Sweden-Number/dlls/wbemprox/builtin.c

4192 lines
139 KiB
C

/*
* Copyright 2012 Hans Leidekker for CodeWeavers
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#define COBJMACROS
#define NONAMELESSUNION
#define NONAMELESSSTRUCT
#include <stdarg.h>
#include <intrin.h>
#include "ntstatus.h"
#define WIN32_NO_STATUS
#include "windef.h"
#include "winbase.h"
#include "winsock2.h"
#include "ws2tcpip.h"
#include "initguid.h"
#include "wbemcli.h"
#include "wbemprov.h"
#include "iphlpapi.h"
#include "netioapi.h"
#include "tlhelp32.h"
#include "d3d10.h"
#include "winternl.h"
#include "winioctl.h"
#include "winsvc.h"
#include "winver.h"
#include "sddl.h"
#include "ntsecapi.h"
#include "winspool.h"
#include "setupapi.h"
#include "ntddstor.h"
#include "wine/asm.h"
#include "wine/debug.h"
#include "wbemprox_private.h"
WINE_DEFAULT_DEBUG_CHANNEL(wbemprox);
/* column definitions must be kept in sync with record structures below */
static const struct column col_associator[] =
{
{ L"AssocClass", CIM_STRING },
{ L"Class", CIM_STRING },
{ L"Associator", CIM_STRING }
};
static const struct column col_baseboard[] =
{
{ L"Manufacturer", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Model", CIM_STRING },
{ L"Name", CIM_STRING },
{ L"Product", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"SerialNumber", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Tag", CIM_STRING|COL_FLAG_KEY },
{ L"Version", CIM_STRING|COL_FLAG_DYNAMIC },
};
static const struct column col_bios[] =
{
{ L"CurrentLanguage", CIM_STRING },
{ L"Description", CIM_STRING },
{ L"EmbeddedControllerMajorVersion", CIM_UINT8 },
{ L"EmbeddedControllerMinorVersion", CIM_UINT8 },
{ L"IdentificationCode", CIM_STRING },
{ L"Manufacturer", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Name", CIM_STRING },
{ L"ReleaseDate", CIM_DATETIME|COL_FLAG_DYNAMIC },
{ L"SerialNumber", CIM_STRING },
{ L"SMBIOSBIOSVersion", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"SMBIOSMajorVersion", CIM_UINT16 },
{ L"SMBIOSMinorVersion", CIM_UINT16 },
{ L"SystemBiosMajorVersion", CIM_UINT8 },
{ L"SystemBiosMinorVersion", CIM_UINT8 },
{ L"Version", CIM_STRING|COL_FLAG_KEY },
};
static const struct column col_cdromdrive[] =
{
{ L"DeviceId", CIM_STRING|COL_FLAG_KEY },
{ L"Drive", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"MediaType", CIM_STRING },
{ L"Name", CIM_STRING },
{ L"PNPDeviceID", CIM_STRING },
};
static const struct column col_compsys[] =
{
{ L"Description", CIM_STRING },
{ L"Domain", CIM_STRING },
{ L"DomainRole", CIM_UINT16 },
{ L"Manufacturer", CIM_STRING },
{ L"Model", CIM_STRING },
{ L"Name", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"NumberOfLogicalProcessors", CIM_UINT32 },
{ L"NumberOfProcessors", CIM_UINT32 },
{ L"TotalPhysicalMemory", CIM_UINT64 },
{ L"UserName", CIM_STRING|COL_FLAG_DYNAMIC },
};
static const struct column col_compsysproduct[] =
{
{ L"IdentifyingNumber", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"Name", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"SKUNumber", CIM_STRING },
{ L"UUID", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Vendor", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Version", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
};
static const struct column col_datafile[] =
{
{ L"Name", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"Version", CIM_STRING|COL_FLAG_DYNAMIC },
};
static const struct column col_desktopmonitor[] =
{
{ L"Name", CIM_STRING },
{ L"PixelsPerXLogicalInch", CIM_UINT32 },
};
static const struct column col_directory[] =
{
{ L"AccessMask", CIM_UINT32 },
{ L"Name", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
};
static const struct column col_diskdrive[] =
{
{ L"DeviceId", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"Index", CIM_UINT32 },
{ L"InterfaceType", CIM_STRING },
{ L"Manufacturer", CIM_STRING },
{ L"MediaType", CIM_STRING },
{ L"Model", CIM_STRING },
{ L"PNPDeviceID", CIM_STRING },
{ L"SerialNumber", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Size", CIM_UINT64 },
};
static const struct column col_diskdrivetodiskpartition[] =
{
{ L"Antecedent", CIM_REFERENCE|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"Dependent", CIM_REFERENCE|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
};
static const struct column col_diskpartition[] =
{
{ L"Bootable", CIM_BOOLEAN },
{ L"BootPartition", CIM_BOOLEAN },
