Sweden-Number/win32/kernel32.c

1386 lines
44 KiB
C

/*
* KERNEL32 thunks and other undocumented stuff
*
* Copyright 1997-1998 Marcus Meissner
* Copyright 1998 Ulrich Weigand
*
* BUG: The GetBinaryType implementation is not complete. See
* the function documentation for more details.
*/
#include <string.h>
#include "windef.h"
#include "winbase.h"
#include "wine/winbase16.h"
#include "callback.h"
#include "task.h"
#include "user.h"
#include "heap.h"
#include "module.h"
#include "neexe.h"
#include "process.h"
#include "stackframe.h"
#include "heap.h"
#include "selectors.h"
#include "task.h"
#include "win.h"
#include "file.h"
#include "debug.h"
#include "flatthunk.h"
#include "syslevel.h"
#include "winerror.h"
/***********************************************************************
* *
* Win95 internal thunks *
* *
***********************************************************************/
/***********************************************************************
* Generates a FT_Prolog call.
*
* 0FB6D1 movzbl edx,cl
* 8B1495xxxxxxxx mov edx,[4*edx + targetTable]
* 68xxxxxxxx push FT_Prolog
* C3 lret
*/
static void _write_ftprolog(LPBYTE relayCode ,DWORD *targetTable) {
LPBYTE x;
x = relayCode;
*x++ = 0x0f;*x++=0xb6;*x++=0xd1; /* movzbl edx,cl */
*x++ = 0x8B;*x++=0x14;*x++=0x95;*(DWORD**)x= targetTable;
x+=4; /* mov edx, [4*edx + targetTable] */
*x++ = 0x68; *(DWORD*)x = (DWORD)GetProcAddress32(GetModuleHandle32A("KERNEL32"),"FT_Prolog");
x+=4; /* push FT_Prolog */
*x++ = 0xC3; /* lret */
/* fill rest with 0xCC / int 3 */
}
/***********************************************************************
* _write_qtthunk (internal)
* Generates a QT_Thunk style call.
*
* 33C9 xor ecx, ecx
* 8A4DFC mov cl , [ebp-04]
* 8B148Dxxxxxxxx mov edx, [4*ecx + targetTable]
* B8yyyyyyyy mov eax, QT_Thunk
* FFE0 jmp eax
*/
static void _write_qtthunk(
LPBYTE relayCode, /* [in] start of QT_Thunk stub */
DWORD *targetTable /* [in] start of thunk (for index lookup) */
) {
LPBYTE x;
x = relayCode;
*x++ = 0x33;*x++=0xC9; /* xor ecx,ecx */
*x++ = 0x8A;*x++=0x4D;*x++=0xFC; /* movb cl,[ebp-04] */
*x++ = 0x8B;*x++=0x14;*x++=0x8D;*(DWORD**)x= targetTable;
x+=4; /* mov edx, [4*ecx + targetTable */
*x++ = 0xB8; *(DWORD*)x = (DWORD)GetProcAddress32(GetModuleHandle32A("KERNEL32"),"QT_Thunk");
x+=4; /* mov eax , QT_Thunk */
*x++ = 0xFF; *x++ = 0xE0; /* jmp eax */
/* should fill the rest of the 32 bytes with 0xCC */
}
/***********************************************************************
* _loadthunk
*/
static LPVOID _loadthunk(LPCSTR module, LPCSTR func, LPCSTR module32,
struct ThunkDataCommon *TD32, DWORD checksum)
{
struct ThunkDataCommon *TD16;
HMODULE32 hmod;
int ordinal;
if ((hmod = LoadLibrary16(module)) <= 32)
{
ERR(thunk, "(%s, %s, %s): Unable to load '%s', error %d\n",
module, func, module32, module, hmod);
return 0;
}
if ( !(ordinal = NE_GetOrdinal(hmod, func))
|| !(TD16 = PTR_SEG_TO_LIN(NE_GetEntryPointEx(hmod, ordinal, FALSE))))
{
ERR(thunk, "(%s, %s, %s): Unable to find '%s'\n",
module, func, module32, func);
return 0;
}
if (TD32 && memcmp(TD16->magic, TD32->magic, 4))
{
ERR(thunk, "(%s, %s, %s): Bad magic %c%c%c%c (should be %c%c%c%c)\n",
module, func, module32,
TD16->magic[0], TD16->magic[1], TD16->magic[2], TD16->magic[3],
TD32->magic[0], TD32->magic[1], TD32->magic[2], TD32->magic[3]);
return 0;
}
if (TD32 && TD16->checksum != TD32->checksum)
{
ERR(thunk, "(%s, %s, %s): Wrong checksum %08lx (should be %08lx)\n",
module, func, module32, TD16->checksum, TD32->checksum);
return 0;
}
if (!TD32 && checksum && checksum != *(LPDWORD)TD16)
{
ERR(thunk, "(%s, %s, %s): Wrong checksum %08lx (should be %08lx)\n",
module, func, module32, *(LPDWORD)TD16, checksum);
return 0;
}
return TD16;
}
/***********************************************************************
* GetThunkStuff (KERNEL32.53)
*/
LPVOID WINAPI GetThunkStuff(LPSTR module, LPSTR func)
{
return _loadthunk(module, func, "<kernel>", NULL, 0L);
}
/***********************************************************************
* GetThunkBuff (KERNEL32.52)
* Returns a pointer to ThkBuf in the 16bit library SYSTHUNK.DLL.
*/
LPVOID WINAPI GetThunkBuff(void)
{
return GetThunkStuff("SYSTHUNK.DLL", "ThkBuf");
}
/***********************************************************************
* ThunkConnect32 (KERNEL32)
* Connects a 32bit and a 16bit thunkbuffer.
