Sweden-Number/dlls/rpcrt4/rpc_message.c

1377 lines
43 KiB
C

/*
* RPC messages
*
* Copyright 2001-2002 Ove Kåven, TransGaming Technologies
* Copyright 2004 Filip Navara
* Copyright 2006 CodeWeavers
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include "windef.h"
#include "winbase.h"
#include "winerror.h"
#include "winuser.h"
#include "rpc.h"
#include "rpcndr.h"
#include "rpcdcep.h"
#include "wine/debug.h"
#include "rpc_binding.h"
#include "rpc_defs.h"
#include "rpc_message.h"
#include "ncastatus.h"
WINE_DEFAULT_DEBUG_CHANNEL(rpc);
/* note: the DCE/RPC spec says the alignment amount should be 4, but
* MS/RPC servers seem to always use 16 */
#define AUTH_ALIGNMENT 16
/* gets the amount needed to round a value up to the specified alignment */
#define ROUND_UP_AMOUNT(value, alignment) \
(((alignment) - (((value) % (alignment)))) % (alignment))
#define ROUND_UP(value, alignment) (((value) + ((alignment) - 1)) & ~((alignment)-1))
enum secure_packet_direction
{
SECURE_PACKET_SEND,
SECURE_PACKET_RECEIVE
};
static RPC_STATUS I_RpcReAllocateBuffer(PRPC_MESSAGE pMsg);
static DWORD RPCRT4_GetHeaderSize(const RpcPktHdr *Header)
{
static const DWORD header_sizes[] = {
sizeof(Header->request), 0, sizeof(Header->response),
sizeof(Header->fault), 0, 0, 0, 0, 0, 0, 0, sizeof(Header->bind),
sizeof(Header->bind_ack), sizeof(Header->bind_nack),
0, 0, 0, 0, 0
};
ULONG ret = 0;
if (Header->common.ptype < sizeof(header_sizes) / sizeof(header_sizes[0])) {
ret = header_sizes[Header->common.ptype];
if (ret == 0)
FIXME("unhandled packet type\n");
if (Header->common.flags & RPC_FLG_OBJECT_UUID)
ret += sizeof(UUID);
} else {
TRACE("invalid packet type\n");
}
return ret;
}
static int packet_has_body(const RpcPktHdr *Header)
{
return (Header->common.ptype == PKT_FAULT) ||
(Header->common.ptype == PKT_REQUEST) ||
(Header->common.ptype == PKT_RESPONSE);
}
static int packet_has_auth_verifier(const RpcPktHdr *Header)
{
return !(Header->common.ptype == PKT_BIND_NACK) &&
!(Header->common.ptype == PKT_SHUTDOWN);
}
static VOID RPCRT4_BuildCommonHeader(RpcPktHdr *Header, unsigned char PacketType,
unsigned long DataRepresentation)
{
Header->common.rpc_ver = RPC_VER_MAJOR;
Header->common.rpc_ver_minor = RPC_VER_MINOR;
Header->common.ptype = PacketType;
Header->common.drep[0] = LOBYTE(LOWORD(DataRepresentation));
Header->common.drep[1] = HIBYTE(LOWORD(DataRepresentation));
Header->common.drep[2] = LOBYTE(HIWORD(DataRepresentation));
Header->common.drep[3] = HIBYTE(HIWORD(DataRepresentation));
Header->common.auth_len = 0;
Header->common.call_id = 1;
Header->common.flags = 0;
/* Flags and fragment length are computed in RPCRT4_Send. */
}
static RpcPktHdr *RPCRT4_BuildRequestHeader(unsigned long DataRepresentation,
unsigned long BufferLength,
unsigned short ProcNum,
UUID *ObjectUuid)
{
RpcPktHdr *header;
BOOL has_object;
RPC_STATUS status;
has_object = (ObjectUuid != NULL && !UuidIsNil(ObjectUuid, &status));
header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY,
sizeof(header->request) + (has_object ? sizeof(UUID) : 0));
if (header == NULL) {
return NULL;
}
RPCRT4_BuildCommonHeader(header, PKT_REQUEST, DataRepresentation);
header->common.frag_len = sizeof(header->request);
header->request.alloc_hint = BufferLength;
header->request.context_id = 0;
header->request.opnum = ProcNum;
if (has_object) {
header->common.flags |= RPC_FLG_OBJECT_UUID;
header->common.frag_len += sizeof(UUID);
memcpy(&header->request + 1, ObjectUuid, sizeof(UUID));
}
return header;
}
RpcPktHdr *RPCRT4_BuildResponseHeader(unsigned long DataRepresentation,
unsigned long BufferLength)
{
RpcPktHdr *header;
header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(header->response));
if (header == NULL) {
return NULL;
}
RPCRT4_BuildCommonHeader(header, PKT_RESPONSE, DataRepresentation);
header->common.frag_len = sizeof(header->response);
header->response.alloc_hint = BufferLength;
return header;
}
RpcPktHdr *RPCRT4_BuildFaultHeader(unsigned long DataRepresentation,
RPC_STATUS Status)
{
RpcPktHdr *header;
header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(header->fault));
if (header == NULL) {
return NULL;
}
RPCRT4_BuildCommonHeader(header, PKT_FAULT, DataRepresentation);
header->common.frag_len = sizeof(header->fault);
header->fault.status = Status;
return header;
}
RpcPktHdr *RPCRT4_BuildBindHeader(unsigned long DataRepresentation,
unsigned short MaxTransmissionSize,
unsigned short MaxReceiveSize,
unsigned long AssocGroupId,
const RPC_SYNTAX_IDENTIFIER *AbstractId,
