 100 is just an example); it also
shows how long lines can be split using a backslash:
.IP
100 pascal CreateWindow(ptr ptr long s_word s_word s_word \\
s_word word word word ptr) WIN_CreateWindow
.PP
To declare a function using a variable number of arguments in Win16,
specify the function as taking no arguments. The arguments are then
available with CURRENT_STACK16->args. In Win32, specify the function
as
.B varargs
and declare it with a '...' parameter in the C file. See the
wsprintf* functions in user.exe.spec and user32.spec for an example.
.SS "Variable ordinals"
Syntax:
.br
.IB ordinal\ variable
.RI [ flags ]\ exportname \ \fB(\fR\ [ data... ] \ \fB)
.PP
This declaration defines data storage as 32-bit words at the ordinal
specified.
.I exportname
will be the name available for dynamic
linking.
.I data
can be a decimal number or a hex number preceeded by "0x". The
following example defines the variable VariableA at ordinal 2 and
containing 4 ints:
.IP
2 variable VariableA(-1 0xff 0 0)
.PP
This declaration only works in Win16 spec files. In Win32 you should
use
.B extern
instead (see below).
.SS "Extern ordinals"
Syntax:
.br
.IB ordinal\ extern
.RI [ flags ]\ exportname \ [ symbolname ]
.PP
This declaration defines an entry that simply maps to a C symbol
(variable or function). It only works in Win32 spec files.
.I exportname
will point to the symbol
.I symbolname
that must be defined in the C code. Alternatively, it can be of the
form
.IB dllname . symbolname
to define a forwarded symbol (one whose implementation is in another
dll). If
.I symbolname
is not specified, it is assumed to be identical to
.I exportname.
.SS "Stub ordinals"
Syntax:
.br
.IB ordinal\ stub
.RI [ flags ]\ exportname
.PP
This declaration defines a stub function. It makes the name and
ordinal available for dynamic linking, but will terminate execution
with an error message if the function is ever called.
.SS "Equate ordinals"
Syntax:
.br
.IB ordinal\ equate
.RI [ flags ]\ exportname\ data
.PP
This declaration defines an ordinal as an absolute value.
.I exportname
will be the name available for dynamic linking.
.I data
can be a decimal number or a hex number preceeded by "0x".
.SH "GLUE FUNCTIONS"
Glue functions are used to call down to 16-bit code from a 32-bit
function. This is done by declaring a special type of function
prototype in the source file that needs to call to 16-bit code, and
processing the source file through
.I winebuild --glue.
.PP
These prototypes must be of one of the following forms:
.PP
.B extern WORD CALLBACK \fIprefix\fB_CallTo16_word_\fIxxx\fB( FARPROC16 func, \fIargs\fB );
.br
.B extern LONG CALLBACK \fIprefix\fB_CallTo16_long_\fIxxx\fB( FARPROC16 func, \fIargs\fB );
.PP
The
.I prefix
can be anything you need to make the function names unique inside a
given dll. The
.I xxx
characters specify the type of the arguments, with one letter for each
argument. A \fBw\fR indicates a WORD argument, a \fBl\fR indicates a
LONG argument.
.PP
All the CallTo16 prototypes must be located between the special
markers
.B ### start build ###
and
.B ### stop build ###
(which have to be inside C comments of course).
.PP
Here's what a real life example looks like:
.PP
.B /* ### start build ### */
.br
.B extern WORD CALLBACK PRTDRV_CallTo16_word_ww(FARPROC16,WORD,WORD);
.br
.B /* ### stop build ### */
.SH AUTHORS
.B winebuild
has been worked on by many people over the years. The main authors are
Robert J. Amstadt, Alexandre Julliard, Martin von Loewis, Ulrich
Weigand and Eric Youngdale. Many other Wine developers have
contributed, please check the file Changelog in the Wine distribution
for the complete details.
.SH BUGS
It is not yet possible to use a PE-format dll in an import
specification; only Wine dlls can be imported.
.PP
If you find a bug, please submit a bug report at
.UR http://bugs.winehq.com
.B http://bugs.winehq.com.
.UE
.SH AVAILABILITY
.B winebuild
is part of the wine distribution, which is available through WineHQ,
the
.B wine
development headquarters, at
.UR http://www.winehq.com/
.B http://www.winehq.com/.
.UE
.SH "SEE ALSO"
.BR wine (1),
.BR wrc (1).