*/
UINT32 WINAPI ThunkConnect32(
struct ThunkDataCommon *TD, /* [in/out] thunkbuffer */
LPSTR thunkfun16, /* [in] win16 thunkfunction */
LPSTR module16, /* [in] name of win16 dll */
LPSTR module32, /* [in] name of win32 dll */
HMODULE32 hmod32, /* [in] hmodule of win32 dll */
DWORD dwReason /* [in] initialisation argument */
) {
BOOL32 directionSL;
if (!lstrncmp32A(TD->magic, "SL01", 4))
{
directionSL = TRUE;
TRACE(thunk, "SL01 thunk %s (%lx) <- %s (%s), Reason: %ld\n",
module32, (DWORD)TD, module16, thunkfun16, dwReason);
}
else if (!lstrncmp32A(TD->magic, "LS01", 4))
{
directionSL = FALSE;
TRACE(thunk, "LS01 thunk %s (%lx) -> %s (%s), Reason: %ld\n",
module32, (DWORD)TD, module16, thunkfun16, dwReason);
}
else
{
ERR(thunk, "Invalid magic %c%c%c%c\n",
TD->magic[0], TD->magic[1], TD->magic[2], TD->magic[3]);
return 0;
}
switch (dwReason)
{
case DLL_PROCESS_ATTACH:
{
struct ThunkDataCommon *TD16;
if (!(TD16 = _loadthunk(module16, thunkfun16, module32, TD, 0L)))
return 0;
if (directionSL)
{
struct ThunkDataSL32 *SL32 = (struct ThunkDataSL32 *)TD;
struct ThunkDataSL16 *SL16 = (struct ThunkDataSL16 *)TD16;
struct SLTargetDB *tdb;
if (SL16->fpData == NULL)
{
ERR(thunk, "ThunkConnect16 was not called!\n");
return 0;
}
SL32->data = SL16->fpData;
tdb = HeapAlloc(GetProcessHeap(), 0, sizeof(*tdb));
tdb->process = PROCESS_Current();
tdb->targetTable = (DWORD *)(thunkfun16 + SL32->offsetTargetTable);
tdb->next = SL32->data->targetDB; /* FIXME: not thread-safe! */
SL32->data->targetDB = tdb;
TRACE(thunk, "Process %08lx allocated TargetDB entry for ThunkDataSL %08lx\n",
(DWORD)PROCESS_Current(), (DWORD)SL32->data);
}
else
{
struct ThunkDataLS32 *LS32 = (struct ThunkDataLS32 *)TD;
struct ThunkDataLS16 *LS16 = (struct ThunkDataLS16 *)TD16;
LS32->targetTable = PTR_SEG_TO_LIN(LS16->targetTable);
/* write QT_Thunk and FT_Prolog stubs */
_write_qtthunk ((LPBYTE)TD + LS32->offsetQTThunk, LS32->targetTable);
_write_ftprolog((LPBYTE)TD + LS32->offsetFTProlog, LS32->targetTable);
}
break;
}
case DLL_PROCESS_DETACH:
/* FIXME: cleanup */
break;
}
return 1;
}
/**********************************************************************
* QT_Thunk (KERNEL32)
*
* The target address is in EDX.
* The 16 bit arguments start at ESP+4.
* The number of 16bit argumentbytes is EBP-ESP-0x44 (68 Byte thunksetup).
* [ok]
*/
REGS_ENTRYPOINT(QT_Thunk)
{
CONTEXT context16;
DWORD argsize;
THDB *thdb = THREAD_Current();
memcpy(&context16,context,sizeof(context16));
CS_reg(&context16) = HIWORD(EDX_reg(context));
IP_reg(&context16) = LOWORD(EDX_reg(context));
EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
+ (WORD)&((STACK16FRAME*)0)->bp;
argsize = EBP_reg(context)-ESP_reg(context)-0x44;
memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize,
(LPBYTE)ESP_reg(context)+4, argsize );
EAX_reg(context) = Callbacks->CallRegisterShortProc( &context16, argsize );
EDX_reg(context) = HIWORD(EAX_reg(context));
EAX_reg(context) = LOWORD(EAX_reg(context));
}
/**********************************************************************
* FT_Prolog (KERNEL32.233)
*
* The set of FT_... thunk routines is used instead of QT_Thunk,
* if structures have to be converted from 32-bit to 16-bit
* (change of member alignment, conversion of members).
*
* The thunk function (as created by the thunk compiler) calls
* FT_Prolog at the beginning, to set up a stack frame and
* allocate a 64 byte buffer on the stack.
* The input parameters (target address and some flags) are
* saved for later use by FT_Thunk.
*
* Input: EDX 16-bit target address (SEGPTR)
* CX bits 0..7 target number (in target table)
* bits 8..9 some flags (unclear???)
* bits 10..15 number of DWORD arguments
*
* Output: A new stackframe is created, and a 64 byte buffer
* allocated on the stack. The layout of the stack
* on return is as follows:
*
* (ebp+4) return address to caller of thunk function
* (ebp) old EBP
* (ebp-4) saved EBX register of caller
* (ebp-8) saved ESI register of caller
* (ebp-12) saved EDI register of caller
* (ebp-16) saved ECX register, containing flags
* (ebp-20) bitmap containing parameters that are to be converted
* by FT_Thunk; it is initialized to 0 by FT_Prolog and
* filled in by the thunk code before calling FT_Thunk
* (ebp-24)
* ... (unclear)
* (ebp-44)
* (ebp-48) saved EAX register of caller (unclear, never restored???)
* (ebp-52) saved EDX register, containing 16-bit thunk target
* (ebp-56)
* ... (unclear)
* (ebp-64)
*
* ESP is EBP-68 on return.
*
*/
REGS_ENTRYPOINT(FT_Prolog)
{
/* Pop return address to thunk code */
EIP_reg(context) = STACK32_POP(context);
/* Build stack frame */
STACK32_PUSH(context, EBP_reg(context));
EBP_reg(context) = ESP_reg(context);
/* Allocate 64-byte Thunk Buffer */
ESP_reg(context) -= 64;
memset((char *)ESP_reg(context), '\0', 64);
/* Store Flags (ECX) and Target Address (EDX) */
/* Save other registers to be restored later */
*(DWORD *)(EBP_reg(context) - 4) = EBX_reg(context);
*(DWORD *)(EBP_reg(context) - 8) = ESI_reg(context);
*(DWORD *)(EBP_reg(context) - 12) = EDI_reg(context);
*(DWORD *)(EBP_reg(context) - 16) = ECX_reg(context);
*(DWORD *)(EBP_reg(context) - 48) = EAX_reg(context);
*(DWORD *)(EBP_reg(context) - 52) = EDX_reg(context);
/* Push return address back onto stack */
STACK32_PUSH(context, EIP_reg(context));
}
/**********************************************************************
* FT_Thunk (KERNEL32.234)
*
* This routine performs the actual call to 16-bit code,
* similar to QT_Thunk. The differences are:
* - The call target is taken from the buffer created by FT_Prolog
* - Those arguments requested by the thunk code (by setting the
* corresponding bit in the bitmap at EBP-20) are converted
* from 32-bit pointers to segmented pointers (those pointers
* are guaranteed to point to structures copied to the stack
* by the thunk code, so we always use the 16-bit stack selector
* for those addresses).