const RPC_SYNTAX_IDENTIFIER *TransferId)
{
RpcPktHdr *header;
header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(header->bind));
if (header == NULL) {
return NULL;
}
RPCRT4_BuildCommonHeader(header, PKT_BIND, DataRepresentation);
header->common.frag_len = sizeof(header->bind);
header->bind.max_tsize = MaxTransmissionSize;
header->bind.max_rsize = MaxReceiveSize;
header->bind.assoc_gid = AssocGroupId;
header->bind.num_elements = 1;
header->bind.num_syntaxes = 1;
header->bind.abstract = *AbstractId;
header->bind.transfer = *TransferId;
return header;
}
static RpcPktHdr *RPCRT4_BuildAuthHeader(unsigned long DataRepresentation)
{
RpcPktHdr *header;
header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY,
sizeof(header->common) + 12);
if (header == NULL)
return NULL;
RPCRT4_BuildCommonHeader(header, PKT_AUTH3, DataRepresentation);
header->common.frag_len = 0x14;
header->common.auth_len = 0;
return header;
}
RpcPktHdr *RPCRT4_BuildBindNackHeader(unsigned long DataRepresentation,
unsigned char RpcVersion,
unsigned char RpcVersionMinor)
{
RpcPktHdr *header;
header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(header->bind_nack));
if (header == NULL) {
return NULL;
}
RPCRT4_BuildCommonHeader(header, PKT_BIND_NACK, DataRepresentation);
header->common.frag_len = sizeof(header->bind_nack);
header->bind_nack.reject_reason = REJECT_REASON_NOT_SPECIFIED;
header->bind_nack.protocols_count = 1;
header->bind_nack.protocols[0].rpc_ver = RpcVersion;
header->bind_nack.protocols[0].rpc_ver_minor = RpcVersionMinor;
return header;
}
RpcPktHdr *RPCRT4_BuildBindAckHeader(unsigned long DataRepresentation,
unsigned short MaxTransmissionSize,
unsigned short MaxReceiveSize,
unsigned long AssocGroupId,
LPCSTR ServerAddress,
unsigned long Result,
unsigned long Reason,
const RPC_SYNTAX_IDENTIFIER *TransferId)
{
RpcPktHdr *header;
unsigned long header_size;
RpcAddressString *server_address;
RpcResults *results;
RPC_SYNTAX_IDENTIFIER *transfer_id;
header_size = sizeof(header->bind_ack) +
ROUND_UP(FIELD_OFFSET(RpcAddressString, string[strlen(ServerAddress) + 1]), 4) +
sizeof(RpcResults) +
sizeof(RPC_SYNTAX_IDENTIFIER);
header = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, header_size);
if (header == NULL) {
return NULL;
}
RPCRT4_BuildCommonHeader(header, PKT_BIND_ACK, DataRepresentation);
header->common.frag_len = header_size;
header->bind_ack.max_tsize = MaxTransmissionSize;
header->bind_ack.max_rsize = MaxReceiveSize;
header->bind_ack.assoc_gid = AssocGroupId;
server_address = (RpcAddressString*)(&header->bind_ack + 1);
server_address->length = strlen(ServerAddress) + 1;
strcpy(server_address->string, ServerAddress);
/* results is 4-byte aligned */
results = (RpcResults*)((ULONG_PTR)server_address + ROUND_UP(FIELD_OFFSET(RpcAddressString, string[server_address->length]), 4));
results->num_results = 1;
results->results[0].result = Result;
results->results[0].reason = Reason;
transfer_id = (RPC_SYNTAX_IDENTIFIER*)(results + 1);
*transfer_id = *TransferId;
return header;
}
VOID RPCRT4_FreeHeader(RpcPktHdr *Header)
{
HeapFree(GetProcessHeap(), 0, Header);
}
NCA_STATUS RPC2NCA_STATUS(RPC_STATUS status)
{
switch (status)
{
case ERROR_INVALID_HANDLE: return NCA_S_FAULT_CONTEXT_MISMATCH;
case ERROR_OUTOFMEMORY: return NCA_S_FAULT_REMOTE_NO_MEMORY;
case RPC_S_NOT_LISTENING: return NCA_S_SERVER_TOO_BUSY;
case RPC_S_UNKNOWN_IF: return NCA_S_UNK_IF;
case RPC_S_SERVER_TOO_BUSY: return NCA_S_SERVER_TOO_BUSY;
case RPC_S_CALL_FAILED: return NCA_S_FAULT_UNSPEC;
case RPC_S_CALL_FAILED_DNE: return NCA_S_MANAGER_NOT_ENTERED;
case RPC_S_PROTOCOL_ERROR: return NCA_S_PROTO_ERROR;
case RPC_S_UNSUPPORTED_TYPE: return NCA_S_UNSUPPORTED_TYPE;
case RPC_S_INVALID_TAG: return NCA_S_FAULT_INVALID_TAG;
case RPC_S_INVALID_BOUND: return NCA_S_FAULT_INVALID_BOUND;
case RPC_S_PROCNUM_OUT_OF_RANGE: return NCA_S_OP_RNG_ERROR;
case RPC_X_SS_HANDLES_MISMATCH: return NCA_S_FAULT_CONTEXT_MISMATCH;
case RPC_S_CALL_CANCELLED: return NCA_S_FAULT_CANCEL;
case RPC_S_COMM_FAILURE: return NCA_S_COMM_FAILURE;
case RPC_X_WRONG_PIPE_ORDER: return NCA_S_FAULT_PIPE_ORDER;
case RPC_X_PIPE_CLOSED: return NCA_S_FAULT_PIPE_CLOSED;
case RPC_X_PIPE_DISCIPLINE_ERROR: return NCA_S_FAULT_PIPE_DISCIPLINE;
case RPC_X_PIPE_EMPTY: return NCA_S_FAULT_PIPE_EMPTY;
case STATUS_FLOAT_DIVIDE_BY_ZERO: return NCA_S_FAULT_FP_DIV_ZERO;
case STATUS_FLOAT_INVALID_OPERATION: return NCA_S_FAULT_FP_ERROR;
case STATUS_FLOAT_OVERFLOW: return NCA_S_FAULT_FP_OVERFLOW;
case STATUS_FLOAT_UNDERFLOW: return NCA_S_FAULT_FP_UNDERFLOW;
