Sweden-Number/tools/build.c

3237 lines
102 KiB
C

/*
* Copyright 1993 Robert J. Amstadt
* Copyright 1995 Martin von Loewis
* Copyright 1995, 1996, 1997 Alexandre Julliard
* Copyright 1997 Eric Youngdale
* Copyright 1999 Ulrich Weigand
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <unistd.h>
#include "winbase.h"
#include "winnt.h"
#include "module.h"
#include "neexe.h"
#include "selectors.h"
#include "stackframe.h"
#include "builtin16.h"
#include "thread.h"
#ifdef NEED_UNDERSCORE_PREFIX
# define PREFIX "_"
#else
# define PREFIX
#endif
#ifdef HAVE_ASM_STRING
# define STRING ".string"
#else
# define STRING ".ascii"
#endif
#if defined(__GNUC__) && !defined(__svr4__)
# define USE_STABS
#else
# undef USE_STABS
#endif
typedef enum
{
TYPE_INVALID,
TYPE_BYTE, /* byte variable (Win16) */
TYPE_WORD, /* word variable (Win16) */
TYPE_LONG, /* long variable (Win16) */
TYPE_PASCAL_16, /* pascal function with 16-bit return (Win16) */
TYPE_PASCAL, /* pascal function with 32-bit return (Win16) */
TYPE_ABS, /* absolute value (Win16) */
TYPE_REGISTER, /* register function */
TYPE_INTERRUPT, /* interrupt handler function (Win16) */
TYPE_STUB, /* unimplemented stub */
TYPE_STDCALL, /* stdcall function (Win32) */
TYPE_CDECL, /* cdecl function (Win32) */
TYPE_VARARGS, /* varargs function (Win32) */
TYPE_EXTERN, /* external symbol (Win32) */
TYPE_FORWARD, /* forwarded function (Win32) */
TYPE_NBTYPES
} ORD_TYPE;
static const char * const TypeNames[TYPE_NBTYPES] =
{
NULL,
"byte", /* TYPE_BYTE */
"word", /* TYPE_WORD */
"long", /* TYPE_LONG */
"pascal16", /* TYPE_PASCAL_16 */
"pascal", /* TYPE_PASCAL */
"equate", /* TYPE_ABS */
"register", /* TYPE_REGISTER */
"interrupt", /* TYPE_INTERRUPT */
"stub", /* TYPE_STUB */
"stdcall", /* TYPE_STDCALL */
"cdecl", /* TYPE_CDECL */
"varargs", /* TYPE_VARARGS */
"extern", /* TYPE_EXTERN */
"forward" /* TYPE_FORWARD */
};
#define MAX_ORDINALS 2048
#define MAX_IMPORTS 16
/* Callback function used for stub functions */
#define STUB_CALLBACK \
((SpecType == SPEC_WIN16) ? "RELAY_Unimplemented16": "RELAY_Unimplemented32")
typedef enum
{
SPEC_INVALID,
SPEC_WIN16,
SPEC_WIN32
} SPEC_TYPE;
typedef struct
{
int n_values;
int *values;
} ORD_VARIABLE;
typedef struct
{
int n_args;
char arg_types[32];
char link_name[80];
} ORD_FUNCTION;
typedef struct
{
int arg_size;
int ret_value;
} ORD_RETURN;
typedef struct
{
int value;
} ORD_ABS;
typedef struct
{
char link_name[80];
} ORD_VARARGS;
typedef struct
{
char link_name[80];
} ORD_EXTERN;
typedef struct
{
char link_name[80];
} ORD_FORWARD;
typedef struct
{
ORD_TYPE type;
int offset;
int lineno;
char name[80];
union
{
ORD_VARIABLE var;
ORD_FUNCTION func;
ORD_RETURN ret;
ORD_ABS abs;
ORD_VARARGS vargs;
ORD_EXTERN ext;
ORD_FORWARD fwd;
} u;
} ORDDEF;
static ORDDEF OrdinalDefinitions[MAX_ORDINALS];
static SPEC_TYPE SpecType = SPEC_INVALID;
static char DLLName[80];
static char DLLFileName[80];
static int Limit = 0;
static int Base = MAX_ORDINALS;
static int DLLHeapSize = 0;
static char *SpecName;
static FILE *SpecFp;
static WORD Code_Selector, Data_Selector;
static char DLLInitFunc[80];
static char *DLLImports[MAX_IMPORTS];
static int nb_imports = 0;
char *ParseBuffer = NULL;
char *ParseNext;
char ParseSaveChar;
int Line;
static int UsePIC = 0;
static int debugging = 1;
/* Offset of a structure field relative to the start of the struct */
#define STRUCTOFFSET(type,field) ((int)&((type *)0)->field)
/* Offset of register relative to the start of the CONTEXT struct */
#define CONTEXTOFFSET(reg) STRUCTOFFSET(CONTEXT86,reg)
/* Offset of register relative to the start of the STACK16FRAME struct */
#define STACK16OFFSET(reg) STRUCTOFFSET(STACK16FRAME,reg)
/* Offset of register relative to the start of the STACK32FRAME struct */
#define STACK32OFFSET(reg) STRUCTOFFSET(STACK32FRAME,reg)
/* Offset of the stack pointer relative to %fs:(0) */
#define STACKOFFSET (STRUCTOFFSET(TEB,cur_stack))
static void BuildCallFrom16Func( FILE *outfile, char *profile, char *prefix, int local );
static void *xmalloc (size_t size)
{
void *res;
res = malloc (size ? size : 1);
if (res == NULL)
{
fprintf (stderr, "Virtual memory exhausted.\n");
exit (1);
}
return res;
}
static void *xrealloc (void *ptr, size_t size)
{
void *res = realloc (ptr, size);
if (res == NULL)
{
fprintf (stderr, "Virtual memory exhausted.\n");
exit (1);
}
return res;
}
static char *xstrdup( const char *str )
{
char *res = strdup( str );
if (!res)
{
fprintf (stderr, "Virtual memory exhausted.\n");
exit (1);
}
return res;
}
static int IsNumberString(char *s)
{
while (*s != '\0')
if (!isdigit(*s++))
return 0;
return 1;
}
static char *strupper(char *s)
{
char *p;
for(p = s; *p != '\0'; p++)
*p = toupper(*p);
return s;
}
static char * GetTokenInLine(void)
{
char *p;
char *token;
if (ParseNext != ParseBuffer)
{
if (ParseSaveChar == '\0')
return NULL;
*ParseNext = ParseSaveChar;
}
/*
* Remove initial white space.
*/
for (p = ParseNext; isspace(*p); p++)
;
if ((*p == '\0') || (*p == '#'))
return NULL;
/*
* Find end of token.
*/
token = p++;
if (*token != '(' && *token != ')')
while (*p != '\0' && *p != '(' && *p != ')' && !isspace(*p))
p++;
ParseSaveChar = *p;
ParseNext = p;
*p = '\0';
return token;
}
static char * GetToken(void)
{
char *token;
if (ParseBuffer == NULL)
{
ParseBuffer = xmalloc(512);
ParseNext = ParseBuffer;
while (1)
{
Line++;
if (fgets(ParseBuffer, 511, SpecFp) == NULL)
return NULL;
if (ParseBuffer[0] != '#')
break;
}
}
while ((token = GetTokenInLine()) == NULL)
{
ParseNext = ParseBuffer;
while (1)
{
Line++;
if (fgets(ParseBuffer, 511, SpecFp) == NULL)
return NULL;
if (ParseBuffer[0] != '#')
break;
}
}
return token;
}
/*******************************************************************
* ParseVariable
*
* Parse a variable definition.
*/
static int ParseVariable( ORDDEF *odp )
{
char *endptr;
int *value_array;
int n_values;
int value_array_size;
char *token = GetToken();
if (*token != '(')
{
fprintf(stderr, "%s:%d: Expected '(' got '%s'\n",
SpecName, Line, token);
return -1;
}
n_values = 0;
value_array_size = 25;
value_array = xmalloc(sizeof(*value_array) * value_array_size);
while ((token = GetToken()) != NULL)
{
if (*token == ')')
break;
value_array[n_values++] = strtol(token, &endptr, 0);
if (n_values == value_array_size)
{
value_array_size += 25;
value_array = xrealloc(value_array,
sizeof(*value_array) * value_array_size);
}
if (endptr == NULL || *endptr != '\0')
{
fprintf(stderr, "%s:%d: Expected number value, got '%s'\n",
SpecName, Line, token);
return -1;
}
}
if (token == NULL)
{
fprintf(stderr, "%s:%d: End of file in variable declaration\n",
SpecName, Line);
return -1;
}
odp->u.var.n_values = n_values;
odp->u.var.values = xrealloc(value_array, sizeof(*value_array) * n_values);
return 0;
}
/*******************************************************************
* ParseExportFunction
*
* Parse a function definition.
*/
static int ParseExportFunction( ORDDEF *odp )
{
char *token;
int i;
switch(SpecType)
{
case SPEC_WIN16:
if (odp->type == TYPE_STDCALL)
{
fprintf( stderr, "%s:%d: 'stdcall' not supported for Win16\n",
SpecName, Line );
return -1;
}
break;
case SPEC_WIN32:
if ((odp->type == TYPE_PASCAL) || (odp->type == TYPE_PASCAL_16))
{
fprintf( stderr, "%s:%d: 'pascal' not supported for Win32\n",
SpecName, Line );
return -1;
}
break;
default:
break;
}
token = GetToken();
if (*token != '(')
{
fprintf(stderr, "%s:%d: Expected '(' got '%s'\n",
SpecName, Line, token);
return -1;
}
for (i = 0; i < sizeof(odp->u.func.arg_types)-1; i++)
{
token = GetToken();
if (*token == ')')
break;
if (!strcmp(token, "word"))
odp->u.func.arg_types[i] = 'w';
else if (!strcmp(token, "s_word"))
odp->u.func.arg_types[i] = 's';
else if (!strcmp(token, "long") || !strcmp(token, "segptr"))
odp->u.func.arg_types[i] = 'l';
else if (!strcmp(token, "ptr"))
odp->u.func.arg_types[i] = 'p';
else if (!strcmp(token, "str"))
odp->u.func.arg_types[i] = 't';
else if (!strcmp(token, "wstr"))
odp->u.func.arg_types[i] = 'W';
else if (!strcmp(token, "segstr"))
odp->u.func.arg_types[i] = 'T';
else if (!strcmp(token, "double"))
{
odp->u.func.arg_types[i++] = 'l';
odp->u.func.arg_types[i] = 'l';
}
else
{
fprintf(stderr, "%s:%d: Unknown variable type '%s'\n",
SpecName, Line, token);
return -1;
}
if (SpecType == SPEC_WIN32)
{
if (strcmp(token, "long") &&
strcmp(token, "ptr") &&
strcmp(token, "str") &&
strcmp(token, "wstr") &&
strcmp(token, "double"))
{
fprintf( stderr, "%s:%d: Type '%s' not supported for Win32\n",
SpecName, Line, token );
return -1;
}
}
}
if ((*token != ')') || (i >= sizeof(odp->u.func.arg_types)))
{
fprintf( stderr, "%s:%d: Too many arguments\n", SpecName, Line );
return -1;
}
odp->u.func.arg_types[i] = '\0';
if ((odp->type == TYPE_STDCALL) && !i)
odp->type = TYPE_CDECL; /* stdcall is the same as cdecl for 0 args */
strcpy(odp->u.func.link_name, GetToken());
return 0;
}
/*******************************************************************
* ParseEquate
*
* Parse an 'equate' definition.
*/
static int ParseEquate( ORDDEF *odp )
{
char *endptr;
char *token = GetToken();
int value = strtol(token, &endptr, 0);
if (endptr == NULL || *endptr != '\0')
{
fprintf(stderr, "%s:%d: Expected number value, got '%s'\n",
SpecName, Line, token);
return -1;
}
if (SpecType == SPEC_WIN32)
{
fprintf( stderr, "%s:%d: 'equate' not supported for Win32\n",
SpecName, Line );
return -1;
}
odp->u.abs.value = value;
return 0;
}
/*******************************************************************
* ParseStub
*
* Parse a 'stub' definition.
*/
static int ParseStub( ORDDEF *odp )
{
odp->u.func.arg_types[0] = '\0';
strcpy( odp->u.func.link_name, STUB_CALLBACK );
return 0;
}
/*******************************************************************
* ParseVarargs
*
* Parse an 'varargs' definition.
*/
static int ParseVarargs( ORDDEF *odp )
{
char *token;
if (SpecType == SPEC_WIN16)
{
fprintf( stderr, "%s:%d: 'varargs' not supported for Win16\n",
SpecName, Line );
return -1;
}
token = GetToken();
if (*token != '(')
{
fprintf(stderr, "%s:%d: Expected '(' got '%s'\n",
SpecName, Line, token);
return -1;
}
token = GetToken();
if (*token != ')')
{
fprintf(stderr, "%s:%d: Expected ')' got '%s'\n",
SpecName, Line, token);
return -1;
}
strcpy( odp->u.vargs.link_name, GetToken() );
return 0;
}
/*******************************************************************
* ParseInterrupt
*
* Parse an 'interrupt' definition.
*/
static int ParseInterrupt( ORDDEF *odp )
{
char *token;
if (SpecType == SPEC_WIN32)
{
fprintf( stderr, "%s:%d: 'interrupt' not supported for Win32\n",
SpecName, Line );
return -1;
}
token = GetToken();
if (*token != '(')
{
fprintf(stderr, "%s:%d: Expected '(' got '%s'\n",
SpecName, Line, token);
return -1;
}
token = GetToken();
if (*token != ')')
{
fprintf(stderr, "%s:%d: Expected ')' got '%s'\n",
SpecName, Line, token);
return -1;
}
odp->u.func.arg_types[0] = '\0';
strcpy( odp->u.func.link_name, GetToken() );
return 0;
}
/*******************************************************************
* ParseExtern
*
* Parse an 'extern' definition.