{ L"DeviceId", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"DiskIndex", CIM_UINT32 },
{ L"Index", CIM_UINT32 },
{ L"PNPDeviceID", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Size", CIM_UINT64 },
{ L"StartingOffset", CIM_UINT64 },
{ L"Type", CIM_STRING|COL_FLAG_DYNAMIC },
};
static const struct column col_displaycontrollerconfig[] =
{
{ L"BitsPerPixel", CIM_UINT32 },
{ L"Caption", CIM_STRING },
{ L"HorizontalResolution", CIM_UINT32 },
{ L"Name", CIM_STRING|COL_FLAG_KEY },
{ L"VerticalResolution", CIM_UINT32 },
};
static const struct column col_ip4routetable[] =
{
{ L"Destination", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"InterfaceIndex", CIM_SINT32|COL_FLAG_KEY },
{ L"NextHop", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
};
static const struct column col_logicaldisk[] =
{
{ L"Caption", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"DeviceId", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"DriveType", CIM_UINT32 },
{ L"FileSystem", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"FreeSpace", CIM_UINT64 },
{ L"Name", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Size", CIM_UINT64 },
{ L"VolumeName", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"VolumeSerialNumber", CIM_STRING|COL_FLAG_DYNAMIC },
};
static const struct column col_logicaldisktopartition[] =
{
{ L"Antecedent", CIM_REFERENCE|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"Dependent", CIM_REFERENCE|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
};
static const struct column col_networkadapter[] =
{
{ L"AdapterType", CIM_STRING },
{ L"AdapterTypeID", CIM_UINT16 },
{ L"Description", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"DeviceId", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"GUID", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Index", CIM_UINT32 },
{ L"InterfaceIndex", CIM_UINT32 },
{ L"MACAddress", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Manufacturer", CIM_STRING },
{ L"Name", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"NetConnectionStatus", CIM_UINT16 },
{ L"PhysicalAdapter", CIM_BOOLEAN },
{ L"PNPDeviceID", CIM_STRING },
{ L"ServiceName", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Speed", CIM_UINT64 },
};
static const struct column col_networkadapterconfig[] =
{
{ L"DefaultIPGateway", CIM_STRING|CIM_FLAG_ARRAY|COL_FLAG_DYNAMIC },
{ L"Description", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"DHCPEnabled", CIM_BOOLEAN },
{ L"DNSDomain", CIM_STRING },
{ L"DNSHostName", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"DNSServerSearchOrder", CIM_STRING|CIM_FLAG_ARRAY|COL_FLAG_DYNAMIC },
{ L"Index", CIM_UINT32|COL_FLAG_KEY },
{ L"IPAddress", CIM_STRING|CIM_FLAG_ARRAY|COL_FLAG_DYNAMIC },
{ L"IPConnectionMetric", CIM_UINT32 },
{ L"IPEnabled", CIM_BOOLEAN },
{ L"IPSubnet", CIM_STRING|CIM_FLAG_ARRAY|COL_FLAG_DYNAMIC },
{ L"MACAddress", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"SettingID", CIM_STRING|COL_FLAG_DYNAMIC },
};
static const struct column col_operatingsystem[] =
{
{ L"BuildNumber", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Caption", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"CodeSet", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"CountryCode", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"CSDVersion", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"CSName", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"CurrentTimeZone", CIM_SINT16 },
{ L"FreePhysicalMemory", CIM_UINT64 },
{ L"InstallDate", CIM_DATETIME },
{ L"LastBootUpTime", CIM_DATETIME|COL_FLAG_DYNAMIC },
{ L"LocalDateTime", CIM_DATETIME|COL_FLAG_DYNAMIC },
{ L"Locale", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Manufacturer", CIM_STRING },
{ L"Name", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"OperatingSystemSKU", CIM_UINT32 },
{ L"OSArchitecture", CIM_STRING },
{ L"OSLanguage", CIM_UINT32 },
{ L"OSProductSuite", CIM_UINT32 },
{ L"OSType", CIM_UINT16 },
{ L"Primary", CIM_BOOLEAN },
{ L"ProductType", CIM_UINT32 },
{ L"SerialNumber", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"ServicePackMajorVersion", CIM_UINT16 },
{ L"ServicePackMinorVersion", CIM_UINT16 },
{ L"Status", CIM_STRING },
{ L"SuiteMask", CIM_UINT32 },
{ L"SystemDirectory", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"SystemDrive", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"TotalVirtualMemorySize", CIM_UINT64 },
