1386 lines
44 KiB
C
1386 lines
44 KiB
C
/*
|
|
* KERNEL32 thunks and other undocumented stuff
|
|
*
|
|
* Copyright 1997-1998 Marcus Meissner
|
|
* Copyright 1998 Ulrich Weigand
|
|
*
|
|
* BUG: The GetBinaryType implementation is not complete. See
|
|
* the function documentation for more details.
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "windef.h"
|
|
#include "winbase.h"
|
|
#include "wine/winbase16.h"
|
|
#include "callback.h"
|
|
#include "task.h"
|
|
#include "user.h"
|
|
#include "heap.h"
|
|
#include "module.h"
|
|
#include "neexe.h"
|
|
#include "process.h"
|
|
#include "stackframe.h"
|
|
#include "heap.h"
|
|
#include "selectors.h"
|
|
#include "task.h"
|
|
#include "win.h"
|
|
#include "file.h"
|
|
#include "debug.h"
|
|
#include "flatthunk.h"
|
|
#include "syslevel.h"
|
|
#include "winerror.h"
|
|
|
|
|
|
/***********************************************************************
|
|
* *
|
|
* Win95 internal thunks *
|
|
* *
|
|
***********************************************************************/
|
|
|
|
/***********************************************************************
|
|
* Generates a FT_Prolog call.
|
|
*
|
|
* 0FB6D1 movzbl edx,cl
|
|
* 8B1495xxxxxxxx mov edx,[4*edx + targetTable]
|
|
* 68xxxxxxxx push FT_Prolog
|
|
* C3 lret
|
|
*/
|
|
static void _write_ftprolog(LPBYTE relayCode ,DWORD *targetTable) {
|
|
LPBYTE x;
|
|
|
|
x = relayCode;
|
|
*x++ = 0x0f;*x++=0xb6;*x++=0xd1; /* movzbl edx,cl */
|
|
*x++ = 0x8B;*x++=0x14;*x++=0x95;*(DWORD**)x= targetTable;
|
|
x+=4; /* mov edx, [4*edx + targetTable] */
|
|
*x++ = 0x68; *(DWORD*)x = (DWORD)GetProcAddress32(GetModuleHandle32A("KERNEL32"),"FT_Prolog");
|
|
x+=4; /* push FT_Prolog */
|
|
*x++ = 0xC3; /* lret */
|
|
/* fill rest with 0xCC / int 3 */
|
|
}
|
|
|
|
/***********************************************************************
|
|
* _write_qtthunk (internal)
|
|
* Generates a QT_Thunk style call.
|
|
*
|
|
* 33C9 xor ecx, ecx
|
|
* 8A4DFC mov cl , [ebp-04]
|
|
* 8B148Dxxxxxxxx mov edx, [4*ecx + targetTable]
|
|
* B8yyyyyyyy mov eax, QT_Thunk
|
|
* FFE0 jmp eax
|
|
*/
|
|
static void _write_qtthunk(
|
|
LPBYTE relayCode, /* [in] start of QT_Thunk stub */
|
|
DWORD *targetTable /* [in] start of thunk (for index lookup) */
|
|
) {
|
|
LPBYTE x;
|
|
|
|
x = relayCode;
|
|
*x++ = 0x33;*x++=0xC9; /* xor ecx,ecx */
|
|
*x++ = 0x8A;*x++=0x4D;*x++=0xFC; /* movb cl,[ebp-04] */
|
|
*x++ = 0x8B;*x++=0x14;*x++=0x8D;*(DWORD**)x= targetTable;
|
|
x+=4; /* mov edx, [4*ecx + targetTable */
|
|
*x++ = 0xB8; *(DWORD*)x = (DWORD)GetProcAddress32(GetModuleHandle32A("KERNEL32"),"QT_Thunk");
|
|
x+=4; /* mov eax , QT_Thunk */
|
|
*x++ = 0xFF; *x++ = 0xE0; /* jmp eax */
|
|
/* should fill the rest of the 32 bytes with 0xCC */
|
|
}
|
|
|
|
/***********************************************************************
|
|
* _loadthunk
|
|
*/
|
|
static LPVOID _loadthunk(LPCSTR module, LPCSTR func, LPCSTR module32,
|
|
struct ThunkDataCommon *TD32, DWORD checksum)
|
|
{
|
|
struct ThunkDataCommon *TD16;
|
|
HMODULE32 hmod;
|
|
int ordinal;
|
|
|
|
if ((hmod = LoadLibrary16(module)) <= 32)
|
|
{
|
|
ERR(thunk, "(%s, %s, %s): Unable to load '%s', error %d\n",
|
|
module, func, module32, module, hmod);
|
|
return 0;
|
|
}
|
|
|
|
if ( !(ordinal = NE_GetOrdinal(hmod, func))
|
|
|| !(TD16 = PTR_SEG_TO_LIN(NE_GetEntryPointEx(hmod, ordinal, FALSE))))
|
|
{
|
|
ERR(thunk, "(%s, %s, %s): Unable to find '%s'\n",
|
|
module, func, module32, func);
|
|
return 0;
|
|
}
|
|
|
|
if (TD32 && memcmp(TD16->magic, TD32->magic, 4))
|
|
{
|
|
ERR(thunk, "(%s, %s, %s): Bad magic %c%c%c%c (should be %c%c%c%c)\n",
|
|
module, func, module32,
|
|
TD16->magic[0], TD16->magic[1], TD16->magic[2], TD16->magic[3],
|
|
TD32->magic[0], TD32->magic[1], TD32->magic[2], TD32->magic[3]);
|
|
return 0;
|
|
}
|
|
|
|
if (TD32 && TD16->checksum != TD32->checksum)
|
|
{
|
|
ERR(thunk, "(%s, %s, %s): Wrong checksum %08lx (should be %08lx)\n",
|
|
module, func, module32, TD16->checksum, TD32->checksum);
|
|
return 0;
|
|
}
|
|
|
|
if (!TD32 && checksum && checksum != *(LPDWORD)TD16)
|
|
{
|
|
ERR(thunk, "(%s, %s, %s): Wrong checksum %08lx (should be %08lx)\n",
|
|
module, func, module32, *(LPDWORD)TD16, checksum);
|
|
return 0;
|
|
}
|
|
|
|
return TD16;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* GetThunkStuff (KERNEL32.53)
|
|
*/
|
|
LPVOID WINAPI GetThunkStuff(LPSTR module, LPSTR func)
|
|
{
|
|
return _loadthunk(module, func, "<kernel>", NULL, 0L);
|
|
}
|
|
|
|
/***********************************************************************
|
|
* GetThunkBuff (KERNEL32.52)
|
|
* Returns a pointer to ThkBuf in the 16bit library SYSTHUNK.DLL.
|
|
*/
|
|
LPVOID WINAPI GetThunkBuff(void)
|
|
{
|
|
return GetThunkStuff("SYSTHUNK.DLL", "ThkBuf");
|
|
}
|
|
|
|
/***********************************************************************
|
|
* ThunkConnect32 (KERNEL32)
|
|
* Connects a 32bit and a 16bit thunkbuffer.
