799 lines
22 KiB
C
799 lines
22 KiB
C
/*
|
|
* Copyright (C) 2007 Google (Evan Stade)
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include <math.h>
|
|
|
|
#include "windef.h"
|
|
#include "winbase.h"
|
|
#include "winuser.h"
|
|
#include "wingdi.h"
|
|
#include "gdiplus.h"
|
|
#include "gdiplus_private.h"
|
|
#include "wine/debug.h"
|
|
|
|
WINE_DEFAULT_DEBUG_CHANNEL(gdiplus);
|
|
|
|
/* looks-right constants */
|
|
#define TENSION_CONST (0.3)
|
|
#define ANCHOR_WIDTH (2.0)
|
|
#define MAX_ITERS (50)
|
|
|
|
/* Converts angle (in degrees) to x/y coordinates */
|
|
static void deg2xy(REAL angle, REAL x_0, REAL y_0, REAL *x, REAL *y)
|
|
{
|
|
REAL radAngle, hypotenuse;
|
|
|
|
radAngle = deg2rad(angle);
|
|
hypotenuse = 50.0; /* arbitrary */
|
|
|
|
*x = x_0 + cos(radAngle) * hypotenuse;
|
|
*y = y_0 + sin(radAngle) * hypotenuse;
|
|
}
|
|
|
|
/* GdipDrawPie/GdipFillPie helper function */
|
|
static GpStatus draw_pie(GpGraphics *graphics, HBRUSH gdibrush, HPEN gdipen,
|
|
REAL x, REAL y, REAL width, REAL height, REAL startAngle, REAL sweepAngle)
|
|
{
|
|
INT save_state;
|
|
REAL x_0, y_0, x_1, y_1, x_2, y_2;
|
|
|
|
if(!graphics)
|
|
return InvalidParameter;
|
|
|
|
save_state = SaveDC(graphics->hdc);
|
|
EndPath(graphics->hdc);
|
|
SelectObject(graphics->hdc, gdipen);
|
|
SelectObject(graphics->hdc, gdibrush);
|
|
|
|
x_0 = x + (width/2.0);
|
|
y_0 = y + (height/2.0);
|
|
|
|
deg2xy(startAngle+sweepAngle, x_0, y_0, &x_1, &y_1);
|
|
deg2xy(startAngle, x_0, y_0, &x_2, &y_2);
|
|
|
|
Pie(graphics->hdc, roundr(x), roundr(y), roundr(x+width), roundr(y+height),
|
|
roundr(x_1), roundr(y_1), roundr(x_2), roundr(y_2));
|
|
|
|
RestoreDC(graphics->hdc, save_state);
|
|
|
|
return Ok;
|
|
}
|
|
|
|
/* GdipDrawCurve helper function.
|
|
* Calculates Bezier points from cardinal spline points. */
|
|
static void calc_curve_bezier(CONST GpPointF *pts, REAL tension, REAL *x1,
|
|
REAL *y1, REAL *x2, REAL *y2)
|
|
{
|
|
REAL xdiff, ydiff;
|
|
|
|
/* calculate tangent */
|
|
xdiff = pts[2].X - pts[0].X;
|
|
ydiff = pts[2].Y - pts[0].Y;
|
|
|
|
/* apply tangent to get control points */
|
|
*x1 = pts[1].X - tension * xdiff;
|
|
*y1 = pts[1].Y - tension * ydiff;
|
|
*x2 = pts[1].X + tension * xdiff;
|
|
*y2 = pts[1].Y + tension * ydiff;
|
|
}
|
|
|
|
/* GdipDrawCurve helper function.