case STATUS_INTEGER_DIVIDE_BY_ZERO: return NCA_S_FAULT_INT_DIV_BY_ZERO;
case STATUS_INTEGER_OVERFLOW: return NCA_S_FAULT_INT_OVERFLOW;
default: return status;
}
}
RPC_STATUS NCA2RPC_STATUS(NCA_STATUS status)
{
switch (status)
{
case NCA_S_COMM_FAILURE: return RPC_S_COMM_FAILURE;
case NCA_S_OP_RNG_ERROR: return RPC_S_PROCNUM_OUT_OF_RANGE;
case NCA_S_UNK_IF: return RPC_S_UNKNOWN_IF;
case NCA_S_YOU_CRASHED: return RPC_S_CALL_FAILED;
case NCA_S_PROTO_ERROR: return RPC_S_PROTOCOL_ERROR;
case NCA_S_OUT_ARGS_TOO_BIG: return ERROR_NOT_ENOUGH_SERVER_MEMORY;
case NCA_S_SERVER_TOO_BUSY: return RPC_S_SERVER_TOO_BUSY;
case NCA_S_UNSUPPORTED_TYPE: return RPC_S_UNSUPPORTED_TYPE;
case NCA_S_FAULT_INT_DIV_BY_ZERO: return RPC_S_ZERO_DIVIDE;
case NCA_S_FAULT_ADDR_ERROR: return RPC_S_ADDRESS_ERROR;
case NCA_S_FAULT_FP_DIV_ZERO: return RPC_S_FP_DIV_ZERO;
case NCA_S_FAULT_FP_UNDERFLOW: return RPC_S_FP_UNDERFLOW;
case NCA_S_FAULT_FP_OVERFLOW: return RPC_S_FP_OVERFLOW;
case NCA_S_FAULT_INVALID_TAG: return RPC_S_INVALID_TAG;
case NCA_S_FAULT_INVALID_BOUND: return RPC_S_INVALID_BOUND;
case NCA_S_RPC_VERSION_MISMATCH: return RPC_S_PROTOCOL_ERROR;
case NCA_S_UNSPEC_REJECT: return RPC_S_CALL_FAILED_DNE;
case NCA_S_BAD_ACTID: return RPC_S_CALL_FAILED_DNE;
case NCA_S_WHO_ARE_YOU_FAILED: return RPC_S_CALL_FAILED;
case NCA_S_MANAGER_NOT_ENTERED: return RPC_S_CALL_FAILED_DNE;
case NCA_S_FAULT_CANCEL: return RPC_S_CALL_CANCELLED;
case NCA_S_FAULT_ILL_INST: return RPC_S_ADDRESS_ERROR;
case NCA_S_FAULT_FP_ERROR: return RPC_S_FP_OVERFLOW;
case NCA_S_FAULT_INT_OVERFLOW: return RPC_S_ADDRESS_ERROR;
case NCA_S_FAULT_UNSPEC: return RPC_S_CALL_FAILED;
case NCA_S_FAULT_PIPE_EMPTY: return RPC_X_PIPE_EMPTY;
case NCA_S_FAULT_PIPE_CLOSED: return RPC_X_PIPE_CLOSED;
case NCA_S_FAULT_PIPE_ORDER: return RPC_X_WRONG_PIPE_ORDER;
case NCA_S_FAULT_PIPE_DISCIPLINE: return RPC_X_PIPE_DISCIPLINE_ERROR;
case NCA_S_FAULT_PIPE_COMM_ERROR: return RPC_S_COMM_FAILURE;
case NCA_S_FAULT_PIPE_MEMORY: return ERROR_OUTOFMEMORY;
case NCA_S_FAULT_CONTEXT_MISMATCH: return ERROR_INVALID_HANDLE;
case NCA_S_FAULT_REMOTE_NO_MEMORY: return ERROR_NOT_ENOUGH_SERVER_MEMORY;
default: return status;
}
}
static RPC_STATUS RPCRT4_SecurePacket(RpcConnection *Connection,
enum secure_packet_direction dir,
RpcPktHdr *hdr, unsigned int hdr_size,
unsigned char *stub_data, unsigned int stub_data_size,
RpcAuthVerifier *auth_hdr,
unsigned char *auth_value, unsigned int auth_value_size)
{
SecBufferDesc message;
SecBuffer buffers[4];
SECURITY_STATUS sec_status;
message.ulVersion = SECBUFFER_VERSION;
message.cBuffers = sizeof(buffers)/sizeof(buffers[0]);
message.pBuffers = buffers;
buffers[0].cbBuffer = hdr_size;
buffers[0].BufferType = SECBUFFER_DATA|SECBUFFER_READONLY_WITH_CHECKSUM;
buffers[0].pvBuffer = hdr;
buffers[1].cbBuffer = stub_data_size;
buffers[1].BufferType = SECBUFFER_DATA;
buffers[1].pvBuffer = stub_data;
buffers[2].cbBuffer = sizeof(*auth_hdr);
buffers[2].BufferType = SECBUFFER_DATA|SECBUFFER_READONLY_WITH_CHECKSUM;
buffers[2].pvBuffer = auth_hdr;
buffers[3].cbBuffer = auth_value_size;
buffers[3].BufferType = SECBUFFER_TOKEN;
buffers[3].pvBuffer = auth_value;
if (dir == SECURE_PACKET_SEND)
{
if ((auth_hdr->auth_level == RPC_C_AUTHN_LEVEL_PKT_PRIVACY) && packet_has_body(hdr))
{
sec_status = EncryptMessage(&Connection->ctx, 0, &message, 0 /* FIXME */);
if (sec_status != SEC_E_OK)
{
ERR("EncryptMessage failed with 0x%08x\n", sec_status);
return RPC_S_SEC_PKG_ERROR;
}
}
else if (auth_hdr->auth_level != RPC_C_AUTHN_LEVEL_NONE)
{
sec_status = MakeSignature(&Connection->ctx, 0, &message, 0 /* FIXME */);
if (sec_status != SEC_E_OK)
{
ERR("MakeSignature failed with 0x%08x\n", sec_status);
return RPC_S_SEC_PKG_ERROR;
}
}
}
else if (dir == SECURE_PACKET_RECEIVE)
{
if ((auth_hdr->auth_level == RPC_C_AUTHN_LEVEL_PKT_PRIVACY) && packet_has_body(hdr))
{
sec_status = DecryptMessage(&Connection->ctx, &message, 0 /* FIXME */, 0);
if (sec_status != SEC_E_OK)
{
ERR("DecryptMessage failed with 0x%08x\n", sec_status);
return RPC_S_SEC_PKG_ERROR;
}
}
else if (auth_hdr->auth_level != RPC_C_AUTHN_LEVEL_NONE)
{
sec_status = VerifySignature(&Connection->ctx, &message, 0 /* FIXME */, NULL);
if (sec_status != SEC_E_OK)
{
ERR("VerifySignature failed with 0x%08x\n", sec_status);
return RPC_S_SEC_PKG_ERROR;
}
}
}
return RPC_S_OK;
}
/***********************************************************************
* RPCRT4_SendAuth (internal)
*
* Transmit a packet with authorization data over connection in acceptable fragments.