*/
static int ParseExtern( ORDDEF *odp )
{
if (SpecType == SPEC_WIN16)
{
fprintf( stderr, "%s:%d: 'extern' not supported for Win16\n",
SpecName, Line );
return -1;
}
strcpy( odp->u.ext.link_name, GetToken() );
return 0;
}
/*******************************************************************
* ParseForward
*
* Parse a 'forward' definition.
*/
static int ParseForward( ORDDEF *odp )
{
if (SpecType == SPEC_WIN16)
{
fprintf( stderr, "%s:%d: 'forward' not supported for Win16\n",
SpecName, Line );
return -1;
}
strcpy( odp->u.fwd.link_name, GetToken() );
return 0;
}
/*******************************************************************
* ParseOrdinal
*
* Parse an ordinal definition.
*/
static int ParseOrdinal(int ordinal)
{
ORDDEF *odp;
char *token;
if (ordinal >= MAX_ORDINALS)
{
fprintf(stderr, "%s:%d: Ordinal number too large\n", SpecName, Line );
return -1;
}
if (ordinal > Limit) Limit = ordinal;
if (ordinal < Base) Base = ordinal;
odp = &OrdinalDefinitions[ordinal];
if (!(token = GetToken()))
{
fprintf(stderr, "%s:%d: Expected type after ordinal\n", SpecName, Line);
return -1;
}
for (odp->type = 0; odp->type < TYPE_NBTYPES; odp->type++)
if (TypeNames[odp->type] && !strcmp( token, TypeNames[odp->type] ))
break;
if (odp->type >= TYPE_NBTYPES)
{
fprintf( stderr,
"%s:%d: Expected type after ordinal, found '%s' instead\n",
SpecName, Line, token );
return -1;
}
if (!(token = GetToken()))
{
fprintf( stderr, "%s:%d: Expected name after type\n", SpecName, Line );
return -1;
}
strcpy( odp->name, token );
odp->lineno = Line;
switch(odp->type)
{
case TYPE_BYTE:
case TYPE_WORD:
case TYPE_LONG:
return ParseVariable( odp );
case TYPE_PASCAL_16:
case TYPE_PASCAL:
case TYPE_REGISTER:
case TYPE_STDCALL:
case TYPE_CDECL:
return ParseExportFunction( odp );
case TYPE_INTERRUPT:
return ParseInterrupt( odp );
case TYPE_ABS:
return ParseEquate( odp );
case TYPE_STUB:
return ParseStub( odp );
case TYPE_VARARGS:
return ParseVarargs( odp );
case TYPE_EXTERN:
return ParseExtern( odp );
case TYPE_FORWARD:
return ParseForward( odp );
default:
fprintf( stderr, "Should not happen\n" );
return -1;
}
}
/*******************************************************************
* ParseTopLevel
*
* Parse a spec file.
*/
static int ParseTopLevel(void)
{
char *token;
while ((token = GetToken()) != NULL)
{
if (strcmp(token, "name") == 0)
{
strcpy(DLLName, GetToken());
strupper(DLLName);
if (!DLLFileName[0]) sprintf( DLLFileName, "%s.DLL", DLLName );
}
else if (strcmp(token, "file") == 0)
{
strcpy(DLLFileName, GetToken());
strupper(DLLFileName);
}
else if (strcmp(token, "type") == 0)
{
token = GetToken();
if (!strcmp(token, "win16" )) SpecType = SPEC_WIN16;
else if (!strcmp(token, "win32" )) SpecType = SPEC_WIN32;
else
{
fprintf(stderr, "%s:%d: Type must be 'win16' or 'win32'\n",
SpecName, Line);
return -1;
}
}
else if (strcmp(token, "heap") == 0)
{
token = GetToken();
if (!IsNumberString(token))
{
fprintf(stderr, "%s:%d: Expected number after heap\n",
SpecName, Line);
return -1;
}
DLLHeapSize = atoi(token);
}
else if (strcmp(token, "init") == 0)
{
strcpy(DLLInitFunc, GetToken());
if (!DLLInitFunc[0])
fprintf(stderr, "%s:%d: Expected function name after init\n", SpecName, Line);
}
else if (strcmp(token, "import") == 0)
{
if (nb_imports >= MAX_IMPORTS)
{
fprintf( stderr, "%s:%d: Too many imports (limit %d)\n",
SpecName, Line, MAX_IMPORTS );
return -1;
}
if (SpecType != SPEC_WIN32)
{
fprintf( stderr, "%s:%d: Imports not supported for Win16\n", SpecName, Line );
return -1;
}
DLLImports[nb_imports++] = xstrdup(GetToken());
}
else if (IsNumberString(token))
{
int ordinal;
int rv;
ordinal = atoi(token);
if ((rv = ParseOrdinal(ordinal)) < 0)
return rv;
}
else
{
fprintf(stderr,
"%s:%d: Expected name, id, length or ordinal\n",
SpecName, Line);
return -1;
}
}
return 0;
}
/*******************************************************************
* StoreVariableCode
*
* Store a list of ints into a byte array.
*/
static int StoreVariableCode( unsigned char *buffer, int size, ORDDEF *odp )
{
int i;
switch(size)
{
case 1:
for (i = 0; i < odp->u.var.n_values; i++)
buffer[i] = odp->u.var.values[i];
break;
case 2:
for (i = 0; i < odp->u.var.n_values; i++)
((unsigned short *)buffer)[i] = odp->u.var.values[i];
break;
case 4:
for (i = 0; i < odp->u.var.n_values; i++)
((unsigned int *)buffer)[i] = odp->u.var.values[i];
break;
}
return odp->u.var.n_values * size;
}
/*******************************************************************
* DumpBytes
*
* Dump a byte stream into the assembly code.
*/
static void DumpBytes( FILE *outfile, const unsigned char *data, int len,
const char *label )
{
int i;
fprintf( outfile, "\nstatic BYTE %s[] = \n{", label );
for (i = 0; i < len; i++)
{
if (!(i & 0x0f)) fprintf( outfile, "\n " );
fprintf( outfile, "%d", *data++ );
if (i < len - 1) fprintf( outfile, ", " );
}
fprintf( outfile, "\n};\n" );
}
/*******************************************************************
* BuildModule16
*
* Build the in-memory representation of a 16-bit NE module, and dump it
* as a byte stream into the assembly code.
*/
static int BuildModule16( FILE *outfile, int max_code_offset,
int max_data_offset )
{
ORDDEF *odp;
int i;
char *buffer;
NE_MODULE *pModule;
SEGTABLEENTRY *pSegment;
OFSTRUCT *pFileInfo;
BYTE *pstr;
WORD *pword;
ET_BUNDLE *bundle = 0;
ET_ENTRY *entry = 0;
/* Module layout:
* NE_MODULE Module
* OFSTRUCT File information
* SEGTABLEENTRY Segment 1 (code)
* SEGTABLEENTRY Segment 2 (data)
* WORD[2] Resource table (empty)
* BYTE[2] Imported names (empty)
* BYTE[n] Resident names table
* BYTE[n] Entry table
*/
buffer = xmalloc( 0x10000 );
pModule = (NE_MODULE *)buffer;
memset( pModule, 0, sizeof(*pModule) );
pModule->magic = IMAGE_OS2_SIGNATURE;
pModule->count = 1;
pModule->next = 0;
pModule->flags = NE_FFLAGS_SINGLEDATA | NE_FFLAGS_BUILTIN | NE_FFLAGS_LIBMODULE;
pModule->dgroup = 2;
pModule->heap_size = DLLHeapSize;
pModule->stack_size = 0;
pModule->ip = 0;
pModule->cs = 0;
pModule->sp = 0;
pModule->ss = 0;
pModule->seg_count = 2;
pModule->modref_count = 0;
pModule->nrname_size = 0;
pModule->modref_table = 0;
pModule->nrname_fpos = 0;
pModule->moveable_entries = 0;
pModule->alignment = 0;
pModule->truetype = 0;
pModule->os_flags = NE_OSFLAGS_WINDOWS;
pModule->misc_flags = 0;
pModule->dlls_to_init = 0;
pModule->nrname_handle = 0;
pModule->min_swap_area = 0;
pModule->expected_version = 0x030a;
pModule->module32 = 0;
pModule->self = 0;
pModule->self_loading_sel = 0;
/* File information */
pFileInfo = (OFSTRUCT *)(pModule + 1);
pModule->fileinfo = (int)pFileInfo - (int)pModule;
memset( pFileInfo, 0, sizeof(*pFileInfo) - sizeof(pFileInfo->szPathName) );
pFileInfo->cBytes = sizeof(*pFileInfo) - sizeof(pFileInfo->szPathName)
+ strlen(DLLFileName);
strcpy( pFileInfo->szPathName, DLLFileName );
pstr = (char *)pFileInfo + pFileInfo->cBytes + 1;
#ifdef __i386__ /* FIXME: Alignment problems! */
/* Segment table */
pSegment = (SEGTABLEENTRY *)pstr;
pModule->seg_table = (int)pSegment - (int)pModule;
pSegment->filepos = 0;
pSegment->size = max_code_offset;
pSegment->flags = 0;
pSegment->minsize = max_code_offset;
pSegment->hSeg = 0;
pSegment++;
pModule->dgroup_entry = (int)pSegment - (int)pModule;
pSegment->filepos = 0;
pSegment->size = max_data_offset;
pSegment->flags = NE_SEGFLAGS_DATA;
pSegment->minsize = max_data_offset;
pSegment->hSeg = 0;
pSegment++;
/* Resource table */
pword = (WORD *)pSegment;
pModule->res_table = (int)pword - (int)pModule;
*pword++ = 0;
*pword++ = 0;
/* Imported names table */
pstr = (char *)pword;
pModule->import_table = (int)pstr - (int)pModule;
*pstr++ = 0;
*pstr++ = 0;
/* Resident names table */
pModule->name_table = (int)pstr - (int)pModule;
/* First entry is module name */
*pstr = strlen(DLLName );
strcpy( pstr + 1, DLLName );
pstr += *pstr + 1;
*(WORD *)pstr = 0;
pstr += sizeof(WORD);
/* Store all ordinals */
odp = OrdinalDefinitions + 1;
for (i = 1; i <= Limit; i++, odp++)
{
if (!odp->name[0]) continue;
*pstr = strlen( odp->name );
strcpy( pstr + 1, odp->name );
strupper( pstr + 1 );
pstr += *pstr + 1;
*(WORD *)pstr = i;
pstr += sizeof(WORD);
}
*pstr++ = 0;
/* Entry table */
pModule->entry_table = (int)pstr - (int)pModule;
odp = OrdinalDefinitions + 1;
for (i = 1; i <= Limit; i++, odp++)
{
int selector = 0;
switch (odp->type)
{
case TYPE_CDECL:
case TYPE_PASCAL:
case TYPE_PASCAL_16:
case TYPE_REGISTER:
case TYPE_INTERRUPT:
case TYPE_STUB:
selector = 1; /* Code selector */
break;
case TYPE_BYTE:
case TYPE_WORD:
case TYPE_LONG:
selector = 2; /* Data selector */
break;
case TYPE_ABS:
selector = 0xfe; /* Constant selector */
break;
default:
selector = 0; /* Invalid selector */
break;
}
if ( !selector )
continue;
if ( bundle && bundle->last+1 == i )
bundle->last++;
else
{
if ( bundle )
bundle->next = (char *)pstr - (char *)pModule;
bundle = (ET_BUNDLE *)pstr;
bundle->first = i-1;
bundle->last = i;
bundle->next = 0;
pstr += sizeof(ET_BUNDLE);
}
/* FIXME: is this really correct ?? */
entry = (ET_ENTRY *)pstr;
entry->type = 0xff; /* movable */
entry->flags = 3; /* exported & public data */
entry->segnum = selector;
entry->offs = odp->offset;
pstr += sizeof(ET_ENTRY);
}
*pstr++ = 0;
#endif
/* Dump the module content */
DumpBytes( outfile, (char *)pModule, (int)pstr - (int)pModule,
"Module" );
return (int)pstr - (int)pModule;
}
/*******************************************************************
* BuildSpec32File
*
* Build a Win32 C file from a spec file.