{ L"TotalVisibleMemorySize", CIM_UINT64 },
{ L"Version", CIM_STRING|COL_FLAG_DYNAMIC },
};
static const struct column col_param[] =
{
{ L"Class", CIM_STRING },
{ L"Method", CIM_STRING },
{ L"Direction", CIM_SINT32 },
{ L"Parameter", CIM_STRING },
{ L"Type", CIM_UINT32 },
{ L"DefaultValue", CIM_UINT32 },
};
static const struct column col_physicalmedia[] =
{
{ L"SerialNumber", CIM_STRING },
{ L"Tag", CIM_STRING },
};
static const struct column col_physicalmemory[] =
{
{ L"BankLabel", CIM_STRING },
{ L"Capacity", CIM_UINT64 },
{ L"Caption", CIM_STRING },
{ L"ConfiguredClockSpeed", CIM_UINT32 },
{ L"DeviceLocator", CIM_STRING },
{ L"FormFactor", CIM_UINT16 },
{ L"MemoryType", CIM_UINT16 },
{ L"PartNumber", CIM_STRING },
{ L"SerialNumber", CIM_STRING },
};
static const struct column col_pnpentity[] =
{
{ L"DeviceId", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Manufacturer", CIM_STRING },
{ L"Name", CIM_STRING },
};
static const struct column col_printer[] =
{
{ L"Attributes", CIM_UINT32 },
{ L"DeviceId", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"DriverName", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"HorizontalResolution", CIM_UINT32 },
{ L"Local", CIM_BOOLEAN },
{ L"Location", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Name", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Network", CIM_BOOLEAN },
{ L"PortName", CIM_STRING|COL_FLAG_DYNAMIC },
};
static const struct column col_process[] =
{
{ L"Caption", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"CommandLine", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Description", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Handle", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"Name", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"ParentProcessID", CIM_UINT32 },
{ L"ProcessID", CIM_UINT32 },
{ L"ThreadCount", CIM_UINT32 },
{ L"WorkingSetSize", CIM_UINT64 },
/* methods */
{ L"Create", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"GetOwner", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
};
static const struct column col_processor[] =
{
{ L"AddressWidth", CIM_UINT16 },
{ L"Architecture", CIM_UINT16 },
{ L"Caption", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"CpuStatus", CIM_UINT16 },
{ L"CurrentClockSpeed", CIM_UINT32 },
{ L"DataWidth", CIM_UINT16 },
{ L"Description", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"DeviceId", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"Family", CIM_UINT16 },
{ L"Level", CIM_UINT16 },
{ L"Manufacturer", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"MaxClockSpeed", CIM_UINT32 },
{ L"Name", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"NumberOfCores", CIM_UINT32 },
{ L"NumberOfLogicalProcessors", CIM_UINT32 },
{ L"ProcessorId", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"ProcessorType", CIM_UINT16 },
{ L"Revision", CIM_UINT16 },
{ L"UniqueId", CIM_STRING },
{ L"Version", CIM_STRING|COL_FLAG_DYNAMIC },
};
static const struct column col_qualifier[] =
{
{ L"Class", CIM_STRING },
{ L"Member", CIM_STRING },
{ L"Type", CIM_UINT32 },
{ L"Flavor", CIM_SINT32 },
{ L"Name", CIM_STRING },
{ L"IntegerValue", CIM_SINT32 },
{ L"StringValue", CIM_STRING },
{ L"BoolValue", CIM_BOOLEAN },
};
static const struct column col_quickfixengineering[] =
{
{ L"Caption", CIM_STRING },
{ L"HotFixID", CIM_STRING|COL_FLAG_KEY },
};
static const struct column col_rawsmbiostables[] =
{
{ L"SMBiosData", CIM_UINT8|CIM_FLAG_ARRAY },
};
static const struct column col_service[] =
{
{ L"AcceptPause", CIM_BOOLEAN },
{ L"AcceptStop", CIM_BOOLEAN },
{ L"DisplayName", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Name", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"ProcessID", CIM_UINT32 },
{ L"ServiceType", CIM_STRING },
{ L"StartMode", CIM_STRING },
{ L"State", CIM_STRING },
{ L"SystemName", CIM_STRING|COL_FLAG_DYNAMIC },
/* methods */
{ L"PauseService", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"ResumeService", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"StartService", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"StopService", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
};
static const struct column col_sid[] =
{
{ L"AccountName", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"BinaryRepresentation", CIM_UINT8|CIM_FLAG_ARRAY|COL_FLAG_DYNAMIC },
