Sweden-Number/programs/regedit/regproc.c

1411 lines
46 KiB
C

/*
* Registry processing routines. Routines, common for registry
* processing frontends.
*
* Copyright 1999 Sylvain St-Germain
* Copyright 2002 Andriy Palamarchuk
* Copyright 2008 Alexander N. Sørnes <alex@thehandofagony.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <io.h>
#include <windows.h>
#include <winnt.h>
#include <winreg.h>
#include <assert.h>
#include <wine/unicode.h>
#include <wine/debug.h>
#include "regproc.h"
WINE_DEFAULT_DEBUG_CHANNEL(regedit);
#define REG_VAL_BUF_SIZE 4096
/* maximal number of characters in hexadecimal data line,
* including the indentation, but not including the '\' character
*/
#define REG_FILE_HEX_LINE_LEN (2 + 25 * 3)
extern const WCHAR* reg_class_namesW[];
static HKEY reg_class_keys[] = {
HKEY_LOCAL_MACHINE, HKEY_USERS, HKEY_CLASSES_ROOT,
HKEY_CURRENT_CONFIG, HKEY_CURRENT_USER, HKEY_DYN_DATA
};
#define REG_CLASS_NUMBER (sizeof(reg_class_keys) / sizeof(reg_class_keys[0]))
/* return values */
#define NOT_ENOUGH_MEMORY 1
#define IO_ERROR 2
/* processing macros */
/* common check of memory allocation results */
#define CHECK_ENOUGH_MEMORY(p) \
if (!(p)) \
{ \
output_message(STRING_OUT_OF_MEMORY, __FILE__, __LINE__); \
exit(NOT_ENOUGH_MEMORY); \
}
/******************************************************************************
* Allocates memory and converts input from multibyte to wide chars
* Returned string must be freed by the caller
*/
static WCHAR* GetWideString(const char* strA)
{
if(strA)
{
WCHAR* strW;
int len = MultiByteToWideChar(CP_ACP, 0, strA, -1, NULL, 0);
strW = HeapAlloc(GetProcessHeap(), 0, len * sizeof(WCHAR));
CHECK_ENOUGH_MEMORY(strW);
MultiByteToWideChar(CP_ACP, 0, strA, -1, strW, len);
return strW;
}
return NULL;
}
/******************************************************************************
* Allocates memory and converts input from multibyte to wide chars
* Returned string must be freed by the caller
*/
static WCHAR* GetWideStringN(const char* strA, int chars, DWORD *len)
{
if(strA)
{
WCHAR* strW;
*len = MultiByteToWideChar(CP_ACP, 0, strA, chars, NULL, 0);
strW = HeapAlloc(GetProcessHeap(), 0, *len * sizeof(WCHAR));
CHECK_ENOUGH_MEMORY(strW);
MultiByteToWideChar(CP_ACP, 0, strA, chars, strW, *len);
return strW;
}
*len = 0;
return NULL;
}
/******************************************************************************
* Allocates memory and converts input from wide chars to multibyte
* Returned string must be freed by the caller
*/
char* GetMultiByteString(const WCHAR* strW)
{
if(strW)
{
char* strA;
int len = WideCharToMultiByte(CP_ACP, 0, strW, -1, NULL, 0, NULL, NULL);
strA = HeapAlloc(GetProcessHeap(), 0, len);
CHECK_ENOUGH_MEMORY(strA);
WideCharToMultiByte(CP_ACP, 0, strW, -1, strA, len, NULL, NULL);
return strA;
}
return NULL;
}
/******************************************************************************
* Allocates memory and converts input from wide chars to multibyte
* Returned string must be freed by the caller
*/
static char* GetMultiByteStringN(const WCHAR* strW, int chars, DWORD* len)
{
if(strW)
{
char* strA;
*len = WideCharToMultiByte(CP_ACP, 0, strW, chars, NULL, 0, NULL, NULL);
strA = HeapAlloc(GetProcessHeap(), 0, *len);
CHECK_ENOUGH_MEMORY(strA);
WideCharToMultiByte(CP_ACP, 0, strW, chars, strA, *len, NULL, NULL);
return strA;
}
*len = 0;
return NULL;
}
/******************************************************************************
* Converts a hex representation of a DWORD into a DWORD.
*/
static BOOL convertHexToDWord(WCHAR* str, DWORD *dw)
{
char buf[9];
char dummy;
WideCharToMultiByte(CP_ACP, 0, str, -1, buf, 9, NULL, NULL);
if (lstrlenW(str) > 8 || sscanf(buf, "%x%c", dw, &dummy) != 1) {
output_message(STRING_INVALID_HEX);
return FALSE;
}
return TRUE;
}
/******************************************************************************
* Converts a hex comma separated values list into a binary string.
*/
static BYTE* convertHexCSVToHex(WCHAR *str, DWORD *size)
{
WCHAR *s;
BYTE *d, *data;
/* The worst case is 1 digit + 1 comma per byte */
*size=(lstrlenW(str)+1)/2;
data=HeapAlloc(GetProcessHeap(), 0, *size);
CHECK_ENOUGH_MEMORY(data);
s = str;
d = data;
*size=0;
while (*s != '\0') {
UINT wc;
WCHAR *end;
wc = strtoulW(s,&end,16);
if (end == s || wc > 0xff || (*end && *end != ',')) {
output_message(STRING_CSV_HEX_ERROR, s);
HeapFree(GetProcessHeap(), 0, data);
return NULL;
}
*d++ =(BYTE)wc;
(*size)++;
if (*end) end++;
s = end;
}
return data;
}
/******************************************************************************
* This function returns the HKEY associated with the data type encoded in the
* value. It modifies the input parameter (key value) in order to skip this
* "now useless" data type information.