*/
static int BuildSpec32File( char * specfile, FILE *outfile )
{
ORDDEF *odp;
int i, nb_names, fwd_size = 0;
fprintf( outfile, "/* File generated automatically from %s; do not edit! */\n\n",
specfile );
fprintf( outfile, "#include \"builtin32.h\"\n\n" );
/* Output code for all stubs functions */
fprintf( outfile, "extern const BUILTIN32_DESCRIPTOR %s_Descriptor;\n",
DLLName );
for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++)
{
if (odp->type != TYPE_STUB) continue;
fprintf( outfile, "static void __stub_%d() { BUILTIN32_Unimplemented(&%s_Descriptor,%d); }\n",
i, DLLName, i );
}
/* Output code for all register functions */
fprintf( outfile, "#ifdef __i386__\n" );
fprintf( outfile, "#ifndef __GNUC__\n" );
fprintf( outfile, "static void __asm__dummy() {\n" );
fprintf( outfile, "#endif /* !defined(__GNUC__) */\n" );
for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++)
{
if (odp->type != TYPE_REGISTER) continue;
fprintf( outfile,
"__asm__(\".align 4\\n\\t\"\n"
" \".globl " PREFIX "%s\\n\\t\"\n"
" \".type " PREFIX "%s,@function\\n\\t\"\n"
" \"" PREFIX "%s:\\n\\t\"\n"
" \"call " PREFIX "CALL32_Regs\\n\\t\"\n"
" \".long " PREFIX "__regs_%s\\n\\t\"\n"
" \".byte %d,%d\");\n",
odp->u.func.link_name, odp->u.func.link_name,
odp->u.func.link_name, odp->u.func.link_name,
4 * strlen(odp->u.func.arg_types),
4 * strlen(odp->u.func.arg_types) );
}
fprintf( outfile, "#ifndef __GNUC__\n" );
fprintf( outfile, "}\n" );
fprintf( outfile, "#endif /* !defined(__GNUC__) */\n" );
fprintf( outfile, "#endif /* defined(__i386__) */\n" );
/* Output the DLL functions prototypes */
for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++)
{
switch(odp->type)
{
case TYPE_VARARGS:
fprintf( outfile, "extern void %s();\n", odp->u.vargs.link_name );
break;
case TYPE_EXTERN:
fprintf( outfile, "extern void %s();\n", odp->u.ext.link_name );
break;
case TYPE_REGISTER:
case TYPE_STDCALL:
case TYPE_CDECL:
fprintf( outfile, "extern void %s();\n", odp->u.func.link_name );
break;
case TYPE_FORWARD:
fwd_size += strlen(odp->u.fwd.link_name) + 1;
break;
case TYPE_INVALID:
case TYPE_STUB:
break;
default:
fprintf(stderr,"build: function type %d not available for Win32\n",
odp->type);
return -1;
}
}
/* Output LibMain function */
if (DLLInitFunc[0]) fprintf( outfile, "extern void %s();\n", DLLInitFunc );
/* Output the DLL functions table */
fprintf( outfile, "\nstatic const ENTRYPOINT32 Functions[%d] =\n{\n",
Limit - Base + 1 );
for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++)
{
switch(odp->type)
{
case TYPE_INVALID:
fprintf( outfile, " 0" );
break;
case TYPE_VARARGS:
fprintf( outfile, " %s", odp->u.vargs.link_name );
break;
case TYPE_EXTERN:
fprintf( outfile, " %s", odp->u.ext.link_name );
break;
case TYPE_REGISTER:
case TYPE_STDCALL:
case TYPE_CDECL:
fprintf( outfile, " %s", odp->u.func.link_name);
break;
case TYPE_STUB:
fprintf( outfile, " __stub_%d", i );
break;
case TYPE_FORWARD:
fprintf( outfile, " (ENTRYPOINT32)\"%s\"", odp->u.fwd.link_name );
break;
default:
return -1;
}
if (i < Limit) fprintf( outfile, ",\n" );
}
fprintf( outfile, "\n};\n\n" );
/* Output the DLL names table */
nb_names = 0;
fprintf( outfile, "static const char * const FuncNames[] =\n{\n" );
for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++)
{
if (odp->type == TYPE_INVALID) continue;
if (nb_names++) fprintf( outfile, ",\n" );
fprintf( outfile, " \"%s\"", odp->name );
}
fprintf( outfile, "\n};\n\n" );
/* Output the DLL argument types */
fprintf( outfile, "static const unsigned int ArgTypes[%d] =\n{\n",
Limit - Base + 1 );
for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++)
{
unsigned int j, mask = 0;
if ((odp->type == TYPE_STDCALL) || (odp->type == TYPE_CDECL) ||
(odp->type == TYPE_REGISTER))
for (j = 0; odp->u.func.arg_types[j]; j++)
{
if (odp->u.func.arg_types[j] == 't') mask |= 1<< (j*2);
if (odp->u.func.arg_types[j] == 'W') mask |= 2<< (j*2);
}
fprintf( outfile, " %d", mask );
if (i < Limit) fprintf( outfile, ",\n" );
}
fprintf( outfile, "\n};\n\n" );
/* Output the DLL ordinals table */
fprintf( outfile, "static const unsigned short FuncOrdinals[] =\n{\n" );
nb_names = 0;
for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++)
{
if (odp->type == TYPE_INVALID) continue;
if (nb_names++) fprintf( outfile, ",\n" );
fprintf( outfile, " %d", i - Base );
}
fprintf( outfile, "\n};\n\n" );
/* Output the DLL functions arguments */
fprintf( outfile, "static const unsigned char FuncArgs[%d] =\n{\n",
Limit - Base + 1 );
for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++)
{
unsigned char args;
switch(odp->type)
{
case TYPE_STDCALL:
args = (unsigned char)strlen(odp->u.func.arg_types);
break;
case TYPE_CDECL:
args = 0x80 | (unsigned char)strlen(odp->u.func.arg_types);
break;
case TYPE_REGISTER:
args = 0x40 | (unsigned char)strlen(odp->u.func.arg_types);
break;
case TYPE_FORWARD:
args = 0xfd;
break;
default:
args = 0xff;
break;
}
fprintf( outfile, " 0x%02x", args );
if (i < Limit) fprintf( outfile, ",\n" );
}
fprintf( outfile, "\n};\n\n" );
/* Output the DLL imports */
if (nb_imports)
{
fprintf( outfile, "static const char * const Imports[%d] =\n{\n", nb_imports );
for (i = 0; i < nb_imports; i++)
{
fprintf( outfile, " \"%s\"", DLLImports[i] );
if (i < nb_imports-1) fprintf( outfile, ",\n" );
}
fprintf( outfile, "\n};\n\n" );
}
/* Output the DLL descriptor */
fprintf( outfile, "const BUILTIN32_DESCRIPTOR %s_Descriptor =\n{\n",
DLLName );
fprintf( outfile, " \"%s\",\n", DLLName );
fprintf( outfile, " %d,\n", Base );
fprintf( outfile, " %d,\n", Limit - Base + 1 );
fprintf( outfile, " %d,\n", nb_names );
fprintf( outfile, " %d,\n", nb_imports );
fprintf( outfile, " %d,\n", (fwd_size + 3) & ~3 );
fprintf( outfile,
" Functions,\n"
" FuncNames,\n"
" FuncOrdinals,\n"
" FuncArgs,\n"
" ArgTypes,\n");
fprintf( outfile, " %s,\n", nb_imports ? "Imports" : "0" );
fprintf( outfile, " %s\n", DLLInitFunc[0] ? DLLInitFunc : "0" );
fprintf( outfile, "};\n" );
return 0;
}
/*******************************************************************
* Spec16TypeCompare
*/
static int Spec16TypeCompare( const void *e1, const void *e2 )
{
const ORDDEF *odp1 = *(const ORDDEF **)e1;
const ORDDEF *odp2 = *(const ORDDEF **)e2;
int type1 = (odp1->type == TYPE_CDECL) ? 0
: (odp1->type == TYPE_REGISTER) ? 3
: (odp1->type == TYPE_INTERRUPT) ? 4
: (odp1->type == TYPE_PASCAL_16) ? 1 : 2;
int type2 = (odp2->type == TYPE_CDECL) ? 0
: (odp2->type == TYPE_REGISTER) ? 3
: (odp2->type == TYPE_INTERRUPT) ? 4
: (odp2->type == TYPE_PASCAL_16) ? 1 : 2;
int retval = type1 - type2;
if ( !retval )
retval = strcmp( odp1->u.func.arg_types, odp2->u.func.arg_types );
return retval;
}
/*******************************************************************
* BuildSpec16File
*
* Build a Win16 assembly file from a spec file.
*/
static int BuildSpec16File( char * specfile, FILE *outfile )
{
ORDDEF *odp, **type, **typelist;
int i, nFuncs, nTypes;
int code_offset, data_offset, module_size;
unsigned char *data;
/* File header */
fprintf( outfile, "/* File generated automatically from %s; do not edit! */\n\n",
specfile );
fprintf( outfile, "#define __FLATCS__ 0x%04x\n", Code_Selector );
fprintf( outfile, "#include \"builtin16.h\"\n\n" );
data = (unsigned char *)xmalloc( 0x10000 );
memset( data, 0, 16 );
data_offset = 16;
/* Build sorted list of all argument types, without duplicates */
typelist = (ORDDEF **)calloc( Limit+1, sizeof(ORDDEF *) );
odp = OrdinalDefinitions;
for (i = nFuncs = 0; i <= Limit; i++, odp++)
{
switch (odp->type)
{
case TYPE_REGISTER:
case TYPE_INTERRUPT:
case TYPE_CDECL:
case TYPE_PASCAL:
case TYPE_PASCAL_16:
case TYPE_STUB:
typelist[nFuncs++] = odp;
default:
break;
}
}
qsort( typelist, nFuncs, sizeof(ORDDEF *), Spec16TypeCompare );
i = nTypes = 0;
while ( i < nFuncs )
{
typelist[nTypes++] = typelist[i++];
while ( i < nFuncs && Spec16TypeCompare( typelist + i, typelist + nTypes-1 ) == 0 )
i++;
}
/* Output CallFrom16 routines needed by this .spec file */
for ( i = 0; i < nTypes; i++ )
{
char profile[101];
sprintf( profile, "%s_%s_%s",
(typelist[i]->type == TYPE_CDECL) ? "c" : "p",
(typelist[i]->type == TYPE_REGISTER) ? "regs" :
(typelist[i]->type == TYPE_INTERRUPT) ? "intr" :
(typelist[i]->type == TYPE_PASCAL_16) ? "word" : "long",
typelist[i]->u.func.arg_types );
BuildCallFrom16Func( outfile, profile, DLLName, TRUE );
}
/* Output the DLL functions prototypes */
odp = OrdinalDefinitions;
for (i = 0; i <= Limit; i++, odp++)
{
switch(odp->type)
{
case TYPE_REGISTER:
case TYPE_INTERRUPT:
case TYPE_CDECL:
case TYPE_PASCAL:
case TYPE_PASCAL_16:
fprintf( outfile, "extern void %s();\n", odp->u.func.link_name );
break;
default:
break;
}
}
/* Output code segment */
fprintf( outfile, "\nstatic struct\n{\n CALLFROM16 call[%d];\n"
" ENTRYPOINT16 entry[%d];\n} Code_Segment = \n{\n {\n",
nTypes, nFuncs );
code_offset = 0;
for ( i = 0; i < nTypes; i++ )
{
char profile[101], *arg;
int argsize = 0;
sprintf( profile, "%s_%s_%s",
(typelist[i]->type == TYPE_CDECL) ? "c" : "p",
(typelist[i]->type == TYPE_REGISTER) ? "regs" :
(typelist[i]->type == TYPE_INTERRUPT) ? "intr" :
(typelist[i]->type == TYPE_PASCAL_16) ? "word" : "long",
typelist[i]->u.func.arg_types );
if ( typelist[i]->type != TYPE_CDECL )
for ( arg = typelist[i]->u.func.arg_types; *arg; arg++ )
switch ( *arg )
{
case 'w': /* word */
case 's': /* s_word */
argsize += 2;
break;
case 'l': /* long or segmented pointer */
case 'T': /* segmented pointer to null-terminated string */
case 'p': /* linear pointer */
case 't': /* linear pointer to null-terminated string */
argsize += 4;
break;
}
if ( typelist[i]->type == TYPE_INTERRUPT )
argsize += 2;
fprintf( outfile, " CF16_%s( %s_CallFrom16_%s, %d, \"%s\" ),\n",
( typelist[i]->type == TYPE_REGISTER
|| typelist[i]->type == TYPE_INTERRUPT)? "REGS":
typelist[i]->type == TYPE_PASCAL_16? "WORD" : "LONG",
DLLName, profile, argsize, profile );
code_offset += sizeof(CALLFROM16);
}
fprintf( outfile, " },\n {\n" );
odp = OrdinalDefinitions;
for (i = 0; i <= Limit; i++, odp++)
{
switch (odp->type)
{
case TYPE_INVALID:
odp->offset = 0xffff;
break;
case TYPE_ABS:
odp->offset = LOWORD(odp->u.abs.value);
break;
case TYPE_BYTE:
odp->offset = data_offset;
data_offset += StoreVariableCode( data + data_offset, 1, odp);
break;
case TYPE_WORD:
odp->offset = data_offset;
data_offset += StoreVariableCode( data + data_offset, 2, odp);
break;
case TYPE_LONG:
odp->offset = data_offset;
data_offset += StoreVariableCode( data + data_offset, 4, odp);
break;
case TYPE_REGISTER:
case TYPE_INTERRUPT:
case TYPE_CDECL:
case TYPE_PASCAL:
case TYPE_PASCAL_16:
case TYPE_STUB:
type = bsearch( &odp, typelist, nTypes, sizeof(ORDDEF *), Spec16TypeCompare );
assert( type );
fprintf( outfile, " /* %s.%d */ ", DLLName, i );
fprintf( outfile, "EP( %s, %d /* %s_%s_%s */ ),\n",
odp->u.func.link_name,
(type-typelist)*sizeof(CALLFROM16) -
(code_offset + sizeof(ENTRYPOINT16)),
(odp->type == TYPE_CDECL) ? "c" : "p",
(odp->type == TYPE_REGISTER) ? "regs" :
(odp->type == TYPE_INTERRUPT) ? "intr" :
(odp->type == TYPE_PASCAL_16) ? "word" : "long",
odp->u.func.arg_types );
odp->offset = code_offset;
code_offset += sizeof(ENTRYPOINT16);
break;
default:
fprintf(stderr,"build: function type %d not available for Win16\n",
odp->type);
return -1;
}
}
fprintf( outfile, " }\n};\n" );
/* Output data segment */
DumpBytes( outfile, data, data_offset, "Data_Segment" );
/* Build the module */
module_size = BuildModule16( outfile, code_offset, data_offset );
/* Output the DLL descriptor */
fprintf( outfile, "\nWIN16_DESCRIPTOR %s_Descriptor = \n{\n", DLLName );
fprintf( outfile, " \"%s\",\n", DLLName );
fprintf( outfile, " Module,\n" );
fprintf( outfile, " sizeof(Module),\n" );
fprintf( outfile, " (BYTE *)&Code_Segment,\n" );
fprintf( outfile, " (BYTE *)Data_Segment\n" );
fprintf( outfile, "};\n" );
return 0;
}
/*******************************************************************
* BuildSpecFile
*
* Build an assembly file from a spec file.
*/
static int BuildSpecFile( FILE *outfile, char *specname )
{
SpecName = specname;
SpecFp = fopen( specname, "r");
if (SpecFp == NULL)
{
fprintf(stderr, "Could not open specification file, '%s'\n", specname);
return -1;
}
if (ParseTopLevel() < 0) return -1;
switch(SpecType)
{
case SPEC_WIN16:
return BuildSpec16File( specname, outfile );
case SPEC_WIN32:
return BuildSpec32File( specname, outfile );
default:
fprintf( stderr, "%s: Missing 'type' declaration\n", specname );
return -1;
}
}
/*******************************************************************
* BuildCallFrom16Func
*
* Build a 16-bit-to-Wine callback glue function.