*
* The bit #i of EBP-20 corresponds here to the DWORD starting at
* ESP+4 + 2*i.
*
* FIXME: It is unclear what happens if there are more than 32 WORDs
* of arguments, so that the single DWORD bitmap is no longer
* sufficient ...
*/
REGS_ENTRYPOINT(FT_Thunk)
{
DWORD mapESPrelative = *(DWORD *)(EBP_reg(context) - 20);
DWORD callTarget = *(DWORD *)(EBP_reg(context) - 52);
CONTEXT context16;
DWORD i, argsize;
LPBYTE newstack, oldstack;
THDB *thdb = THREAD_Current();
memcpy(&context16,context,sizeof(context16));
CS_reg(&context16) = HIWORD(callTarget);
IP_reg(&context16) = LOWORD(callTarget);
EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
+ (WORD)&((STACK16FRAME*)0)->bp;
argsize = EBP_reg(context)-ESP_reg(context)-0x44;
newstack = ((LPBYTE)THREAD_STACK16(thdb))-argsize;
oldstack = (LPBYTE)ESP_reg(context)+4;
memcpy( newstack, oldstack, argsize );
for (i = 0; i < 32; i++) /* NOTE: What about > 32 arguments? */
if (mapESPrelative & (1 << i))
{
SEGPTR *arg = (SEGPTR *)(newstack + 2*i);
*arg = PTR_SEG_OFF_TO_SEGPTR(SELECTOROF(thdb->cur_stack),
OFFSETOF(thdb->cur_stack) - argsize
+ (*(LPBYTE *)arg - oldstack));
}
EAX_reg(context) = Callbacks->CallRegisterShortProc( &context16, argsize );
EDX_reg(context) = HIWORD(EAX_reg(context));
EAX_reg(context) = LOWORD(EAX_reg(context));
}
/**********************************************************************
* FT_ExitNN (KERNEL32.218 - 232)
*
* One of the FT_ExitNN functions is called at the end of the thunk code.
* It removes the stack frame created by FT_Prolog, moves the function
* return from EBX to EAX (yes, FT_Thunk did use EAX for the return
* value, but the thunk code has moved it from EAX to EBX in the
* meantime ... :-), restores the caller's EBX, ESI, and EDI registers,
* and perform a return to the CALLER of the thunk code (while removing
* the given number of arguments from the caller's stack).
*/
static void FT_Exit(CONTEXT *context, int nPopArgs)
{
/* Return value is in EBX */
EAX_reg(context) = EBX_reg(context);
/* Restore EBX, ESI, and EDI registers */
EBX_reg(context) = *(DWORD *)(EBP_reg(context) - 4);
ESI_reg(context) = *(DWORD *)(EBP_reg(context) - 8);
EDI_reg(context) = *(DWORD *)(EBP_reg(context) - 12);
/* Clean up stack frame */
ESP_reg(context) = EBP_reg(context);
EBP_reg(context) = STACK32_POP(context);
/* Pop return address to CALLER of thunk code */
EIP_reg(context) = STACK32_POP(context);
/* Remove arguments */
ESP_reg(context) += nPopArgs;
/* Push return address back onto stack */
STACK32_PUSH(context, EIP_reg(context));
}
REGS_ENTRYPOINT(FT_Exit0) { FT_Exit(context, 0); }
REGS_ENTRYPOINT(FT_Exit4) { FT_Exit(context, 4); }
REGS_ENTRYPOINT(FT_Exit8) { FT_Exit(context, 8); }
REGS_ENTRYPOINT(FT_Exit12) { FT_Exit(context, 12); }
REGS_ENTRYPOINT(FT_Exit16) { FT_Exit(context, 16); }
REGS_ENTRYPOINT(FT_Exit20) { FT_Exit(context, 20); }
REGS_ENTRYPOINT(FT_Exit24) { FT_Exit(context, 24); }
REGS_ENTRYPOINT(FT_Exit28) { FT_Exit(context, 28); }
REGS_ENTRYPOINT(FT_Exit32) { FT_Exit(context, 32); }
REGS_ENTRYPOINT(FT_Exit36) { FT_Exit(context, 36); }
REGS_ENTRYPOINT(FT_Exit40) { FT_Exit(context, 40); }
REGS_ENTRYPOINT(FT_Exit44) { FT_Exit(context, 44); }
REGS_ENTRYPOINT(FT_Exit48) { FT_Exit(context, 48); }
REGS_ENTRYPOINT(FT_Exit52) { FT_Exit(context, 52); }
REGS_ENTRYPOINT(FT_Exit56) { FT_Exit(context, 56); }
/**********************************************************************
* WOWCallback16 (KERNEL32.62)(WOW32.2)
* Calls a win16 function with a single DWORD argument.
* RETURNS
* the return value
*/
DWORD WINAPI WOWCallback16(
FARPROC16 fproc, /* [in] win16 function to call */
DWORD arg /* [in] single DWORD argument to function */
) {
DWORD ret;
TRACE(thunk,"(%p,0x%08lx)...\n",fproc,arg);
ret = Callbacks->CallWOWCallbackProc(fproc,arg);
TRACE(thunk,"... returns %ld\n",ret);
return ret;
}
/**********************************************************************
* WOWCallback16Ex (KERNEL32.55)(WOW32.3)
* Calls a function in 16bit code.