*
* Note: Updated based on the algorithm used in 'server/registry.c'
*/
static DWORD getDataType(LPWSTR *lpValue, DWORD* parse_type)
{
struct data_type { const WCHAR *tag; int len; int type; int parse_type; };
static const WCHAR quote[] = {'"'};
static const WCHAR str[] = {'s','t','r',':','"'};
static const WCHAR str2[] = {'s','t','r','(','2',')',':','"'};
static const WCHAR hex[] = {'h','e','x',':'};
static const WCHAR dword[] = {'d','w','o','r','d',':'};
static const WCHAR hexp[] = {'h','e','x','('};
static const struct data_type data_types[] = { /* actual type */ /* type to assume for parsing */
{ quote, 1, REG_SZ, REG_SZ },
{ str, 5, REG_SZ, REG_SZ },
{ str2, 8, REG_EXPAND_SZ, REG_SZ },
{ hex, 4, REG_BINARY, REG_BINARY },
{ dword, 6, REG_DWORD, REG_DWORD },
{ hexp, 4, -1, REG_BINARY },
{ NULL, 0, 0, 0 }
};
const struct data_type *ptr;
int type;
for (ptr = data_types; ptr->tag; ptr++) {
if (strncmpW( ptr->tag, *lpValue, ptr->len ))
continue;
/* Found! */
*parse_type = ptr->parse_type;
type=ptr->type;
*lpValue+=ptr->len;
if (type == -1) {
WCHAR* end;
/* "hex(xx):" is special */
type = (int)strtoulW( *lpValue , &end, 16 );
if (**lpValue=='\0' || *end!=')' || *(end+1)!=':') {
type=REG_NONE;
} else {
*lpValue = end + 2;
}
}
return type;
}
*parse_type=REG_NONE;
return REG_NONE;
}
/******************************************************************************
* Replaces escape sequences with the characters.
*/
static int REGPROC_unescape_string(WCHAR* str)
{
int str_idx = 0; /* current character under analysis */
int val_idx = 0; /* the last character of the unescaped string */
int len = lstrlenW(str);
for (str_idx = 0; str_idx < len; str_idx++, val_idx++) {
if (str[str_idx] == '\\') {
str_idx++;
switch (str[str_idx]) {
case 'n':
str[val_idx] = '\n';
break;
case 'r':
str[val_idx] = '\r';
break;
case '0':
str[val_idx] = '\0';
break;
case '\\':
case '"':
str[val_idx] = str[str_idx];
break;
default:
output_message(STRING_ESCAPE_SEQUENCE, str[str_idx]);
str[val_idx] = str[str_idx];
break;
}
} else {
str[val_idx] = str[str_idx];
}
}
str[val_idx] = '\0';
return val_idx;
}
static BOOL parseKeyName(LPWSTR lpKeyName, HKEY *hKey, LPWSTR *lpKeyPath)
{
WCHAR* lpSlash = NULL;
unsigned int i, len;
if (lpKeyName == NULL)
return FALSE;
for(i = 0; *(lpKeyName+i) != 0; i++)
{
if(*(lpKeyName+i) == '\\')
{
lpSlash = lpKeyName+i;
break;
}
}
if (lpSlash)
{
len = lpSlash-lpKeyName;
}
else
{
len = lstrlenW(lpKeyName);
lpSlash = lpKeyName+len;
}
*hKey = NULL;
for (i = 0; i < REG_CLASS_NUMBER; i++) {
if (CompareStringW(LOCALE_USER_DEFAULT, 0, lpKeyName, len, reg_class_namesW[i], -1) == CSTR_EQUAL &&
len == lstrlenW(reg_class_namesW[i])) {
*hKey = reg_class_keys[i];
break;
}
}
if (*hKey == NULL)
return FALSE;
if (*lpSlash != '\0')
lpSlash++;
*lpKeyPath = lpSlash;
return TRUE;
}
/* Globals used by the setValue() & co */
static WCHAR *currentKeyName;
static HKEY currentKeyHandle = NULL;
/******************************************************************************
* Sets the value with name val_name to the data in val_data for the currently
* opened key.
*
* Parameters:
* val_name - name of the registry value
* val_data - registry value data
*/
static LONG setValue(WCHAR* val_name, WCHAR* val_data, BOOL is_unicode)
{
LONG res;
DWORD dwDataType, dwParseType;
LPBYTE lpbData;
DWORD dwData, dwLen;
WCHAR del[] = {'-',0};
if ( (val_name == NULL) || (val_data == NULL) )
return ERROR_INVALID_PARAMETER;
if (lstrcmpW(val_data, del) == 0)
{
res=RegDeleteValueW(currentKeyHandle,val_name);
return (res == ERROR_FILE_NOT_FOUND ? ERROR_SUCCESS : res);
}
/* Get the data type stored into the value field */
dwDataType = getDataType(&val_data, &dwParseType);
if (dwParseType == REG_SZ) /* no conversion for string */
{
dwLen = REGPROC_unescape_string(val_data);
if(!dwLen || val_data[dwLen-1] != '"')
return ERROR_INVALID_DATA;
val_data[dwLen-1] = '\0'; /* remove last quotes */
lpbData = (BYTE*) val_data;
dwLen = dwLen * sizeof(WCHAR); /* size is in bytes */
}
else if (dwParseType == REG_DWORD) /* Convert the dword types */
{
if (!convertHexToDWord(val_data, &dwData))
return ERROR_INVALID_DATA;
lpbData = (BYTE*)&dwData;
dwLen = sizeof(dwData);
}
else if (dwParseType == REG_BINARY) /* Convert the binary data */
{
lpbData = convertHexCSVToHex(val_data, &dwLen);
if (!lpbData)
return ERROR_INVALID_DATA;
if((dwDataType == REG_MULTI_SZ || dwDataType == REG_EXPAND_SZ) && !is_unicode)
{
LPBYTE tmp = lpbData;
lpbData = (LPBYTE)GetWideStringN((char*)lpbData, dwLen, &dwLen);
dwLen *= sizeof(WCHAR);
HeapFree(GetProcessHeap(), 0, tmp);
}
}
else /* unknown format */
{
output_message(STRING_UNKNOWN_DATA_FORMAT, dwDataType);
return ERROR_INVALID_DATA;
}
res = RegSetValueExW(
currentKeyHandle,
val_name,
0, /* Reserved */
dwDataType,
lpbData,
dwLen);
if (dwParseType == REG_BINARY)
HeapFree(GetProcessHeap(), 0, lpbData);
return res;
}
/******************************************************************************
* A helper function for processRegEntry() that opens the current key.