*
* The generated routines are intended to be used as argument conversion
* routines to be called by the CallFrom16... core. Thus, the prototypes of
* the generated routines are (see also CallFrom16):
*
* extern WORD WINAPI PREFIX_CallFrom16_C_word_xxx( FARPROC func, LPBYTE args );
* extern LONG WINAPI PREFIX_CallFrom16_C_long_xxx( FARPROC func, LPBYTE args );
* extern void WINAPI PREFIX_CallFrom16_C_regs_xxx( FARPROC func, LPBYTE args,
* CONTEXT86 *context );
* extern void WINAPI PREFIX_CallFrom16_C_intr_xxx( FARPROC func, LPBYTE args,
* CONTEXT86 *context );
*
* where 'C' is the calling convention ('p' for pascal or 'c' for cdecl),
* and each 'x' is an argument ('w'=word, 's'=signed word, 'l'=long,
* 'p'=linear pointer, 't'=linear pointer to null-terminated string,
* 'T'=segmented pointer to null-terminated string).
*
* The generated routines fetch the arguments from the 16-bit stack (pointed
* to by 'args'); the offsets of the single argument values are computed
* according to the calling convention and the argument types. Then, the
* 32-bit entry point is called with these arguments.
*
* For register functions, the arguments (if present) are converted just
* the same as for normal functions, but in addition the CONTEXT86 pointer
* filled with the current register values is passed to the 32-bit routine.
* (An 'intr' interrupt handler routine is treated exactly like a register
* routine, except that upon return, the flags word pushed onto the stack
* by the interrupt is removed by the 16-bit call stub.)
*
*/
static void BuildCallFrom16Func( FILE *outfile, char *profile, char *prefix, int local )
{
int i, pos, argsize = 0;
int short_ret = 0;
int reg_func = 0;
int usecdecl = 0;
char *args = profile + 7;
char *ret_type;
/* Parse function type */
if (!strncmp( "c_", profile, 2 )) usecdecl = 1;
else if (strncmp( "p_", profile, 2 ))
{
fprintf( stderr, "Invalid function name '%s', ignored\n", profile );
return;
}
if (!strncmp( "word_", profile + 2, 5 )) short_ret = 1;
else if (!strncmp( "regs_", profile + 2, 5 )) reg_func = 1;
else if (!strncmp( "intr_", profile + 2, 5 )) reg_func = 2;
else if (strncmp( "long_", profile + 2, 5 ))
{
fprintf( stderr, "Invalid function name '%s', ignored\n", profile );
return;
}
for ( i = 0; args[i]; i++ )
switch ( args[i] )
{
case 'w': /* word */
case 's': /* s_word */
argsize += 2;
break;
case 'l': /* long or segmented pointer */
case 'T': /* segmented pointer to null-terminated string */
case 'p': /* linear pointer */
case 't': /* linear pointer to null-terminated string */
argsize += 4;
break;
}
ret_type = reg_func? "void" : short_ret? "WORD" : "LONG";
fprintf( outfile, "%s%s WINAPI %s_CallFrom16_%s( FARPROC proc, LPBYTE args%s )\n{\n",
local? "static " : "", ret_type, prefix, profile,
reg_func? ", struct _CONTEXT86 *context" : "" );
fprintf( outfile, " %s((%s WINAPI (*)( ",
reg_func? "" : "return ", ret_type );
args = profile + 7;
for ( i = 0; args[i]; i++ )
{
if ( i ) fprintf( outfile, ", " );
switch (args[i])
{
case 'w': fprintf( outfile, "WORD" ); break;
case 's': fprintf( outfile, "INT16" ); break;
case 'l': case 'T': fprintf( outfile, "LONG" ); break;
case 'p': case 't': fprintf( outfile, "LPVOID" ); break;
}
}
if ( reg_func )
fprintf( outfile, "%sstruct _CONTEXT86 *", i? ", " : "" );
else if ( !i )
fprintf( outfile, "void" );
fprintf( outfile, " )) proc) (\n" );
args = profile + 7;
pos = !usecdecl? argsize : 0;
for ( i = 0; args[i]; i++ )
{
if ( i ) fprintf( outfile, ",\n" );
fprintf( outfile, " " );
switch (args[i])
{
case 'w': /* word */
if ( !usecdecl ) pos -= 2;
fprintf( outfile, "*(WORD *)(args+%d)", pos );
if ( usecdecl ) pos += 2;
break;
case 's': /* s_word */
if ( !usecdecl ) pos -= 2;
fprintf( outfile, "*(INT16 *)(args+%d)", pos );
if ( usecdecl ) pos += 2;
break;
case 'l': /* long or segmented pointer */
case 'T': /* segmented pointer to null-terminated string */
if ( !usecdecl ) pos -= 4;
fprintf( outfile, "*(LONG *)(args+%d)", pos );
if ( usecdecl ) pos += 4;
break;
case 'p': /* linear pointer */
case 't': /* linear pointer to null-terminated string */
if ( !usecdecl ) pos -= 4;
fprintf( outfile, "PTR_SEG_TO_LIN( *(SEGPTR *)(args+%d) )", pos );
if ( usecdecl ) pos += 4;
break;
default:
fprintf( stderr, "Unknown arg type '%c'\n", args[i] );
}
}
if ( reg_func )
fprintf( outfile, "%s context", i? ",\n" : "" );
fprintf( outfile, " );\n}\n\n" );
}
/*******************************************************************
* BuildCallTo16Func
*
* Build a Wine-to-16-bit callback glue function.
*
* Prototypes for the CallTo16 functions:
* extern WORD CALLBACK PREFIX_CallTo16_word_xxx( FARPROC16 func, args... );
* extern LONG CALLBACK PREFIX_CallTo16_long_xxx( FARPROC16 func, args... );
*
* These routines are provided solely for convenience; they simply
* write the arguments onto the 16-bit stack, and call the appropriate
* CallTo16... core routine.
*
* If you have more sophisticated argument conversion requirements than
* are provided by these routines, you might as well call the core
* routines by yourself.
*
*/
static void BuildCallTo16Func( FILE *outfile, char *profile, char *prefix )
{
char *args = profile + 5;
int i, argsize = 0, short_ret = 0;
if (!strncmp( "word_", profile, 5 )) short_ret = 1;
else if (strncmp( "long_", profile, 5 ))
{
fprintf( stderr, "Invalid function name '%s'.\n", profile );
exit(1);
}
fprintf( outfile, "%s %s_CallTo16_%s( FARPROC16 proc",
short_ret? "WORD" : "LONG", prefix, profile );
args = profile + 5;
for ( i = 0; args[i]; i++ )
{
fprintf( outfile, ", " );
switch (args[i])
{
case 'w': fprintf( outfile, "WORD" ); argsize += 2; break;
case 'l': fprintf( outfile, "LONG" ); argsize += 4; break;
}
fprintf( outfile, " arg%d", i+1 );
}
fprintf( outfile, " )\n{\n" );
if ( argsize > 0 )
fprintf( outfile, " LPBYTE args = (LPBYTE)CURRENT_STACK16;\n" );
args = profile + 5;
for ( i = 0; args[i]; i++ )
{
fprintf( outfile, " *--(" );
switch (args[i])
{
case 'w': fprintf( outfile, "WORD" ); break;
case 'l': fprintf( outfile, "LONG" ); break;
default: fprintf( stderr, "Unexpected case '%c' in BuildCallTo16Func\n",
args[i] );
}
fprintf( outfile, " *)args = arg%d;\n", i+1 );
}
fprintf( outfile, " return CallTo16%s( proc, %d );\n}\n\n",
short_ret? "Word" : "Long", argsize );
}
/*******************************************************************
* BuildCallFrom16Core
*
* This routine builds the core routines used in 16->32 thunks:
* CallFrom16Word, CallFrom16Long, CallFrom16Register, and CallFrom16Thunk.
*
* These routines are intended to be called via a far call (with 32-bit
* operand size) from 16-bit code. The 16-bit code stub must push %bp,
* the 32-bit entry point to be called, and the argument conversion
* routine to be used (see stack layout below).
*
* The core routine completes the STACK16FRAME on the 16-bit stack and
* switches to the 32-bit stack. Then, the argument conversion routine
* is called; it gets passed the 32-bit entry point and a pointer to the
* 16-bit arguments (on the 16-bit stack) as parameters. (You can either
* use conversion routines automatically generated by BuildCallFrom16,
* or write your own for special purposes.)
*
* The conversion routine must call the 32-bit entry point, passing it
* the converted arguments, and return its return value to the core.
* After the conversion routine has returned, the core switches back
* to the 16-bit stack, converts the return value to the DX:AX format
* (CallFrom16Long), and returns to the 16-bit call stub. All parameters,
* including %bp, are popped off the stack.
*
* The 16-bit call stub now returns to the caller, popping the 16-bit
* arguments if necessary (pascal calling convention).
*
* In the case of a 'register' function, CallFrom16Register fills a
* CONTEXT86 structure with the values all registers had at the point
* the first instruction of the 16-bit call stub was about to be
* executed. A pointer to this CONTEXT86 is passed as third parameter
* to the argument conversion routine, which typically passes it on
* to the called 32-bit entry point.
*
* CallFrom16Thunk is a special variant used by the implementation of
* the Win95 16->32 thunk functions C16ThkSL and C16ThkSL01 and is
* implemented as follows:
* On entry, the EBX register is set up to contain a flat pointer to the
* 16-bit stack such that EBX+22 points to the first argument.
* Then, the entry point is called, while EBP is set up to point
* to the return address (on the 32-bit stack).
* The called function returns with CX set to the number of bytes
* to be popped of the caller's stack.
*
* Stack layout upon entry to the core routine (STACK16FRAME):
* ... ...