|
|
* Calculates Bezier points from cardinal spline endpoints. */
|
|
static void calc_curve_bezier_endp(REAL xend, REAL yend, REAL xadj, REAL yadj,
|
|
REAL tension, REAL *x, REAL *y)
|
|
{
|
|
/* tangent at endpoints is the line from the endpoint to the adjacent point */
|
|
*x = roundr(tension * (xadj - xend) + xend);
|
|
*y = roundr(tension * (yadj - yend) + yend);
|
|
}
|
|
|
|
/* Draws the linecap the specified color and size on the hdc. The linecap is in
|
|
* direction of the line from x1, y1 to x2, y2 and is anchored on x2, y2. */
|
|
static void draw_cap(HDC hdc, COLORREF color, GpLineCap cap, REAL size,
|
|
REAL x1, REAL y1, REAL x2, REAL y2)
|
|
{
|
|
HGDIOBJ oldbrush, oldpen;
|
|
HBRUSH brush;
|
|
HPEN pen;
|
|
POINT pt[4];
|
|
REAL theta, dsmall, dbig, dx, dy, invert;
|
|
|
|
if(x2 != x1)
|
|
theta = atan((y2 - y1) / (x2 - x1));
|
|
else if(y2 != y1){
|
|
theta = M_PI_2 * (y2 > y1 ? 1.0 : -1.0);
|
|
}
|
|
else
|
|
return;
|
|
|
|
invert = ((x2 - x1) >= 0.0 ? 1.0 : -1.0);
|
|
brush = CreateSolidBrush(color);
|
|
pen = CreatePen(PS_SOLID, 1, color);
|
|
oldbrush = SelectObject(hdc, brush);
|
|
oldpen = SelectObject(hdc, pen);
|
|
|
|
switch(cap){
|
|
case LineCapFlat:
|
|
break;
|
|
case LineCapSquare:
|
|
case LineCapSquareAnchor:
|
|
case LineCapDiamondAnchor:
|
|
size = size * (cap & LineCapNoAnchor ? ANCHOR_WIDTH : 1.0) / 2.0;
|
|
if(cap == LineCapDiamondAnchor){
|
|
dsmall = cos(theta + M_PI_2) * size;
|
|
dbig = sin(theta + M_PI_2) * size;
|
|
}
|
|
else{
|
|
dsmall = cos(theta + M_PI_4) * size;
|
|
dbig = sin(theta + M_PI_4) * size;
|
|
}
|
|
|
|
/* calculating the latter points from the earlier points makes them
|
|
* look a little better because of rounding issues */
|
|
pt[0].x = roundr(x2 - dsmall);
|
|
pt[1].x = roundr(((REAL)pt[0].x) + dbig + dsmall);
|
|
|
|
pt[0].y = roundr(y2 - dbig);
|
|
pt[3].y = roundr(((REAL)pt[0].y) + dsmall + dbig);
|
|
|
|
pt[1].y = roundr(y2 - dsmall);
|
|
pt[2].y = roundr(dbig + dsmall + ((REAL)pt[1].y));
|
|
|
|
pt[3].x = roundr(x2 - dbig);
|
|
pt[2].x = roundr(((REAL)pt[3].x) + dsmall + dbig);
|
|
|
|
Polygon(hdc, pt, 4);
|
|
|
|
break;
|
|
case LineCapArrowAnchor:
|
|
size = size * 4.0 / sqrt(3.0);
|
|
|
|
dx = cos(M_PI / 6.0 + theta) * size * invert;
|
|
dy = sin(M_PI / 6.0 + theta) * size * invert;
|
|
|
|
pt[0].x = roundr(x2 - dx);
|
|
pt[0].y = roundr(y2 - dy);
|
|
|
|
dx = cos(- M_PI / 6.0 + theta) * size * invert;
|
|
dy = sin(- M_PI / 6.0 + theta) * size * invert;
|
|
|
|
pt[1].x = roundr(x2 - dx);