|
|
*/
|
|
UINT32 WINAPI ThunkConnect32(
|
|
struct ThunkDataCommon *TD, /* [in/out] thunkbuffer */
|
|
LPSTR thunkfun16, /* [in] win16 thunkfunction */
|
|
LPSTR module16, /* [in] name of win16 dll */
|
|
LPSTR module32, /* [in] name of win32 dll */
|
|
HMODULE32 hmod32, /* [in] hmodule of win32 dll */
|
|
DWORD dwReason /* [in] initialisation argument */
|
|
) {
|
|
BOOL32 directionSL;
|
|
|
|
if (!lstrncmp32A(TD->magic, "SL01", 4))
|
|
{
|
|
directionSL = TRUE;
|
|
|
|
TRACE(thunk, "SL01 thunk %s (%lx) <- %s (%s), Reason: %ld\n",
|
|
module32, (DWORD)TD, module16, thunkfun16, dwReason);
|
|
}
|
|
else if (!lstrncmp32A(TD->magic, "LS01", 4))
|
|
{
|
|
directionSL = FALSE;
|
|
|
|
TRACE(thunk, "LS01 thunk %s (%lx) -> %s (%s), Reason: %ld\n",
|
|
module32, (DWORD)TD, module16, thunkfun16, dwReason);
|
|
}
|
|
else
|
|
{
|
|
ERR(thunk, "Invalid magic %c%c%c%c\n",
|
|
TD->magic[0], TD->magic[1], TD->magic[2], TD->magic[3]);
|
|
return 0;
|
|
}
|
|
|
|
switch (dwReason)
|
|
{
|
|
case DLL_PROCESS_ATTACH:
|
|
{
|
|
struct ThunkDataCommon *TD16;
|
|
if (!(TD16 = _loadthunk(module16, thunkfun16, module32, TD, 0L)))
|
|
return 0;
|
|
|
|
if (directionSL)
|
|
{
|
|
struct ThunkDataSL32 *SL32 = (struct ThunkDataSL32 *)TD;
|
|
struct ThunkDataSL16 *SL16 = (struct ThunkDataSL16 *)TD16;
|
|
struct SLTargetDB *tdb;
|
|
|
|
if (SL16->fpData == NULL)
|
|
{
|
|
ERR(thunk, "ThunkConnect16 was not called!\n");
|
|
return 0;
|
|
}
|
|
|
|
SL32->data = SL16->fpData;
|
|
|
|
tdb = HeapAlloc(GetProcessHeap(), 0, sizeof(*tdb));
|
|
tdb->process = PROCESS_Current();
|
|
tdb->targetTable = (DWORD *)(thunkfun16 + SL32->offsetTargetTable);
|
|
|
|
tdb->next = SL32->data->targetDB; /* FIXME: not thread-safe! */
|
|
SL32->data->targetDB = tdb;
|
|
|
|
TRACE(thunk, "Process %08lx allocated TargetDB entry for ThunkDataSL %08lx\n",
|
|
(DWORD)PROCESS_Current(), (DWORD)SL32->data);
|
|
}
|
|
else
|
|
{
|
|
struct ThunkDataLS32 *LS32 = (struct ThunkDataLS32 *)TD;
|
|
struct ThunkDataLS16 *LS16 = (struct ThunkDataLS16 *)TD16;
|
|
|
|
LS32->targetTable = PTR_SEG_TO_LIN(LS16->targetTable);
|
|
|
|
/* write QT_Thunk and FT_Prolog stubs */
|
|
_write_qtthunk ((LPBYTE)TD + LS32->offsetQTThunk, LS32->targetTable);
|
|
_write_ftprolog((LPBYTE)TD + LS32->offsetFTProlog, LS32->targetTable);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case DLL_PROCESS_DETACH:
|
|
/* FIXME: cleanup */
|
|
break;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* QT_Thunk (KERNEL32)
|
|
*
|
|
* The target address is in EDX.
|
|
* The 16 bit arguments start at ESP+4.
|
|
* The number of 16bit argumentbytes is EBP-ESP-0x44 (68 Byte thunksetup).
|
|
* [ok]
|
|
*/
|
|
REGS_ENTRYPOINT(QT_Thunk)
|
|
{
|
|
CONTEXT context16;
|
|
DWORD argsize;
|
|
THDB *thdb = THREAD_Current();
|
|
|
|
memcpy(&context16,context,sizeof(context16));
|
|
|
|
CS_reg(&context16) = HIWORD(EDX_reg(context));
|
|
IP_reg(&context16) = LOWORD(EDX_reg(context));
|
|
EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
|
|
+ (WORD)&((STACK16FRAME*)0)->bp;
|
|
|
|
argsize = EBP_reg(context)-ESP_reg(context)-0x44;
|
|
|
|
memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize,
|
|
(LPBYTE)ESP_reg(context)+4, argsize );
|
|
|
|
EAX_reg(context) = Callbacks->CallRegisterShortProc( &context16, argsize );
|
|
EDX_reg(context) = HIWORD(EAX_reg(context));
|
|
EAX_reg(context) = LOWORD(EAX_reg(context));
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* FT_Prolog (KERNEL32.233)
|
|
*
|
|
* The set of FT_... thunk routines is used instead of QT_Thunk,
|
|
* if structures have to be converted from 32-bit to 16-bit
|
|
* (change of member alignment, conversion of members).
|
|
*
|
|
* The thunk function (as created by the thunk compiler) calls
|
|
* FT_Prolog at the beginning, to set up a stack frame and
|
|
* allocate a 64 byte buffer on the stack.
|
|
* The input parameters (target address and some flags) are
|
|
* saved for later use by FT_Thunk.
|
|
*
|
|
* Input: EDX 16-bit target address (SEGPTR)
|
|
* CX bits 0..7 target number (in target table)
|
|
* bits 8..9 some flags (unclear???)
|
|
* bits 10..15 number of DWORD arguments
|
|
*
|
|
* Output: A new stackframe is created, and a 64 byte buffer
|
|
* allocated on the stack. The layout of the stack
|
|
* on return is as follows:
|
|
*
|
|
* (ebp+4) return address to caller of thunk function
|
|
* (ebp) old EBP
|
|
* (ebp-4) saved EBX register of caller
|
|
* (ebp-8) saved ESI register of caller
|
|
* (ebp-12) saved EDI register of caller
|
|
* (ebp-16) saved ECX register, containing flags
|
|
* (ebp-20) bitmap containing parameters that are to be converted
|
|
* by FT_Thunk; it is initialized to 0 by FT_Prolog and
|
|
* filled in by the thunk code before calling FT_Thunk
|
|
* (ebp-24)
|
|
* ... (unclear)
|
|
* (ebp-44)
|
|
* (ebp-48) saved EAX register of caller (unclear, never restored???)
|
|
* (ebp-52) saved EDX register, containing 16-bit thunk target
|
|
* (ebp-56)
|
|
* ... (unclear)
|
|
* (ebp-64)
|
|
*
|
|
* ESP is EBP-68 on return.
|
|
*
|
|
*/
|
|
|
|
REGS_ENTRYPOINT(FT_Prolog)
|
|
{
|
|
/* Pop return address to thunk code */
|
|
EIP_reg(context) = STACK32_POP(context);
|
|
|
|
/* Build stack frame */
|
|
STACK32_PUSH(context, EBP_reg(context));
|
|
EBP_reg(context) = ESP_reg(context);
|
|
|
|
/* Allocate 64-byte Thunk Buffer */
|
|
ESP_reg(context) -= 64;
|
|
memset((char *)ESP_reg(context), '\0', 64);
|
|
|
|
/* Store Flags (ECX) and Target Address (EDX) */
|
|
/* Save other registers to be restored later */
|
|
*(DWORD *)(EBP_reg(context) - 4) = EBX_reg(context);
|
|
*(DWORD *)(EBP_reg(context) - 8) = ESI_reg(context);
|
|
*(DWORD *)(EBP_reg(context) - 12) = EDI_reg(context);
|
|
*(DWORD *)(EBP_reg(context) - 16) = ECX_reg(context);
|
|
|
|
*(DWORD *)(EBP_reg(context) - 48) = EAX_reg(context);
|
|
*(DWORD *)(EBP_reg(context) - 52) = EDX_reg(context);
|
|
|
|
/* Push return address back onto stack */
|
|
STACK32_PUSH(context, EIP_reg(context));
|
|
}
|
|
|
|
/**********************************************************************
|
|
* FT_Thunk (KERNEL32.234)
|
|
*
|
|
* This routine performs the actual call to 16-bit code,
|
|
* similar to QT_Thunk. The differences are:
|
|
* - The call target is taken from the buffer created by FT_Prolog
|
|
* - Those arguments requested by the thunk code (by setting the
|
|
* corresponding bit in the bitmap at EBP-20) are converted
|
|
* from 32-bit pointers to segmented pointers (those pointers
|
|
* are guaranteed to point to structures copied to the stack
|
|
* by the thunk code, so we always use the 16-bit stack selector
|
|
* for those addresses).