* That key must be closed by calling closeKey().
*/
static LONG openKeyW(WCHAR* stdInput)
{
HKEY keyClass;
WCHAR* keyPath;
DWORD dwDisp;
LONG res;
/* Sanity checks */
if (stdInput == NULL)
return ERROR_INVALID_PARAMETER;
/* Get the registry class */
if (!parseKeyName(stdInput, &keyClass, &keyPath))
return ERROR_INVALID_PARAMETER;
res = RegCreateKeyExW(
keyClass, /* Class */
keyPath, /* Sub Key */
0, /* MUST BE 0 */
NULL, /* object type */
REG_OPTION_NON_VOLATILE, /* option, REG_OPTION_NON_VOLATILE ... */
KEY_ALL_ACCESS, /* access mask, KEY_ALL_ACCESS */
NULL, /* security attribute */
&currentKeyHandle, /* result */
&dwDisp); /* disposition, REG_CREATED_NEW_KEY or
REG_OPENED_EXISTING_KEY */
if (res == ERROR_SUCCESS)
{
currentKeyName = HeapAlloc(GetProcessHeap(), 0, (strlenW(stdInput) + 1) * sizeof(WCHAR));
CHECK_ENOUGH_MEMORY(currentKeyName);
strcpyW(currentKeyName, stdInput);
}
else
currentKeyHandle = NULL;
return res;
}
/******************************************************************************
* Close the currently opened key.
*/
static void closeKey(void)
{
if (currentKeyHandle)
{
HeapFree(GetProcessHeap(), 0, currentKeyName);
RegCloseKey(currentKeyHandle);
currentKeyHandle = NULL;
}
}
/******************************************************************************
* This function is a wrapper for the setValue function. It prepares the
* land and cleans the area once completed.
* Note: this function modifies the line parameter.
*
* line - registry file unwrapped line. Should have the registry value name and
* complete registry value data.
*/
static void processSetValue(WCHAR* line, BOOL is_unicode)
{
WCHAR* val_name; /* registry value name */
WCHAR* val_data; /* registry value data */
int line_idx = 0; /* current character under analysis */
LONG res;
/* get value name */
while ( isspaceW(line[line_idx]) ) line_idx++;
if (line[line_idx] == '@' && line[line_idx + 1] == '=') {
line[line_idx] = '\0';
val_name = line;
line_idx++;
} else if (line[line_idx] == '\"') {
line_idx++;
val_name = line + line_idx;
while (line[line_idx]) {
if (line[line_idx] == '\\') /* skip escaped character */
{
line_idx += 2;
} else {
if (line[line_idx] == '\"') {
line[line_idx] = '\0';
line_idx++;
break;
} else {
line_idx++;
}
}
}
while ( isspaceW(line[line_idx]) ) line_idx++;
if (!line[line_idx]) {
output_message(STRING_UNEXPECTED_EOL, line);
return;
}
if (line[line_idx] != '=') {
line[line_idx] = '\"';
output_message(STRING_UNRECOGNIZED_LINE, line);
return;
}
} else {
output_message(STRING_UNRECOGNIZED_LINE, line);
return;
}
line_idx++; /* skip the '=' character */
while ( isspaceW(line[line_idx]) ) line_idx++;
val_data = line + line_idx;
/* trim trailing blanks */
line_idx = strlenW(val_data);
while (line_idx > 0 && isspaceW(val_data[line_idx-1])) line_idx--;
val_data[line_idx] = '\0';
REGPROC_unescape_string(val_name);
res = setValue(val_name, val_data, is_unicode);
if ( res != ERROR_SUCCESS )
output_message(STRING_SETVALUE_FAILED, val_name, currentKeyName);
}
/******************************************************************************
* This function receives the currently read entry and performs the
* corresponding action.