{ L"ReferencedDomainName", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"SID", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY },
{ L"SidLength", CIM_UINT32 },
};
static const struct column col_sounddevice[] =
{
{ L"DeviceID", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Manufacturer", CIM_STRING },
{ L"Name", CIM_STRING },
{ L"PNPDeviceID", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"ProductName", CIM_STRING },
{ L"Status", CIM_STRING },
{ L"StatusInfo", CIM_UINT16 },
};
static const struct column col_stdregprov[] =
{
{ L"CreateKey", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"EnumKey", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"EnumValues", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"GetStringValue", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"SetStringValue", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"SetDWORDValue", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"DeleteKey", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
};
static const struct column col_systemenclosure[] =
{
{ L"Caption", CIM_STRING },
{ L"ChassisTypes", CIM_UINT16|CIM_FLAG_ARRAY|COL_FLAG_DYNAMIC },
{ L"Description", CIM_STRING },
{ L"LockPresent", CIM_BOOLEAN },
{ L"Manufacturer", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Name", CIM_STRING },
{ L"Tag", CIM_STRING },
};
static const struct column col_systemsecurity[] =
{
{ L"GetSD", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"SetSD", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
};
static const struct column col_sysrestore[] =
{
{ L"CreationTime", CIM_STRING },
{ L"Description", CIM_STRING },
{ L"EventType", CIM_UINT32 },
{ L"RestorePointType", CIM_UINT32 },
{ L"SequenceNumber", CIM_UINT32 },
/* methods */
{ L"CreateRestorePoint", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"Disable", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"Enable", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"GetLastRestoreStatus", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
{ L"Restore", CIM_FLAG_ARRAY|COL_FLAG_METHOD },
};
static const struct column col_videocontroller[] =
{
{ L"AdapterCompatibility", CIM_STRING },
{ L"AdapterDACType", CIM_STRING },
{ L"AdapterRAM", CIM_UINT32 },
{ L"Availability", CIM_UINT16 },
{ L"Caption", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"ConfigManagerErrorCode", CIM_UINT32 },
{ L"CurrentBitsPerPixel", CIM_UINT32 },
{ L"CurrentHorizontalResolution", CIM_UINT32 },
{ L"CurrentRefreshRate", CIM_UINT32 },
{ L"CurrentScanMode", CIM_UINT16 },
{ L"CurrentVerticalResolution", CIM_UINT32 },
{ L"Description", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"DeviceId", CIM_STRING|COL_FLAG_KEY },
{ L"DriverDate", CIM_DATETIME },
{ L"DriverVersion", CIM_STRING },
{ L"InstalledDisplayDrivers", CIM_STRING },
{ L"Name", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"PNPDeviceID", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"Status", CIM_STRING },
{ L"VideoArchitecture", CIM_UINT16 },
{ L"VideoMemoryType", CIM_UINT16 },
{ L"VideoModeDescription", CIM_STRING|COL_FLAG_DYNAMIC },
{ L"VideoProcessor", CIM_STRING|COL_FLAG_DYNAMIC },
};
static const struct column col_winsat[] =
{
{ L"CPUScore", CIM_REAL32 },
{ L"D3DScore", CIM_REAL32 },
{ L"DiskScore", CIM_REAL32 },
{ L"GraphicsScore", CIM_REAL32 },
{ L"MemoryScore", CIM_REAL32 },
{ L"TimeTaken", CIM_STRING|COL_FLAG_KEY },
{ L"WinSATAssessmentState", CIM_UINT32 },
{ L"WinSPRLevel", CIM_REAL32 },
};
#include "pshpack1.h"
struct record_associator
{
const WCHAR *assocclass;
const WCHAR *class;
const WCHAR *associator;
};
struct record_baseboard
{
const WCHAR *manufacturer;
const WCHAR *model;
const WCHAR *name;
const WCHAR *product;
const WCHAR *serialnumber;
const WCHAR *tag;
const WCHAR *version;
};
struct record_bios
{
const WCHAR *currentlanguage;
const WCHAR *description;
UINT8 ecmajorversion;
UINT8 ecminorversion;
const WCHAR *identificationcode;
const WCHAR *manufacturer;
const WCHAR *name;
const WCHAR *releasedate;
const WCHAR *serialnumber;
const WCHAR *smbiosbiosversion;
UINT16 smbiosmajorversion;
UINT16 smbiosminorversion;
UINT8 systembiosmajorversion;
UINT8 systembiosminorversion;
const WCHAR *version;
};
struct record_cdromdrive
{
const WCHAR *device_id;
const WCHAR *drive;
const WCHAR *mediatype;
const WCHAR *name;
const WCHAR *pnpdevice_id;
};
struct record_computersystem
{