*/
static RPC_STATUS RPCRT4_SendAuth(RpcConnection *Connection, RpcPktHdr *Header,
void *Buffer, unsigned int BufferLength,
const void *Auth, unsigned int AuthLength)
{
PUCHAR buffer_pos;
DWORD hdr_size;
LONG count;
unsigned char *pkt;
LONG alen;
RPC_STATUS status;
RPCRT4_SetThreadCurrentConnection(Connection);
buffer_pos = Buffer;
/* The packet building functions save the packet header size, so we can use it. */
hdr_size = Header->common.frag_len;
if (AuthLength)
Header->common.auth_len = AuthLength;
else if (Connection->AuthInfo && packet_has_auth_verifier(Header))
{
if ((Connection->AuthInfo->AuthnLevel == RPC_C_AUTHN_LEVEL_PKT_PRIVACY) && packet_has_body(Header))
Header->common.auth_len = Connection->encryption_auth_len;
else
Header->common.auth_len = Connection->signature_auth_len;
}
else
Header->common.auth_len = 0;
Header->common.flags |= RPC_FLG_FIRST;
Header->common.flags &= ~RPC_FLG_LAST;
alen = RPC_AUTH_VERIFIER_LEN(&Header->common);
while (!(Header->common.flags & RPC_FLG_LAST)) {
unsigned char auth_pad_len = Header->common.auth_len ? ROUND_UP_AMOUNT(BufferLength, AUTH_ALIGNMENT) : 0;
unsigned int pkt_size = BufferLength + hdr_size + alen + auth_pad_len;
/* decide if we need to split the packet into fragments */
if (pkt_size <= Connection->MaxTransmissionSize) {
Header->common.flags |= RPC_FLG_LAST;
Header->common.frag_len = pkt_size;
} else {
auth_pad_len = 0;
/* make sure packet payload will be a multiple of 16 */
Header->common.frag_len =
((Connection->MaxTransmissionSize - hdr_size - alen) & ~(AUTH_ALIGNMENT-1)) +
hdr_size + alen;
}
pkt = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, Header->common.frag_len);
memcpy(pkt, Header, hdr_size);
/* fragment consisted of header only and is the last one */
if (hdr_size == Header->common.frag_len)
goto write;
memcpy(pkt + hdr_size, buffer_pos, Header->common.frag_len - hdr_size - auth_pad_len - alen);
/* add the authorization info */
if (Connection->AuthInfo && packet_has_auth_verifier(Header))
{
RpcAuthVerifier *auth_hdr = (RpcAuthVerifier *)&pkt[Header->common.frag_len - alen];
auth_hdr->auth_type = Connection->AuthInfo->AuthnSvc;
auth_hdr->auth_level = Connection->AuthInfo->AuthnLevel;
auth_hdr->auth_pad_length = auth_pad_len;
auth_hdr->auth_reserved = 0;
/* a unique number... */
auth_hdr->auth_context_id = (unsigned long)Connection;
if (AuthLength)
memcpy(auth_hdr + 1, Auth, AuthLength);
else
{
status = RPCRT4_SecurePacket(Connection, SECURE_PACKET_SEND,
(RpcPktHdr *)pkt, hdr_size,
pkt + hdr_size, Header->common.frag_len - hdr_size - alen,
auth_hdr,
(unsigned char *)(auth_hdr + 1), Header->common.auth_len);
if (status != RPC_S_OK)
{
HeapFree(GetProcessHeap(), 0, pkt);
RPCRT4_SetThreadCurrentConnection(NULL);
return status;
}
}
}
write:
count = rpcrt4_conn_write(Connection, pkt, Header->common.frag_len);
HeapFree(GetProcessHeap(), 0, pkt);
if (count<0) {
WARN("rpcrt4_conn_write failed (auth)\n");
RPCRT4_SetThreadCurrentConnection(NULL);
return RPC_S_CALL_FAILED;
}
buffer_pos += Header->common.frag_len - hdr_size - alen - auth_pad_len;
BufferLength -= Header->common.frag_len - hdr_size - alen - auth_pad_len;
Header->common.flags &= ~RPC_FLG_FIRST;
}
RPCRT4_SetThreadCurrentConnection(NULL);
return RPC_S_OK;
}
/***********************************************************************
* RPCRT4_ClientAuthorize (internal)
*
* Authorize a client connection. A NULL in param signifies a new connection.
*/
static RPC_STATUS RPCRT4_ClientAuthorize(RpcConnection *conn, SecBuffer *in,
SecBuffer *out)
{
SECURITY_STATUS r;
SecBufferDesc out_desc;
SecBufferDesc inp_desc;
SecPkgContext_Sizes secctx_sizes;
BOOL continue_needed;
ULONG context_req = ISC_REQ_CONNECTION | ISC_REQ_USE_DCE_STYLE |
ISC_REQ_MUTUAL_AUTH | ISC_REQ_DELEGATE;
if (conn->AuthInfo->AuthnLevel == RPC_C_AUTHN_LEVEL_PKT_INTEGRITY)
context_req |= ISC_REQ_INTEGRITY;
else if (conn->AuthInfo->AuthnLevel == RPC_C_AUTHN_LEVEL_PKT_PRIVACY)
context_req |= ISC_REQ_CONFIDENTIALITY | ISC_REQ_INTEGRITY;
out->BufferType = SECBUFFER_TOKEN;
out->cbBuffer = conn->AuthInfo->cbMaxToken;
out->pvBuffer = HeapAlloc(GetProcessHeap(), 0, out->cbBuffer);
if (!out->pvBuffer) return ERROR_OUTOFMEMORY;
out_desc.ulVersion = 0;
out_desc.cBuffers = 1;
out_desc.pBuffers = out;
inp_desc.cBuffers = 1;
inp_desc.pBuffers = in;
inp_desc.ulVersion = 0;
r = InitializeSecurityContextW(&conn->AuthInfo->cred, in ? &conn->ctx : NULL,
in ? NULL : conn->AuthInfo->server_principal_name, context_req, 0,
SECURITY_NETWORK_DREP, in ? &inp_desc : NULL, 0, &conn->ctx,
&out_desc, &conn->attr, &conn->exp);
if (FAILED(r))
{
WARN("InitializeSecurityContext failed with error 0x%08x\n", r);
goto failed;
}
TRACE("r = 0x%08x, attr = 0x%08x\n", r, conn->attr);
continue_needed = ((r == SEC_I_CONTINUE_NEEDED) ||
(r == SEC_I_COMPLETE_AND_CONTINUE));
if ((r == SEC_I_COMPLETE_NEEDED) || (r == SEC_I_COMPLETE_AND_CONTINUE))