|
|
pt[1].y = roundr(y2 - dy);
|
|
|
|
pt[2].x = roundr(x2);
|
|
pt[2].y = roundr(y2);
|
|
|
|
Polygon(hdc, pt, 3);
|
|
|
|
break;
|
|
case LineCapRoundAnchor:
|
|
dx = dy = ANCHOR_WIDTH * size / 2.0;
|
|
|
|
x2 = (REAL) roundr(x2 - dx);
|
|
y2 = (REAL) roundr(y2 - dy);
|
|
|
|
Ellipse(hdc, (INT) x2, (INT) y2, roundr(x2 + 2.0 * dx),
|
|
roundr(y2 + 2.0 * dy));
|
|
break;
|
|
case LineCapTriangle:
|
|
size = size / 2.0;
|
|
dx = cos(M_PI_2 + theta) * size;
|
|
dy = sin(M_PI_2 + theta) * size;
|
|
|
|
/* Using roundr here can make the triangle float off the end of the
|
|
* line. */
|
|
pt[0].x = ((x2 - x1) >= 0 ? floorf(x2 - dx) : ceilf(x2 - dx));
|
|
pt[0].y = ((y2 - y1) >= 0 ? floorf(y2 - dy) : ceilf(y2 - dy));
|
|
pt[1].x = roundr(pt[0].x + 2.0 * dx);
|
|
pt[1].y = roundr(pt[0].y + 2.0 * dy);
|
|
|
|
dx = cos(theta) * size * invert;
|
|
dy = sin(theta) * size * invert;
|
|
|
|
pt[2].x = roundr(x2 + dx);
|
|
pt[2].y = roundr(y2 + dy);
|
|
|
|
Polygon(hdc, pt, 3);
|
|
|
|
break;
|
|
case LineCapRound:
|
|
dx = -cos(M_PI_2 + theta) * size * invert;
|
|
dy = -sin(M_PI_2 + theta) * size * invert;
|
|
|
|
pt[0].x = ((x2 - x1) >= 0 ? floorf(x2 - dx) : ceilf(x2 - dx));
|
|
pt[0].y = ((y2 - y1) >= 0 ? floorf(y2 - dy) : ceilf(y2 - dy));
|
|
pt[1].x = roundr(pt[0].x + 2.0 * dx);
|
|
pt[1].y = roundr(pt[0].y + 2.0 * dy);
|
|
|
|
dx = dy = size / 2.0;
|
|
|
|
x2 = (REAL) roundr(x2 - dx);
|
|
y2 = (REAL) roundr(y2 - dy);
|
|
|
|
Pie(hdc, (INT) x2, (INT) y2, roundr(x2 + 2.0 * dx),
|
|
roundr(y2 + 2.0 * dy), pt[0].x, pt[0].y, pt[1].x, pt[1].y);
|
|
break;
|
|
case LineCapCustom:
|
|
FIXME("line cap not implemented\n");
|
|
default:
|
|
break;
|
|
}
|
|
|
|
SelectObject(hdc, oldbrush);
|
|
SelectObject(hdc, oldpen);
|
|
DeleteObject(brush);
|
|
DeleteObject(pen);
|
|
}
|
|
|
|
/* Shortens the line by the given percent by changing x2, y2.
|
|
* If percent is > 1.0 then the line will change direction. */
|
|
static void shorten_line_percent(REAL x1, REAL y1, REAL *x2, REAL *y2, REAL percent)
|
|
{
|
|
REAL dist, theta, dx, dy;
|
|
|
|
if((y1 == *y2) && (x1 == *x2))
|
|
return;
|
|
|
|
dist = sqrt((*x2 - x1) * (*x2 - x1) + (*y2 - y1) * (*y2 - y1)) * percent;
|
|
theta = (*x2 == x1 ? M_PI_2 : atan((*y2 - y1) / (*x2 - x1)));
|
|
dx = cos(theta) * dist;
|
|
dy = sin(theta) * dist;
|
|
|
|
*x2 = *x2 + fabs(dx) * (*x2 > x1 ? -1.0 : 1.0);
|
|
*y2 = *y2 + fabs(dy) * (*y2 > y1 ? -1.0 : 1.0);
|
|
}
|
|
|
|
/* Shortens the line by the given amount by changing x2, y2.