* (sp+24) word first 16-bit arg
* (sp+22) word cs
* (sp+20) word ip
* (sp+18) word bp
* (sp+14) long 32-bit entry point (reused for Win16 mutex recursion count)
* (sp+12) word ip of actual entry point (necessary for relay debugging)
* (sp+8) long relay (argument conversion) function entry point
* (sp+4) long cs of 16-bit entry point
* (sp) long ip of 16-bit entry point
*
* Added on the stack:
* (sp-2) word saved gs
* (sp-4) word saved fs
* (sp-6) word saved es
* (sp-8) word saved ds
* (sp-12) long saved ebp
* (sp-16) long saved ecx
* (sp-20) long saved edx
* (sp-24) long saved previous stack
*/
static void BuildCallFrom16Core( FILE *outfile, int reg_func, int thunk, int short_ret )
{
char *name = thunk? "Thunk" : reg_func? "Register" : short_ret? "Word" : "Long";
/* Function header */
fprintf( outfile, "\n\t.align 4\n" );
#ifdef USE_STABS
fprintf( outfile, ".stabs \"CallFrom16%s:F1\",36,0,0," PREFIX "CallFrom16%s\n",
name, name);
#endif
fprintf( outfile, "\t.globl " PREFIX "CallFrom16%s\n", name );
fprintf( outfile, PREFIX "CallFrom16%s:\n", name );
/* Create STACK16FRAME (except STACK32FRAME link) */
fprintf( outfile, "\tpushw %%gs\n" );
fprintf( outfile, "\tpushw %%fs\n" );
fprintf( outfile, "\tpushw %%es\n" );
fprintf( outfile, "\tpushw %%ds\n" );
fprintf( outfile, "\tpushl %%ebp\n" );
fprintf( outfile, "\tpushl %%ecx\n" );
fprintf( outfile, "\tpushl %%edx\n" );
if ( UsePIC )
{
/* Get Global Offset Table into %ecx */
fprintf( outfile, "\tcall .LCallFrom16%s.getgot1\n", name );
fprintf( outfile, ".LCallFrom16%s.getgot1:\n", name );
fprintf( outfile, "\tpopl %%ecx\n" );
fprintf( outfile, "\taddl $_GLOBAL_OFFSET_TABLE_+[.-.LCallFrom16%s.getgot1], %%ecx\n", name );
}
/* Load 32-bit segment registers */
fprintf( outfile, "\tmovw $0x%04x, %%dx\n", Data_Selector );
#ifdef __svr4__
fprintf( outfile, "\tdata16\n");
#endif
fprintf( outfile, "\tmovw %%dx, %%ds\n" );
#ifdef __svr4__
fprintf( outfile, "\tdata16\n");
#endif
fprintf( outfile, "\tmovw %%dx, %%es\n" );
if ( UsePIC )
{
fprintf( outfile, "\tmovl " PREFIX "SYSLEVEL_Win16CurrentTeb@GOT(%%ecx), %%edx\n" );
fprintf( outfile, "\tmovw (%%edx), %%fs\n" );
}
else
fprintf( outfile, "\tmovw " PREFIX "SYSLEVEL_Win16CurrentTeb, %%fs\n" );
/* Get address of ldt_copy array into %ecx */
if ( UsePIC )
fprintf( outfile, "\tmovl " PREFIX "ldt_copy@GOT(%%ecx), %%ecx\n" );
else
fprintf( outfile, "\tmovl $" PREFIX "ldt_copy, %%ecx\n" );
/* Translate STACK16FRAME base to flat offset in %edx */
fprintf( outfile, "\tmovw %%ss, %%dx\n" );
fprintf( outfile, "\tandl $0xfff8, %%edx\n" );
fprintf( outfile, "\tmovl (%%ecx,%%edx), %%edx\n" );
fprintf( outfile, "\tmovzwl %%sp, %%ebp\n" );
fprintf( outfile, "\tleal -4(%%ebp,%%edx), %%edx\n" );
/* -4 since STACK16FRAME not yet complete! */
/* Get the 32-bit stack pointer from the TEB and complete STACK16FRAME */
fprintf( outfile, "\t.byte 0x64\n\tmovl (%d), %%ebp\n", STACKOFFSET );
fprintf( outfile, "\tpushl %%ebp\n" );
/* Switch stacks */
#ifdef __svr4__
fprintf( outfile,"\tdata16\n");
#endif
fprintf( outfile, "\t.byte 0x64\n\tmovw %%ss, (%d)\n", STACKOFFSET + 2 );
fprintf( outfile, "\t.byte 0x64\n\tmovw %%sp, (%d)\n", STACKOFFSET );
fprintf( outfile, "\tpushl %%ds\n" );
fprintf( outfile, "\tpopl %%ss\n" );
fprintf( outfile, "\tmovl %%ebp, %%esp\n" );
fprintf( outfile, "\taddl $%d, %%ebp\n", STRUCTOFFSET(STACK32FRAME, ebp) );
/* At this point:
STACK16FRAME is completely set up
DS, ES, SS: flat data segment
FS: current TEB
ESP: points to last STACK32FRAME
EBP: points to ebp member of last STACK32FRAME
EDX: points to current STACK16FRAME
ECX: points to ldt_copy
all other registers: unchanged */
/* Special case: C16ThkSL stub */
if ( thunk )
{
/* Set up registers as expected and call thunk */
fprintf( outfile, "\tleal %d(%%edx), %%ebx\n", sizeof(STACK16FRAME)-22 );
fprintf( outfile, "\tleal -4(%%esp), %%ebp\n" );
fprintf( outfile, "\tcall *%d(%%edx)\n", STACK16OFFSET(entry_point) );
/* Switch stack back */
/* fprintf( outfile, "\t.byte 0x64\n\tlssw (%d), %%sp\n", STACKOFFSET ); */
fprintf( outfile, "\t.byte 0x64,0x66,0x0f,0xb2,0x25\n\t.long %d\n", STACKOFFSET );
fprintf( outfile, "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET );
/* Restore registers and return directly to caller */
fprintf( outfile, "\taddl $8, %%esp\n" );
fprintf( outfile, "\tpopl %%ebp\n" );
fprintf( outfile, "\tpopw %%ds\n" );
fprintf( outfile, "\tpopw %%es\n" );
fprintf( outfile, "\tpopw %%fs\n" );
fprintf( outfile, "\tpopw %%gs\n" );
fprintf( outfile, "\taddl $20, %%esp\n" );
fprintf( outfile, "\txorb %%ch, %%ch\n" );
fprintf( outfile, "\tpopl %%ebx\n" );
fprintf( outfile, "\taddw %%cx, %%sp\n" );
fprintf( outfile, "\tpush %%ebx\n" );
fprintf( outfile, "\t.byte 0x66\n" );
fprintf( outfile, "\tlret\n" );
return;
}
/* Build register CONTEXT */
if ( reg_func )
{
fprintf( outfile, "\tsubl $%d, %%esp\n", sizeof(CONTEXT86) );
fprintf( outfile, "\tpushfl\n" );
fprintf( outfile, "\tpopl %d(%%esp)\n", CONTEXTOFFSET(EFlags) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Eax) );
fprintf( outfile, "\tmovl %%ebx, %d(%%esp)\n", CONTEXTOFFSET(Ebx) );
fprintf( outfile, "\tmovl %%esi, %d(%%esp)\n", CONTEXTOFFSET(Esi) );
fprintf( outfile, "\tmovl %%edi, %d(%%esp)\n", CONTEXTOFFSET(Edi) );
fprintf( outfile, "\tmovl %d(%%edx), %%eax\n", STACK16OFFSET(ebp) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Ebp) );
fprintf( outfile, "\tmovl %d(%%edx), %%eax\n", STACK16OFFSET(ecx) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Ecx) );
fprintf( outfile, "\tmovl %d(%%edx), %%eax\n", STACK16OFFSET(edx) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Edx) );
fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(ds) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegDs) );
fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(es) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegEs) );
fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(fs) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegFs) );
fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(gs) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegGs) );
fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(cs) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegCs) );
fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(ip) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Eip) );
fprintf( outfile, "\t.byte 0x64\n\tmovzwl (%d), %%eax\n", STACKOFFSET+2 );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegSs) );
fprintf( outfile, "\t.byte 0x64\n\tmovzwl (%d), %%eax\n", STACKOFFSET );
fprintf( outfile, "\taddl $%d, %%eax\n", STACK16OFFSET(ip) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Esp) );
#if 0
fprintf( outfile, "\tfsave %d(%%esp)\n", CONTEXTOFFSET(FloatSave) );
#endif
/* Push address of CONTEXT86 structure -- popped by the relay routine */
fprintf( outfile, "\tpushl %%esp\n" );
}
/* Print debug info before call */
if ( debugging )
{
if ( UsePIC )
{
fprintf( outfile, "\tpushl %%ebx\n" );
/* Get Global Offset Table into %ebx (for PLT call) */
fprintf( outfile, "\tcall .LCallFrom16%s.getgot2\n", name );
fprintf( outfile, ".LCallFrom16%s.getgot2:\n", name );
fprintf( outfile, "\tpopl %%ebx\n" );
fprintf( outfile, "\taddl $_GLOBAL_OFFSET_TABLE_+[.-.LCallFrom16%s.getgot2], %%ebx\n", name );
}
fprintf( outfile, "\tpushl %%edx\n" );
if ( reg_func )
fprintf( outfile, "\tleal -%d(%%ebp), %%eax\n\tpushl %%eax\n",
sizeof(CONTEXT) + STRUCTOFFSET(STACK32FRAME, ebp) );
else
fprintf( outfile, "\tpushl $0\n" );
if ( UsePIC )
fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallFrom16@PLT\n ");
else
fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallFrom16\n ");
fprintf( outfile, "\tpopl %%edx\n" );
fprintf( outfile, "\tpopl %%edx\n" );
if ( UsePIC )
fprintf( outfile, "\tpopl %%ebx\n" );
}
/* Call relay routine (which will call the API entry point) */
fprintf( outfile, "\tleal %d(%%edx), %%eax\n", sizeof(STACK16FRAME) );
fprintf( outfile, "\tpushl %%eax\n" );
fprintf( outfile, "\tpushl %d(%%edx)\n", STACK16OFFSET(entry_point) );
fprintf( outfile, "\tcall *%d(%%edx)\n", STACK16OFFSET(relay) );
/* Print debug info after call */
if ( debugging )
{
if ( UsePIC )
{
fprintf( outfile, "\tpushl %%ebx\n" );
/* Get Global Offset Table into %ebx (for PLT call) */
fprintf( outfile, "\tcall .LCallFrom16%s.getgot3\n", name );
fprintf( outfile, ".LCallFrom16%s.getgot3:\n", name );
fprintf( outfile, "\tpopl %%ebx\n" );
fprintf( outfile, "\taddl $_GLOBAL_OFFSET_TABLE_+[.-.LCallFrom16%s.getgot3], %%ebx\n", name );
}
fprintf( outfile, "\tpushl %%eax\n" );
if ( reg_func )
fprintf( outfile, "\tleal -%d(%%ebp), %%eax\n\tpushl %%eax\n",
sizeof(CONTEXT) + STRUCTOFFSET(STACK32FRAME, ebp) );
else
fprintf( outfile, "\tpushl $0\n" );
if ( UsePIC )
fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallFrom16Ret@PLT\n ");
else
fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallFrom16Ret\n ");
fprintf( outfile, "\tpopl %%eax\n" );
fprintf( outfile, "\tpopl %%eax\n" );
if ( UsePIC )
fprintf( outfile, "\tpopl %%ebx\n" );
}
if ( reg_func )
{
fprintf( outfile, "\tmovl %%esp, %%ebx\n" );
/* Switch stack back */
/* fprintf( outfile, "\t.byte 0x64\n\tlssw (%d), %%sp\n", STACKOFFSET ); */
fprintf( outfile, "\t.byte 0x64,0x66,0x0f,0xb2,0x25\n\t.long %d\n", STACKOFFSET );
fprintf( outfile, "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET );
/* Get return address to CallFrom16 stub */
fprintf( outfile, "\taddw $%d, %%sp\n", STACK16OFFSET(callfrom_ip)-4 );
fprintf( outfile, "\tpopl %%eax\n" );
fprintf( outfile, "\tpopl %%edx\n" );
/* Restore all registers from CONTEXT */
fprintf( outfile, "\tmovw %d(%%ebx), %%ss\n", CONTEXTOFFSET(SegSs) );
fprintf( outfile, "\tmovl %d(%%ebx), %%esp\n", CONTEXTOFFSET(Esp) );
fprintf( outfile, "\taddl $4, %%esp\n" ); /* room for final return address */
fprintf( outfile, "\tpushw %d(%%ebx)\n", CONTEXTOFFSET(SegCs) );
fprintf( outfile, "\tpushw %d(%%ebx)\n", CONTEXTOFFSET(Eip) );
fprintf( outfile, "\tpushl %%edx\n" );
fprintf( outfile, "\tpushl %%eax\n" );
fprintf( outfile, "\tpushl %d(%%ebx)\n", CONTEXTOFFSET(EFlags) );
fprintf( outfile, "\tpushl %d(%%ebx)\n", CONTEXTOFFSET(SegDs) );
fprintf( outfile, "\tmovw %d(%%ebx), %%es\n", CONTEXTOFFSET(SegEs) );
fprintf( outfile, "\tmovw %d(%%ebx), %%fs\n", CONTEXTOFFSET(SegFs) );
fprintf( outfile, "\tmovw %d(%%ebx), %%gs\n", CONTEXTOFFSET(SegGs) );
fprintf( outfile, "\tmovl %d(%%ebx), %%ebp\n", CONTEXTOFFSET(Ebp) );
fprintf( outfile, "\tmovl %d(%%ebx), %%esi\n", CONTEXTOFFSET(Esi) );
fprintf( outfile, "\tmovl %d(%%ebx), %%edi\n", CONTEXTOFFSET(Edi) );
fprintf( outfile, "\tmovl %d(%%ebx), %%eax\n", CONTEXTOFFSET(Eax) );
fprintf( outfile, "\tmovl %d(%%ebx), %%edx\n", CONTEXTOFFSET(Edx) );
fprintf( outfile, "\tmovl %d(%%ebx), %%ecx\n", CONTEXTOFFSET(Ecx) );
fprintf( outfile, "\tmovl %d(%%ebx), %%ebx\n", CONTEXTOFFSET(Ebx) );
fprintf( outfile, "\tpopl %%ds\n" );
fprintf( outfile, "\tpopfl\n" );
fprintf( outfile, "\tlret\n" );
}
else
{
/* Switch stack back */
/* fprintf( outfile, "\t.byte 0x64\n\tlssw (%d), %%sp\n", STACKOFFSET ); */
fprintf( outfile, "\t.byte 0x64,0x66,0x0f,0xb2,0x25\n\t.long %d\n", STACKOFFSET );
fprintf( outfile, "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET );
/* Restore registers */
fprintf( outfile, "\tpopl %%edx\n" );
fprintf( outfile, "\tpopl %%ecx\n" );
fprintf( outfile, "\tpopl %%ebp\n" );
fprintf( outfile, "\tpopw %%ds\n" );
fprintf( outfile, "\tpopw %%es\n" );
fprintf( outfile, "\tpopw %%fs\n" );
fprintf( outfile, "\tpopw %%gs\n" );
/* Prepare return value and set flags accordingly */
if ( !short_ret )
fprintf( outfile, "\tshldl $16, %%eax, %%edx\n" );
fprintf( outfile, "\torl %%eax, %%eax\n" );
/* Return to return stub which will return to caller */
fprintf( outfile, "\tlret $12\n" );
}
}
/*******************************************************************
* BuildCallTo16Core
*
* This routine builds the core routines used in 32->16 thunks:
*
* extern void CALLBACK CallTo16Word( SEGPTR target, int nb_args );
* extern void CALLBACK CallTo16Long( SEGPTR target, int nb_args );
* extern void CALLBACK CallTo16RegisterShort( const CONTEXT86 *context, int nb_args );
* extern void CALLBACK CallTo16RegisterLong ( const CONTEXT86 *context, int nb_args );
*
* These routines can be called directly from 32-bit code.
*
* All routines expect that the 16-bit stack contents (arguments) were
* already set up by the caller; nb_args must contain the number of bytes
* to be conserved. The 16-bit SS:SP will be set accordinly.
*
* All other registers are either taken from the CONTEXT86 structure
* or else set to default values. The target routine address is either
* given directly or taken from the CONTEXT86.
*
* If you want to call a 16-bit routine taking only standard argument types
* (WORD and LONG), you can also have an appropriate argument conversion
* stub automatically generated (see BuildCallTo16); you'd then call this
* stub, which in turn would prepare the 16-bit stack and call the appropiate
* core routine.