{
TRACE("complete needed\n");
r = CompleteAuthToken(&conn->ctx, &out_desc);
if (FAILED(r))
{
WARN("CompleteAuthToken failed with error 0x%08x\n", r);
goto failed;
}
}
TRACE("cbBuffer = %ld\n", out->cbBuffer);
if (!continue_needed)
{
r = QueryContextAttributesA(&conn->ctx, SECPKG_ATTR_SIZES, &secctx_sizes);
if (FAILED(r))
{
WARN("QueryContextAttributes failed with error 0x%08x\n", r);
goto failed;
}
conn->signature_auth_len = secctx_sizes.cbMaxSignature;
conn->encryption_auth_len = secctx_sizes.cbSecurityTrailer;
}
return RPC_S_OK;
failed:
HeapFree(GetProcessHeap(), 0, out->pvBuffer);
out->pvBuffer = NULL;
return ERROR_ACCESS_DENIED; /* FIXME: is this correct? */
}
/***********************************************************************
* RPCRT4_AuthorizeBinding (internal)
*/
static RPC_STATUS RPCRT_AuthorizeConnection(RpcConnection* conn,
BYTE *challenge, ULONG count)
{
SecBuffer inp, out;
RpcPktHdr *resp_hdr;
RPC_STATUS status;
TRACE("challenge %s, %d bytes\n", challenge, count);
inp.BufferType = SECBUFFER_TOKEN;
inp.pvBuffer = challenge;
inp.cbBuffer = count;
status = RPCRT4_ClientAuthorize(conn, &inp, &out);
if (status) return status;
resp_hdr = RPCRT4_BuildAuthHeader(NDR_LOCAL_DATA_REPRESENTATION);
if (!resp_hdr)
return E_OUTOFMEMORY;
status = RPCRT4_SendAuth(conn, resp_hdr, NULL, 0, out.pvBuffer, out.cbBuffer);
HeapFree(GetProcessHeap(), 0, out.pvBuffer);
RPCRT4_FreeHeader(resp_hdr);
return status;
}
/***********************************************************************
* RPCRT4_Send (internal)
*
* Transmit a packet over connection in acceptable fragments.
*/
RPC_STATUS RPCRT4_Send(RpcConnection *Connection, RpcPktHdr *Header,
void *Buffer, unsigned int BufferLength)
{
RPC_STATUS r;
SecBuffer out;
if (!Connection->AuthInfo || SecIsValidHandle(&Connection->ctx))
{
return RPCRT4_SendAuth(Connection, Header, Buffer, BufferLength, NULL, 0);
}
/* tack on a negotiate packet */
r = RPCRT4_ClientAuthorize(Connection, NULL, &out);
if (r == RPC_S_OK)
{
r = RPCRT4_SendAuth(Connection, Header, Buffer, BufferLength, out.pvBuffer, out.cbBuffer);
HeapFree(GetProcessHeap(), 0, out.pvBuffer);
}
return r;
}
/* validates version and frag_len fields */
RPC_STATUS RPCRT4_ValidateCommonHeader(const RpcPktCommonHdr *hdr)
{
DWORD hdr_length;
/* verify if the header really makes sense */
if (hdr->rpc_ver != RPC_VER_MAJOR ||
hdr->rpc_ver_minor != RPC_VER_MINOR)
{
WARN("unhandled packet version\n");
return RPC_S_PROTOCOL_ERROR;
}
hdr_length = RPCRT4_GetHeaderSize((const RpcPktHdr*)hdr);
if (hdr_length == 0)
{
WARN("header length == 0\n");
return RPC_S_PROTOCOL_ERROR;
}
if (hdr->frag_len < hdr_length)
{
WARN("bad frag length %d\n", hdr->frag_len);
return RPC_S_PROTOCOL_ERROR;
}
return RPC_S_OK;
}
/***********************************************************************
* RPCRT4_receive_fragment (internal)
*
* Receive a fragment from a connection.
*/
RPC_STATUS RPCRT4_receive_fragment(RpcConnection *Connection, RpcPktHdr **Header, void **Payload)
{
RPC_STATUS status;
DWORD hdr_length;
LONG dwRead;
RpcPktCommonHdr common_hdr;
*Header = NULL;
*Payload = NULL;
TRACE("(%p, %p, %p)\n", Connection, Header, Payload);
/* read packet common header */
dwRead = rpcrt4_conn_read(Connection, &common_hdr, sizeof(common_hdr));
if (dwRead != sizeof(common_hdr)) {
WARN("Short read of header, %d bytes\n", dwRead);
status = RPC_S_CALL_FAILED;
goto fail;
}
status = RPCRT4_ValidateCommonHeader(&common_hdr);
if (status != RPC_S_OK) goto fail;
hdr_length = RPCRT4_GetHeaderSize((RpcPktHdr*)&common_hdr);
if (hdr_length == 0) {
WARN("header length == 0\n");
status = RPC_S_PROTOCOL_ERROR;
goto fail;
}
*Header = HeapAlloc(GetProcessHeap(), 0, hdr_length);
memcpy(*Header, &common_hdr, sizeof(common_hdr));
/* read the rest of packet header */
dwRead = rpcrt4_conn_read(Connection, &(*Header)->common + 1, hdr_length - sizeof(common_hdr));
if (dwRead != hdr_length - sizeof(common_hdr)) {
WARN("bad header length, %d bytes, hdr_length %d\n", dwRead, hdr_length);
status = RPC_S_CALL_FAILED;
goto fail;
}
if (common_hdr.frag_len - hdr_length)
{
*Payload = HeapAlloc(GetProcessHeap(), 0, common_hdr.frag_len - hdr_length);
if (!*Payload)
{
status = RPC_S_OUT_OF_RESOURCES;
goto fail;
}
dwRead = rpcrt4_conn_read(Connection, *Payload, common_hdr.frag_len - hdr_length);
if (dwRead != common_hdr.frag_len - hdr_length)
{
WARN("bad data length, %d/%d\n", dwRead, common_hdr.frag_len - hdr_length);
status = RPC_S_CALL_FAILED;
goto fail;
}
}
else
*Payload = NULL;
/* success */
status = RPC_S_OK;
fail:
if (status != RPC_S_OK) {
RPCRT4_FreeHeader(*Header);
*Header = NULL;
HeapFree(GetProcessHeap(), 0, *Payload);
*Payload = NULL;
}
return status;
}
/***********************************************************************
* RPCRT4_Receive (internal)
*
* Receive a packet from connection and merge the fragments.