|
|
*
|
|
* The bit #i of EBP-20 corresponds here to the DWORD starting at
|
|
* ESP+4 + 2*i.
|
|
*
|
|
* FIXME: It is unclear what happens if there are more than 32 WORDs
|
|
* of arguments, so that the single DWORD bitmap is no longer
|
|
* sufficient ...
|
|
*/
|
|
|
|
REGS_ENTRYPOINT(FT_Thunk)
|
|
{
|
|
DWORD mapESPrelative = *(DWORD *)(EBP_reg(context) - 20);
|
|
DWORD callTarget = *(DWORD *)(EBP_reg(context) - 52);
|
|
|
|
CONTEXT context16;
|
|
DWORD i, argsize;
|
|
LPBYTE newstack, oldstack;
|
|
THDB *thdb = THREAD_Current();
|
|
|
|
memcpy(&context16,context,sizeof(context16));
|
|
|
|
CS_reg(&context16) = HIWORD(callTarget);
|
|
IP_reg(&context16) = LOWORD(callTarget);
|
|
EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
|
|
+ (WORD)&((STACK16FRAME*)0)->bp;
|
|
|
|
argsize = EBP_reg(context)-ESP_reg(context)-0x44;
|
|
newstack = ((LPBYTE)THREAD_STACK16(thdb))-argsize;
|
|
oldstack = (LPBYTE)ESP_reg(context)+4;
|
|
|
|
memcpy( newstack, oldstack, argsize );
|
|
|
|
for (i = 0; i < 32; i++) /* NOTE: What about > 32 arguments? */
|
|
if (mapESPrelative & (1 << i))
|
|
{
|
|
SEGPTR *arg = (SEGPTR *)(newstack + 2*i);
|
|
*arg = PTR_SEG_OFF_TO_SEGPTR(SELECTOROF(thdb->cur_stack),
|
|
OFFSETOF(thdb->cur_stack) - argsize
|
|
+ (*(LPBYTE *)arg - oldstack));
|
|
}
|
|
|
|
EAX_reg(context) = Callbacks->CallRegisterShortProc( &context16, argsize );
|
|
EDX_reg(context) = HIWORD(EAX_reg(context));
|
|
EAX_reg(context) = LOWORD(EAX_reg(context));
|
|
}
|
|
|
|
/**********************************************************************
|
|
* FT_ExitNN (KERNEL32.218 - 232)
|
|
*
|
|
* One of the FT_ExitNN functions is called at the end of the thunk code.
|
|
* It removes the stack frame created by FT_Prolog, moves the function
|
|
* return from EBX to EAX (yes, FT_Thunk did use EAX for the return
|
|
* value, but the thunk code has moved it from EAX to EBX in the
|
|
* meantime ... :-), restores the caller's EBX, ESI, and EDI registers,
|
|
* and perform a return to the CALLER of the thunk code (while removing
|
|
* the given number of arguments from the caller's stack).
|
|
*/
|
|
|
|
static void FT_Exit(CONTEXT *context, int nPopArgs)
|
|
{
|
|
/* Return value is in EBX */
|
|
EAX_reg(context) = EBX_reg(context);
|
|
|
|
/* Restore EBX, ESI, and EDI registers */
|
|
EBX_reg(context) = *(DWORD *)(EBP_reg(context) - 4);
|
|
ESI_reg(context) = *(DWORD *)(EBP_reg(context) - 8);
|
|
EDI_reg(context) = *(DWORD *)(EBP_reg(context) - 12);
|
|
|
|
/* Clean up stack frame */
|
|
ESP_reg(context) = EBP_reg(context);
|
|
EBP_reg(context) = STACK32_POP(context);
|
|
|
|
/* Pop return address to CALLER of thunk code */
|
|
EIP_reg(context) = STACK32_POP(context);
|
|
/* Remove arguments */
|
|
ESP_reg(context) += nPopArgs;
|
|
/* Push return address back onto stack */
|
|
STACK32_PUSH(context, EIP_reg(context));
|
|
}
|
|
|
|
REGS_ENTRYPOINT(FT_Exit0) { FT_Exit(context, 0); }
|
|
REGS_ENTRYPOINT(FT_Exit4) { FT_Exit(context, 4); }
|
|
REGS_ENTRYPOINT(FT_Exit8) { FT_Exit(context, 8); }
|
|
REGS_ENTRYPOINT(FT_Exit12) { FT_Exit(context, 12); }
|
|
REGS_ENTRYPOINT(FT_Exit16) { FT_Exit(context, 16); }
|
|
REGS_ENTRYPOINT(FT_Exit20) { FT_Exit(context, 20); }
|
|
REGS_ENTRYPOINT(FT_Exit24) { FT_Exit(context, 24); }
|
|
REGS_ENTRYPOINT(FT_Exit28) { FT_Exit(context, 28); }
|
|
REGS_ENTRYPOINT(FT_Exit32) { FT_Exit(context, 32); }
|
|
REGS_ENTRYPOINT(FT_Exit36) { FT_Exit(context, 36); }
|
|
REGS_ENTRYPOINT(FT_Exit40) { FT_Exit(context, 40); }
|
|
REGS_ENTRYPOINT(FT_Exit44) { FT_Exit(context, 44); }
|
|
REGS_ENTRYPOINT(FT_Exit48) { FT_Exit(context, 48); }
|
|
REGS_ENTRYPOINT(FT_Exit52) { FT_Exit(context, 52); }
|
|
REGS_ENTRYPOINT(FT_Exit56) { FT_Exit(context, 56); }
|
|
|
|
|
|
/**********************************************************************
|
|
* WOWCallback16 (KERNEL32.62)(WOW32.2)
|
|
* Calls a win16 function with a single DWORD argument.
|
|
* RETURNS
|
|
* the return value
|
|
*/
|
|
DWORD WINAPI WOWCallback16(
|
|
FARPROC16 fproc, /* [in] win16 function to call */
|
|
DWORD arg /* [in] single DWORD argument to function */
|
|
) {
|
|
DWORD ret;
|
|
TRACE(thunk,"(%p,0x%08lx)...\n",fproc,arg);
|
|
ret = Callbacks->CallWOWCallbackProc(fproc,arg);
|
|
TRACE(thunk,"... returns %ld\n",ret);
|
|
return ret;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* WOWCallback16Ex (KERNEL32.55)(WOW32.3)
|
|
* Calls a function in 16bit code.