* isUnicode affects parsing of REG_MULTI_SZ values
*/
static void processRegEntry(WCHAR* stdInput, BOOL isUnicode)
{
/*
* We encountered the end of the file, make sure we
* close the opened key and exit
*/
if (stdInput == NULL) {
closeKey();
return;
}
if ( stdInput[0] == '[') /* We are reading a new key */
{
WCHAR* keyEnd;
closeKey(); /* Close the previous key */
/* Get rid of the square brackets */
stdInput++;
keyEnd = strrchrW(stdInput, ']');
if (keyEnd)
*keyEnd='\0';
/* delete the key if we encounter '-' at the start of reg key */
if (stdInput[0] == '-')
delete_registry_key(stdInput + 1);
else if (openKeyW(stdInput) != ERROR_SUCCESS)
output_message(STRING_OPEN_KEY_FAILED, stdInput);
} else if( currentKeyHandle &&
(( stdInput[0] == '@') || /* reading a default @=data pair */
( stdInput[0] == '\"'))) /* reading a new value=data pair */
{
processSetValue(stdInput, isUnicode);
} else
{
/* Since we are assuming that the file format is valid we must be
* reading a blank line which indicates the end of this key processing
*/
closeKey();
}
}
/******************************************************************************
* Processes a registry file.
* Correctly processes comments (in # and ; form), line continuation.
*
* Parameters:
* in - input stream to read from
* first_chars - beginning of stream, read due to Unicode check
*/
static void processRegLinesA(FILE *in, char* first_chars)
{
LPSTR line = NULL; /* line read from input stream */
ULONG lineSize = REG_VAL_BUF_SIZE;
line = HeapAlloc(GetProcessHeap(), 0, lineSize);
CHECK_ENOUGH_MEMORY(line);
memcpy(line, first_chars, 2);
while (!feof(in)) {
LPSTR s; /* The pointer into line for where the current fgets should read */
WCHAR* lineW;
s = line;
if(first_chars)
{
s += 2;
first_chars = NULL;
}
for (;;) {
size_t size_remaining;
int size_to_get, i;
char *s_eol; /* various local uses */
/* Do we need to expand the buffer ? */
assert (s >= line && s <= line + lineSize);
size_remaining = lineSize - (s-line);
if (size_remaining < 3) /* need at least 3 bytes of room for \r\n\0 */
{
char *new_buffer;
size_t new_size = lineSize + REG_VAL_BUF_SIZE;
if (new_size > lineSize) /* no arithmetic overflow */
new_buffer = HeapReAlloc (GetProcessHeap(), 0, line, new_size);
else
new_buffer = NULL;
CHECK_ENOUGH_MEMORY(new_buffer);
line = new_buffer;
s = line + lineSize - size_remaining;
lineSize = new_size;
size_remaining = lineSize - (s-line);
}
/* Get as much as possible into the buffer, terminated either by
* eof, error, eol or getting the maximum amount. Abort on error.
*/
size_to_get = (size_remaining > INT_MAX ? INT_MAX : size_remaining);
/* get a single line. note that `i' must be one past the last
* meaningful character in `s' when this loop exits */
for(i = 0; i < size_to_get-1; ++i){
int xchar;
xchar = fgetc(in);
s[i] = xchar;
if(xchar == EOF){
if(ferror(in)){
perror("While reading input");
exit(IO_ERROR);
}else
assert(feof(in));
break;
}
if(s[i] == '\r'){
/* read the next character iff it's \n */
if(i+2 >= size_to_get){
/* buffer too short, so put back the EOL char to
* read next cycle */
ungetc('\r', in);
break;
}
s[i+1] = fgetc(in);
if(s[i+1] != '\n'){
ungetc(s[i+1], in);
i = i+1;
}else
i = i+2;
break;
}
if(s[i] == '\n'){
i = i+1;
break;
}
}
s[i] = '\0';
/* If we didn't read the eol nor the eof go around for the rest */
s_eol = strpbrk (s, "\r\n");
if (!feof (in) && !s_eol) {
s = strchr (s, '\0');
continue;
}
/* If it is a comment line then discard it and go around again */
if (line [0] == '#' || line [0] == ';') {
s = line;
continue;
}
/* Remove any line feed. Leave s_eol on the first \0 */
if (s_eol) {
if (*s_eol == '\r' && *(s_eol+1) == '\n')
*(s_eol+1) = '\0';
*s_eol = '\0';
} else
s_eol = strchr (s, '\0');
/* If there is a concatenating \\ then go around again */
if (s_eol > line && *(s_eol-1) == '\\') {
int c;
s = s_eol-1;
do
{
c = fgetc(in);
} while(c == ' ' || c == '\t');
if(c == EOF)
{
fprintf(stderr, "regedit: ERROR - invalid continuation.\n");
}
else
{
*s = c;
s++;
}
continue;
}
lineW = GetWideString(line);
break; /* That is the full virtual line */
}
processRegEntry(lineW, FALSE);
HeapFree(GetProcessHeap(), 0, lineW);
}
processRegEntry(NULL, FALSE);
HeapFree(GetProcessHeap(), 0, line);
}
static void processRegLinesW(FILE *in)
{
WCHAR* buf = NULL; /* line read from input stream */
ULONG lineSize = REG_VAL_BUF_SIZE;
size_t CharsInBuf = -1;
WCHAR* s; /* The pointer into buf for where the current fgets should read */
WCHAR* line; /* The start of the current line */
buf = HeapAlloc(GetProcessHeap(), 0, lineSize * sizeof(WCHAR));
CHECK_ENOUGH_MEMORY(buf);
s = buf;
line = buf;
while(!feof(in)) {
size_t size_remaining;
int size_to_get;
WCHAR *s_eol = NULL; /* various local uses */
/* Do we need to expand the buffer ? */
assert (s >= buf && s <= buf + lineSize);
size_remaining = lineSize - (s-buf);
if (size_remaining < 2) /* room for 1 character and the \0 */
{
WCHAR *new_buffer;
size_t new_size = lineSize + (REG_VAL_BUF_SIZE / sizeof(WCHAR));
if (new_size > lineSize) /* no arithmetic overflow */
new_buffer = HeapReAlloc (GetProcessHeap(), 0, buf, new_size * sizeof(WCHAR));
else
new_buffer = NULL;
CHECK_ENOUGH_MEMORY(new_buffer);
buf = new_buffer;
line = buf;
s = buf + lineSize - size_remaining;
lineSize = new_size;
size_remaining = lineSize - (s-buf);
}
/* Get as much as possible into the buffer, terminated either by
* eof, error or getting the maximum amount. Abort on error.