*/
RPC_STATUS RPCRT4_Receive(RpcConnection *Connection, RpcPktHdr **Header,
PRPC_MESSAGE pMsg)
{
RPC_STATUS status;
DWORD hdr_length;
unsigned short first_flag;
unsigned long data_length;
unsigned long buffer_length;
unsigned long auth_length;
unsigned char *auth_data = NULL;
RpcPktHdr *CurrentHeader = NULL;
void *payload = NULL;
*Header = NULL;
pMsg->Buffer = NULL;
TRACE("(%p, %p, %p)\n", Connection, Header, pMsg);
RPCRT4_SetThreadCurrentConnection(Connection);
status = RPCRT4_receive_fragment(Connection, Header, &payload);
if (status != RPC_S_OK) goto fail;
hdr_length = RPCRT4_GetHeaderSize(*Header);
/* read packet body */
switch ((*Header)->common.ptype) {
case PKT_RESPONSE:
pMsg->BufferLength = (*Header)->response.alloc_hint;
break;
case PKT_REQUEST:
pMsg->BufferLength = (*Header)->request.alloc_hint;
break;
default:
pMsg->BufferLength = (*Header)->common.frag_len - hdr_length - RPC_AUTH_VERIFIER_LEN(&(*Header)->common);
}
TRACE("buffer length = %u\n", pMsg->BufferLength);
pMsg->Buffer = I_RpcAllocate(pMsg->BufferLength);
if (!pMsg->Buffer)
{
status = ERROR_OUTOFMEMORY;
goto fail;
}
first_flag = RPC_FLG_FIRST;
auth_length = (*Header)->common.auth_len;
if (auth_length) {
auth_data = HeapAlloc(GetProcessHeap(), 0, RPC_AUTH_VERIFIER_LEN(&(*Header)->common));
if (!auth_data) {
status = RPC_S_OUT_OF_RESOURCES;
goto fail;
}
}
CurrentHeader = *Header;
buffer_length = 0;
while (TRUE)
{
unsigned int header_auth_len = RPC_AUTH_VERIFIER_LEN(&CurrentHeader->common);
/* verify header fields */
if ((CurrentHeader->common.frag_len < hdr_length) ||
(CurrentHeader->common.frag_len - hdr_length < header_auth_len)) {
WARN("frag_len %d too small for hdr_length %d and auth_len %d\n",
CurrentHeader->common.frag_len, hdr_length, CurrentHeader->common.auth_len);
status = RPC_S_PROTOCOL_ERROR;
goto fail;
}
if (CurrentHeader->common.auth_len != auth_length) {
WARN("auth_len header field changed from %ld to %d\n",
auth_length, CurrentHeader->common.auth_len);
status = RPC_S_PROTOCOL_ERROR;
goto fail;
}
if ((CurrentHeader->common.flags & RPC_FLG_FIRST) != first_flag) {
TRACE("invalid packet flags\n");
status = RPC_S_PROTOCOL_ERROR;
goto fail;
}
data_length = CurrentHeader->common.frag_len - hdr_length - header_auth_len;
if (data_length + buffer_length > pMsg->BufferLength) {
TRACE("allocation hint exceeded, new buffer length = %ld\n",
data_length + buffer_length);
pMsg->BufferLength = data_length + buffer_length;
status = I_RpcReAllocateBuffer(pMsg);
if (status != RPC_S_OK) goto fail;
}
memcpy((unsigned char *)pMsg->Buffer + buffer_length, payload, data_length);
if (header_auth_len) {
if (header_auth_len < sizeof(RpcAuthVerifier) ||
header_auth_len > RPC_AUTH_VERIFIER_LEN(&(*Header)->common)) {
WARN("bad auth verifier length %d\n", header_auth_len);
status = RPC_S_PROTOCOL_ERROR;
goto fail;
}
/* FIXME: we should accumulate authentication data for the bind,
* bind_ack, alter_context and alter_context_response if necessary.
* however, the details of how this is done is very sketchy in the
* DCE/RPC spec. for all other packet types that have authentication
* verifier data then it is just duplicated in all the fragments */
memcpy(auth_data, (unsigned char *)payload + data_length, header_auth_len);
/* these packets are handled specially, not by the generic SecurePacket
* function */
if (((*Header)->common.ptype != PKT_BIND) &&
((*Header)->common.ptype != PKT_BIND_ACK) &&
((*Header)->common.ptype != PKT_AUTH3))
{
status = RPCRT4_SecurePacket(Connection, SECURE_PACKET_RECEIVE,
CurrentHeader, hdr_length,
(unsigned char *)pMsg->Buffer + buffer_length, data_length,
(RpcAuthVerifier *)auth_data,
auth_data + sizeof(RpcAuthVerifier),
header_auth_len - sizeof(RpcAuthVerifier));
if (status != RPC_S_OK) goto fail;
}
}
buffer_length += data_length;
if (!(CurrentHeader->common.flags & RPC_FLG_LAST)) {
TRACE("next header\n");
if (*Header != CurrentHeader)
{
RPCRT4_FreeHeader(CurrentHeader);
CurrentHeader = NULL;
}
HeapFree(GetProcessHeap(), 0, payload);
payload = NULL;
status = RPCRT4_receive_fragment(Connection, &CurrentHeader, &payload);
if (status != RPC_S_OK) goto fail;
first_flag = 0;
} else {
break;
}
}
pMsg->BufferLength = buffer_length;
/* respond to authorization request */
if ((*Header)->common.ptype == PKT_BIND_ACK && auth_length > sizeof(RpcAuthVerifier))
{
status = RPCRT_AuthorizeConnection(Connection,
auth_data + sizeof(RpcAuthVerifier),
auth_length);
if (status)
goto fail;
}
/* success */
status = RPC_S_OK;
fail:
RPCRT4_SetThreadCurrentConnection(NULL);
if (CurrentHeader != *Header)
RPCRT4_FreeHeader(CurrentHeader);
if (status != RPC_S_OK) {
I_RpcFree(pMsg->Buffer);
pMsg->Buffer = NULL;
RPCRT4_FreeHeader(*Header);
*Header = NULL;
}
HeapFree(GetProcessHeap(), 0, auth_data);
HeapFree(GetProcessHeap(), 0, payload);
return status;
}
/***********************************************************************
* I_RpcNegotiateTransferSyntax [RPCRT4.@]
*
* Negotiates the transfer syntax used by a client connection by connecting
* to the server.
*
* PARAMS
* pMsg [I] RPC Message structure.
* pAsync [I] Asynchronous state to set.
*
* RETURNS
* Success: RPC_S_OK.
* Failure: Any error code.