* RETURNS
* TRUE for success
*/
BOOL32 WINAPI WOWCallback16Ex(
FARPROC16 vpfn16, /* [in] win16 function to call */
DWORD dwFlags, /* [in] flags */
DWORD cbArgs, /* [in] nr of arguments */
LPVOID pArgs, /* [in] pointer to arguments (LPDWORD) */
LPDWORD pdwRetCode /* [out] return value of win16 function */
) {
return Callbacks->CallWOWCallback16Ex(vpfn16,dwFlags,cbArgs,pArgs,pdwRetCode);
}
/***********************************************************************
* ThunkInitLS (KERNEL32.43)
* A thunkbuffer link routine
* The thunkbuf looks like:
*
* 00: DWORD length ? don't know exactly
* 04: SEGPTR ptr ? where does it point to?
* The pointer ptr is written into the first DWORD of 'thunk'.
* (probably correct implemented)
* [ok probably]
* RETURNS
* segmented pointer to thunk?
*/
DWORD WINAPI ThunkInitLS(
LPDWORD thunk, /* [in] win32 thunk */
LPCSTR thkbuf, /* [in] thkbuffer name in win16 dll */
DWORD len, /* [in] thkbuffer length */
LPCSTR dll16, /* [in] name of win16 dll */
LPCSTR dll32 /* [in] name of win32 dll (FIXME: not used?) */
) {
LPDWORD addr;
if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len )))
return 0;
if (!addr[1])
return 0;
*(DWORD*)thunk = addr[1];
return addr[1];
}
/***********************************************************************
* Common32ThkLS (KERNEL32.45)
*
* This is another 32->16 thunk, independent of the QT_Thunk/FT_Thunk
* style thunks. The basic difference is that the parameter conversion
* is done completely on the *16-bit* side here. Thus we do not call
* the 16-bit target directly, but call a common entry point instead.
* This entry function then calls the target according to the target
* number passed in the DI register.
*
* Input: EAX SEGPTR to the common 16-bit entry point
* CX offset in thunk table (target number * 4)
* DX error return value if execution fails (unclear???)
* EDX.HI number of DWORD parameters
*
* (Note that we need to move the thunk table offset from CX to DI !)
*
* The called 16-bit stub expects its stack to look like this:
* ...
* (esp+40) 32-bit arguments
* ...
* (esp+8) 32 byte of stack space available as buffer
* (esp) 8 byte return address for use with 0x66 lret
*
* The called 16-bit stub uses a 0x66 lret to return to 32-bit code,
* and uses the EAX register to return a DWORD return value.
* Thus we need to use a special assembly glue routine
* (CallRegisterLongProc instead of CallRegisterShortProc).
*
* Finally, we return to the caller, popping the arguments off
* the stack.
*
* FIXME: The called function uses EBX to return the number of
* arguments that are to be popped off the caller's stack.
* This is clobbered by the assembly glue, so we simply use
* the original EDX.HI to get the number of arguments.
* (Those two values should be equal anyway ...?)
*
*/
REGS_ENTRYPOINT(Common32ThkLS)
{
CONTEXT context16;
DWORD argsize;
THDB *thdb = THREAD_Current();
memcpy(&context16,context,sizeof(context16));
DI_reg(&context16) = CX_reg(context);
CS_reg(&context16) = HIWORD(EAX_reg(context));
IP_reg(&context16) = LOWORD(EAX_reg(context));
EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
+ (WORD)&((STACK16FRAME*)0)->bp;
argsize = HIWORD(EDX_reg(context)) * 4;
/* FIXME: hack for stupid USER32 CallbackGlueLS routine */
if (EDX_reg(context) == EIP_reg(context))
argsize = 6 * 4;
memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize,
(LPBYTE)ESP_reg(context)+4, argsize );
EAX_reg(context) = Callbacks->CallRegisterLongProc(&context16, argsize + 32);
/* Clean up caller's stack frame */
EIP_reg(context) = STACK32_POP(context);
ESP_reg(context) += argsize;
STACK32_PUSH(context, EIP_reg(context));
}
/***********************************************************************
* OT_32ThkLSF (KERNEL32.40)
*
* YET Another 32->16 thunk. The difference to Common32ThkLS is that
* argument processing is done on both the 32-bit and the 16-bit side:
* The 32-bit side prepares arguments, copying them onto the stack.
*
* When this routine is called, the first word on the stack is the
* number of argument bytes prepared by the 32-bit code, and EDX
* contains the 16-bit target address.
*
* The called 16-bit routine is another relaycode, doing further
* argument processing and then calling the real 16-bit target
* whose address is stored at [bp-04].
*
* The call proceeds using a normal CallRegisterShortProc.
* After return from the 16-bit relaycode, the arguments need
* to be copied *back* to the 32-bit stack, since the 32-bit
* relaycode processes output parameters.
*
* Note that we copy twice the number of arguments, since some of the
* 16-bit relaycodes in SYSTHUNK.DLL directly access the original
* arguments of the caller!
*
* (Note that this function seems only to be used for
* OLECLI32 -> OLECLI and OLESVR32 -> OLESVR thunking.)
*/
REGS_ENTRYPOINT(OT_32ThkLSF)
{
CONTEXT context16;
DWORD argsize;
THDB *thdb = THREAD_Current();
memcpy(&context16,context,sizeof(context16));
CS_reg(&context16) = HIWORD(EDX_reg(context));
IP_reg(&context16) = LOWORD(EDX_reg(context));
EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
+ (WORD)&((STACK16FRAME*)0)->bp;
argsize = 2 * *(WORD *)(ESP_reg(context) + 4) + 2;
memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize,
(LPBYTE)ESP_reg(context)+4, argsize );
EAX_reg(context) = Callbacks->CallRegisterShortProc(&context16, argsize);
memcpy( (LPBYTE)ESP_reg(context)+4,
((LPBYTE)THREAD_STACK16(thdb))-argsize, argsize );
}
/***********************************************************************
* ThunkInitLSF (KERNEL32.41)
* A thunk setup routine.
* Expects a pointer to a preinitialized thunkbuffer in the first argument
* looking like:
* 00..03: unknown (pointer, check _41, _43, _46)
* 04: EB1E jmp +0x20
*
* 06..23: unknown (space for replacement code, check .90)
*
* 24:>E800000000 call offset 29
* 29:>58 pop eax ( target of call )
* 2A: 2D25000000 sub eax,0x00000025 ( now points to offset 4 )
* 2F: BAxxxxxxxx mov edx,xxxxxxxx
* 34: 68yyyyyyyy push KERNEL32.90
* 39: C3 ret
*
* 3A: EB1E jmp +0x20
* 3E ... 59: unknown (space for replacement code?)