*/
size_to_get = (size_remaining > INT_MAX ? INT_MAX : size_remaining);
CharsInBuf = fread(s, sizeof(WCHAR), size_to_get - 1, in);
s[CharsInBuf] = 0;
if (CharsInBuf == 0) {
if (ferror(in)) {
perror ("While reading input");
exit (IO_ERROR);
} else {
assert (feof(in));
*s = '\0';
/* It is not clear to me from the definition that the
* contents of the buffer are well defined on detecting
* an eof without managing to read anything.
*/
}
}
/* If we didn't read the eol nor the eof go around for the rest */
while(1)
{
const WCHAR line_endings[] = {'\r','\n',0};
s_eol = strpbrkW(line, line_endings);
if(!s_eol) {
/* Move the stub of the line to the start of the buffer so
* we get the maximum space to read into, and so we don't
* have to recalculate 'line' if the buffer expands */
MoveMemory(buf, line, (strlenW(line)+1) * sizeof(WCHAR));
line = buf;
s = strchrW(line, '\0');
break;
}
/* If it is a comment line then discard it and go around again */
if (*line == '#' || *line == ';') {
if (*s_eol == '\r' && *(s_eol+1) == '\n')
line = s_eol + 2;
else
line = s_eol + 1;
continue;
}
/* If there is a concatenating \\ then go around again */
if (*(s_eol-1) == '\\') {
WCHAR* NextLine = s_eol + 1;
if(*s_eol == '\r' && *(s_eol+1) == '\n')
NextLine++;
while(*(NextLine+1) == ' ' || *(NextLine+1) == '\t')
NextLine++;
MoveMemory(s_eol - 1, NextLine, (CharsInBuf - (NextLine - s) + 1)*sizeof(WCHAR));
CharsInBuf -= NextLine - s_eol + 1;
s_eol = 0;
continue;
}
/* Remove any line feed. Leave s_eol on the last \0 */
if (*s_eol == '\r' && *(s_eol + 1) == '\n')
*s_eol++ = '\0';
*s_eol = '\0';
processRegEntry(line, TRUE);
line = s_eol + 1;
s_eol = 0;
continue; /* That is the full virtual line */
}
}
processRegEntry(NULL, TRUE);
HeapFree(GetProcessHeap(), 0, buf);
}
/****************************************************************************
* REGPROC_print_error
*
* Print the message for GetLastError
*/
static void REGPROC_print_error(void)
{
WCHAR *str;
DWORD error_code, len;
error_code = GetLastError();
len = FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
NULL, error_code, 0, (WCHAR *)&str, 0, NULL);
if (len == 0 && GetLastError() != NO_ERROR) {
WINE_FIXME("FormatMessage failed: le=%u, previous=%u\n", GetLastError(), error_code);
exit(1);
}
output_writeconsole(str, len);
LocalFree(str);
exit(1);
}
/******************************************************************************
* Checks whether the buffer has enough room for the string or required size.
* Resizes the buffer if necessary.
*
* Parameters:
* buffer - pointer to a buffer for string
* len - current length of the buffer in characters.
* required_len - length of the string to place to the buffer in characters.
* The length does not include the terminating null character.
*/
static void REGPROC_resize_char_buffer(WCHAR **buffer, DWORD *len, DWORD required_len)
{
required_len++;
if (required_len > *len) {
*len = required_len;
if (!*buffer)
*buffer = HeapAlloc(GetProcessHeap(), 0, *len * sizeof(**buffer));
else
*buffer = HeapReAlloc(GetProcessHeap(), 0, *buffer, *len * sizeof(**buffer));
CHECK_ENOUGH_MEMORY(*buffer);
}
}
/******************************************************************************
* Same as REGPROC_resize_char_buffer() but on a regular buffer.