*/
RPC_STATUS WINAPI I_RpcNegotiateTransferSyntax(PRPC_MESSAGE pMsg)
{
RpcBinding* bind = (RpcBinding*)pMsg->Handle;
RpcConnection* conn;
RPC_STATUS status = RPC_S_OK;
TRACE("(%p)\n", pMsg);
if (!bind || bind->server)
return RPC_S_INVALID_BINDING;
/* if we already have a connection, we don't need to negotiate again */
if (!pMsg->ReservedForRuntime)
{
RPC_CLIENT_INTERFACE *cif = pMsg->RpcInterfaceInformation;
if (!cif) return RPC_S_INTERFACE_NOT_FOUND;
if (!bind->Endpoint || !bind->Endpoint[0])
{
TRACE("automatically resolving partially bound binding\n");
status = RpcEpResolveBinding(bind, cif);
if (status != RPC_S_OK) return status;
}
status = RPCRT4_OpenBinding(bind, &conn, &cif->TransferSyntax,
&cif->InterfaceId);
if (status == RPC_S_OK)
{
pMsg->ReservedForRuntime = conn;
RPCRT4_AddRefBinding(bind);
}
}
return status;
}
/***********************************************************************
* I_RpcGetBuffer [RPCRT4.@]
*
* Allocates a buffer for use by I_RpcSend or I_RpcSendReceive and binds to the
* server interface.
*
* PARAMS
* pMsg [I/O] RPC message information.
*
* RETURNS
* Success: RPC_S_OK.
* Failure: RPC_S_INVALID_BINDING if pMsg->Handle is invalid.
* RPC_S_SERVER_UNAVAILABLE if unable to connect to server.
* ERROR_OUTOFMEMORY if buffer allocation failed.
*
* NOTES
* The pMsg->BufferLength field determines the size of the buffer to allocate,
* in bytes.
*
* Use I_RpcFreeBuffer() to unbind from the server and free the message buffer.
*
* SEE ALSO
* I_RpcFreeBuffer(), I_RpcSend(), I_RpcReceive(), I_RpcSendReceive().
*/
RPC_STATUS WINAPI I_RpcGetBuffer(PRPC_MESSAGE pMsg)
{
RPC_STATUS status;
RpcBinding* bind = (RpcBinding*)pMsg->Handle;
TRACE("(%p): BufferLength=%d\n", pMsg, pMsg->BufferLength);
if (!bind)
return RPC_S_INVALID_BINDING;
pMsg->Buffer = I_RpcAllocate(pMsg->BufferLength);
TRACE("Buffer=%p\n", pMsg->Buffer);
if (!pMsg->Buffer)
return ERROR_OUTOFMEMORY;
if (!bind->server)
{
status = I_RpcNegotiateTransferSyntax(pMsg);
if (status != RPC_S_OK)
I_RpcFree(pMsg->Buffer);
}
else
status = RPC_S_OK;
return status;
}
/***********************************************************************
* I_RpcReAllocateBuffer (internal)
*/
static RPC_STATUS I_RpcReAllocateBuffer(PRPC_MESSAGE pMsg)
{
TRACE("(%p): BufferLength=%d\n", pMsg, pMsg->BufferLength);
pMsg->Buffer = HeapReAlloc(GetProcessHeap(), 0, pMsg->Buffer, pMsg->BufferLength);
TRACE("Buffer=%p\n", pMsg->Buffer);
return pMsg->Buffer ? RPC_S_OK : ERROR_OUTOFMEMORY;
}
/***********************************************************************
* I_RpcFreeBuffer [RPCRT4.@]
*
* Frees a buffer allocated by I_RpcGetBuffer or I_RpcReceive and unbinds from
* the server interface.
*
* PARAMS
* pMsg [I/O] RPC message information.
*
* RETURNS
* RPC_S_OK.
*
* SEE ALSO
* I_RpcGetBuffer(), I_RpcReceive().
*/
RPC_STATUS WINAPI I_RpcFreeBuffer(PRPC_MESSAGE pMsg)
{
RpcBinding* bind = (RpcBinding*)pMsg->Handle;
TRACE("(%p) Buffer=%p\n", pMsg, pMsg->Buffer);
if (!bind) return RPC_S_INVALID_BINDING;
if (pMsg->ReservedForRuntime)
{
RpcConnection *conn = pMsg->ReservedForRuntime;
RPCRT4_CloseBinding(bind, conn);
RPCRT4_ReleaseBinding(bind);
pMsg->ReservedForRuntime = NULL;
}
I_RpcFree(pMsg->Buffer);
return RPC_S_OK;
}
static void CALLBACK async_apc_notifier_proc(ULONG_PTR ulParam)
{
RPC_ASYNC_STATE *state = (RPC_ASYNC_STATE *)ulParam;
state->u.APC.NotificationRoutine(state, NULL, state->Event);
}
static DWORD WINAPI async_notifier_proc(LPVOID p)
{
RpcConnection *conn = p;
RPC_ASYNC_STATE *state = conn->async_state;
if (state && conn->ops->wait_for_incoming_data(conn) != -1)
{
state->Event = RpcCallComplete;
switch (state->NotificationType)
{
case RpcNotificationTypeEvent:
TRACE("RpcNotificationTypeEvent %p\n", state->u.hEvent);
SetEvent(state->u.hEvent);
break;
case RpcNotificationTypeApc:
TRACE("RpcNotificationTypeApc %p\n", state->u.APC.hThread);
QueueUserAPC(async_apc_notifier_proc, state->u.APC.hThread, (ULONG_PTR)state);
break;
case RpcNotificationTypeIoc:
TRACE("RpcNotificationTypeIoc %p, 0x%x, 0x%lx, %p\n",
state->u.IOC.hIOPort, state->u.IOC.dwNumberOfBytesTransferred,
state->u.IOC.dwCompletionKey, state->u.IOC.lpOverlapped);
PostQueuedCompletionStatus(state->u.IOC.hIOPort,
state->u.IOC.dwNumberOfBytesTransferred,
state->u.IOC.dwCompletionKey,
state->u.IOC.lpOverlapped);
break;
case RpcNotificationTypeHwnd:
TRACE("RpcNotificationTypeHwnd %p 0x%x\n", state->u.HWND.hWnd,
state->u.HWND.Msg);
PostMessageW(state->u.HWND.hWnd, state->u.HWND.Msg, 0, 0);
break;
case RpcNotificationTypeCallback:
TRACE("RpcNotificationTypeCallback %p\n", state->u.NotificationRoutine);
state->u.NotificationRoutine(state, NULL, state->Event);
break;
case RpcNotificationTypeNone:
TRACE("RpcNotificationTypeNone\n");
break;
default:
FIXME("unknown NotificationType: %d/0x%x\n", state->NotificationType, state->NotificationType);
break;
}
}
return 0;
}
/***********************************************************************
* I_RpcSend [RPCRT4.@]
*
* Sends a message to the server.