* 5A: E8xxxxxxxx call <32bitoffset xxxxxxxx>
* 5F: 5A pop edx
* 60: 81EA25xxxxxx sub edx, 0x25xxxxxx
* 66: 52 push edx
* 67: 68xxxxxxxx push xxxxxxxx
* 6C: 68yyyyyyyy push KERNEL32.89
* 71: C3 ret
* 72: end?
* This function checks if the code is there, and replaces the yyyyyyyy entries
* by the functionpointers.
* The thunkbuf looks like:
*
* 00: DWORD length ? don't know exactly
* 04: SEGPTR ptr ? where does it point to?
* The segpointer ptr is written into the first DWORD of 'thunk'.
* [ok probably]
* RETURNS
* unclear, pointer to win16 thkbuffer?
*/
LPVOID WINAPI ThunkInitLSF(
LPBYTE thunk, /* [in] win32 thunk */
LPCSTR thkbuf, /* [in] thkbuffer name in win16 dll */
DWORD len, /* [in] length of thkbuffer */
LPCSTR dll16, /* [in] name of win16 dll */
LPCSTR dll32 /* [in] name of win32 dll */
) {
HMODULE32 hkrnl32 = GetModuleHandle32A("KERNEL32");
LPDWORD addr,addr2;
/* FIXME: add checks for valid code ... */
/* write pointers to kernel32.89 and kernel32.90 (+ordinal base of 1) */
*(DWORD*)(thunk+0x35) = (DWORD)GetProcAddress32(hkrnl32,(LPSTR)90);
*(DWORD*)(thunk+0x6D) = (DWORD)GetProcAddress32(hkrnl32,(LPSTR)89);
if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len )))
return 0;
addr2 = PTR_SEG_TO_LIN(addr[1]);
if (HIWORD(addr2))
*(DWORD*)thunk = (DWORD)addr2;
return addr2;
}
/***********************************************************************
* FT_PrologPrime (KERNEL32.89)
*
* This function is called from the relay code installed by
* ThunkInitLSF. It replaces the location from where it was
* called by a standard FT_Prolog call stub (which is 'primed'
* by inserting the correct target table pointer).
* Finally, it calls that stub.
*
* Input: ECX target number + flags (passed through to FT_Prolog)
* (ESP) offset of location where target table pointer
* is stored, relative to the start of the relay code
* (ESP+4) pointer to start of relay code
* (this is where the FT_Prolog call stub gets written to)
*
* Note: The two DWORD arguments get popped from the stack.
*
*/
REGS_ENTRYPOINT(FT_PrologPrime)
{
DWORD targetTableOffset = STACK32_POP(context);
LPBYTE relayCode = (LPBYTE)STACK32_POP(context);
DWORD *targetTable = *(DWORD **)(relayCode+targetTableOffset);
DWORD targetNr = LOBYTE(ECX_reg(context));
_write_ftprolog(relayCode, targetTable);
/* We should actually call the relay code now, */
/* but we skip it and go directly to FT_Prolog */
EDX_reg(context) = targetTable[targetNr];
__regs_FT_Prolog(context);
}
/***********************************************************************
* QT_ThunkPrime (KERNEL32.90)
*
* This function corresponds to FT_PrologPrime, but installs a
* call stub for QT_Thunk instead.
*
* Input: (EBP-4) target number (passed through to QT_Thunk)
* EDX target table pointer location offset
* EAX start of relay code
*
*/
REGS_ENTRYPOINT(QT_ThunkPrime)
{
DWORD targetTableOffset = EDX_reg(context);
LPBYTE relayCode = (LPBYTE)EAX_reg(context);
DWORD *targetTable = *(DWORD **)(relayCode+targetTableOffset);
DWORD targetNr = LOBYTE(*(DWORD *)(EBP_reg(context) - 4));
_write_qtthunk(relayCode, targetTable);
/* We should actually call the relay code now, */
/* but we skip it and go directly to QT_Thunk */
EDX_reg(context) = targetTable[targetNr];
__regs_QT_Thunk(context);
}
/***********************************************************************
* (KERNEL32.46)
* Another thunkbuf link routine.
* The start of the thunkbuf looks like this:
* 00: DWORD length
* 04: SEGPTR address for thunkbuffer pointer
* [ok probably]
*/
VOID WINAPI ThunkInitSL(
LPBYTE thunk, /* [in] start of thunkbuffer */
LPCSTR thkbuf, /* [in] name/ordinal of thunkbuffer in win16 dll */
DWORD len, /* [in] length of thunkbuffer */
LPCSTR dll16, /* [in] name of win16 dll containing the thkbuf */
LPCSTR dll32 /* [in] win32 dll. FIXME: strange, unused */
) {
LPDWORD addr;
if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len )))
return;
*(DWORD*)PTR_SEG_TO_LIN(addr[1]) = (DWORD)thunk;
}
/**********************************************************************
* SSInit KERNEL.700
* RETURNS
* TRUE for success.
*/
BOOL32 WINAPI SSInit()
{
return TRUE;
}
/**********************************************************************
* SSOnBigStack KERNEL32.87
* Check if thunking is initialized (ss selector set up etc.)
* We do that differently, so just return TRUE.
* [ok]
* RETURNS
* TRUE for success.
*/
BOOL32 WINAPI SSOnBigStack()
{
TRACE(thunk, "Yes, thunking is initialized\n");
return TRUE;
}
/**********************************************************************
* SSCall
* One of the real thunking functions. This one seems to be for 32<->32
* thunks. It should probably be capable of crossing processboundaries.