*
* Parameters:
* buffer - pointer to a buffer
* len - current size of the buffer in bytes
* required_size - size of the data to place in the buffer in bytes
*/
static void REGPROC_resize_binary_buffer(BYTE **buffer, DWORD *size, DWORD required_size)
{
if (required_size > *size) {
*size = required_size;
if (!*buffer)
*buffer = HeapAlloc(GetProcessHeap(), 0, *size);
else
*buffer = HeapReAlloc(GetProcessHeap(), 0, *buffer, *size);
CHECK_ENOUGH_MEMORY(*buffer);
}
}
/******************************************************************************
* Prints string str to file
*/
static void REGPROC_export_string(WCHAR **line_buf, DWORD *line_buf_size, DWORD *line_len, WCHAR *str, DWORD str_len)
{
DWORD i, pos;
DWORD extra = 0;
REGPROC_resize_char_buffer(line_buf, line_buf_size, *line_len + str_len + 10);
/* escaping characters */
pos = *line_len;
for (i = 0; i < str_len; i++) {
WCHAR c = str[i];
switch (c) {
case '\n':
extra++;
REGPROC_resize_char_buffer(line_buf, line_buf_size, *line_len + str_len + extra);
(*line_buf)[pos++] = '\\';
(*line_buf)[pos++] = 'n';
break;
case '\r':
extra++;
REGPROC_resize_char_buffer(line_buf, line_buf_size, *line_len + str_len + extra);
(*line_buf)[pos++] = '\\';
(*line_buf)[pos++] = 'r';
break;
case '\\':
case '"':
extra++;
REGPROC_resize_char_buffer(line_buf, line_buf_size, *line_len + str_len + extra);
(*line_buf)[pos++] = '\\';
/* Fall through */
default:
(*line_buf)[pos++] = c;
break;
}
}
(*line_buf)[pos] = '\0';
*line_len = pos;
}
static void REGPROC_export_binary(WCHAR **line_buf, DWORD *line_buf_size, DWORD *line_len, DWORD type, BYTE *value, DWORD value_size, BOOL unicode)
{
DWORD hex_pos, data_pos;
const WCHAR *hex_prefix;
const WCHAR hex[] = {'h','e','x',':',0};
WCHAR hex_buf[17];
const WCHAR concat[] = {'\\','\r','\n',' ',' ',0};
DWORD concat_prefix, concat_len;
const WCHAR newline[] = {'\r','\n',0};
CHAR* value_multibyte = NULL;
if (type == REG_BINARY) {
hex_prefix = hex;
} else {
const WCHAR hex_format[] = {'h','e','x','(','%','x',')',':',0};
hex_prefix = hex_buf;
sprintfW(hex_buf, hex_format, type);
if ((type == REG_SZ || type == REG_EXPAND_SZ || type == REG_MULTI_SZ) && !unicode)
{
value_multibyte = GetMultiByteStringN((WCHAR*)value, value_size / sizeof(WCHAR), &value_size);
value = (BYTE*)value_multibyte;
}
}
concat_len = lstrlenW(concat);
concat_prefix = 2;
hex_pos = *line_len;
*line_len += lstrlenW(hex_prefix);
data_pos = *line_len;
*line_len += value_size * 3;
/* - The 2 spaces that concat places at the start of the
* line effectively reduce the space available for data.
* - If the value name and hex prefix are very long
* ( > REG_FILE_HEX_LINE_LEN) or *line_len divides
* without a remainder then we may overestimate
* the needed number of lines by one. But that's ok.
* - The trailing '\r' takes the place of a comma so
* we only need to add 1 for the trailing '\n'
*/
*line_len += *line_len / (REG_FILE_HEX_LINE_LEN - concat_prefix) * concat_len + 1;
REGPROC_resize_char_buffer(line_buf, line_buf_size, *line_len);
lstrcpyW(*line_buf + hex_pos, hex_prefix);
if (value_size)
{
const WCHAR format[] = {'%','0','2','x',0};
DWORD i, column;
column = data_pos; /* no line wrap yet */
i = 0;
while (1)
{
sprintfW(*line_buf + data_pos, format, (unsigned int)value[i]);
data_pos += 2;
if (++i == value_size)
break;
(*line_buf)[data_pos++] = ',';
column += 3;
/* wrap the line */
if (column >= REG_FILE_HEX_LINE_LEN) {
lstrcpyW(*line_buf + data_pos, concat);
data_pos += concat_len;
column = concat_prefix;
}
}
}
lstrcpyW(*line_buf + data_pos, newline);
HeapFree(GetProcessHeap(), 0, value_multibyte);
}
/******************************************************************************
* Writes the given line to a file, in multi-byte or wide characters
*/
static void REGPROC_write_line(FILE *file, const WCHAR* str, BOOL unicode)
{
if(unicode)
{
fwrite(str, sizeof(WCHAR), lstrlenW(str), file);
} else
{
char* strA = GetMultiByteString(str);
fputs(strA, file);
HeapFree(GetProcessHeap(), 0, strA);
}
}
/******************************************************************************
* Writes contents of the registry key to the specified file stream.
*
* Parameters:
* file - writable file stream to export registry branch to.
* key - registry branch to export.
* reg_key_name_buf - name of the key with registry class.
* Is resized if necessary.
* reg_key_name_size - length of the buffer for the registry class in characters.
* val_name_buf - buffer for storing value name.
* Is resized if necessary.
* val_name_size - length of the buffer for storing value names in characters.
* val_buf - buffer for storing values while extracting.
* Is resized if necessary.
* val_size - size of the buffer for storing values in bytes.