*
* PARAMS
* pMsg [I/O] RPC message information.
*
* RETURNS
* Unknown.
*
* NOTES
* The buffer must have been allocated with I_RpcGetBuffer().
*
* SEE ALSO
* I_RpcGetBuffer(), I_RpcReceive(), I_RpcSendReceive().
*/
RPC_STATUS WINAPI I_RpcSend(PRPC_MESSAGE pMsg)
{
RpcBinding* bind = (RpcBinding*)pMsg->Handle;
RpcConnection* conn;
RPC_STATUS status;
RpcPktHdr *hdr;
TRACE("(%p)\n", pMsg);
if (!bind || bind->server || !pMsg->ReservedForRuntime) return RPC_S_INVALID_BINDING;
conn = pMsg->ReservedForRuntime;
hdr = RPCRT4_BuildRequestHeader(pMsg->DataRepresentation,
pMsg->BufferLength,
pMsg->ProcNum & ~RPC_FLAGS_VALID_BIT,
&bind->ObjectUuid);
if (!hdr)
return ERROR_OUTOFMEMORY;
hdr->common.call_id = conn->NextCallId++;
status = RPCRT4_Send(conn, hdr, pMsg->Buffer, pMsg->BufferLength);
RPCRT4_FreeHeader(hdr);
if (status == RPC_S_OK && pMsg->RpcFlags & RPC_BUFFER_ASYNC)
{
if (!QueueUserWorkItem(async_notifier_proc, conn, WT_EXECUTEDEFAULT | WT_EXECUTELONGFUNCTION))
status = RPC_S_OUT_OF_RESOURCES;
}
return status;
}
/* is this status something that the server can't recover from? */
static inline BOOL is_hard_error(RPC_STATUS status)
{
switch (status)
{
case 0: /* user-defined fault */
case ERROR_ACCESS_DENIED:
case ERROR_INVALID_PARAMETER:
case RPC_S_PROTOCOL_ERROR:
case RPC_S_CALL_FAILED:
case RPC_S_CALL_FAILED_DNE:
case RPC_S_SEC_PKG_ERROR:
return TRUE;
default:
return FALSE;
}
}
/***********************************************************************
* I_RpcReceive [RPCRT4.@]
*/
RPC_STATUS WINAPI I_RpcReceive(PRPC_MESSAGE pMsg)
{
RpcBinding* bind = (RpcBinding*)pMsg->Handle;
RPC_STATUS status;
RpcPktHdr *hdr = NULL;
RpcConnection *conn;
TRACE("(%p)\n", pMsg);
if (!bind || bind->server || !pMsg->ReservedForRuntime) return RPC_S_INVALID_BINDING;
conn = pMsg->ReservedForRuntime;
status = RPCRT4_Receive(conn, &hdr, pMsg);
if (status != RPC_S_OK) {
WARN("receive failed with error %lx\n", status);
goto fail;
}
switch (hdr->common.ptype) {
case PKT_RESPONSE:
break;
case PKT_FAULT:
ERR ("we got fault packet with status 0x%lx\n", hdr->fault.status);
status = NCA2RPC_STATUS(hdr->fault.status);
if (is_hard_error(status))
goto fail;
break;
default:
WARN("bad packet type %d\n", hdr->common.ptype);
status = RPC_S_PROTOCOL_ERROR;
goto fail;
}
/* success */
RPCRT4_FreeHeader(hdr);
return status;
fail:
RPCRT4_FreeHeader(hdr);
RPCRT4_DestroyConnection(conn);
pMsg->ReservedForRuntime = NULL;
return status;
}
/***********************************************************************
* I_RpcSendReceive [RPCRT4.@]
*
* Sends a message to the server and receives the response.
*
* PARAMS
* pMsg [I/O] RPC message information.
*
* RETURNS
* Success: RPC_S_OK.
* Failure: Any error code.
*
* NOTES
* The buffer must have been allocated with I_RpcGetBuffer().
*
* SEE ALSO
* I_RpcGetBuffer(), I_RpcSend(), I_RpcReceive().
*/
RPC_STATUS WINAPI I_RpcSendReceive(PRPC_MESSAGE pMsg)
{
RPC_STATUS status;
void *original_buffer;
TRACE("(%p)\n", pMsg);
original_buffer = pMsg->Buffer;
status = I_RpcSend(pMsg);
if (status == RPC_S_OK)
status = I_RpcReceive(pMsg);
/* free the buffer replaced by a new buffer in I_RpcReceive */
if (status == RPC_S_OK)
I_RpcFree(original_buffer);
return status;
}
/***********************************************************************
* I_RpcAsyncSetHandle [RPCRT4.@]
*
* Sets the asynchronous state of the handle contained in the RPC message
* structure.
*
* PARAMS
* pMsg [I] RPC Message structure.
* pAsync [I] Asynchronous state to set.
*
* RETURNS
* Success: RPC_S_OK.
* Failure: Any error code.
*/
RPC_STATUS WINAPI I_RpcAsyncSetHandle(PRPC_MESSAGE pMsg, PRPC_ASYNC_STATE pAsync)
{
RpcBinding* bind = (RpcBinding*)pMsg->Handle;
RpcConnection *conn;
TRACE("(%p, %p)\n", pMsg, pAsync);
if (!bind || bind->server || !pMsg->ReservedForRuntime) return RPC_S_INVALID_BINDING;
conn = pMsg->ReservedForRuntime;
conn->async_state = pAsync;
return RPC_S_OK;
}
/***********************************************************************
* I_RpcAsyncAbortCall [RPCRT4.@]
*
* Aborts an asynchronous call.
*
* PARAMS
* pAsync [I] Asynchronous state.
* ExceptionCode [I] Exception code.
*
* RETURNS
* Success: RPC_S_OK.
* Failure: Any error code.
*/
RPC_STATUS WINAPI I_RpcAsyncAbortCall(PRPC_ASYNC_STATE pAsync, ULONG ExceptionCode)
{
FIXME("(%p, %d): stub\n", pAsync, ExceptionCode);
return RPC_S_INVALID_ASYNC_HANDLE;
}