*
* And YES, I've seen nr=48 (somewhere in the Win95 32<->16 OLE coupling)
* [ok]
*/
DWORD WINAPIV SSCall(
DWORD nr, /* [in] number of argument bytes */
DWORD flags, /* [in] FIXME: flags ? */
FARPROC32 fun, /* [in] function to call */
... /* [in/out] arguments */
) {
DWORD i,ret;
DWORD *args = ((DWORD *)&fun) + 1;
if(TRACE_ON(thunk)){
dbg_decl_str(thunk, 256);
for (i=0;i<nr/4;i++)
dsprintf(thunk,"0x%08lx,",args[i]);
TRACE(thunk,"(%ld,0x%08lx,%p,[%s])\n",
nr,flags,fun,dbg_str(thunk));
}
switch (nr) {
case 0: ret = fun();
break;
case 4: ret = fun(args[0]);
break;
case 8: ret = fun(args[0],args[1]);
break;
case 12: ret = fun(args[0],args[1],args[2]);
break;
case 16: ret = fun(args[0],args[1],args[2],args[3]);
break;
case 20: ret = fun(args[0],args[1],args[2],args[3],args[4]);
break;
case 24: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5]);
break;
case 28: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6]);
break;
case 32: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7]);
break;
case 36: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8]);
break;
case 40: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9]);
break;
case 44: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9],args[10]);
break;
case 48: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9],args[10],args[11]);
break;
default:
WARN(thunk,"Unsupported nr of arguments, %ld\n",nr);
ret = 0;
break;
}
TRACE(thunk," returning %ld ...\n",ret);
return ret;
}
/**********************************************************************
* W32S_BackTo32 (KERNEL32.51)
*/
REGS_ENTRYPOINT(W32S_BackTo32)
{
LPDWORD stack = (LPDWORD)ESP_reg( context );
FARPROC32 proc = (FARPROC32) stack[0];
EAX_reg( context ) = proc( stack[2], stack[3], stack[4], stack[5], stack[6],
stack[7], stack[8], stack[9], stack[10], stack[11] );
EIP_reg( context ) = stack[1];
}
/**********************************************************************
* AllocSLCallback (KERNEL32)
*
* Win95 uses some structchains for callbacks. It allocates them
* in blocks of 100 entries, size 32 bytes each, layout:
* blockstart:
* 0: PTR nextblockstart
* 4: entry *first;
* 8: WORD sel ( start points to blockstart)
* A: WORD unknown
* 100xentry:
* 00..17: Code
* 18: PDB *owning_process;
* 1C: PTR blockstart
*
* We ignore this for now. (Just a note for further developers)
* FIXME: use this method, so we don't waste selectors...
*
* Following code is then generated by AllocSLCallback. The code is 16 bit, so
* the 0x66 prefix switches from word->long registers.
*
* 665A pop edx
* 6668x arg2 x pushl <arg2>
* 6652 push edx
* EAx arg1 x jmpf <arg1>
*
* returns the startaddress of this thunk.
*
* Note, that they look very similair to the ones allocates by THUNK_Alloc.
* RETURNS
* segmented pointer to the start of the thunk
*/
DWORD WINAPI
AllocSLCallback(
DWORD finalizer, /* [in] finalizer function */
DWORD callback /* [in] callback function */
) {
LPBYTE x,thunk = HeapAlloc( GetProcessHeap(), 0, 32 );
WORD sel;
x=thunk;
*x++=0x66;*x++=0x5a; /* popl edx */
*x++=0x66;*x++=0x68;*(DWORD*)x=finalizer;x+=4; /* pushl finalizer */
*x++=0x66;*x++=0x52; /* pushl edx */
*x++=0xea;*(DWORD*)x=callback;x+=4; /* jmpf callback */
*(PDB32**)(thunk+18) = PROCESS_Current();
sel = SELECTOR_AllocBlock( thunk , 32, SEGMENT_CODE, FALSE, FALSE );
return (sel<<16)|0;
}
/**********************************************************************
* FreeSLCallback (KERNEL32.274)
* Frees the specified 16->32 callback
*/
void WINAPI
FreeSLCallback(
DWORD x /* [in] 16 bit callback (segmented pointer?) */
) {
FIXME(win32,"(0x%08lx): stub\n",x);
}
/**********************************************************************
* GetTEBSelectorFS (KERNEL.475)
* Set the 16-bit %fs to the 32-bit %fs (current TEB selector)
*/
VOID WINAPI GetTEBSelectorFS( CONTEXT *context )
{
GET_FS( FS_reg(context) );
}
/**********************************************************************
* KERNEL_431 (KERNEL.431)
* IsPeFormat (W32SYS.2)
* Checks the passed filename if it is a PE format executeable
* RETURNS
* TRUE, if it is.
* FALSE if not.
*/
BOOL16 WINAPI IsPeFormat(
LPSTR fn, /* [in] filename to executeable */
HFILE16 hf16 /* [in] open file, if filename is NULL */
) {
IMAGE_DOS_HEADER mzh;
HFILE32 hf=FILE_GetHandle32(hf16);
OFSTRUCT ofs;
DWORD xmagic;
if (fn) {
hf = OpenFile32(fn,&ofs,OF_READ);
if (hf==HFILE_ERROR32)
return FALSE;
}
_llseek32(hf,0,SEEK_SET);
if (sizeof(mzh)!=_lread32(hf,&mzh,sizeof(mzh))) {
_lclose32(hf);
return FALSE;
}
if (mzh.e_magic!=IMAGE_DOS_SIGNATURE) {
WARN(dosmem,"File has not got dos signature!\n");
_lclose32(hf);
return FALSE;
}
_llseek32(hf,mzh.e_lfanew,SEEK_SET);
if (sizeof(DWORD)!=_lread32(hf,&xmagic,sizeof(DWORD))) {
_lclose32(hf);
return FALSE;
}
_lclose32(hf);
return (xmagic == IMAGE_NT_SIGNATURE);
}
/***********************************************************************
* WOWHandle32 (KERNEL32.57)(WOW32.16)
* Converts a win16 handle of type into the respective win32 handle.
* We currently just return this handle, since most handles are the same
* for win16 and win32.
* RETURNS
* The new handle
*/
HANDLE32 WINAPI WOWHandle32(
WORD handle, /* [in] win16 handle */
WOW_HANDLE_TYPE type /* [in] handle type */
) {
TRACE(win32,"(0x%04x,%d)\n",handle,type);
return (HANDLE32)handle;
}
/***********************************************************************
* K32Thk1632Prolog (KERNEL32.492)
*/
REGS_ENTRYPOINT(K32Thk1632Prolog)
{
LPBYTE code = (LPBYTE)EIP_reg(context) - 5;
/* Arrrgh! SYSTHUNK.DLL just has to re-implement another method
of 16->32 thunks instead of using one of the standard methods!