|
|
* RETURNS
|
|
* TRUE for success
|
|
*/
|
|
BOOL32 WINAPI WOWCallback16Ex(
|
|
FARPROC16 vpfn16, /* [in] win16 function to call */
|
|
DWORD dwFlags, /* [in] flags */
|
|
DWORD cbArgs, /* [in] nr of arguments */
|
|
LPVOID pArgs, /* [in] pointer to arguments (LPDWORD) */
|
|
LPDWORD pdwRetCode /* [out] return value of win16 function */
|
|
) {
|
|
return Callbacks->CallWOWCallback16Ex(vpfn16,dwFlags,cbArgs,pArgs,pdwRetCode);
|
|
}
|
|
|
|
/***********************************************************************
|
|
* ThunkInitLS (KERNEL32.43)
|
|
* A thunkbuffer link routine
|
|
* The thunkbuf looks like:
|
|
*
|
|
* 00: DWORD length ? don't know exactly
|
|
* 04: SEGPTR ptr ? where does it point to?
|
|
* The pointer ptr is written into the first DWORD of 'thunk'.
|
|
* (probably correct implemented)
|
|
* [ok probably]
|
|
* RETURNS
|
|
* segmented pointer to thunk?
|
|
*/
|
|
DWORD WINAPI ThunkInitLS(
|
|
LPDWORD thunk, /* [in] win32 thunk */
|
|
LPCSTR thkbuf, /* [in] thkbuffer name in win16 dll */
|
|
DWORD len, /* [in] thkbuffer length */
|
|
LPCSTR dll16, /* [in] name of win16 dll */
|
|
LPCSTR dll32 /* [in] name of win32 dll (FIXME: not used?) */
|
|
) {
|
|
LPDWORD addr;
|
|
|
|
if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len )))
|
|
return 0;
|
|
|
|
if (!addr[1])
|
|
return 0;
|
|
*(DWORD*)thunk = addr[1];
|
|
|
|
return addr[1];
|
|
}
|
|
|
|
/***********************************************************************
|
|
* Common32ThkLS (KERNEL32.45)
|
|
*
|
|
* This is another 32->16 thunk, independent of the QT_Thunk/FT_Thunk
|
|
* style thunks. The basic difference is that the parameter conversion
|
|
* is done completely on the *16-bit* side here. Thus we do not call
|
|
* the 16-bit target directly, but call a common entry point instead.
|
|
* This entry function then calls the target according to the target
|
|
* number passed in the DI register.
|
|
*
|
|
* Input: EAX SEGPTR to the common 16-bit entry point
|
|
* CX offset in thunk table (target number * 4)
|
|
* DX error return value if execution fails (unclear???)
|
|
* EDX.HI number of DWORD parameters
|
|
*
|
|
* (Note that we need to move the thunk table offset from CX to DI !)
|
|
*
|
|
* The called 16-bit stub expects its stack to look like this:
|
|
* ...
|
|
* (esp+40) 32-bit arguments
|
|
* ...
|
|
* (esp+8) 32 byte of stack space available as buffer
|
|
* (esp) 8 byte return address for use with 0x66 lret
|
|
*
|
|
* The called 16-bit stub uses a 0x66 lret to return to 32-bit code,
|
|
* and uses the EAX register to return a DWORD return value.
|
|
* Thus we need to use a special assembly glue routine
|
|
* (CallRegisterLongProc instead of CallRegisterShortProc).
|
|
*
|
|
* Finally, we return to the caller, popping the arguments off
|
|
* the stack.
|
|
*
|
|
* FIXME: The called function uses EBX to return the number of
|
|
* arguments that are to be popped off the caller's stack.
|
|
* This is clobbered by the assembly glue, so we simply use
|
|
* the original EDX.HI to get the number of arguments.
|
|
* (Those two values should be equal anyway ...?)
|
|
*
|
|
*/
|
|
REGS_ENTRYPOINT(Common32ThkLS)
|
|
{
|
|
CONTEXT context16;
|
|
DWORD argsize;
|
|
THDB *thdb = THREAD_Current();
|
|
|
|
memcpy(&context16,context,sizeof(context16));
|
|
|
|
DI_reg(&context16) = CX_reg(context);
|
|
CS_reg(&context16) = HIWORD(EAX_reg(context));
|
|
IP_reg(&context16) = LOWORD(EAX_reg(context));
|
|
EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
|
|
+ (WORD)&((STACK16FRAME*)0)->bp;
|
|
|
|
argsize = HIWORD(EDX_reg(context)) * 4;
|
|
|
|
/* FIXME: hack for stupid USER32 CallbackGlueLS routine */
|
|
if (EDX_reg(context) == EIP_reg(context))
|
|
argsize = 6 * 4;
|
|
|
|
memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize,
|
|
(LPBYTE)ESP_reg(context)+4, argsize );
|
|
|
|
EAX_reg(context) = Callbacks->CallRegisterLongProc(&context16, argsize + 32);
|
|
|
|
/* Clean up caller's stack frame */
|
|
|
|
EIP_reg(context) = STACK32_POP(context);
|
|
ESP_reg(context) += argsize;
|
|
STACK32_PUSH(context, EIP_reg(context));
|
|
}
|
|
|
|
/***********************************************************************
|
|
* OT_32ThkLSF (KERNEL32.40)
|
|
*
|
|
* YET Another 32->16 thunk. The difference to Common32ThkLS is that
|
|
* argument processing is done on both the 32-bit and the 16-bit side:
|
|
* The 32-bit side prepares arguments, copying them onto the stack.
|
|
*
|
|
* When this routine is called, the first word on the stack is the
|
|
* number of argument bytes prepared by the 32-bit code, and EDX
|
|
* contains the 16-bit target address.
|
|
*
|
|
* The called 16-bit routine is another relaycode, doing further
|
|
* argument processing and then calling the real 16-bit target
|
|
* whose address is stored at [bp-04].
|
|
*
|
|
* The call proceeds using a normal CallRegisterShortProc.
|
|
* After return from the 16-bit relaycode, the arguments need
|
|
* to be copied *back* to the 32-bit stack, since the 32-bit
|
|
* relaycode processes output parameters.
|
|
*
|
|
* Note that we copy twice the number of arguments, since some of the
|
|
* 16-bit relaycodes in SYSTHUNK.DLL directly access the original
|
|
* arguments of the caller!
|
|
*
|
|
* (Note that this function seems only to be used for
|
|
* OLECLI32 -> OLECLI and OLESVR32 -> OLESVR thunking.)
|
|
*/
|
|
REGS_ENTRYPOINT(OT_32ThkLSF)
|
|
{
|
|
CONTEXT context16;
|
|
DWORD argsize;
|
|
THDB *thdb = THREAD_Current();
|
|
|
|
memcpy(&context16,context,sizeof(context16));
|
|
|
|
CS_reg(&context16) = HIWORD(EDX_reg(context));
|
|
IP_reg(&context16) = LOWORD(EDX_reg(context));
|
|
EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
|
|
+ (WORD)&((STACK16FRAME*)0)->bp;
|
|
|
|
argsize = 2 * *(WORD *)(ESP_reg(context) + 4) + 2;
|
|
|
|
memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize,
|
|
(LPBYTE)ESP_reg(context)+4, argsize );
|
|
|
|
EAX_reg(context) = Callbacks->CallRegisterShortProc(&context16, argsize);
|
|
|
|
memcpy( (LPBYTE)ESP_reg(context)+4,
|
|
((LPBYTE)THREAD_STACK16(thdb))-argsize, argsize );
|
|
}
|
|
|
|
/***********************************************************************
|
|
* ThunkInitLSF (KERNEL32.41)
|
|
* A thunk setup routine.