const WCHAR *description;
const WCHAR *domain;
UINT16 domainrole;
const WCHAR *manufacturer;
const WCHAR *model;
const WCHAR *name;
UINT32 num_logical_processors;
UINT32 num_processors;
UINT64 total_physical_memory;
const WCHAR *username;
};
struct record_computersystemproduct
{
const WCHAR *identifyingnumber;
const WCHAR *name;
const WCHAR *skunumber;
const WCHAR *uuid;
const WCHAR *vendor;
const WCHAR *version;
};
struct record_datafile
{
const WCHAR *name;
const WCHAR *version;
};
struct record_desktopmonitor
{
const WCHAR *name;
UINT32 pixelsperxlogicalinch;
};
struct record_directory
{
UINT32 accessmask;
const WCHAR *name;
};
struct record_diskdrive
{
const WCHAR *device_id;
UINT32 index;
const WCHAR *interfacetype;
const WCHAR *manufacturer;
const WCHAR *mediatype;
const WCHAR *model;
const WCHAR *pnpdevice_id;
const WCHAR *serialnumber;
UINT64 size;
};
struct record_diskdrivetodiskpartition
{
const WCHAR *antecedent;
const WCHAR *dependent;
};
struct record_diskpartition
{
int bootable;
int bootpartition;
const WCHAR *device_id;
UINT32 diskindex;
UINT32 index;
const WCHAR *pnpdevice_id;
UINT64 size;
UINT64 startingoffset;
const WCHAR *type;
};
struct record_displaycontrollerconfig
{
UINT32 bitsperpixel;
const WCHAR *caption;
UINT32 horizontalresolution;
const WCHAR *name;
UINT32 verticalresolution;
};
struct record_ip4routetable
{
const WCHAR *destination;
INT32 interfaceindex;
const WCHAR *nexthop;
};
struct record_logicaldisk
{
const WCHAR *caption;
const WCHAR *device_id;
UINT32 drivetype;
const WCHAR *filesystem;
UINT64 freespace;
const WCHAR *name;
UINT64 size;
const WCHAR *volumename;
const WCHAR *volumeserialnumber;
};
struct record_logicaldisktopartition
{
const WCHAR *antecedent;
const WCHAR *dependent;
};
struct record_networkadapter
{
const WCHAR *adaptertype;
UINT16 adaptertypeid;
const WCHAR *description;
const WCHAR *device_id;
const WCHAR *guid;
UINT32 index;
UINT32 interface_index;
const WCHAR *mac_address;
const WCHAR *manufacturer;
const WCHAR *name;
UINT16 netconnection_status;
int physicaladapter;
const WCHAR *pnpdevice_id;
const WCHAR *servicename;
UINT64 speed;
};
struct record_networkadapterconfig
{
const struct array *defaultipgateway;
const WCHAR *description;
int dhcpenabled;
const WCHAR *dnsdomain;
const WCHAR *dnshostname;
const struct array *dnsserversearchorder;
UINT32 index;
const struct array *ipaddress;
UINT32 ipconnectionmetric;
int ipenabled;
const struct array *ipsubnet;
const WCHAR *mac_address;
const WCHAR *settingid;
};
struct record_operatingsystem
{
const WCHAR *buildnumber;
const WCHAR *caption;
const WCHAR *codeset;
const WCHAR *countrycode;
const WCHAR *csdversion;
const WCHAR *csname;
INT16 currenttimezone;
UINT64 freephysicalmemory;
const WCHAR *installdate;
const WCHAR *lastbootuptime;
const WCHAR *localdatetime;
const WCHAR *locale;
const WCHAR *manufacturer;
const WCHAR *name;
UINT32 operatingsystemsku;
const WCHAR *osarchitecture;
UINT32 oslanguage;
UINT32 osproductsuite;
UINT16 ostype;
int primary;
UINT32 producttype;
const WCHAR *serialnumber;
UINT16 servicepackmajor;
UINT16 servicepackminor;
const WCHAR *status;
UINT32 suitemask;
const WCHAR *systemdirectory;
const WCHAR *systemdrive;
UINT64 totalvirtualmemorysize;
UINT64 totalvisiblememorysize;
const WCHAR *version;
};
struct record_param
{
const WCHAR *class;
const WCHAR *method;
INT32 direction;
const WCHAR *parameter;
UINT32 type;
UINT32 defaultvalue;
};
struct record_physicalmedia
{
const WCHAR *serialnumber;
const WCHAR *tag;
};
struct record_physicalmemory
{
const WCHAR *banklabel;
UINT64 capacity;
const WCHAR *caption;
UINT32 configuredclockspeed;
const WCHAR *devicelocator;
UINT16 formfactor;
UINT16 memorytype;
const WCHAR *partnumber;
const WCHAR *serial;
};
struct record_pnpentity
{
const WCHAR *device_id;
const WCHAR *manufacturer;
const WCHAR *name;
};
struct record_printer
{
UINT32 attributes;
const WCHAR *device_id;
const WCHAR *drivername;
UINT32 horizontalresolution;
int local;
const WCHAR *location;
const WCHAR *name;
int network;
const WCHAR *portname;
};
struct record_process
{
const WCHAR *caption;
const WCHAR *commandline;
const WCHAR *description;
const WCHAR *handle;
const WCHAR *name;
UINT32 pprocess_id;
UINT32 process_id;
UINT32 thread_count;
UINT64 workingsetsize;
/* methods */
class_method *create;
class_method *get_owner;
};
struct record_processor
{
UINT16 addresswidth;