|
|
* If the amount is greater than the distance, the line will become length 0. */
|
|
static void shorten_line_amt(REAL x1, REAL y1, REAL *x2, REAL *y2, REAL amt)
|
|
{
|
|
REAL dx, dy, percent;
|
|
|
|
dx = *x2 - x1;
|
|
dy = *y2 - y1;
|
|
if(dx == 0 && dy == 0)
|
|
return;
|
|
|
|
percent = amt / sqrt(dx * dx + dy * dy);
|
|
if(percent >= 1.0){
|
|
*x2 = x1;
|
|
*y2 = y1;
|
|
return;
|
|
}
|
|
|
|
shorten_line_percent(x1, y1, x2, y2, percent);
|
|
}
|
|
|
|
/* Draws lines between the given points, and if caps is true then draws an endcap
|
|
* at the end of the last line. FIXME: Startcaps not implemented. */
|
|
static GpStatus draw_polyline(HDC hdc, GpPen *pen, GDIPCONST GpPointF * pt,
|
|
INT count, BOOL caps)
|
|
{
|
|
POINT *pti;
|
|
REAL x = pt[count - 1].X, y = pt[count - 1].Y;
|
|
INT i;
|
|
GpStatus status = GenericError;
|
|
|
|
if(!count)
|
|
return Ok;
|
|
|
|
pti = GdipAlloc(count * sizeof(POINT));
|
|
|
|
if(!pti){
|
|
status = OutOfMemory;
|
|
goto end;
|
|
}
|
|
|
|
if(caps){
|
|
if(pen->endcap == LineCapArrowAnchor)
|
|
shorten_line_amt(pt[count-2].X, pt[count-2].Y, &x, &y, pen->width);
|
|
|
|
draw_cap(hdc, pen->color, pen->endcap, pen->width, pt[count-2].X,
|
|
pt[count-2].Y, pt[count - 1].X, pt[count - 1].Y);
|
|
}
|
|
|
|
for(i = 0; i < count - 1; i ++){
|
|
pti[i].x = roundr(pt[i].X);
|
|
pti[i].y = roundr(pt[i].Y);
|
|
}
|
|
|
|
pti[i].x = roundr(x);
|
|
pti[i].y = roundr(y);
|
|
|
|
Polyline(hdc, pti, count);
|
|
|
|
end:
|
|
GdipFree(pti);
|
|
|
|
return status;
|
|
}
|
|
|
|
/* Conducts a linear search to find the bezier points that will back off
|
|
* the endpoint of the curve by a distance of amt. Linear search works
|
|
* better than binary in this case because there are multiple solutions,
|
|
* and binary searches often find a bad one. I don't think this is what
|
|
* Windows does but short of rendering the bezier without GDI's help it's
|
|
* the best we can do. */
|
|
static void shorten_bezier_amt(GpPointF * pt, REAL amt)
|
|
{
|
|
GpPointF origpt[4];
|
|
REAL percent = 0.00, dx, dy, origx = pt[3].X, origy = pt[3].Y, diff = -1.0;
|
|
INT i;
|
|
|
|
memcpy(origpt, pt, sizeof(GpPointF) * 4);
|
|
|
|
for(i = 0; (i < MAX_ITERS) && (diff < amt); i++){
|
|
/* reset bezier points to original values */
|
|
memcpy(pt, origpt, sizeof(GpPointF) * 4);
|
|
/* Perform magic on bezier points. Order is important here.*/
|
|
shorten_line_percent(pt[2].X, pt[2].Y, &pt[3].X, &pt[3].Y, percent);
|
|
shorten_line_percent(pt[1].X, pt[1].Y, &pt[2].X, &pt[2].Y, percent);
|
|
shorten_line_percent(pt[2].X, pt[2].Y, &pt[3].X, &pt[3].Y, percent);
|
|
shorten_line_percent(pt[0].X, pt[0].Y, &pt[1].X, &pt[1].Y, percent);
|
|
shorten_line_percent(pt[1].X, pt[1].Y, &pt[2].X, &pt[2].Y, percent);
|
|
shorten_line_percent(pt[2].X, pt[2].Y, &pt[3].X, &pt[3].Y, percent);
|
|
|
|
dx = pt[3].X - origx;
|
|
dy = pt[3].Y - origy;