|
|
* Expects a pointer to a preinitialized thunkbuffer in the first argument
|
|
* looking like:
|
|
* 00..03: unknown (pointer, check _41, _43, _46)
|
|
* 04: EB1E jmp +0x20
|
|
*
|
|
* 06..23: unknown (space for replacement code, check .90)
|
|
*
|
|
* 24:>E800000000 call offset 29
|
|
* 29:>58 pop eax ( target of call )
|
|
* 2A: 2D25000000 sub eax,0x00000025 ( now points to offset 4 )
|
|
* 2F: BAxxxxxxxx mov edx,xxxxxxxx
|
|
* 34: 68yyyyyyyy push KERNEL32.90
|
|
* 39: C3 ret
|
|
*
|
|
* 3A: EB1E jmp +0x20
|
|
* 3E ... 59: unknown (space for replacement code?)
|
|
* 5A: E8xxxxxxxx call <32bitoffset xxxxxxxx>
|
|
* 5F: 5A pop edx
|
|
* 60: 81EA25xxxxxx sub edx, 0x25xxxxxx
|
|
* 66: 52 push edx
|
|
* 67: 68xxxxxxxx push xxxxxxxx
|
|
* 6C: 68yyyyyyyy push KERNEL32.89
|
|
* 71: C3 ret
|
|
* 72: end?
|
|
* This function checks if the code is there, and replaces the yyyyyyyy entries
|
|
* by the functionpointers.
|
|
* The thunkbuf looks like:
|
|
*
|
|
* 00: DWORD length ? don't know exactly
|
|
* 04: SEGPTR ptr ? where does it point to?
|
|
* The segpointer ptr is written into the first DWORD of 'thunk'.
|
|
* [ok probably]
|
|
* RETURNS
|
|
* unclear, pointer to win16 thkbuffer?
|
|
*/
|
|
LPVOID WINAPI ThunkInitLSF(
|
|
LPBYTE thunk, /* [in] win32 thunk */
|
|
LPCSTR thkbuf, /* [in] thkbuffer name in win16 dll */
|
|
DWORD len, /* [in] length of thkbuffer */
|
|
LPCSTR dll16, /* [in] name of win16 dll */
|
|
LPCSTR dll32 /* [in] name of win32 dll */
|
|
) {
|
|
HMODULE32 hkrnl32 = GetModuleHandle32A("KERNEL32");
|
|
LPDWORD addr,addr2;
|
|
|
|
/* FIXME: add checks for valid code ... */
|
|
/* write pointers to kernel32.89 and kernel32.90 (+ordinal base of 1) */
|
|
*(DWORD*)(thunk+0x35) = (DWORD)GetProcAddress32(hkrnl32,(LPSTR)90);
|
|
*(DWORD*)(thunk+0x6D) = (DWORD)GetProcAddress32(hkrnl32,(LPSTR)89);
|
|
|
|
|
|
if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len )))
|
|
return 0;
|
|
|
|
addr2 = PTR_SEG_TO_LIN(addr[1]);
|
|
if (HIWORD(addr2))
|
|
*(DWORD*)thunk = (DWORD)addr2;
|
|
|
|
return addr2;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* FT_PrologPrime (KERNEL32.89)
|
|
*
|
|
* This function is called from the relay code installed by
|
|
* ThunkInitLSF. It replaces the location from where it was
|
|
* called by a standard FT_Prolog call stub (which is 'primed'
|
|
* by inserting the correct target table pointer).
|
|
* Finally, it calls that stub.
|
|
*
|
|
* Input: ECX target number + flags (passed through to FT_Prolog)
|
|
* (ESP) offset of location where target table pointer
|
|
* is stored, relative to the start of the relay code
|
|
* (ESP+4) pointer to start of relay code
|
|
* (this is where the FT_Prolog call stub gets written to)
|
|
*
|
|
* Note: The two DWORD arguments get popped from the stack.
|
|
*
|
|
*/
|
|
REGS_ENTRYPOINT(FT_PrologPrime)
|
|
{
|
|
DWORD targetTableOffset = STACK32_POP(context);
|
|
LPBYTE relayCode = (LPBYTE)STACK32_POP(context);
|
|
DWORD *targetTable = *(DWORD **)(relayCode+targetTableOffset);
|
|
DWORD targetNr = LOBYTE(ECX_reg(context));
|
|
|
|
_write_ftprolog(relayCode, targetTable);
|
|
|
|
/* We should actually call the relay code now, */
|
|
/* but we skip it and go directly to FT_Prolog */
|
|
EDX_reg(context) = targetTable[targetNr];
|
|
__regs_FT_Prolog(context);
|
|
}
|
|
|
|
/***********************************************************************
|
|
* QT_ThunkPrime (KERNEL32.90)
|
|
*
|
|
* This function corresponds to FT_PrologPrime, but installs a
|
|
* call stub for QT_Thunk instead.
|
|
*
|
|
* Input: (EBP-4) target number (passed through to QT_Thunk)
|
|
* EDX target table pointer location offset
|
|
* EAX start of relay code
|
|
*
|
|
*/
|
|
REGS_ENTRYPOINT(QT_ThunkPrime)
|
|
{
|
|
DWORD targetTableOffset = EDX_reg(context);
|
|
LPBYTE relayCode = (LPBYTE)EAX_reg(context);
|
|
DWORD *targetTable = *(DWORD **)(relayCode+targetTableOffset);
|
|
DWORD targetNr = LOBYTE(*(DWORD *)(EBP_reg(context) - 4));
|
|
|
|
_write_qtthunk(relayCode, targetTable);
|
|
|
|
/* We should actually call the relay code now, */
|
|
/* but we skip it and go directly to QT_Thunk */
|
|
EDX_reg(context) = targetTable[targetNr];
|
|
__regs_QT_Thunk(context);
|
|
}
|
|
|
|
/***********************************************************************
|
|
* (KERNEL32.46)
|
|
* Another thunkbuf link routine.
|
|
* The start of the thunkbuf looks like this:
|
|
* 00: DWORD length
|
|
* 04: SEGPTR address for thunkbuffer pointer
|
|
* [ok probably]
|
|
*/
|
|
VOID WINAPI ThunkInitSL(
|
|
LPBYTE thunk, /* [in] start of thunkbuffer */
|
|
LPCSTR thkbuf, /* [in] name/ordinal of thunkbuffer in win16 dll */
|
|
DWORD len, /* [in] length of thunkbuffer */
|
|
LPCSTR dll16, /* [in] name of win16 dll containing the thkbuf */
|
|
LPCSTR dll32 /* [in] win32 dll. FIXME: strange, unused */
|
|
) {
|
|
LPDWORD addr;
|
|
|
|
if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len )))
|
|
return;
|
|
|
|
*(DWORD*)PTR_SEG_TO_LIN(addr[1]) = (DWORD)thunk;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* SSInit KERNEL.700
|
|
* RETURNS
|
|
* TRUE for success.
|
|
*/
|
|
BOOL32 WINAPI SSInit()
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* SSOnBigStack KERNEL32.87
|
|
* Check if thunking is initialized (ss selector set up etc.)
|
|
* We do that differently, so just return TRUE.
|
|
* [ok]
|
|
* RETURNS
|
|
* TRUE for success.
|
|
*/
|
|
BOOL32 WINAPI SSOnBigStack()
|
|
{
|
|
TRACE(thunk, "Yes, thunking is initialized\n");
|
|
return TRUE;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* SSCall
|
|
* One of the real thunking functions. This one seems to be for 32<->32
|
|
* thunks. It should probably be capable of crossing processboundaries.