UINT16 architecture;
const WCHAR *caption;
UINT16 cpu_status;
UINT32 currentclockspeed;
UINT16 datawidth;
const WCHAR *description;
const WCHAR *device_id;
UINT16 family;
UINT16 level;
const WCHAR *manufacturer;
UINT32 maxclockspeed;
const WCHAR *name;
UINT32 num_cores;
UINT32 num_logical_processors;
const WCHAR *processor_id;
UINT16 processortype;
UINT16 revision;
const WCHAR *unique_id;
const WCHAR *version;
};
struct record_qualifier
{
const WCHAR *class;
const WCHAR *member;
UINT32 type;
INT32 flavor;
const WCHAR *name;
INT32 intvalue;
const WCHAR *strvalue;
int boolvalue;
};
struct record_quickfixengineering
{
const WCHAR *caption;
const WCHAR *hotfixid;
};
struct record_rawsmbiostables
{
const struct array *smbiosdata;
};
struct record_service
{
int accept_pause;
int accept_stop;
const WCHAR *displayname;
const WCHAR *name;
UINT32 process_id;
const WCHAR *servicetype;
const WCHAR *startmode;
const WCHAR *state;
const WCHAR *systemname;
/* methods */
class_method *pause_service;
class_method *resume_service;
class_method *start_service;
class_method *stop_service;
};
struct record_sid
{
const WCHAR *accountname;
const struct array *binaryrepresentation;
const WCHAR *referenceddomainname;
const WCHAR *sid;
UINT32 sidlength;
};
struct record_sounddevice
{
const WCHAR *deviceid;
const WCHAR *manufacturer;
const WCHAR *name;
const WCHAR *pnpdeviceid;
const WCHAR *productname;
const WCHAR *status;
UINT16 statusinfo;
};
struct record_stdregprov
{
class_method *createkey;
class_method *enumkey;
class_method *enumvalues;
class_method *getstringvalue;
class_method *setstringvalue;
class_method *setdwordvalue;
class_method *deletekey;
};
struct record_sysrestore
{
const WCHAR *creation_time;
const WCHAR *description;
UINT32 event_type;
UINT32 restore_point_type;
UINT32 sequence_number;
class_method *create_restore_point;
class_method *disable_restore;
class_method *enable_restore;
class_method *get_last_restore_status;
class_method *restore;
};
struct record_systemsecurity
{
class_method *getsd;
class_method *setsd;
};
struct record_systemenclosure
{
const WCHAR *caption;
const struct array *chassistypes;
const WCHAR *description;
int lockpresent;
const WCHAR *manufacturer;
const WCHAR *name;
const WCHAR *tag;
};
struct record_videocontroller
{
const WCHAR *adapter_compatibility;
const WCHAR *adapter_dactype;
UINT32 adapter_ram;
UINT16 availability;
const WCHAR *caption;
UINT32 config_errorcode;
UINT32 current_bitsperpixel;
UINT32 current_horizontalres;
UINT32 current_refreshrate;
UINT16 current_scanmode;
UINT32 current_verticalres;
const WCHAR *description;
const WCHAR *device_id;
const WCHAR *driverdate;
const WCHAR *driverversion;
const WCHAR *installeddriver;
const WCHAR *name;
const WCHAR *pnpdevice_id;
const WCHAR *status;
UINT16 videoarchitecture;
UINT16 videomemorytype;
const WCHAR *videomodedescription;
const WCHAR *videoprocessor;
};
struct record_winsat
{
FLOAT cpuscore;
FLOAT d3dscore;
FLOAT diskscrore;
FLOAT graphicsscore;
FLOAT memoryscore;
const WCHAR *timetaken;
UINT32 winsatassessmentstate;
FLOAT winsprlevel;
};
#include "poppack.h"
static const struct record_associator data_associator[] =
{
{ L"Win32_DiskDriveToDiskPartition", L"Win32_DiskPartition", L"Win32_DiskDrive" },
{ L"Win32_LogicalDiskToPartition", L"Win32_LogicalDisk", L"Win32_DiskPartition" },
};
static const struct record_param data_param[] =
{
{ L"__SystemSecurity", L"GetSD", -1, L"ReturnValue", CIM_UINT32 },
{ L"__SystemSecurity", L"GetSD", -1, L"SD", CIM_UINT8|CIM_FLAG_ARRAY },
{ L"__SystemSecurity", L"SetSD", 1, L"SD", CIM_UINT8|CIM_FLAG_ARRAY },
{ L"__SystemSecurity", L"SetSD", -1, L"ReturnValue", CIM_UINT32 },
{ L"StdRegProv", L"CreateKey", 1, L"hDefKey", CIM_SINT32, 0x80000002 },
{ L"StdRegProv", L"CreateKey", 1, L"sSubKeyName", CIM_STRING },
{ L"StdRegProv", L"CreateKey", -1, L"ReturnValue", CIM_UINT32 },
{ L"StdRegProv", L"DeleteKey", 1, L"hDefKey", CIM_SINT32, 0x80000002 },
{ L"StdRegProv", L"DeleteKey", 1, L"sSubKeyName", CIM_STRING },
{ L"StdRegProv", L"DeleteKey", -1, L"ReturnValue", CIM_UINT32 },
{ L"StdRegProv", L"EnumKey", 1, L"hDefKey", CIM_SINT32, 0x80000002 },
{ L"StdRegProv", L"EnumKey", 1, L"sSubKeyName", CIM_STRING },
{ L"StdRegProv", L"EnumKey", -1, L"ReturnValue", CIM_UINT32 },
{ L"StdRegProv", L"EnumKey", -1, L"sNames", CIM_STRING|CIM_FLAG_ARRAY },
{ L"StdRegProv", L"EnumValues", 1, L"hDefKey", CIM_SINT32, 0x80000002 },