|
|
|
|
diff = sqrt(dx * dx + dy * dy);
|
|
percent += 0.0005 * amt;
|
|
}
|
|
}
|
|
|
|
/* Draws bezier curves between given points, and if caps is true then draws an
|
|
* endcap at the end of the last line. FIXME: Startcaps not implemented. */
|
|
static GpStatus draw_polybezier(HDC hdc, GpPen *pen, GDIPCONST GpPointF * pt,
|
|
INT count, BOOL caps)
|
|
{
|
|
POINT *pti;
|
|
GpPointF *ptf;
|
|
INT i;
|
|
GpStatus status = GenericError;
|
|
|
|
if(!count)
|
|
return Ok;
|
|
|
|
pti = GdipAlloc(count * sizeof(POINT));
|
|
ptf = GdipAlloc(4 * sizeof(GpPointF));
|
|
|
|
if(!pti || !ptf){
|
|
status = OutOfMemory;
|
|
goto end;
|
|
}
|
|
|
|
memcpy(ptf, &pt[count-4], 4 * sizeof(GpPointF));
|
|
|
|
if(caps){
|
|
if(pen->endcap == LineCapArrowAnchor)
|
|
shorten_bezier_amt(ptf, pen->width);
|
|
|
|
/* the direction of the line cap is parallel to the direction at the
|
|
* end of the bezier (which, if it has been shortened, is not the same
|
|
* as the direction from pt[count-2] to pt[count-1]) */
|
|
draw_cap(hdc, pen->color, pen->endcap, pen->width,
|
|
pt[count - 1].X - (ptf[3].X - ptf[2].X),
|
|
pt[count - 1].Y - (ptf[3].Y - ptf[2].Y),
|
|
pt[count - 1].X, pt[count - 1].Y);
|
|
}
|
|
|
|
for(i = 0; i < count - 4; i ++){
|
|
pti[i].x = roundr(pt[i].X);
|
|
pti[i].y = roundr(pt[i].Y);
|
|
}
|
|
for(i = 0; i < 4; i ++){
|
|
pti[i + count - 4].x = roundr(ptf[i].X);
|
|
pti[i + count - 4].y = roundr(ptf[i].Y);
|
|
}
|
|
|
|
PolyBezier(hdc, pti, count);
|
|
|
|
status = Ok;
|
|
|
|
end:
|
|
GdipFree(pti);
|
|
GdipFree(ptf);
|
|
|
|
return status;
|
|
}
|
|
|
|
/* Converts from gdiplus path point type to gdi path point type. */
|
|
static BYTE convert_path_point_type(BYTE type)
|
|
{
|
|
BYTE ret;
|
|
|
|
switch(type & PathPointTypePathTypeMask){
|
|
case PathPointTypeBezier:
|
|
ret = PT_BEZIERTO;
|
|
break;
|
|
case PathPointTypeLine:
|
|
ret = PT_LINETO;
|
|
break;
|
|
case PathPointTypeStart:
|
|
ret = PT_MOVETO;
|
|
break;
|
|
default:
|
|
ERR("Bad point type\n");
|
|
return 0;
|
|
}
|
|
|
|
if(type & PathPointTypeCloseSubpath)
|
|
ret |= PT_CLOSEFIGURE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Draws a combination of bezier curves and lines between points. */
|
|
static GpStatus draw_poly(HDC hdc, GpPen *pen, GDIPCONST GpPointF * pt,
|
|
GDIPCONST BYTE * types, INT count, BOOL caps)
|
|
{
|
|
POINT *pti = GdipAlloc(count * sizeof(POINT));
|
|
BYTE *tp = GdipAlloc(count);
|
|
GpPointF *ptf = NULL;
|
|
REAL x = pt[count - 1].X, y = pt[count - 1].Y;
|
|
INT i;
|
|
GpStatus status = GenericError;
|
|
|
|
if(!count){
|
|
status = Ok;
|
|
goto end;
|
|
}
|
|
if(!pti || !tp){
|
|
status = OutOfMemory;
|
|
goto end;
|
|
}
|
|
|
|
for(i = 0; i < count; i++){
|
|
if((types[i] & PathPointTypePathTypeMask) == PathPointTypeBezier){
|
|
if((i + 2 >= count) || !(types[i + 1] & PathPointTypeBezier)
|
|