This means that SYSTHUNK.DLL itself switches to a 32-bit stack,
and does a far call to the 32-bit code segment of OLECLI32/OLESVR32.
Unfortunately, our CallTo/CallFrom mechanism is therefore completely
bypassed, which means it will crash the next time the 32-bit OLE
code thunks down again to 16-bit (this *will* happen!).
The following hack tries to recognize this situation.
This is possible since the called stubs in OLECLI32/OLESVR32 all
look exactly the same:
00 E8xxxxxxxx call K32Thk1632Prolog
05 FF55FC call [ebp-04]
08 E8xxxxxxxx call K32Thk1632Epilog
0D 66CB retf
If we recognize this situation, we try to simulate the actions
of our CallTo/CallFrom mechanism by copying the 16-bit stack
to our 32-bit stack, creating a proper STACK16FRAME and
updating thdb->cur_stack. */
if ( code[5] == 0xFF && code[6] == 0x55 && code[7] == 0xFC
&& code[13] == 0x66 && code[14] == 0xCB)
{
WORD stackSel = NtCurrentTeb()->stack_sel;
DWORD stackBase = GetSelectorBase(stackSel);
THDB *thdb = THREAD_Current();
DWORD argSize = EBP_reg(context) - ESP_reg(context);
char *stack16 = (char *)ESP_reg(context);
char *stack32 = (char *)thdb->cur_stack - argSize;
STACK16FRAME *frame16 = (STACK16FRAME *)stack16 - 1;
TRACE(thunk, "before SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
EBP_reg(context), ESP_reg(context), thdb->cur_stack);
memset(frame16, '\0', sizeof(STACK16FRAME));
frame16->frame32 = (STACK32FRAME *)thdb->cur_stack;
frame16->ebp = EBP_reg(context);
memcpy(stack32, stack16, argSize);
thdb->cur_stack = PTR_SEG_OFF_TO_SEGPTR(stackSel, (DWORD)frame16 - stackBase);
ESP_reg(context) = (DWORD)stack32;
EBP_reg(context) = ESP_reg(context) + argSize;
TRACE(thunk, "after SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
EBP_reg(context), ESP_reg(context), thdb->cur_stack);
}
SYSLEVEL_ReleaseWin16Lock();
}
/***********************************************************************
* K32Thk1632Epilog (KERNEL32.491)
*/
REGS_ENTRYPOINT(K32Thk1632Epilog)
{
LPBYTE code = (LPBYTE)EIP_reg(context) - 13;
SYSLEVEL_RestoreWin16Lock();
/* We undo the SYSTHUNK hack if necessary. See K32Thk1632Prolog. */
if ( code[5] == 0xFF && code[6] == 0x55 && code[7] == 0xFC
&& code[13] == 0x66 && code[14] == 0xCB)
{
THDB *thdb = THREAD_Current();
STACK16FRAME *frame16 = (STACK16FRAME *)PTR_SEG_TO_LIN(thdb->cur_stack);
char *stack16 = (char *)(frame16 + 1);
DWORD argSize = frame16->ebp - (DWORD)stack16;
char *stack32 = (char *)frame16->frame32 - argSize;
DWORD nArgsPopped = ESP_reg(context) - (DWORD)stack32;
TRACE(thunk, "before SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
EBP_reg(context), ESP_reg(context), thdb->cur_stack);
thdb->cur_stack = (DWORD)frame16->frame32;
ESP_reg(context) = (DWORD)stack16 + nArgsPopped;
EBP_reg(context) = frame16->ebp;
TRACE(thunk, "after SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
EBP_reg(context), ESP_reg(context), thdb->cur_stack);
}
}
/***********************************************************************
* UpdateResource32A (KERNEL32.707)
*/
BOOL32 WINAPI UpdateResource32A(
HANDLE32 hUpdate,
LPCSTR lpType,
LPCSTR lpName,
WORD wLanguage,
LPVOID lpData,
DWORD cbData) {
FIXME(win32, ": stub\n");
SetLastError(ERROR_CALL_NOT_IMPLEMENTED);
return FALSE;
}
/***********************************************************************
* UpdateResource32W (KERNEL32.708)
*/
BOOL32 WINAPI UpdateResource32W(
HANDLE32 hUpdate,
LPCWSTR lpType,
LPCWSTR lpName,
WORD wLanguage,
LPVOID lpData,
DWORD cbData) {
FIXME(win32, ": stub\n");
SetLastError(ERROR_CALL_NOT_IMPLEMENTED);
return FALSE;
}
/***********************************************************************
* WaitNamedPipe32A [KERNEL32.725]
*/
BOOL32 WINAPI WaitNamedPipe32A (LPCSTR lpNamedPipeName, DWORD nTimeOut)
{ FIXME (win32,"%s 0x%08lx\n",lpNamedPipeName,nTimeOut);
SetLastError(ERROR_PIPE_NOT_CONNECTED);
return FALSE;
}
/***********************************************************************
* WaitNamedPipe32W [KERNEL32.726]
*/
BOOL32 WINAPI WaitNamedPipe32W (LPCWSTR lpNamedPipeName, DWORD nTimeOut)
{ FIXME (win32,"%s 0x%08lx\n",debugstr_w(lpNamedPipeName),nTimeOut);
SetLastError(ERROR_PIPE_NOT_CONNECTED);
return FALSE;
}
/***********************************************************************
* GetBinaryType32A [KERNEL32.280]
*
* The GetBinaryType function determines whether a file is executable
* or not and if it is it returns what type of executable it is.
* The type of executable is a property that determines in which
* subsystem an executable file runs under.
*
* lpApplicationName: points to a fully qualified path of the file to test
* lpBinaryType: points to a variable that will receive the binary type info
*
* Binary types returned:
* SCS_32BIT_BINARY: A win32 based application
* SCS_DOS_BINARY: An MS-Dos based application
* SCS_WOW_BINARY: A 16bit OS/2 based application
* SCS_PIF_BINARY: A PIF file that executes an MS-Dos based app ( Not implemented )
* SCS_POSIX_BINARY: A POSIX based application ( Not implemented )
* SCS_OS216_BINARY: A 16bit Windows based application ( Not implemented )
*
* Returns TRUE if the file is an executable in which case
* the value pointed by lpBinaryType is set.