*
*/
static void BuildCallTo16Core( FILE *outfile, int short_ret, int reg_func )
{
char *name = reg_func == 2 ? "RegisterLong" :
reg_func == 1 ? "RegisterShort" :
short_ret? "Word" : "Long";
/* Function header */
fprintf( outfile, "\n\t.align 4\n" );
#ifdef USE_STABS
fprintf( outfile, ".stabs \"CallTo16%s:F1\",36,0,0," PREFIX "CallTo16%s\n",
name, name);
#endif
fprintf( outfile, "\t.globl " PREFIX "CallTo16%s\n", name );
fprintf( outfile, PREFIX "CallTo16%s:\n", name );
/* Function entry sequence */
fprintf( outfile, "\tpushl %%ebp\n" );
fprintf( outfile, "\tmovl %%esp, %%ebp\n" );
/* Save the 32-bit registers */
fprintf( outfile, "\tpushl %%ebx\n" );
fprintf( outfile, "\tpushl %%ecx\n" );
fprintf( outfile, "\tpushl %%edx\n" );
fprintf( outfile, "\tpushl %%esi\n" );
fprintf( outfile, "\tpushl %%edi\n" );
if ( UsePIC )
{
/* Get Global Offset Table into %ebx */
fprintf( outfile, "\tcall .LCallTo16%s.getgot1\n", name );
fprintf( outfile, ".LCallTo16%s.getgot1:\n", name );
fprintf( outfile, "\tpopl %%ebx\n" );
fprintf( outfile, "\taddl $_GLOBAL_OFFSET_TABLE_+[.-.LCallTo16%s.getgot1], %%ebx\n", name );
}
/* Enter Win16 Mutex */
if ( UsePIC )
fprintf( outfile, "\tcall " PREFIX "SYSLEVEL_EnterWin16Lock@PLT\n" );
else
fprintf( outfile, "\tcall " PREFIX "SYSLEVEL_EnterWin16Lock\n" );
/* Print debugging info */
if (debugging)
{
/* Push flags, number of arguments, and target */
fprintf( outfile, "\tpushl $%d\n", reg_func );
fprintf( outfile, "\tpushl 12(%%ebp)\n" );
fprintf( outfile, "\tpushl 8(%%ebp)\n" );
if ( UsePIC )
fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallTo16@PLT\n" );
else
fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallTo16\n" );
fprintf( outfile, "\taddl $12, %%esp\n" );
}
/* Get return address */
if ( UsePIC )
fprintf( outfile, "\tmovl " PREFIX "CallTo16_RetAddr@GOTOFF(%%ebx), %%ecx\n" );
else
fprintf( outfile, "\tmovl " PREFIX "CallTo16_RetAddr, %%ecx\n" );
/* Call the actual CallTo16 routine (simulate a lcall) */
fprintf( outfile, "\tpushl %%cs\n" );
fprintf( outfile, "\tcall .LCallTo16%s\n", name );
/* Convert and push return value */
if ( short_ret )
{
fprintf( outfile, "\tmovzwl %%ax, %%eax\n" );
fprintf( outfile, "\tpushl %%eax\n" );
}
else if ( reg_func != 2 )
{
fprintf( outfile, "\tshll $16,%%edx\n" );
fprintf( outfile, "\tmovw %%ax,%%dx\n" );
fprintf( outfile, "\tpushl %%edx\n" );
}
else
fprintf( outfile, "\tpushl %%eax\n" );
if ( UsePIC )
{
/* Get Global Offset Table into %ebx (might have been overwritten) */
fprintf( outfile, "\tcall .LCallTo16%s.getgot2\n", name );
fprintf( outfile, ".LCallTo16%s.getgot2:\n", name );
fprintf( outfile, "\tpopl %%ebx\n" );
fprintf( outfile, "\taddl $_GLOBAL_OFFSET_TABLE_+[.-.LCallTo16%s.getgot2], %%ebx\n", name );
}
/* Print debugging info */
if (debugging)
{
if ( UsePIC )
fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallTo16Ret@PLT\n" );
else
fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallTo16Ret\n" );
}
/* Leave Win16 Mutex */
if ( UsePIC )
fprintf( outfile, "\tcall " PREFIX "SYSLEVEL_LeaveWin16Lock@PLT\n" );
else
fprintf( outfile, "\tcall " PREFIX "SYSLEVEL_LeaveWin16Lock\n" );
/* Get return value */
fprintf( outfile, "\tpopl %%eax\n" );
/* Restore the 32-bit registers */
fprintf( outfile, "\tpopl %%edi\n" );
fprintf( outfile, "\tpopl %%esi\n" );
fprintf( outfile, "\tpopl %%edx\n" );
fprintf( outfile, "\tpopl %%ecx\n" );
fprintf( outfile, "\tpopl %%ebx\n" );
/* Function exit sequence */
fprintf( outfile, "\tpopl %%ebp\n" );
fprintf( outfile, "\tret $8\n" );
/* Start of the actual CallTo16 routine */
fprintf( outfile, ".LCallTo16%s:\n", name );
/* Complete STACK32FRAME */
fprintf( outfile, "\t.byte 0x64\n\tpushl (%d)\n", STACKOFFSET );
fprintf( outfile, "\tmovl %%esp,%%edx\n" );
/* Switch to the 16-bit stack */
#ifdef __svr4__
fprintf( outfile,"\tdata16\n");
#endif
fprintf( outfile, "\t.byte 0x64\n\tmovw (%d),%%ss\n", STACKOFFSET + 2);
fprintf( outfile, "\t.byte 0x64\n\tmovw (%d),%%sp\n", STACKOFFSET );
fprintf( outfile, "\t.byte 0x64\n\tmovl %%edx,(%d)\n", STACKOFFSET );
/* Make %bp point to the previous stackframe (built by CallFrom16) */
fprintf( outfile, "\tmovzwl %%sp,%%ebp\n" );
fprintf( outfile, "\tleal %d(%%ebp),%%ebp\n", STACK16OFFSET(bp) );
/* Add the specified offset to the new sp */
fprintf( outfile, "\tsubw %d(%%edx), %%sp\n", STACK32OFFSET(nb_args) );
/* Push the return address
* With sreg suffix, we push 16:16 address (normal lret)
* With lreg suffix, we push 16:32 address (0x66 lret, for KERNEL32_45)
*/
if (reg_func != 2)
fprintf( outfile, "\tpushl %%ecx\n" );
else
{
fprintf( outfile, "\tshldl $16, %%ecx, %%eax\n" );
fprintf( outfile, "\tpushw $0\n" );
fprintf( outfile, "\tpushw %%ax\n" );
fprintf( outfile, "\tpushw $0\n" );
fprintf( outfile, "\tpushw %%cx\n" );
}
if (reg_func)
{
/* Push the called routine address */
fprintf( outfile, "\tmovl %d(%%edx),%%edx\n", STACK32OFFSET(target) );
fprintf( outfile, "\tpushw %d(%%edx)\n", CONTEXTOFFSET(SegCs) );
fprintf( outfile, "\tpushw %d(%%edx)\n", CONTEXTOFFSET(Eip) );
/* Get the registers */
fprintf( outfile, "\tpushw %d(%%edx)\n", CONTEXTOFFSET(SegDs) );
fprintf( outfile, "\tmovl %d(%%edx),%%eax\n", CONTEXTOFFSET(SegEs) );
fprintf( outfile, "\tmovw %%ax,%%es\n" );
fprintf( outfile, "\tmovl %d(%%edx),%%eax\n", CONTEXTOFFSET(SegFs) );
fprintf( outfile, "\tmovw %%ax,%%fs\n" );
fprintf( outfile, "\tmovl %d(%%edx),%%ebp\n", CONTEXTOFFSET(Ebp) );
fprintf( outfile, "\tmovl %d(%%edx),%%esi\n", CONTEXTOFFSET(Esi) );
fprintf( outfile, "\tmovl %d(%%edx),%%edi\n", CONTEXTOFFSET(Edi) );
fprintf( outfile, "\tmovl %d(%%edx),%%eax\n", CONTEXTOFFSET(Eax) );
fprintf( outfile, "\tmovl %d(%%edx),%%ebx\n", CONTEXTOFFSET(Ebx) );
fprintf( outfile, "\tmovl %d(%%edx),%%ecx\n", CONTEXTOFFSET(Ecx) );
fprintf( outfile, "\tmovl %d(%%edx),%%edx\n", CONTEXTOFFSET(Edx) );
/* Get the 16-bit ds */
fprintf( outfile, "\tpopw %%ds\n" );
}
else /* not a register function */
{
/* Push the called routine address */
fprintf( outfile, "\tpushl %d(%%edx)\n", STACK32OFFSET(target) );
/* Set %fs to the value saved by the last CallFrom16 */
fprintf( outfile, "\tmovw %d(%%ebp),%%ax\n", STACK16OFFSET(fs)-STACK16OFFSET(bp) );
fprintf( outfile, "\tmovw %%ax,%%fs\n" );
/* Set %ds and %es (and %ax just in case) equal to %ss */
fprintf( outfile, "\tmovw %%ss,%%ax\n" );
fprintf( outfile, "\tmovw %%ax,%%ds\n" );
fprintf( outfile, "\tmovw %%ax,%%es\n" );
}
/* Jump to the called routine */
fprintf( outfile, "\t.byte 0x66\n" );
fprintf( outfile, "\tlret\n" );
}
/*******************************************************************
* BuildRet16Func
*
* Build the return code for 16-bit callbacks
*/
static void BuildRet16Func( FILE *outfile )
{
/*
* Note: This must reside in the .data section to allow
* run-time relocation of the SYSLEVEL_Win16CurrentTeb symbol
*/
fprintf( outfile, "\n\t.globl " PREFIX "CallTo16_Ret\n" );
fprintf( outfile, PREFIX "CallTo16_Ret:\n" );
/* Restore 32-bit segment registers */
fprintf( outfile, "\tmovw $0x%04x,%%bx\n", Data_Selector );
#ifdef __svr4__
fprintf( outfile, "\tdata16\n");
#endif
fprintf( outfile, "\tmovw %%bx,%%ds\n" );
#ifdef __svr4__
fprintf( outfile, "\tdata16\n");
#endif
fprintf( outfile, "\tmovw %%bx,%%es\n" );
fprintf( outfile, "\tmovw " PREFIX "SYSLEVEL_Win16CurrentTeb,%%fs\n" );
/* Restore the 32-bit stack */
#ifdef __svr4__
fprintf( outfile, "\tdata16\n");
#endif
fprintf( outfile, "\tmovw %%bx,%%ss\n" );
fprintf( outfile, "\t.byte 0x64\n\tmovl (%d),%%esp\n", STACKOFFSET );
fprintf( outfile, "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET );
/* Return to caller */
fprintf( outfile, "\tlret\n" );
/* Declare the return address variable */
fprintf( outfile, "\n\t.globl " PREFIX "CallTo16_RetAddr\n" );
fprintf( outfile, PREFIX "CallTo16_RetAddr:\t.long 0\n" );
}
/*******************************************************************
* BuildCallTo32CBClient
*
* Call a CBClient relay stub from 32-bit code (KERNEL.620).
*
* Since the relay stub is itself 32-bit, this should not be a problem;
* unfortunately, the relay stubs are expected to switch back to a
* 16-bit stack (and 16-bit code) after completion :-(
*
* This would conflict with our 16- vs. 32-bit stack handling, so
* we simply switch *back* to our 32-bit stack before returning to
* the caller ...
*
* The CBClient relay stub expects to be called with the following
* 16-bit stack layout, and with ebp and ebx pointing into the 16-bit
* stack at the designated places:
*
* ...
* (ebp+14) original arguments to the callback routine
* (ebp+10) far return address to original caller
* (ebp+6) Thunklet target address
* (ebp+2) Thunklet relay ID code
* (ebp) BP (saved by CBClientGlueSL)
* (ebp-2) SI (saved by CBClientGlueSL)
* (ebp-4) DI (saved by CBClientGlueSL)
* (ebp-6) DS (saved by CBClientGlueSL)
*
* ... buffer space used by the 16-bit side glue for temp copies
*
* (ebx+4) far return address to 16-bit side glue code
* (ebx) saved 16-bit ss:sp (pointing to ebx+4)
*
* The 32-bit side glue code accesses both the original arguments (via ebp)
* and the temporary copies prepared by the 16-bit side glue (via ebx).
* After completion, the stub will load ss:sp from the buffer at ebx
* and perform a far return to 16-bit code.
*
* To trick the relay stub into returning to us, we replace the 16-bit
* return address to the glue code by a cs:ip pair pointing to our
* return entry point (the original return address is saved first).
* Our return stub thus called will then reload the 32-bit ss:esp and
* return to 32-bit code (by using and ss:esp value that we have also
* pushed onto the 16-bit stack before and a cs:eip values found at
* that position on the 32-bit stack). The ss:esp to be restored is
* found relative to the 16-bit stack pointer at:
*
* (ebx-4) ss (flat)
* (ebx-8) sp (32-bit stack pointer)
*
* The second variant of this routine, CALL32_CBClientEx, which is used
* to implement KERNEL.621, has to cope with yet another problem: Here,
* the 32-bit side directly returns to the caller of the CBClient thunklet,
* restoring registers saved by CBClientGlueSL and cleaning up the stack.
* As we have to return to our 32-bit code first, we have to adapt the
* layout of our temporary area so as to include values for the registers
* that are to be restored, and later (in the implementation of KERNEL.621)
* we *really* restore them. The return stub restores DS, DI, SI, and BP
* from the stack, skips the next 8 bytes (CBClient relay code / target),
* and then performs a lret NN, where NN is the number of arguments to be
* removed. Thus, we prepare our temporary area as follows:
*
* (ebx+22) 16-bit cs (this segment)
* (ebx+20) 16-bit ip ('16-bit' return entry point)
* (ebx+16) 32-bit ss (flat)
* (ebx+12) 32-bit sp (32-bit stack pointer)
* (ebx+10) 16-bit bp (points to ebx+24)
* (ebx+8) 16-bit si (ignored)
* (ebx+6) 16-bit di (ignored)
* (ebx+4) 16-bit ds (we actually use the flat DS here)
* (ebx+2) 16-bit ss (16-bit stack segment)
* (ebx+0) 16-bit sp (points to ebx+4)
*
* Note that we ensure that DS is not changed and remains the flat segment,
* and the 32-bit stack pointer our own return stub needs fits just
* perfectly into the 8 bytes that are skipped by the Windows stub.
* One problem is that we have to determine the number of removed arguments,
* as these have to be really removed in KERNEL.621. Thus, the BP value
* that we place in the temporary area to be restored, contains the value
* that SP would have if no arguments were removed. By comparing the actual
* value of SP with this value in our return stub we can compute the number
* of removed arguments. This is then returned to KERNEL.621.