|| !(types[i + 1] & PathPointTypeBezier)){
|
|
ERR("Bad bezier points\n");
|
|
goto end;
|
|
}
|
|
|
|
i += 2;
|
|
}
|
|
}
|
|
|
|
if((types[count - 1] & PathPointTypePathTypeMask) == PathPointTypeBezier){
|
|
ptf = GdipAlloc(4 * sizeof(GpPointF));
|
|
memcpy(ptf, &pt[count-4], 4 * sizeof(GpPointF));
|
|
|
|
if(caps){
|
|
if(pen->endcap == LineCapArrowAnchor)
|
|
shorten_bezier_amt(ptf, pen->width);
|
|
|
|
draw_cap(hdc, pen->color, pen->endcap, pen->width,
|
|
pt[count - 1].X - (ptf[3].X - ptf[2].X),
|
|
pt[count - 1].Y - (ptf[3].Y - ptf[2].Y),
|
|
pt[count - 1].X, pt[count - 1].Y);
|
|
}
|
|
for(i = 0; i < 4; i ++){
|
|
pti[i + count - 4].x = roundr(ptf[i].X);
|
|
pti[i + count - 4].y = roundr(ptf[i].Y);
|
|
}
|
|
for(i = 0; i < count - 4; i ++){
|
|
pti[i].x = roundr(pt[i].X);
|
|
pti[i].y = roundr(pt[i].Y);
|
|
}
|
|
}
|
|
else if((types[count - 1] & PathPointTypePathTypeMask) == PathPointTypeLine){
|
|
if(caps){
|
|
if(pen->endcap == LineCapArrowAnchor)
|
|
shorten_line_amt(pt[count-2].X, pt[count-2].Y, &x, &y, pen->width);
|
|
|
|
draw_cap(hdc, pen->color, pen->endcap, pen->width, pt[count-2].X,
|
|
pt[count-2].Y, pt[count - 1].X, pt[count - 1].Y);
|
|
}
|
|
pti[count - 1].x = roundr(x);
|
|
pti[count - 1].y = roundr(y);
|
|
for(i = 0; i < count - 1; i ++){
|
|
pti[i].x = roundr(pt[i].X);
|
|
pti[i].y = roundr(pt[i].Y);
|
|
}
|
|
}
|
|
else{
|
|
ERR("Bad path last point\n");
|
|
goto end;
|
|
}
|
|
|
|
for(i = 0; i < count; i++){
|
|
tp[i] = convert_path_point_type(types[i]);
|
|
}
|
|
|
|
PolyDraw(hdc, pti, tp, count);
|
|
|
|
status = Ok;
|
|
|
|
end:
|
|
GdipFree(pti);
|
|
GdipFree(ptf);
|
|
GdipFree(tp);
|
|
|
|
return status;
|
|
}
|
|
|
|
GpStatus WINGDIPAPI GdipCreateFromHDC(HDC hdc, GpGraphics **graphics)
|
|
{
|
|
if(hdc == NULL)
|
|
return OutOfMemory;
|
|
|
|
if(graphics == NULL)
|
|
return InvalidParameter;
|
|
|
|
*graphics = GdipAlloc(sizeof(GpGraphics));
|
|
if(!*graphics) return OutOfMemory;
|
|
|
|
(*graphics)->hdc = hdc;
|
|
(*graphics)->hwnd = NULL;
|
|
|
|
return Ok;
|
|
}
|
|
|
|
GpStatus WINGDIPAPI GdipCreateFromHWND(HWND hwnd, GpGraphics **graphics)
|
|
{
|
|
GpStatus ret;
|
|
|
|
if((ret = GdipCreateFromHDC(GetDC(hwnd), graphics)) != Ok)
|
|
return ret;
|
|
|
|
(*graphics)->hwnd = hwnd;
|
|
|
|
return Ok;
|
|
}
|
|
|
|
GpStatus WINGDIPAPI GdipDeleteGraphics(GpGraphics *graphics)
|
|
{
|
|
if(!graphics) return InvalidParameter;
|
|
if(graphics->hwnd)
|
|
ReleaseDC(graphics->hwnd, graphics->hdc);
|
|
|
|
HeapFree(GetProcessHeap(), 0, graphics);
|
|
|
|
return Ok;
|
|
}
|
|
|
|
GpStatus WINGDIPAPI GdipDrawArc(GpGraphics *graphics, GpPen *pen, REAL x,
|
|
REAL y, REAL width, REAL height, REAL startAngle, REAL sweepAngle)
|
|
{
|
|
INT save_state, num_pts;
|
|
GpPointF points[MAX_ARC_PTS];
|
|
GpStatus retval;
|
|
|
|
if(!graphics || !pen)
|
|
return InvalidParameter;
|
|
|
|