|
|
*
|
|
* And YES, I've seen nr=48 (somewhere in the Win95 32<->16 OLE coupling)
|
|
* [ok]
|
|
*/
|
|
DWORD WINAPIV SSCall(
|
|
DWORD nr, /* [in] number of argument bytes */
|
|
DWORD flags, /* [in] FIXME: flags ? */
|
|
FARPROC32 fun, /* [in] function to call */
|
|
... /* [in/out] arguments */
|
|
) {
|
|
DWORD i,ret;
|
|
DWORD *args = ((DWORD *)&fun) + 1;
|
|
|
|
if(TRACE_ON(thunk)){
|
|
dbg_decl_str(thunk, 256);
|
|
for (i=0;i<nr/4;i++)
|
|
dsprintf(thunk,"0x%08lx,",args[i]);
|
|
TRACE(thunk,"(%ld,0x%08lx,%p,[%s])\n",
|
|
nr,flags,fun,dbg_str(thunk));
|
|
}
|
|
switch (nr) {
|
|
case 0: ret = fun();
|
|
break;
|
|
case 4: ret = fun(args[0]);
|
|
break;
|
|
case 8: ret = fun(args[0],args[1]);
|
|
break;
|
|
case 12: ret = fun(args[0],args[1],args[2]);
|
|
break;
|
|
case 16: ret = fun(args[0],args[1],args[2],args[3]);
|
|
break;
|
|
case 20: ret = fun(args[0],args[1],args[2],args[3],args[4]);
|
|
break;
|
|
case 24: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5]);
|
|
break;
|
|
case 28: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6]);
|
|
break;
|
|
case 32: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7]);
|
|
break;
|
|
case 36: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8]);
|
|
break;
|
|
case 40: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9]);
|
|
break;
|
|
case 44: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9],args[10]);
|
|
break;
|
|
case 48: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9],args[10],args[11]);
|
|
break;
|
|
default:
|
|
WARN(thunk,"Unsupported nr of arguments, %ld\n",nr);
|
|
ret = 0;
|
|
break;
|
|
|
|
}
|
|
TRACE(thunk," returning %ld ...\n",ret);
|
|
return ret;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* W32S_BackTo32 (KERNEL32.51)
|
|
*/
|
|
REGS_ENTRYPOINT(W32S_BackTo32)
|
|
{
|
|
LPDWORD stack = (LPDWORD)ESP_reg( context );
|
|
FARPROC32 proc = (FARPROC32) stack[0];
|
|
|
|
EAX_reg( context ) = proc( stack[2], stack[3], stack[4], stack[5], stack[6],
|
|
stack[7], stack[8], stack[9], stack[10], stack[11] );
|
|
|
|
EIP_reg( context ) = stack[1];
|
|
}
|
|
|
|
/**********************************************************************
|
|
* AllocSLCallback (KERNEL32)
|
|
*
|
|
* Win95 uses some structchains for callbacks. It allocates them
|
|
* in blocks of 100 entries, size 32 bytes each, layout:
|
|
* blockstart:
|
|
* 0: PTR nextblockstart
|
|
* 4: entry *first;
|
|
* 8: WORD sel ( start points to blockstart)
|
|
* A: WORD unknown
|
|
* 100xentry:
|
|
* 00..17: Code
|
|
* 18: PDB *owning_process;
|
|
* 1C: PTR blockstart
|
|
*
|
|
* We ignore this for now. (Just a note for further developers)
|
|
* FIXME: use this method, so we don't waste selectors...
|
|
*
|
|
* Following code is then generated by AllocSLCallback. The code is 16 bit, so
|
|
* the 0x66 prefix switches from word->long registers.
|
|
*
|
|
* 665A pop edx
|
|
* 6668x arg2 x pushl <arg2>
|
|
* 6652 push edx
|
|
* EAx arg1 x jmpf <arg1>
|
|
*
|
|
* returns the startaddress of this thunk.
|
|
*
|
|
* Note, that they look very similair to the ones allocates by THUNK_Alloc.
|
|
* RETURNS
|
|
* segmented pointer to the start of the thunk
|
|
*/
|
|
DWORD WINAPI
|
|
AllocSLCallback(
|
|
DWORD finalizer, /* [in] finalizer function */
|
|
DWORD callback /* [in] callback function */
|
|
) {
|
|
LPBYTE x,thunk = HeapAlloc( GetProcessHeap(), 0, 32 );
|
|
WORD sel;
|
|
|
|
x=thunk;
|
|
*x++=0x66;*x++=0x5a; /* popl edx */
|
|
*x++=0x66;*x++=0x68;*(DWORD*)x=finalizer;x+=4; /* pushl finalizer */
|
|
*x++=0x66;*x++=0x52; /* pushl edx */
|
|
*x++=0xea;*(DWORD*)x=callback;x+=4; /* jmpf callback */
|
|
|
|
*(PDB32**)(thunk+18) = PROCESS_Current();
|
|
|
|
sel = SELECTOR_AllocBlock( thunk , 32, SEGMENT_CODE, FALSE, FALSE );
|
|
return (sel<<16)|0;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* FreeSLCallback (KERNEL32.274)
|
|
* Frees the specified 16->32 callback
|
|
*/
|
|
void WINAPI
|
|
FreeSLCallback(
|
|
DWORD x /* [in] 16 bit callback (segmented pointer?) */
|
|
) {
|
|
FIXME(win32,"(0x%08lx): stub\n",x);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* GetTEBSelectorFS (KERNEL.475)
|
|
* Set the 16-bit %fs to the 32-bit %fs (current TEB selector)
|
|
*/
|
|
VOID WINAPI GetTEBSelectorFS( CONTEXT *context )
|
|
{
|
|
GET_FS( FS_reg(context) );
|
|
}
|
|
|
|
/**********************************************************************
|
|
* KERNEL_431 (KERNEL.431)
|
|
* IsPeFormat (W32SYS.2)
|
|
* Checks the passed filename if it is a PE format executeable
|
|
* RETURNS
|
|
* TRUE, if it is.
|
|
* FALSE if not.
|
|
*/
|
|
BOOL16 WINAPI IsPeFormat(
|
|
LPSTR fn, /* [in] filename to executeable */
|
|
HFILE16 hf16 /* [in] open file, if filename is NULL */
|
|
) {
|
|
IMAGE_DOS_HEADER mzh;
|
|
HFILE32 hf=FILE_GetHandle32(hf16);
|
|
OFSTRUCT ofs;
|
|
DWORD xmagic;
|
|
|
|
if (fn) {
|
|
hf = OpenFile32(fn,&ofs,OF_READ);
|
|
if (hf==HFILE_ERROR32)
|
|
return FALSE;
|
|
}
|
|
_llseek32(hf,0,SEEK_SET);
|
|
if (sizeof(mzh)!=_lread32(hf,&mzh,sizeof(mzh))) {
|
|
_lclose32(hf);
|
|
return FALSE;
|
|
}
|
|
if (mzh.e_magic!=IMAGE_DOS_SIGNATURE) {
|
|
WARN(dosmem,"File has not got dos signature!\n");
|
|
_lclose32(hf);
|
|
return FALSE;
|
|
}
|
|
_llseek32(hf,mzh.e_lfanew,SEEK_SET);
|
|
if (sizeof(DWORD)!=_lread32(hf,&xmagic,sizeof(DWORD))) {
|
|
_lclose32(hf);
|
|
return FALSE;
|
|
}
|
|
_lclose32(hf);
|
|
return (xmagic == IMAGE_NT_SIGNATURE);
|
|
}
|
|
|
|
/***********************************************************************
|
|
* WOWHandle32 (KERNEL32.57)(WOW32.16)
|
|
* Converts a win16 handle of type into the respective win32 handle.
|
|
* We currently just return this handle, since most handles are the same
|
|
* for win16 and win32.