*/
static void export_hkey(FILE *file, HKEY key,
WCHAR **reg_key_name_buf, DWORD *reg_key_name_size,
WCHAR **val_name_buf, DWORD *val_name_size,
BYTE **val_buf, DWORD *val_size,
WCHAR **line_buf, DWORD *line_buf_size,
BOOL unicode)
{
DWORD max_sub_key_len;
DWORD max_val_name_len;
DWORD max_val_size;
DWORD curr_len;
DWORD i;
BOOL more_data;
LONG ret;
WCHAR key_format[] = {'\r','\n','[','%','s',']','\r','\n',0};
/* get size information and resize the buffers if necessary */
if (RegQueryInfoKeyW(key, NULL, NULL, NULL, NULL,
&max_sub_key_len, NULL,
NULL, &max_val_name_len, &max_val_size, NULL, NULL
) != ERROR_SUCCESS) {
REGPROC_print_error();
}
curr_len = strlenW(*reg_key_name_buf);
REGPROC_resize_char_buffer(reg_key_name_buf, reg_key_name_size,
max_sub_key_len + curr_len + 1);
REGPROC_resize_char_buffer(val_name_buf, val_name_size,
max_val_name_len);
REGPROC_resize_binary_buffer(val_buf, val_size, max_val_size);
REGPROC_resize_char_buffer(line_buf, line_buf_size, lstrlenW(*reg_key_name_buf) + 4);
/* output data for the current key */
sprintfW(*line_buf, key_format, *reg_key_name_buf);
REGPROC_write_line(file, *line_buf, unicode);
/* print all the values */
i = 0;
more_data = TRUE;
while(more_data) {
DWORD value_type;
DWORD val_name_size1 = *val_name_size;
DWORD val_size1 = *val_size;
ret = RegEnumValueW(key, i, *val_name_buf, &val_name_size1, NULL,
&value_type, *val_buf, &val_size1);
if (ret == ERROR_MORE_DATA) {
/* Increase the size of the buffers and retry */
REGPROC_resize_char_buffer(val_name_buf, val_name_size, val_name_size1);
REGPROC_resize_binary_buffer(val_buf, val_size, val_size1);
} else if (ret != ERROR_SUCCESS) {
more_data = FALSE;
if (ret != ERROR_NO_MORE_ITEMS) {
REGPROC_print_error();
}
} else {
DWORD line_len;
i++;
if ((*val_name_buf)[0]) {
const WCHAR val_start[] = {'"','%','s','"','=',0};
line_len = 0;
REGPROC_export_string(line_buf, line_buf_size, &line_len, *val_name_buf, lstrlenW(*val_name_buf));
REGPROC_resize_char_buffer(val_name_buf, val_name_size, lstrlenW(*line_buf) + 1);
lstrcpyW(*val_name_buf, *line_buf);
line_len = 3 + lstrlenW(*val_name_buf);
REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len);
sprintfW(*line_buf, val_start, *val_name_buf);
} else {
const WCHAR std_val[] = {'@','=',0};
line_len = 2;
REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len);
lstrcpyW(*line_buf, std_val);
}
switch (value_type) {
case REG_SZ:
{
WCHAR* wstr = (WCHAR*)*val_buf;
if (val_size1 < sizeof(WCHAR) || val_size1 % sizeof(WCHAR) ||
wstr[val_size1 / sizeof(WCHAR) - 1]) {
REGPROC_export_binary(line_buf, line_buf_size, &line_len, value_type, *val_buf, val_size1, unicode);
} else {
const WCHAR start[] = {'"',0};
const WCHAR end[] = {'"','\r','\n',0};
DWORD len;
len = lstrlenW(start);
REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len + len);
lstrcpyW(*line_buf + line_len, start);
line_len += len;
REGPROC_export_string(line_buf, line_buf_size, &line_len, wstr, lstrlenW(wstr));
REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len + lstrlenW(end));
lstrcpyW(*line_buf + line_len, end);
}
break;
}
case REG_DWORD:
{
WCHAR format[] = {'d','w','o','r','d',':','%','0','8','x','\r','\n',0};
REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len + 15);
sprintfW(*line_buf + line_len, format, *((DWORD *)*val_buf));
break;
}
default:
{
output_message(STRING_UNSUPPORTED_TYPE, value_type, *reg_key_name_buf);
output_message(STRING_EXPORT_AS_BINARY, *val_name_buf);
}
/* falls through */
case REG_EXPAND_SZ:
case REG_MULTI_SZ:
/* falls through */
case REG_BINARY:
REGPROC_export_binary(line_buf, line_buf_size, &line_len, value_type, *val_buf, val_size1, unicode);
}
REGPROC_write_line(file, *line_buf, unicode);
}
}
i = 0;
more_data = TRUE;
(*reg_key_name_buf)[curr_len] = '\\';
while(more_data) {
DWORD buf_size = *reg_key_name_size - curr_len - 1;
ret = RegEnumKeyExW(key, i, *reg_key_name_buf + curr_len + 1, &buf_size,
NULL, NULL, NULL, NULL);
if (ret == ERROR_MORE_DATA) {
/* Increase the size of the buffer and retry */
REGPROC_resize_char_buffer(reg_key_name_buf, reg_key_name_size, curr_len + 1 + buf_size);
} else if (ret != ERROR_SUCCESS) {
more_data = FALSE;
if (ret != ERROR_NO_MORE_ITEMS) {
REGPROC_print_error();
}
} else {
HKEY subkey;
i++;
if (RegOpenKeyW(key, *reg_key_name_buf + curr_len + 1,
&subkey) == ERROR_SUCCESS) {
export_hkey(file, subkey, reg_key_name_buf, reg_key_name_size,
val_name_buf, val_name_size, val_buf, val_size,
line_buf, line_buf_size, unicode);
RegCloseKey(subkey);
} else {
REGPROC_print_error();
}
}
}
(*reg_key_name_buf)[curr_len] = '\0';
}
/******************************************************************************
* Open file in binary mode for export.
*/
static FILE *REGPROC_open_export_file(WCHAR *file_name, BOOL unicode)
{
FILE *file;
WCHAR dash = '-';
if (strncmpW(file_name,&dash,1)==0) {
file=stdout;
_setmode(_fileno(file), _O_BINARY);
} else
{
WCHAR wb_mode[] = {'w','b',0};
WCHAR regedit[] = {'r','e','g','e','d','i','t',0};
file = _wfopen(file_name, wb_mode);
if (!file) {
_wperror(regedit);
output_message(STRING_CANNOT_OPEN_FILE, file_name);
exit(1);
}
}
if(unicode)
{
const BYTE unicode_seq[] = {0xff,0xfe};
const WCHAR header[] = {'W','i','n','d','o','w','s',' ','R','e','g','i','s','t','r','y',' ','E','d','i','t','o','r',' ','V','e','r','s','i','o','n',' ','5','.','0','0','\r','\n'};
fwrite(unicode_seq, sizeof(BYTE), sizeof(unicode_seq)/sizeof(unicode_seq[0]), file);
fwrite(header, sizeof(WCHAR), sizeof(header)/sizeof(header[0]), file);
} else
{
fputs("REGEDIT4\r\n", file);
}
return file;
}
/******************************************************************************
* Writes contents of the registry key to the specified file stream.