num_pts = arc2polybezier(points, x, y, width, height, startAngle, sweepAngle);
|
|
|
|
save_state = SaveDC(graphics->hdc);
|
|
EndPath(graphics->hdc);
|
|
SelectObject(graphics->hdc, pen->gdipen);
|
|
|
|
retval = draw_polybezier(graphics->hdc, pen, points, num_pts, TRUE);
|
|
|
|
RestoreDC(graphics->hdc, save_state);
|
|
|
|
return retval;
|
|
}
|
|
|
|
GpStatus WINGDIPAPI GdipDrawBezier(GpGraphics *graphics, GpPen *pen, REAL x1,
|
|
REAL y1, REAL x2, REAL y2, REAL x3, REAL y3, REAL x4, REAL y4)
|
|
{
|
|
INT save_state;
|
|
GpPointF pt[4];
|
|
GpStatus retval;
|
|
|
|
if(!graphics || !pen)
|
|
return InvalidParameter;
|
|
|
|
pt[0].X = x1;
|
|
pt[0].Y = y1;
|
|
pt[1].X = x2;
|
|
pt[1].Y = y2;
|
|
pt[2].X = x3;
|
|
pt[2].Y = y3;
|
|
pt[3].X = x4;
|
|
pt[3].Y = y4;
|
|
|
|
save_state = SaveDC(graphics->hdc);
|
|
EndPath(graphics->hdc);
|
|
SelectObject(graphics->hdc, pen->gdipen);
|
|
|
|
retval = draw_polybezier(graphics->hdc, pen, pt, 4, TRUE);
|
|
|
|
RestoreDC(graphics->hdc, save_state);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Approximates cardinal spline with Bezier curves. */
|
|
GpStatus WINGDIPAPI GdipDrawCurve2(GpGraphics *graphics, GpPen *pen,
|
|
GDIPCONST GpPointF *points, INT count, REAL tension)
|
|
{
|
|
/* PolyBezier expects count*3-2 points. */
|
|
INT i, len_pt = count*3-2, save_state;
|
|
GpPointF *pt;
|
|
REAL x1, x2, y1, y2;
|
|
GpStatus retval;
|
|
|
|
if(!graphics || !pen)
|
|
return InvalidParameter;
|
|
|
|
pt = GdipAlloc(len_pt * sizeof(GpPointF));
|
|
tension = tension * TENSION_CONST;
|
|
|
|
calc_curve_bezier_endp(points[0].X, points[0].Y, points[1].X, points[1].Y,
|
|
tension, &x1, &y1);
|
|
|
|
pt[0].X = points[0].X;
|
|
pt[0].Y = points[0].Y;
|
|
pt[1].X = x1;
|
|
pt[1].Y = y1;
|
|
|
|
for(i = 0; i < count-2; i++){
|
|
calc_curve_bezier(&(points[i]), tension, &x1, &y1, &x2, &y2);
|
|
|
|
pt[3*i+2].X = x1;
|
|
pt[3*i+2].Y = y1;
|
|
pt[3*i+3].X = points[i+1].X;
|
|
pt[3*i+3].Y = points[i+1].Y;
|
|
pt[3*i+4].X = x2;
|
|
pt[3*i+4].Y = y2;
|
|
}
|
|
|
|
calc_curve_bezier_endp(points[count-1].X, points[count-1].Y,
|
|
points[count-2].X, points[count-2].Y, tension, &x1, &y1);
|
|
|
|
pt[len_pt-2].X = x1;
|
|
pt[len_pt-2].Y = y1;
|
|
pt[len_pt-1].X = points[count-1].X;
|
|
pt[len_pt-1].Y = points[count-1].Y;
|
|
|
|
save_state = SaveDC(graphics->hdc);
|
|
EndPath(graphics->hdc);
|
|
SelectObject(graphics->hdc, pen->gdipen);
|
|
|
|
retval = draw_polybezier(graphics->hdc, pen, pt, len_pt, TRUE);
|
|
|
|
GdipFree(pt);
|
|
RestoreDC(graphics->hdc, save_state);
|
|
|
|
return retval;
|
|
}
|
|
|
|
GpStatus WINGDIPAPI GdipDrawLineI(GpGraphics *graphics, GpPen *pen, INT x1,
|
|
INT y1, INT x2, INT y2)
|
|
{
|
|
INT save_state;
|
|
GpPointF pt[2];
|
|
GpStatus retval;
|
|
|
|
if(!pen || !graphics)
|
|
return InvalidParameter;
|
|
|
|
pt[0].X = (REAL)x1;
|
|
pt[0].Y = (REAL)y1;
|
|
pt[1].X = (REAL)x2;
|
|
pt[1].Y = (REAL)y2;