*
* The stack layout of this function:
* (ebp+20) nArgs pointer to variable receiving nr. of args (Ex only)
* (ebp+16) esi pointer to caller's esi value
* (ebp+12) arg ebp value to be set for relay stub
* (ebp+8) func CBClient relay stub address
* (ebp+4) ret addr
* (ebp) ebp
*/
static void BuildCallTo32CBClient( FILE *outfile, BOOL isEx )
{
char *name = isEx? "CBClientEx" : "CBClient";
int size = isEx? 24 : 12;
/* Function header */
fprintf( outfile, "\n\t.align 4\n" );
#ifdef USE_STABS
fprintf( outfile, ".stabs \"CALL32_%s:F1\",36,0,0," PREFIX "CALL32_%s\n",
name, name );
#endif
fprintf( outfile, "\t.globl " PREFIX "CALL32_%s\n", name );
fprintf( outfile, PREFIX "CALL32_%s:\n", name );
/* Entry code */
fprintf( outfile, "\tpushl %%ebp\n" );
fprintf( outfile, "\tmovl %%esp,%%ebp\n" );
fprintf( outfile, "\tpushl %%edi\n" );
fprintf( outfile, "\tpushl %%esi\n" );
fprintf( outfile, "\tpushl %%ebx\n" );
/* Get the 16-bit stack */
fprintf( outfile, "\t.byte 0x64\n\tmovl (%d),%%ebx\n", STACKOFFSET);
/* Convert it to a flat address */
fprintf( outfile, "\tshldl $16,%%ebx,%%eax\n" );
fprintf( outfile, "\tandl $0xfff8,%%eax\n" );
fprintf( outfile, "\tmovl " PREFIX "ldt_copy(%%eax),%%esi\n" );
fprintf( outfile, "\tmovw %%bx,%%ax\n" );
fprintf( outfile, "\taddl %%eax,%%esi\n" );
/* Allocate temporary area (simulate STACK16_PUSH) */
fprintf( outfile, "\tpushf\n" );
fprintf( outfile, "\tcld\n" );
fprintf( outfile, "\tleal -%d(%%esi), %%edi\n", size );
fprintf( outfile, "\tmovl $%d, %%ecx\n", sizeof(STACK16FRAME) );
fprintf( outfile, "\trep\n\tmovsb\n" );
fprintf( outfile, "\tpopf\n" );
fprintf( outfile, "\t.byte 0x64\n\tsubw $%d,(%d)\n", size, STACKOFFSET );
fprintf( outfile, "\tpushl %%edi\n" ); /* remember address */
/* Set up temporary area */
if ( !isEx )
{
fprintf( outfile, "\tleal 4(%%edi), %%edi\n" );
fprintf( outfile, "\tleal -8(%%esp), %%eax\n" );
fprintf( outfile, "\tmovl %%eax, -8(%%edi)\n" ); /* 32-bit sp */
fprintf( outfile, "\tmovl %%ss, %%ax\n" );
fprintf( outfile, "\tandl $0x0000ffff, %%eax\n" );
fprintf( outfile, "\tmovl %%eax, -4(%%edi)\n" ); /* 32-bit ss */
fprintf( outfile, "\taddl $%d, %%ebx\n", sizeof(STACK16FRAME)-size+4 + 4 );
fprintf( outfile, "\tmovl %%ebx, 0(%%edi)\n" ); /* 16-bit ss:sp */
fprintf( outfile, "\tmovl " PREFIX "CALL32_%s_RetAddr, %%eax\n", name );
fprintf( outfile, "\tmovl %%eax, 4(%%edi)\n" ); /* overwrite return address */
}
else
{
fprintf( outfile, "\taddl $%d, %%ebx\n", sizeof(STACK16FRAME)-size+4 );
fprintf( outfile, "\tmovl %%ebx, 0(%%edi)\n" );
fprintf( outfile, "\tmovl %%ds, %%ax\n" );
fprintf( outfile, "\tmovw %%ax, 4(%%edi)\n" );
fprintf( outfile, "\taddl $20, %%ebx\n" );
fprintf( outfile, "\tmovw %%bx, 10(%%edi)\n" );
fprintf( outfile, "\tleal -8(%%esp), %%eax\n" );
fprintf( outfile, "\tmovl %%eax, 12(%%edi)\n" );
fprintf( outfile, "\tmovl %%ss, %%ax\n" );
fprintf( outfile, "\tandl $0x0000ffff, %%eax\n" );
fprintf( outfile, "\tmovl %%eax, 16(%%edi)\n" );
fprintf( outfile, "\tmovl " PREFIX "CALL32_%s_RetAddr, %%eax\n", name );
fprintf( outfile, "\tmovl %%eax, 20(%%edi)\n" );
}
/* Set up registers and call CBClient relay stub (simulating a far call) */
fprintf( outfile, "\tmovl 16(%%ebp), %%esi\n" );
fprintf( outfile, "\tmovl (%%esi), %%esi\n" );
fprintf( outfile, "\tmovl %%edi, %%ebx\n" );
fprintf( outfile, "\tmovl 8(%%ebp), %%eax\n" );
fprintf( outfile, "\tmovl 12(%%ebp), %%ebp\n" );
fprintf( outfile, "\tpushl %%cs\n" );
fprintf( outfile, "\tcall *%%eax\n" );
/* Return new esi value to caller */
fprintf( outfile, "\tmovl 32(%%esp), %%edi\n" );
fprintf( outfile, "\tmovl %%esi, (%%edi)\n" );
/* Cleanup temporary area (simulate STACK16_POP) */
fprintf( outfile, "\tpop %%esi\n" );
fprintf( outfile, "\tpushf\n" );
fprintf( outfile, "\tstd\n" );
fprintf( outfile, "\tdec %%esi\n" );
fprintf( outfile, "\tleal %d(%%esi), %%edi\n", size );
fprintf( outfile, "\tmovl $%d, %%ecx\n", sizeof(STACK16FRAME) );
fprintf( outfile, "\trep\n\tmovsb\n" );
fprintf( outfile, "\tpopf\n" );
fprintf( outfile, "\t.byte 0x64\n\taddw $%d,(%d)\n", size, STACKOFFSET );
/* Return argument size to caller */
if ( isEx )
{
fprintf( outfile, "\tmovl 32(%%esp), %%ebx\n" );
fprintf( outfile, "\tmovl %%ebp, (%%ebx)\n" );
}
/* Restore registers and return */
fprintf( outfile, "\tpopl %%ebx\n" );
fprintf( outfile, "\tpopl %%esi\n" );
fprintf( outfile, "\tpopl %%edi\n" );
fprintf( outfile, "\tpopl %%ebp\n" );
fprintf( outfile, "\tret\n" );
}
static void BuildCallTo32CBClientRet( FILE *outfile, BOOL isEx )
{
char *name = isEx? "CBClientEx" : "CBClient";
/* '16-bit' return stub */
fprintf( outfile, "\n\t.globl " PREFIX "CALL32_%s_Ret\n", name );
fprintf( outfile, PREFIX "CALL32_%s_Ret:\n", name );
if ( !isEx )
{
fprintf( outfile, "\tmovzwl %%sp, %%ebx\n" );
fprintf( outfile, "\tlssl %%ss:-16(%%ebx), %%esp\n" );
}
else
{
fprintf( outfile, "\tmovzwl %%bp, %%ebx\n" );
fprintf( outfile, "\tsubw %%bp, %%sp\n" );
fprintf( outfile, "\tmovzwl %%sp, %%ebp\n" );
fprintf( outfile, "\tlssl %%ss:-12(%%ebx), %%esp\n" );
}
fprintf( outfile, "\tlret\n" );
/* Declare the return address variable */
fprintf( outfile, "\n\t.globl " PREFIX "CALL32_%s_RetAddr\n", name );
fprintf( outfile, PREFIX "CALL32_%s_RetAddr:\t.long 0\n", name );
}
/*******************************************************************
* BuildCallTo32LargeStack
*
* Build the function used to switch to the original 32-bit stack
* before calling a 32-bit function from 32-bit code. This is used for
* functions that need a large stack, like X bitmaps functions.
*
* The generated function has the following prototype:
* int xxx( int (*func)(), void *arg );
*
* The pointer to the function can be retrieved by calling CALL32_Init,
* which also takes care of saving the current 32-bit stack pointer.
* Furthermore, CALL32_Init switches to a new stack and jumps to the
* specified target address.
*
* NOTE: The CALL32_LargeStack routine may be recursively entered by the
* same thread, but not concurrently entered by several threads.
*
* Stack layout of CALL32_Init:
*
* (esp+12) new stack address
* (esp+8) target address
* (esp+4) pointer to variable to receive CALL32_LargeStack address
* (esp) ret addr
*
* Stack layout of CALL32_LargeStack:
* ... ...
* (ebp+12) arg
* (ebp+8) func
* (ebp+4) ret addr
* (ebp) ebp
*/
static void BuildCallTo32LargeStack( FILE *outfile )
{
/* Initialization function */
fprintf( outfile, "\n\t.align 4\n" );
#ifdef USE_STABS
fprintf( outfile, ".stabs \"CALL32_Init:F1\",36,0,0," PREFIX "CALL32_Init\n");
#endif
fprintf( outfile, "\t.globl " PREFIX "CALL32_Init\n" );
fprintf( outfile, "\t.type " PREFIX "CALL32_Init,@function\n" );
fprintf( outfile, PREFIX "CALL32_Init:\n" );
fprintf( outfile, "\tmovl %%esp,CALL32_Original32_esp\n" );
fprintf( outfile, "\tpopl %%eax\n" );
fprintf( outfile, "\tpopl %%eax\n" );
fprintf( outfile, "\tmovl $CALL32_LargeStack,(%%eax)\n" );
fprintf( outfile, "\tpopl %%eax\n" );
fprintf( outfile, "\tpopl %%esp\n" );
fprintf( outfile, "\tpushl %%eax\n" );
fprintf( outfile, "\tret\n" );
/* Function header */
fprintf( outfile, "\n\t.align 4\n" );
#ifdef USE_STABS
fprintf( outfile, ".stabs \"CALL32_LargeStack:F1\",36,0,0,CALL32_LargeStack\n");
#endif
fprintf( outfile, "CALL32_LargeStack:\n" );
/* Entry code */
fprintf( outfile, "\tpushl %%ebp\n" );
fprintf( outfile, "\tmovl %%esp,%%ebp\n" );
/* Switch to the original 32-bit stack pointer */
fprintf( outfile, "\tcmpl $0, CALL32_RecursionCount\n" );
fprintf( outfile, "\tjne CALL32_skip\n" );
fprintf( outfile, "\tmovl CALL32_Original32_esp, %%esp\n" );
fprintf( outfile, "CALL32_skip:\n" );
fprintf( outfile, "\tincl CALL32_RecursionCount\n" );
/* Transfer the argument and call the function */
fprintf( outfile, "\tpushl 12(%%ebp)\n" );
fprintf( outfile, "\tcall *8(%%ebp)\n" );
/* Restore registers and return */
fprintf( outfile, "\tdecl CALL32_RecursionCount\n" );
fprintf( outfile, "\tmovl %%ebp,%%esp\n" );
fprintf( outfile, "\tpopl %%ebp\n" );
fprintf( outfile, "\tret\n" );
/* Data */
fprintf( outfile, "\t.data\n" );
fprintf( outfile, "CALL32_Original32_esp:\t.long 0\n" );
fprintf( outfile, "CALL32_RecursionCount:\t.long 0\n" );
fprintf( outfile, "\t.text\n" );
}
/*******************************************************************
* BuildCallFrom32Regs
*
* Build a 32-bit-to-Wine call-back function for a 'register' function.
* 'args' is the number of dword arguments.
*
* Stack layout:
* ...
* (ebp+12) first arg
* (ebp+8) ret addr to user code
* (ebp+4) ret addr to relay code
* (ebp+0) saved ebp
* (ebp-128) buffer area to allow stack frame manipulation
* (ebp-332) CONTEXT86 struct
* (ebp-336) CONTEXT86 *argument
* .... other arguments copied from (ebp+12)
*
* The entry point routine is called with a CONTEXT* extra argument,
* following the normal args. In this context structure, EIP_reg
* contains the return address to user code, and ESP_reg the stack
* pointer on return (with the return address and arguments already
* removed).