* Returns FALSE if the file is not an executable or if the function fails.
*
* This function is not complete. It can only determine if a file
* is a DOS, 32bit/16bit Windows executable. Also .COM file support
* is not complete.
* To do so it opens the file and reads in the header information
* if the extended header information is not presend it will
* assume that that the file is a DOS executable.
* If the extended header information is present it will
* determine if the file is an 16 or 32 bit Windows executable
* by check the flags in the header.
*/
BOOL32 WINAPI GetBinaryType32A (LPCSTR lpApplicationName, LPDWORD lpBinaryType)
{
BOOL32 ret = FALSE;
HFILE32 hfile;
OFSTRUCT ofs;
IMAGE_DOS_HEADER mz_header;
char magic[4];
TRACE (win32,"%s\n",lpApplicationName);
/* Sanity check.
*/
if( lpApplicationName == NULL || lpBinaryType == NULL )
{
return FALSE;
}
/* Open the file indicated by lpApplicationName for reading.
*/
hfile = OpenFile32( lpApplicationName, &ofs, OF_READ );
/* If we cannot read the file return failed.
*/
if( hfile == HFILE_ERROR32 )
{
return FALSE;
}
/* Seek to the start of the file and read the DOS header information.
*/
if( _llseek32( hfile, 0, SEEK_SET ) >= 0 &&
_lread32( hfile, &mz_header, sizeof(mz_header) ) == sizeof(mz_header) )
{
/* Now that we have the header check the e_magic field
* to see if this is a dos image.
*/
if( mz_header.e_magic == IMAGE_DOS_SIGNATURE )
{
BOOL32 lfanewValid = FALSE;
/* We do have a DOS image so we will now try to seek into
* the file by the amount indicated by the field
* "Offset to extended header" and read in the
* "magic" field information at that location.
* This will tell us if there is more header information
* to read or not.
*/
/* But before we do we will make sure that header
* structure encompasses the "Offset to extended header"
* field.
*/
if( (mz_header.e_cparhdr<<4) >= sizeof(IMAGE_DOS_HEADER) )
{
if( ( mz_header.e_crlc == 0 && mz_header.e_lfarlc == 0 ) ||
( mz_header.e_lfarlc >= sizeof(IMAGE_DOS_HEADER) ) )
{
if( mz_header.e_lfanew >= sizeof(IMAGE_DOS_HEADER) &&
_llseek32( hfile, mz_header.e_lfanew, SEEK_SET ) >= 0 &&
_lread32( hfile, magic, sizeof(magic) ) == sizeof(magic) )
{
lfanewValid = TRUE;
}
}
}
if( lfanewValid == FALSE )
{
/* If we cannot read this "extended header" we will
* assume that we have a simple DOS executable.
*/
FIXME( win32, "Determine if this check is complete enough\n" );
*lpBinaryType = SCS_DOS_BINARY;
ret = TRUE;
}
else
{
/* Reading the magic field succeeded so
* we will not try to determine what type it is.
*/
if( *(DWORD*)magic == IMAGE_NT_SIGNATURE )
{
/* This is an NT signature.
*/
*lpBinaryType = SCS_32BIT_BINARY;
ret = TRUE;
}
else if( *(WORD*)magic == IMAGE_OS2_SIGNATURE )
{
/* The IMAGE_OS2_SIGNATURE indicates that the
* "extended header is a Windows executable (NE)
* header. This is a bit misleading, but it is
* documented in the SDK. ( for more details see
* the neexe.h file )
*/
/* Now we know that it is a Windows executable
* we will read in the Windows header and
* determine if it is a 16/32bit Windows executable.
*/
IMAGE_OS2_HEADER ne_header;
if( _lread32( hfile, &ne_header, sizeof(ne_header) ) == sizeof(ne_header) )
{
/* Check the format flag to determine if it is
* Win32 or not.
*/
if( ne_header.format_flags & NE_FFLAGS_WIN32 )
{
*lpBinaryType = SCS_32BIT_BINARY;
ret = TRUE;
}
else
{
/* We will assume it is a 16bit Windows executable.
* I'm not sure if this check is sufficient.
*/
FIXME( win32, "Determine if this check is complete enough\n" );
*lpBinaryType = SCS_WOW_BINARY;
ret = TRUE;
}
}
}
}
}
}
/* Close the file.
*/
CloseHandle( hfile );
return ret;
}
/***********************************************************************
* GetBinaryType32W [KERNEL32.281]
*
* See GetBinaryType32A.
*/
BOOL32 WINAPI GetBinaryType32W (LPCWSTR lpApplicationName, LPDWORD lpBinaryType)
{
BOOL32 ret = FALSE;
LPSTR strNew = NULL;
TRACE (win32,"%s\n",debugstr_w(lpApplicationName));
/* Sanity check.
*/
if( lpApplicationName == NULL || lpBinaryType == NULL )
{
return FALSE;
}
/* Convert the wide string to a ascii string.
*/
strNew = HEAP_strdupWtoA( GetProcessHeap(), 0, lpApplicationName );
if( strNew != NULL )
{
ret = GetBinaryType32A( strNew, lpBinaryType );
/* Free the allocated string.
*/
HeapFree( GetProcessHeap(), 0, strNew );
}
return ret;
}
/*********************************************************************
* PK16FNF [KERNEL32.91]
*
* This routine fills in the supplied 13-byte (8.3 plus terminator)
* string buffer with the 8.3 filename of a recently loaded 16-bit
* module. It is unknown exactly what modules trigger this
* mechanism or what purpose this serves. Win98 Explorer (and
* probably also Win95 with IE 4 shell integration) calls this
* several times during initialization.
*
* FIXME: find out what this really does and make it work.
*/
void WINAPI PK16FNF(LPSTR strPtr)
{
FIXME(win32, "(%p): stub\n", strPtr);
/* fill in a fake filename that'll be easy to recognize */
lstrcpy32A(strPtr, "WINESTUB.FIX");
}