|
|
|
|
save_state = SaveDC(graphics->hdc);
|
|
EndPath(graphics->hdc);
|
|
SelectObject(graphics->hdc, pen->gdipen);
|
|
|
|
retval = draw_polyline(graphics->hdc, pen, pt, 2, TRUE);
|
|
|
|
RestoreDC(graphics->hdc, save_state);
|
|
|
|
return retval;
|
|
}
|
|
|
|
GpStatus WINGDIPAPI GdipDrawLines(GpGraphics *graphics, GpPen *pen, GDIPCONST
|
|
GpPointF *points, INT count)
|
|
{
|
|
INT save_state;
|
|
GpStatus retval;
|
|
|
|
if(!pen || !graphics || (count < 2))
|
|
return InvalidParameter;
|
|
|
|
save_state = SaveDC(graphics->hdc);
|
|
EndPath(graphics->hdc);
|
|
SelectObject(graphics->hdc, pen->gdipen);
|
|
|
|
retval = draw_polyline(graphics->hdc, pen, points, count, TRUE);
|
|
|
|
RestoreDC(graphics->hdc, save_state);
|
|
|
|
return retval;
|
|
}
|
|
|
|
GpStatus WINGDIPAPI GdipDrawPath(GpGraphics *graphics, GpPen *pen, GpPath *path)
|
|
{
|
|
INT save_state, i, this_fig = 0;
|
|
GpStatus retval;
|
|
|
|
if(!pen || !graphics)
|
|
return InvalidParameter;
|
|
|
|
save_state = SaveDC(graphics->hdc);
|
|
EndPath(graphics->hdc);
|
|
SelectObject(graphics->hdc, pen->gdipen);
|
|
|
|
for(i = 0; i < path->pathdata.Count; i++){
|
|
if(path->pathdata.Types[i] == PathPointTypeStart){
|
|
retval = draw_poly(graphics->hdc, pen,
|
|
&path->pathdata.Points[this_fig],
|
|
&path->pathdata.Types[this_fig], i - this_fig, TRUE);
|
|
this_fig = i;
|
|
|
|
if(retval != Ok)
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
retval = draw_poly(graphics->hdc, pen, &path->pathdata.Points[this_fig],
|
|
&path->pathdata.Types[this_fig], path->pathdata.Count - this_fig,
|
|
TRUE);
|
|
|
|
end:
|
|
RestoreDC(graphics->hdc, save_state);
|
|
|
|
return retval;
|
|
}
|
|
|
|
GpStatus WINGDIPAPI GdipDrawPie(GpGraphics *graphics, GpPen *pen, REAL x,
|
|
REAL y, REAL width, REAL height, REAL startAngle, REAL sweepAngle)
|
|
{
|
|
if(!pen)
|
|
return InvalidParameter;
|
|
|
|
return draw_pie(graphics, GetStockObject(NULL_BRUSH), pen->gdipen, x, y,
|
|
width, height, startAngle, sweepAngle);
|
|
}
|
|
|
|
GpStatus WINGDIPAPI GdipDrawRectangleI(GpGraphics *graphics, GpPen *pen, INT x,
|
|
INT y, INT width, INT height)
|
|
{
|
|
INT save_state;
|
|
|
|
if(!pen || !graphics)
|
|
return InvalidParameter;
|
|
|
|
save_state = SaveDC(graphics->hdc);
|
|
EndPath(graphics->hdc);
|
|
SelectObject(graphics->hdc, pen->gdipen);
|
|
SelectObject(graphics->hdc, GetStockObject(NULL_BRUSH));
|
|
|
|
Rectangle(graphics->hdc, x, y, x + width, y + height);
|
|
|
|
RestoreDC(graphics->hdc, save_state);
|
|
|
|
return Ok;
|
|
}
|
|
|
|
GpStatus WINGDIPAPI GdipFillPie(GpGraphics *graphics, GpBrush *brush, REAL x,
|
|
REAL y, REAL width, REAL height, REAL startAngle, REAL sweepAngle)
|
|
{
|
|
if(!brush)
|
|
return InvalidParameter;
|
|
|
|
return draw_pie(graphics, brush->gdibrush, GetStockObject(NULL_PEN), x, y,
|
|
width, height, startAngle, sweepAngle);
|
|
}
|