*/
static void BuildCallFrom32Regs( FILE *outfile )
{
static const int STACK_SPACE = 128 + sizeof(CONTEXT86);
/* Function header */
fprintf( outfile, "\n\t.align 4\n" );
#ifdef USE_STABS
fprintf( outfile, ".stabs \"CALL32_Regs:F1\",36,0,0," PREFIX "CALL32_Regs\n" );
#endif
fprintf( outfile, "\t.globl " PREFIX "CALL32_Regs\n" );
fprintf( outfile, PREFIX "CALL32_Regs:\n" );
/* Allocate some buffer space on the stack */
fprintf( outfile, "\tpushl %%ebp\n" );
fprintf( outfile, "\tmovl %%esp,%%ebp\n ");
fprintf( outfile, "\tleal -%d(%%esp), %%esp\n", STACK_SPACE );
/* Build the context structure */
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(Eax) - STACK_SPACE );
fprintf( outfile, "\tpushfl\n" );
fprintf( outfile, "\tpopl %%eax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(EFlags) - STACK_SPACE );
fprintf( outfile, "\tmovl 0(%%ebp),%%eax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(Ebp) - STACK_SPACE );
fprintf( outfile, "\tmovl %%ebx,%d(%%ebp)\n", CONTEXTOFFSET(Ebx) - STACK_SPACE );
fprintf( outfile, "\tmovl %%ecx,%d(%%ebp)\n", CONTEXTOFFSET(Ecx) - STACK_SPACE );
fprintf( outfile, "\tmovl %%edx,%d(%%ebp)\n", CONTEXTOFFSET(Edx) - STACK_SPACE );
fprintf( outfile, "\tmovl %%esi,%d(%%ebp)\n", CONTEXTOFFSET(Esi) - STACK_SPACE );
fprintf( outfile, "\tmovl %%edi,%d(%%ebp)\n", CONTEXTOFFSET(Edi) - STACK_SPACE );
fprintf( outfile, "\txorl %%eax,%%eax\n" );
fprintf( outfile, "\tmovw %%cs,%%ax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegCs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%es,%%ax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegEs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%fs,%%ax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegFs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%gs,%%ax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegGs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%ss,%%ax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegSs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%ds,%%ax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegDs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%ax,%%es\n" ); /* set %es equal to %ds just in case */
fprintf( outfile, "\tmovl $0x%x,%%eax\n", CONTEXT86_FULL );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(ContextFlags) - STACK_SPACE );
fprintf( outfile, "\tmovl 8(%%ebp),%%eax\n" ); /* Get %eip at time of call */
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(Eip) - STACK_SPACE );
/* Transfer the arguments */
fprintf( outfile, "\tmovl 4(%%ebp),%%ebx\n" ); /* get relay code addr */
fprintf( outfile, "\tpushl %%esp\n" ); /* push ptr to context struct */
fprintf( outfile, "\tmovzbl 4(%%ebx),%%ecx\n" ); /* fetch number of args to copy */
fprintf( outfile, "\tjecxz 1f\n" );
fprintf( outfile, "\tsubl %%ecx,%%esp\n" );
fprintf( outfile, "\tleal 12(%%ebp),%%esi\n" ); /* get %esp at time of call */
fprintf( outfile, "\tmovl %%esp,%%edi\n" );
fprintf( outfile, "\tshrl $2,%%ecx\n" );
fprintf( outfile, "\tcld\n" );
fprintf( outfile, "\trep\n\tmovsl\n" ); /* copy args */
fprintf( outfile, "1:\tmovzbl 5(%%ebx),%%eax\n" ); /* fetch number of args to remove */
fprintf( outfile, "\tleal 12(%%ebp,%%eax),%%eax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(Esp) - STACK_SPACE );
/* Call the entry point */
fprintf( outfile, "\tcall *0(%%ebx)\n" );
/* Store %eip and %ebp onto the new stack */
fprintf( outfile, "\tmovl %d(%%ebp),%%edx\n", CONTEXTOFFSET(Esp) - STACK_SPACE );
fprintf( outfile, "\tmovl %d(%%ebp),%%eax\n", CONTEXTOFFSET(Eip) - STACK_SPACE );
fprintf( outfile, "\tmovl %%eax,-4(%%edx)\n" );
fprintf( outfile, "\tmovl %d(%%ebp),%%eax\n", CONTEXTOFFSET(Ebp) - STACK_SPACE );
fprintf( outfile, "\tmovl %%eax,-8(%%edx)\n" );
/* Restore the context structure */
/* Note: we don't bother to restore %cs, %ds and %ss
* changing them in 32-bit code is a recipe for disaster anyway
*/
fprintf( outfile, "\tmovl %d(%%ebp),%%eax\n", CONTEXTOFFSET(SegEs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%ax,%%es\n" );
fprintf( outfile, "\tmovl %d(%%ebp),%%eax\n", CONTEXTOFFSET(SegFs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%ax,%%fs\n" );
fprintf( outfile, "\tmovl %d(%%ebp),%%eax\n", CONTEXTOFFSET(SegGs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%ax,%%gs\n" );
fprintf( outfile, "\tmovl %d(%%ebp),%%edi\n", CONTEXTOFFSET(Edi) - STACK_SPACE );
fprintf( outfile, "\tmovl %d(%%ebp),%%esi\n", CONTEXTOFFSET(Esi) - STACK_SPACE );
fprintf( outfile, "\tmovl %d(%%ebp),%%edx\n", CONTEXTOFFSET(Edx) - STACK_SPACE );
fprintf( outfile, "\tmovl %d(%%ebp),%%ecx\n", CONTEXTOFFSET(Ecx) - STACK_SPACE );
fprintf( outfile, "\tmovl %d(%%ebp),%%ebx\n", CONTEXTOFFSET(Ebx) - STACK_SPACE );
fprintf( outfile, "\tmovl %d(%%ebp),%%eax\n", CONTEXTOFFSET(EFlags) - STACK_SPACE );
fprintf( outfile, "\tpushl %%eax\n" );
fprintf( outfile, "\tpopfl\n" );
fprintf( outfile, "\tmovl %d(%%ebp),%%eax\n", CONTEXTOFFSET(Eax) - STACK_SPACE );
fprintf( outfile, "\tmovl %d(%%ebp),%%ebp\n", CONTEXTOFFSET(Esp) - STACK_SPACE );
fprintf( outfile, "\tleal -8(%%ebp),%%esp\n" );
fprintf( outfile, "\tpopl %%ebp\n" );
fprintf( outfile, "\tret\n" );
}
/*******************************************************************
* BuildSpec
*
* Build the spec files
*/
static int BuildSpec( FILE *outfile, int argc, char *argv[] )
{
int i;
for (i = 2; i < argc; i++)
if (BuildSpecFile( outfile, argv[i] ) < 0) return -1;
return 0;
}
/*******************************************************************
* BuildGlue
*
* Build the 16-bit-to-Wine/Wine-to-16-bit callback glue code
*/
static int BuildGlue( FILE *outfile, char * outname, int argc, char *argv[] )
{
char buffer[1024];
FILE *infile;
if (argc > 2)
{
infile = fopen( argv[2], "r" );
if (!infile)
{
perror( argv[2] );
exit( 1 );
}
}
else infile = stdin;
/* File header */
fprintf( outfile, "/* File generated automatically from %s; do not edit! */\n\n",
argc > 2? argv[2] : "<stdin>" );
fprintf( outfile, "#include \"builtin16.h\"\n" );
fprintf( outfile, "#include \"stackframe.h\"\n\n" );
/* Build the callback glue functions */
while (fgets( buffer, sizeof(buffer), infile ))
{
if (strstr( buffer, "### start build ###" )) break;
}
while (fgets( buffer, sizeof(buffer), infile ))
{
char *p;
if ( (p = strstr( buffer, "CallFrom16_" )) != NULL )
{
char *q, *profile = p + strlen( "CallFrom16_" );
for (q = profile; (*q == '_') || isalpha(*q); q++ )
;
*q = '\0';
for (q = p-1; q > buffer && ((*q == '_') || isalnum(*q)); q-- )
;
if ( ++q < p ) p[-1] = '\0'; else q = "";
BuildCallFrom16Func( outfile, profile, q, FALSE );
}
if ( (p = strstr( buffer, "CallTo16_" )) != NULL )
{
char *q, *profile = p + strlen( "CallTo16_" );
for (q = profile; (*q == '_') || isalpha(*q); q++ )
;
*q = '\0';
for (q = p-1; q > buffer && ((*q == '_') || isalnum(*q)); q-- )
;
if ( ++q < p ) p[-1] = '\0'; else q = "";
BuildCallTo16Func( outfile, profile, q );
}
if (strstr( buffer, "### stop build ###" )) break;
}
fclose( infile );
return 0;
}
/*******************************************************************
* BuildCall16
*
* Build the 16-bit callbacks
*/
static int BuildCall16( FILE *outfile, char * outname )
{
#ifdef USE_STABS
char buffer[1024];
#endif
/* File header */
fprintf( outfile, "/* File generated automatically. Do not edit! */\n\n" );
fprintf( outfile, "\t.text\n" );
#ifdef __i386__
#ifdef USE_STABS
fprintf( outfile, "\t.file\t\"%s\"\n", outname );
getcwd(buffer, sizeof(buffer));
/*
* The stabs help the internal debugger as they are an indication that it
* is sensible to step into a thunk/trampoline.
*/
fprintf( outfile, ".stabs \"%s/\",100,0,0,Code_Start\n", buffer);
fprintf( outfile, ".stabs \"%s\",100,0,0,Code_Start\n", outname);
fprintf( outfile, "\t.text\n" );
fprintf( outfile, "\t.align 4\n" );
fprintf( outfile, "Code_Start:\n\n" );
#endif
fprintf( outfile, PREFIX"Call16_Start:\n" );
fprintf( outfile, "\t.globl "PREFIX"Call16_Start\n" );
fprintf( outfile, "\t.byte 0\n\n" );
/* Standard CallFrom16 routine (WORD return) */
BuildCallFrom16Core( outfile, FALSE, FALSE, TRUE );
/* Standard CallFrom16 routine (DWORD return) */
BuildCallFrom16Core( outfile, FALSE, FALSE, FALSE );
/* Register CallFrom16 routine */
BuildCallFrom16Core( outfile, TRUE, FALSE, FALSE );
/* C16ThkSL CallFrom16 routine */
BuildCallFrom16Core( outfile, FALSE, TRUE, FALSE );
/* Standard CallTo16 routine (WORD return) */
BuildCallTo16Core( outfile, TRUE, FALSE );
/* Standard CallTo16 routine (DWORD return) */
BuildCallTo16Core( outfile, FALSE, FALSE );
/* Register CallTo16 routine (16:16 retf) */
BuildCallTo16Core( outfile, FALSE, 1 );
/* Register CallTo16 routine (16:32 retf) */
BuildCallTo16Core( outfile, FALSE, 2 );
/* CBClientThunkSL routine */
BuildCallTo32CBClient( outfile, FALSE );
/* CBClientThunkSLEx routine */
BuildCallTo32CBClient( outfile, TRUE );
fprintf( outfile, PREFIX"Call16_End:\n" );
fprintf( outfile, "\t.globl "PREFIX"Call16_End\n" );
#ifdef USE_STABS
fprintf( outfile, "\t.stabs \"\",100,0,0,.Letext\n");
fprintf( outfile, ".Letext:\n");
#endif
/* The whole Call16_Ret segment must lie within the .data section */
fprintf( outfile, "\n\t.data\n" );
fprintf( outfile, "\t.globl " PREFIX "Call16_Ret_Start\n" );
fprintf( outfile, PREFIX "Call16_Ret_Start:\n" );
/* Standard CallTo16 return stub */
BuildRet16Func( outfile );
/* CBClientThunkSL return stub */
BuildCallTo32CBClientRet( outfile, FALSE );
/* CBClientThunkSLEx return stub */
BuildCallTo32CBClientRet( outfile, TRUE );
/* End of Call16_Ret segment */
fprintf( outfile, "\n\t.globl " PREFIX "Call16_Ret_End\n" );
fprintf( outfile, PREFIX "Call16_Ret_End:\n" );
#else /* __i386__ */
fprintf( outfile, PREFIX"Call16_Start:\n" );
fprintf( outfile, "\t.globl "PREFIX"Call16_Start\n" );
fprintf( outfile, "\t.byte 0\n\n" );
fprintf( outfile, PREFIX"Call16_End:\n" );
fprintf( outfile, "\t.globl "PREFIX"Call16_End\n" );
fprintf( outfile, "\t.globl " PREFIX "Call16_Ret_Start\n" );
fprintf( outfile, PREFIX "Call16_Ret_Start:\n" );
fprintf( outfile, "\t.byte 0\n\n" );
fprintf( outfile, "\n\t.globl " PREFIX "Call16_Ret_End\n" );
fprintf( outfile, PREFIX "Call16_Ret_End:\n" );
#endif /* __i386__ */
return 0;
}
/*******************************************************************
* BuildCall32
*
* Build the 32-bit callbacks
*/
static int BuildCall32( FILE *outfile, char * outname )
{
#ifdef USE_STABS
char buffer[1024];
#endif
/* File header */
fprintf( outfile, "/* File generated automatically. Do not edit! */\n\n" );
fprintf( outfile, "\t.text\n" );
#ifdef __i386__
#ifdef USE_STABS
fprintf( outfile, "\t.file\t\"%s\"\n", outname );
getcwd(buffer, sizeof(buffer));
/*
* The stabs help the internal debugger as they are an indication that it
* is sensible to step into a thunk/trampoline.
*/
fprintf( outfile, ".stabs \"%s/\",100,0,0,Code_Start\n", buffer);
fprintf( outfile, ".stabs \"%s\",100,0,0,Code_Start\n", outname);
fprintf( outfile, "\t.text\n" );
fprintf( outfile, "\t.align 4\n" );
fprintf( outfile, "Code_Start:\n" );
#endif
/* Build the 32-bit large stack callback */
BuildCallTo32LargeStack( outfile );
/* Build the register callback function */
BuildCallFrom32Regs( outfile );
#ifdef USE_STABS
fprintf( outfile, "\t.text\n");
fprintf( outfile, "\t.stabs \"\",100,0,0,.Letext\n");
fprintf( outfile, ".Letext:\n");
#endif
#else /* __i386__ */
/* Just to avoid an empty file */
fprintf( outfile, "\t.long 0\n" );
#endif /* __i386__ */
return 0;
}
/*******************************************************************
* usage
*/
static void usage(void)
{
fprintf( stderr,
"usage: build [-pic] [-o outfile] -spec SPECNAMES\n"
" build [-pic] [-o outfile] -glue SOURCE_FILE\n"
" build [-pic] [-o outfile] -call16\n"
" build [-pic] [-o outfile] -call32\n" );
exit(1);
}
/*******************************************************************
* main
*/
int main(int argc, char **argv)
{
char *outname = NULL;
FILE *outfile = stdout;
int res = -1;
if (argc < 2) usage();
if (!strcmp( argv[1], "-pic" ))
{
UsePIC = 1;
argv += 1;
argc -= 1;
if (argc < 2) usage();
}
if (!strcmp( argv[1], "-o" ))
{
outname = argv[2];
argv += 2;
argc -= 2;
if (argc < 2) usage();
if (!(outfile = fopen( outname, "w" )))
{
fprintf( stderr, "Unable to create output file '%s'\n", outname );
exit(1);
}
}
/* Retrieve the selector values; this assumes that we are building
* the asm files on the platform that will also run them. Probably
* a safe assumption to make.
*/
GET_CS( Code_Selector );
GET_DS( Data_Selector );
if (!strcmp( argv[1], "-spec" ))
res = BuildSpec( outfile, argc, argv );
else if (!strcmp( argv[1], "-glue" ))
res = BuildGlue( outfile, outname, argc, argv );
else if (!strcmp( argv[1], "-call16" ))
res = BuildCall16( outfile, outname );
else if (!strcmp( argv[1], "-call32" ))
res = BuildCall32( outfile, outname );
else
{
fclose( outfile );
unlink( outname );
usage();
}
fclose( outfile );
if (res < 0)
{
unlink( outname );
return 1;
}
return 0;
}