{ L"StdRegProv", L"EnumValues", 1, L"sSubKeyName", CIM_STRING },
{ L"StdRegProv", L"EnumValues", -1, L"ReturnValue", CIM_UINT32 },
{ L"StdRegProv", L"EnumValues", -1, L"sNames", CIM_STRING|CIM_FLAG_ARRAY },
{ L"StdRegProv", L"EnumValues", -1, L"Types", CIM_SINT32|CIM_FLAG_ARRAY },
{ L"StdRegProv", L"GetStringValue", 1, L"hDefKey", CIM_SINT32, 0x80000002 },
{ L"StdRegProv", L"GetStringValue", 1, L"sSubKeyName", CIM_STRING },
{ L"StdRegProv", L"GetStringValue", 1, L"sValueName", CIM_STRING },
{ L"StdRegProv", L"GetStringValue", -1, L"ReturnValue", CIM_UINT32 },
{ L"StdRegProv", L"GetStringValue", -1, L"sValue", CIM_STRING },
{ L"StdRegProv", L"SetStringValue", 1, L"hDefKey", CIM_SINT32, 0x80000002 },
{ L"StdRegProv", L"SetStringValue", 1, L"sSubKeyName", CIM_STRING },
{ L"StdRegProv", L"SetStringValue", 1, L"sValueName", CIM_STRING },
{ L"StdRegProv", L"SetStringValue", 1, L"sValue", CIM_STRING },
{ L"StdRegProv", L"SetStringValue", -1, L"ReturnValue", CIM_UINT32 },
{ L"StdRegProv", L"SetDWORDValue", 1, L"hDefKey", CIM_SINT32, 0x80000002 },
{ L"StdRegProv", L"SetDWORDValue", 1, L"sSubKeyName", CIM_STRING },
{ L"StdRegProv", L"SetDWORDValue", 1, L"sValueName", CIM_STRING },
{ L"StdRegProv", L"SetDWORDValue", 1, L"uValue", CIM_UINT32 },
{ L"StdRegProv", L"SetDWORDValue", -1, L"ReturnValue", CIM_UINT32 },
{ L"SystemRestore", L"Disable", 1, L"Drive", CIM_STRING },
{ L"SystemRestore", L"Disable", -1, L"ReturnValue", CIM_UINT32 },
{ L"SystemRestore", L"Enable", 1, L"Drive", CIM_STRING },
{ L"SystemRestore", L"Enable", -1, L"ReturnValue", CIM_UINT32 },
{ L"Win32_Process", L"Create", 1, L"CommandLine", CIM_STRING },
{ L"Win32_Process", L"Create", 1, L"CurrentDirectory", CIM_STRING },
{ L"Win32_Process", L"Create", -1, L"ProcessId", CIM_UINT32 },
{ L"Win32_Process", L"Create", -1, L"ReturnValue", CIM_UINT32 },
{ L"Win32_Process", L"GetOwner", -1, L"ReturnValue", CIM_UINT32 },
{ L"Win32_Process", L"GetOwner", -1, L"User", CIM_STRING },
{ L"Win32_Process", L"GetOwner", -1, L"Domain", CIM_STRING },
{ L"Win32_Service", L"PauseService", -1, L"ReturnValue", CIM_UINT32 },
{ L"Win32_Service", L"ResumeService", -1, L"ReturnValue", CIM_UINT32 },
{ L"Win32_Service", L"StartService", -1, L"ReturnValue", CIM_UINT32 },
{ L"Win32_Service", L"StopService", -1, L"ReturnValue", CIM_UINT32 },
};
#define FLAVOR_ID (WBEM_FLAVOR_FLAG_PROPAGATE_TO_INSTANCE | WBEM_FLAVOR_NOT_OVERRIDABLE |\
WBEM_FLAVOR_ORIGIN_PROPAGATED)
static const struct record_physicalmedia data_physicalmedia[] =
{
{ L"WINEHDISK", L"\\\\.\\PHYSICALDRIVE0" }
};
static const struct record_rawsmbiostables data_rawsmbiostables[] =
{
{ 0 },
};
static const struct record_qualifier data_qualifier[] =
{
{ L"__WIN32_PROCESS_GETOWNER_OUT", L"User", CIM_SINT32, FLAVOR_ID, L"ID", 0 },
{ L"__WIN32_PROCESS_GETOWNER_OUT", L"Domain", CIM_SINT32, FLAVOR_ID, L"ID", 1 }
};
static const struct record_quickfixengineering data_quickfixengineering[] =
{
{ L"http://winehq.org", L"KB1234567" },
};
static const struct record_stdregprov data_stdregprov[] =
{
{
reg_create_key,
reg_enum_key,
reg_enum_values,
reg_get_stringvalue,
reg_set_stringvalue,
reg_set_dwordvalue,
reg_delete_key,
}
};
static const struct record_sysrestore data_sysrestore[] =
{
{ NULL, NULL, 0, 0, 0, sysrestore_create, sysrestore_disable, sysrestore_enable, sysrestore_get_last_status,
sysrestore_restore }
};
static UINT16 systemenclosure_chassistypes[] =
{
1,
};
static const struct array systemenclosure_chassistypes_array =
{
sizeof(*systemenclosure_chassistypes),
ARRAY_SIZE(systemenclosure_chassistypes),
&systemenclosure_chassistypes
};
static const struct record_systemsecurity data_systemsecurity[] =
{
{ security_get_sd, security_set_sd }
};
static const struct record_winsat data_winsat[] =
{
{ 8.0f, 8.0f, 8.0f, 8.0f, 8.0f, L"MostRecentAssessment", 1 /* Valid */, 8.0f },
};
/* check if row matches condition and update status */
static BOOL match_row( const struct table *table, UINT row, const struct expr *cond, enum fill_status *status )
{
LONGLONG val;
UINT type;
if (!cond)
{
*status = FILL_STATUS_UNFILTERED;
return TRUE;
}
if (eval_cond( table, row, cond, &val, &type ) != S_OK)
{
*status = FILL_STATUS_FAILED;
return FALSE;
}
*status = FILL_STATUS_FILTERED;
return val != 0;
}
static BOOL resize_table( struct table *table, UINT row_count, UINT row_size )
{
if (!table->num_rows_allocated)
{