|
|
* RETURNS
|
|
* The new handle
|
|
*/
|
|
HANDLE32 WINAPI WOWHandle32(
|
|
WORD handle, /* [in] win16 handle */
|
|
WOW_HANDLE_TYPE type /* [in] handle type */
|
|
) {
|
|
TRACE(win32,"(0x%04x,%d)\n",handle,type);
|
|
return (HANDLE32)handle;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* K32Thk1632Prolog (KERNEL32.492)
|
|
*/
|
|
REGS_ENTRYPOINT(K32Thk1632Prolog)
|
|
{
|
|
LPBYTE code = (LPBYTE)EIP_reg(context) - 5;
|
|
|
|
/* Arrrgh! SYSTHUNK.DLL just has to re-implement another method
|
|
of 16->32 thunks instead of using one of the standard methods!
|
|
This means that SYSTHUNK.DLL itself switches to a 32-bit stack,
|
|
and does a far call to the 32-bit code segment of OLECLI32/OLESVR32.
|
|
Unfortunately, our CallTo/CallFrom mechanism is therefore completely
|
|
bypassed, which means it will crash the next time the 32-bit OLE
|
|
code thunks down again to 16-bit (this *will* happen!).
|
|
|
|
The following hack tries to recognize this situation.
|
|
This is possible since the called stubs in OLECLI32/OLESVR32 all
|
|
look exactly the same:
|
|
00 E8xxxxxxxx call K32Thk1632Prolog
|
|
05 FF55FC call [ebp-04]
|
|
08 E8xxxxxxxx call K32Thk1632Epilog
|
|
0D 66CB retf
|
|
|
|
If we recognize this situation, we try to simulate the actions
|
|
of our CallTo/CallFrom mechanism by copying the 16-bit stack
|
|
to our 32-bit stack, creating a proper STACK16FRAME and
|
|
updating thdb->cur_stack. */
|
|
|
|
if ( code[5] == 0xFF && code[6] == 0x55 && code[7] == 0xFC
|
|
&& code[13] == 0x66 && code[14] == 0xCB)
|
|
{
|
|
WORD stackSel = NtCurrentTeb()->stack_sel;
|
|
DWORD stackBase = GetSelectorBase(stackSel);
|
|
|
|
THDB *thdb = THREAD_Current();
|
|
DWORD argSize = EBP_reg(context) - ESP_reg(context);
|
|
char *stack16 = (char *)ESP_reg(context);
|
|
char *stack32 = (char *)thdb->cur_stack - argSize;
|
|
STACK16FRAME *frame16 = (STACK16FRAME *)stack16 - 1;
|
|
|
|
TRACE(thunk, "before SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
|
|
EBP_reg(context), ESP_reg(context), thdb->cur_stack);
|
|
|
|
memset(frame16, '\0', sizeof(STACK16FRAME));
|
|
frame16->frame32 = (STACK32FRAME *)thdb->cur_stack;
|
|
frame16->ebp = EBP_reg(context);
|
|
|
|
memcpy(stack32, stack16, argSize);
|
|
thdb->cur_stack = PTR_SEG_OFF_TO_SEGPTR(stackSel, (DWORD)frame16 - stackBase);
|
|
|
|
ESP_reg(context) = (DWORD)stack32;
|
|
EBP_reg(context) = ESP_reg(context) + argSize;
|
|
|
|
TRACE(thunk, "after SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
|
|
EBP_reg(context), ESP_reg(context), thdb->cur_stack);
|
|
}
|
|
|
|
SYSLEVEL_ReleaseWin16Lock();
|
|
}
|
|
|
|
/***********************************************************************
|
|
* K32Thk1632Epilog (KERNEL32.491)
|
|
*/
|
|
REGS_ENTRYPOINT(K32Thk1632Epilog)
|
|
{
|
|
LPBYTE code = (LPBYTE)EIP_reg(context) - 13;
|
|
|
|
SYSLEVEL_RestoreWin16Lock();
|
|
|
|
/* We undo the SYSTHUNK hack if necessary. See K32Thk1632Prolog. */
|
|
|
|
if ( code[5] == 0xFF && code[6] == 0x55 && code[7] == 0xFC
|
|
&& code[13] == 0x66 && code[14] == 0xCB)
|
|
{
|
|
THDB *thdb = THREAD_Current();
|
|
STACK16FRAME *frame16 = (STACK16FRAME *)PTR_SEG_TO_LIN(thdb->cur_stack);
|
|
char *stack16 = (char *)(frame16 + 1);
|
|
DWORD argSize = frame16->ebp - (DWORD)stack16;
|
|
char *stack32 = (char *)frame16->frame32 - argSize;
|
|
|
|
DWORD nArgsPopped = ESP_reg(context) - (DWORD)stack32;
|
|
|
|
TRACE(thunk, "before SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
|
|
EBP_reg(context), ESP_reg(context), thdb->cur_stack);
|
|
|
|
thdb->cur_stack = (DWORD)frame16->frame32;
|
|
|
|
ESP_reg(context) = (DWORD)stack16 + nArgsPopped;
|
|
EBP_reg(context) = frame16->ebp;
|
|
|
|
TRACE(thunk, "after SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
|
|
EBP_reg(context), ESP_reg(context), thdb->cur_stack);
|
|
}
|
|
}
|
|
|
|
/***********************************************************************
|
|
* UpdateResource32A (KERNEL32.707)
|
|
*/
|
|
BOOL32 WINAPI UpdateResource32A(
|
|
HANDLE32 hUpdate,
|
|
LPCSTR lpType,
|
|
LPCSTR lpName,
|
|
WORD wLanguage,
|
|
LPVOID lpData,
|
|
DWORD cbData) {
|
|
|
|
FIXME(win32, ": stub\n");
|
|
SetLastError(ERROR_CALL_NOT_IMPLEMENTED);
|
|
return FALSE;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* UpdateResource32W (KERNEL32.708)
|
|
*/
|
|
BOOL32 WINAPI UpdateResource32W(
|
|
HANDLE32 hUpdate,
|
|
LPCWSTR lpType,
|
|
LPCWSTR lpName,
|
|
WORD wLanguage,
|
|
LPVOID lpData,
|
|
DWORD cbData) {
|
|
|
|
FIXME(win32, ": stub\n");
|
|
SetLastError(ERROR_CALL_NOT_IMPLEMENTED);
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
* WaitNamedPipe32A [KERNEL32.725]
|
|
*/
|
|
BOOL32 WINAPI WaitNamedPipe32A (LPCSTR lpNamedPipeName, DWORD nTimeOut)
|
|
{ FIXME (win32,"%s 0x%08lx\n",lpNamedPipeName,nTimeOut);
|
|
SetLastError(ERROR_PIPE_NOT_CONNECTED);
|
|
return FALSE;
|
|
}
|
|
/***********************************************************************
|
|
* WaitNamedPipe32W [KERNEL32.726]
|
|
*/
|
|
BOOL32 WINAPI WaitNamedPipe32W (LPCWSTR lpNamedPipeName, DWORD nTimeOut)
|
|
{ FIXME (win32,"%s 0x%08lx\n",debugstr_w(lpNamedPipeName),nTimeOut);
|
|
SetLastError(ERROR_PIPE_NOT_CONNECTED);
|
|
return FALSE;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* GetBinaryType32A [KERNEL32.280]
|
|
*
|
|
* The GetBinaryType function determines whether a file is executable
|
|
* or not and if it is it returns what type of executable it is.
|
|
* The type of executable is a property that determines in which
|
|
* subsystem an executable file runs under.
|
|
*
|
|
* lpApplicationName: points to a fully qualified path of the file to test
|
|
* lpBinaryType: points to a variable that will receive the binary type info
|
|
*
|
|
* Binary types returned:
|
|
* SCS_32BIT_BINARY: A win32 based application
|
|
* SCS_DOS_BINARY: An MS-Dos based application
|
|
* SCS_WOW_BINARY: A 16bit OS/2 based application
|
|
* SCS_PIF_BINARY: A PIF file that executes an MS-Dos based app ( Not implemented )
|
|
* SCS_POSIX_BINARY: A POSIX based application ( Not implemented )
|
|
* SCS_OS216_BINARY: A 16bit Windows based application ( Not implemented )
|
|
*
|
|
* Returns TRUE if the file is an executable in which case
|
|
* the value pointed by lpBinaryType is set.