*
* Parameters:
* file_name - name of a file to export registry branch to.
* reg_key_name - registry branch to export. The whole registry is exported if
* reg_key_name is NULL or contains an empty string.
*/
BOOL export_registry_key(WCHAR *file_name, WCHAR *reg_key_name, DWORD format)
{
WCHAR *reg_key_name_buf;
WCHAR *val_name_buf;
BYTE *val_buf;
WCHAR *line_buf;
DWORD reg_key_name_size = KEY_MAX_LEN;
DWORD val_name_size = KEY_MAX_LEN;
DWORD val_size = REG_VAL_BUF_SIZE;
DWORD line_buf_size = KEY_MAX_LEN + REG_VAL_BUF_SIZE;
FILE *file = NULL;
BOOL unicode = (format == REG_FORMAT_5);
reg_key_name_buf = HeapAlloc(GetProcessHeap(), 0,
reg_key_name_size * sizeof(*reg_key_name_buf));
val_name_buf = HeapAlloc(GetProcessHeap(), 0,
val_name_size * sizeof(*val_name_buf));
val_buf = HeapAlloc(GetProcessHeap(), 0, val_size);
line_buf = HeapAlloc(GetProcessHeap(), 0, line_buf_size * sizeof(*line_buf));
CHECK_ENOUGH_MEMORY(reg_key_name_buf && val_name_buf && val_buf && line_buf);
if (reg_key_name && reg_key_name[0]) {
HKEY reg_key_class;
WCHAR *branch_name = NULL;
HKEY key;
REGPROC_resize_char_buffer(&reg_key_name_buf, &reg_key_name_size,
lstrlenW(reg_key_name));
lstrcpyW(reg_key_name_buf, reg_key_name);
/* open the specified key */
if (!parseKeyName(reg_key_name, &reg_key_class, &branch_name)) {
output_message(STRING_INCORRECT_REG_CLASS, reg_key_name);
exit(1);
}
if (!branch_name[0]) {
/* no branch - registry class is specified */
file = REGPROC_open_export_file(file_name, unicode);
export_hkey(file, reg_key_class,
&reg_key_name_buf, &reg_key_name_size,
&val_name_buf, &val_name_size,
&val_buf, &val_size, &line_buf,
&line_buf_size, unicode);
} else if (RegOpenKeyW(reg_key_class, branch_name, &key) == ERROR_SUCCESS) {
file = REGPROC_open_export_file(file_name, unicode);
export_hkey(file, key,
&reg_key_name_buf, &reg_key_name_size,
&val_name_buf, &val_name_size,
&val_buf, &val_size, &line_buf,
&line_buf_size, unicode);
RegCloseKey(key);
} else {
output_message(STRING_REG_KEY_NOT_FOUND, reg_key_name);
}
} else {
unsigned int i;
/* export all registry classes */
file = REGPROC_open_export_file(file_name, unicode);
for (i = 0; i < REG_CLASS_NUMBER; i++) {
/* do not export HKEY_CLASSES_ROOT */
if (reg_class_keys[i] != HKEY_CLASSES_ROOT &&
reg_class_keys[i] != HKEY_CURRENT_USER &&
reg_class_keys[i] != HKEY_CURRENT_CONFIG &&
reg_class_keys[i] != HKEY_DYN_DATA) {
lstrcpyW(reg_key_name_buf, reg_class_namesW[i]);
export_hkey(file, reg_class_keys[i],
&reg_key_name_buf, &reg_key_name_size,
&val_name_buf, &val_name_size,
&val_buf, &val_size, &line_buf,
&line_buf_size, unicode);
}
}
}
if (file) {
fclose(file);
}
HeapFree(GetProcessHeap(), 0, reg_key_name);
HeapFree(GetProcessHeap(), 0, val_name_buf);
HeapFree(GetProcessHeap(), 0, val_buf);
HeapFree(GetProcessHeap(), 0, line_buf);
return TRUE;
}
/******************************************************************************
* Reads contents of the specified file into the registry.
*/
BOOL import_registry_file(FILE* reg_file)
{
if (reg_file)
{
BYTE s[2];
if (fread( s, 2, 1, reg_file) == 1)
{
if (s[0] == 0xff && s[1] == 0xfe)
{
processRegLinesW(reg_file);
} else
{
processRegLinesA(reg_file, (char*)s);
}
}
return TRUE;
}
return FALSE;
}
/******************************************************************************
* Removes the registry key with all subkeys. Parses full key name.
*
* Parameters:
* reg_key_name - full name of registry branch to delete. Ignored if is NULL,
* empty, points to register key class, does not exist.
*/
void delete_registry_key(WCHAR *reg_key_name)
{
WCHAR *key_name = NULL;
HKEY key_class;
if (!reg_key_name || !reg_key_name[0])
return;
if (!parseKeyName(reg_key_name, &key_class, &key_name)) {
output_message(STRING_INCORRECT_REG_CLASS, reg_key_name);
exit(1);
}
if (!*key_name) {
output_message(STRING_DELETE_REG_CLASS_FAILED, reg_key_name);
exit(1);
}
RegDeleteTreeW(key_class, key_name);
}