|
|
* Returns FALSE if the file is not an executable or if the function fails.
|
|
*
|
|
* This function is not complete. It can only determine if a file
|
|
* is a DOS, 32bit/16bit Windows executable. Also .COM file support
|
|
* is not complete.
|
|
* To do so it opens the file and reads in the header information
|
|
* if the extended header information is not presend it will
|
|
* assume that that the file is a DOS executable.
|
|
* If the extended header information is present it will
|
|
* determine if the file is an 16 or 32 bit Windows executable
|
|
* by check the flags in the header.
|
|
*/
|
|
BOOL32 WINAPI GetBinaryType32A (LPCSTR lpApplicationName, LPDWORD lpBinaryType)
|
|
{
|
|
BOOL32 ret = FALSE;
|
|
HFILE32 hfile;
|
|
OFSTRUCT ofs;
|
|
IMAGE_DOS_HEADER mz_header;
|
|
char magic[4];
|
|
|
|
TRACE (win32,"%s\n",lpApplicationName);
|
|
|
|
/* Sanity check.
|
|
*/
|
|
if( lpApplicationName == NULL || lpBinaryType == NULL )
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
/* Open the file indicated by lpApplicationName for reading.
|
|
*/
|
|
hfile = OpenFile32( lpApplicationName, &ofs, OF_READ );
|
|
|
|
/* If we cannot read the file return failed.
|
|
*/
|
|
if( hfile == HFILE_ERROR32 )
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
/* Seek to the start of the file and read the DOS header information.
|
|
*/
|
|
if( _llseek32( hfile, 0, SEEK_SET ) >= 0 &&
|
|
_lread32( hfile, &mz_header, sizeof(mz_header) ) == sizeof(mz_header) )
|
|
{
|
|
/* Now that we have the header check the e_magic field
|
|
* to see if this is a dos image.
|
|
*/
|
|
if( mz_header.e_magic == IMAGE_DOS_SIGNATURE )
|
|
{
|
|
BOOL32 lfanewValid = FALSE;
|
|
/* We do have a DOS image so we will now try to seek into
|
|
* the file by the amount indicated by the field
|
|
* "Offset to extended header" and read in the
|
|
* "magic" field information at that location.
|
|
* This will tell us if there is more header information
|
|
* to read or not.
|
|
*/
|
|
|
|
/* But before we do we will make sure that header
|
|
* structure encompasses the "Offset to extended header"
|
|
* field.
|
|
*/
|
|
if( (mz_header.e_cparhdr<<4) >= sizeof(IMAGE_DOS_HEADER) )
|
|
{
|
|
if( ( mz_header.e_crlc == 0 && mz_header.e_lfarlc == 0 ) ||
|
|
( mz_header.e_lfarlc >= sizeof(IMAGE_DOS_HEADER) ) )
|
|
{
|
|
if( mz_header.e_lfanew >= sizeof(IMAGE_DOS_HEADER) &&
|
|
_llseek32( hfile, mz_header.e_lfanew, SEEK_SET ) >= 0 &&
|
|
_lread32( hfile, magic, sizeof(magic) ) == sizeof(magic) )
|
|
{
|
|
lfanewValid = TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( lfanewValid == FALSE )
|
|
{
|
|
/* If we cannot read this "extended header" we will
|
|
* assume that we have a simple DOS executable.
|
|
*/
|
|
FIXME( win32, "Determine if this check is complete enough\n" );
|
|
*lpBinaryType = SCS_DOS_BINARY;
|
|
ret = TRUE;
|
|
}
|
|
else
|
|
{
|
|
/* Reading the magic field succeeded so
|
|
* we will not try to determine what type it is.
|
|
*/
|
|
if( *(DWORD*)magic == IMAGE_NT_SIGNATURE )
|
|
{
|
|
/* This is an NT signature.
|
|
*/
|
|
*lpBinaryType = SCS_32BIT_BINARY;
|
|
ret = TRUE;
|
|
}
|
|
else if( *(WORD*)magic == IMAGE_OS2_SIGNATURE )
|
|
{
|
|
/* The IMAGE_OS2_SIGNATURE indicates that the
|
|
* "extended header is a Windows executable (NE)
|
|
* header. This is a bit misleading, but it is
|
|
* documented in the SDK. ( for more details see
|
|
* the neexe.h file )
|
|
*/
|
|
|
|
/* Now we know that it is a Windows executable
|
|
* we will read in the Windows header and
|
|
* determine if it is a 16/32bit Windows executable.
|
|
*/
|
|
IMAGE_OS2_HEADER ne_header;
|
|
if( _lread32( hfile, &ne_header, sizeof(ne_header) ) == sizeof(ne_header) )
|
|
{
|
|
/* Check the format flag to determine if it is
|
|
* Win32 or not.
|
|
*/
|
|
if( ne_header.format_flags & NE_FFLAGS_WIN32 )
|
|
{
|
|
*lpBinaryType = SCS_32BIT_BINARY;
|
|
ret = TRUE;
|
|
}
|
|
else
|
|
{
|
|
/* We will assume it is a 16bit Windows executable.
|
|
* I'm not sure if this check is sufficient.
|
|
*/
|
|
FIXME( win32, "Determine if this check is complete enough\n" );
|
|
*lpBinaryType = SCS_WOW_BINARY;
|
|
ret = TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Close the file.
|
|
*/
|
|
CloseHandle( hfile );
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
* GetBinaryType32W [KERNEL32.281]
|
|
*
|
|
* See GetBinaryType32A.
|
|
*/
|
|
BOOL32 WINAPI GetBinaryType32W (LPCWSTR lpApplicationName, LPDWORD lpBinaryType)
|
|
{
|
|
BOOL32 ret = FALSE;
|
|
LPSTR strNew = NULL;
|
|
|
|
TRACE (win32,"%s\n",debugstr_w(lpApplicationName));
|
|
|
|
/* Sanity check.
|
|
*/
|
|
if( lpApplicationName == NULL || lpBinaryType == NULL )
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/* Convert the wide string to a ascii string.
|
|
*/
|
|
strNew = HEAP_strdupWtoA( GetProcessHeap(), 0, lpApplicationName );
|
|
|
|
if( strNew != NULL )
|
|
{
|
|
ret = GetBinaryType32A( strNew, lpBinaryType );
|
|
|
|
/* Free the allocated string.
|
|
*/
|
|
HeapFree( GetProcessHeap(), 0, strNew );
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*********************************************************************
|
|
* PK16FNF [KERNEL32.91]
|
|
*
|
|
* This routine fills in the supplied 13-byte (8.3 plus terminator)
|
|
* string buffer with the 8.3 filename of a recently loaded 16-bit
|
|
* module. It is unknown exactly what modules trigger this
|
|
* mechanism or what purpose this serves. Win98 Explorer (and
|
|
* probably also Win95 with IE 4 shell integration) calls this
|
|
* several times during initialization.
|
|
*
|
|
* FIXME: find out what this really does and make it work.
|
|
*/
|
|
void WINAPI PK16FNF(LPSTR strPtr)
|
|
{
|
|
FIXME(win32, "(%p): stub\n", strPtr);
|
|
|
|
/* fill in a fake filename that'll be easy to recognize */
|
|
lstrcpy32A(strPtr, "WINESTUB.FIX");
|
|
}
|