if (!(table->data = heap_alloc( row_count * row_size ))) return FALSE;
table->num_rows_allocated = row_count;
return TRUE;
}
if (row_count > table->num_rows_allocated)
{
BYTE *data;
UINT count = max( row_count, table->num_rows_allocated * 2 );
if (!(data = heap_realloc( table->data, count * row_size ))) return FALSE;
table->data = data;
table->num_rows_allocated = count;
}
return TRUE;
}
#include "pshpack1.h"
struct smbios_prologue
{
BYTE calling_method;
BYTE major_version;
BYTE minor_version;
BYTE revision;
DWORD length;
};
enum smbios_type
{
SMBIOS_TYPE_BIOS,
SMBIOS_TYPE_SYSTEM,
SMBIOS_TYPE_BASEBOARD,
SMBIOS_TYPE_CHASSIS,
};
struct smbios_header
{
BYTE type;
BYTE length;
WORD handle;
};
struct smbios_baseboard
{
struct smbios_header hdr;
BYTE vendor;
BYTE product;
BYTE version;
BYTE serial;
};
struct smbios_bios
{
struct smbios_header hdr;
BYTE vendor;
BYTE version;
WORD start;
BYTE date;
BYTE size;
UINT64 characteristics;
BYTE characteristics_ext[2];
BYTE system_bios_major_release;
BYTE system_bios_minor_release;
BYTE ec_firmware_major_release;
BYTE ec_firmware_minor_release;
};
struct smbios_chassis
{
struct smbios_header hdr;
BYTE vendor;
BYTE type;
BYTE version;
BYTE serial;
BYTE asset_tag;
};
struct smbios_system
{
struct smbios_header hdr;
BYTE vendor;
BYTE product;
BYTE version;
BYTE serial;
BYTE uuid[16];
};
#include "poppack.h"
#define RSMB (('R' << 24) | ('S' << 16) | ('M' << 8) | 'B')
static const struct smbios_header *find_smbios_entry( enum smbios_type type, const char *buf, UINT len )
{
const char *ptr, *start;
const struct smbios_prologue *prologue;
const struct smbios_header *hdr;
if (len < sizeof(struct smbios_prologue)) return NULL;
prologue = (const struct smbios_prologue *)buf;
if (prologue->length > len - sizeof(*prologue) || prologue->length < sizeof(*hdr)) return NULL;
start = (const char *)(prologue + 1);
hdr = (const struct smbios_header *)start;
for (;;)
{
if ((const char *)hdr - start >= prologue->length - sizeof(*hdr)) return NULL;
if (!hdr->length)
{
WARN( "invalid entry\n" );
return NULL;
}
if (hdr->type == type)
{
if ((const char *)hdr - start + hdr->length > prologue->length) return NULL;
break;
}
else /* skip other entries and their strings */
{
for (ptr = (const char *)hdr + hdr->length; ptr - buf < len && *ptr; ptr++)
{
for (; ptr - buf < len; ptr++) if (!*ptr) break;
}
if (ptr == (const char *)hdr + hdr->length) ptr++;
hdr = (const struct smbios_header *)(ptr + 1);
}
}
return hdr;
}
static WCHAR *get_smbios_string( BYTE id, const char *buf, UINT offset, UINT buflen )
{
const char *ptr = buf + offset;
UINT i = 0;
if (!id || offset >= buflen) return NULL;
for (ptr = buf + offset; ptr - buf < buflen && *ptr; ptr++)
{
if (++i == id) return heap_strdupAW( ptr );
for (; ptr - buf < buflen; ptr++) if (!*ptr) break;
}
return NULL;
}
static WCHAR *get_baseboard_string( BYTE id, const char *buf, UINT len )
{
const struct smbios_header *hdr;
const struct smbios_baseboard *baseboard;
UINT offset;
if (!(hdr = find_smbios_entry( SMBIOS_TYPE_BASEBOARD, buf, len ))) return NULL;
baseboard = (const struct smbios_baseboard *)hdr;
offset = (const char *)baseboard - buf + baseboard->hdr.length;
return get_smbios_string( id, buf, offset, len );
}
static WCHAR *get_baseboard_manufacturer( const char *buf, UINT len )
{
WCHAR *ret = get_baseboard_string( 1, buf, len );
if (!ret) return heap_strdupW( L"Intel Corporation" );
return ret;
}
static WCHAR *get_baseboard_product( const char *buf, UINT len )
{
WCHAR *ret = get_baseboard_string( 2, buf, len );
if (!ret) return heap_strdupW( L"Base Board" );
return ret;
}
static WCHAR *get_baseboard_serialnumber( const char *buf, UINT len )
{
WCHAR *ret = get_baseboard_string( 4, buf, len );
if (!ret) return heap_strdupW( L"None" );
return ret;
}
static WCHAR *get_baseboard_version( const char *buf, UINT len )
{
WCHAR *ret = get_baseboard_string( 3, buf, len );
if (!ret) return heap_strdupW( L"1.0" );
return ret;
}
static enum fill_status fill_baseboard( struct table *table, const struct expr *cond )
{
struct record_baseboard *rec;
enum fill_status status = FILL_STATUS_UNFILTERED;
UINT row = 0, len;
char *buf;
if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
len = GetSystemFirmwareTable( RSMB, 0, NULL, 0 );
if (!(buf = heap_alloc( len ))) return FILL_STATUS_FAILED;
GetSystemFirmwareTable( RSMB, 0, buf, len );
rec = (struct record_baseboard *)table->data;
rec->manufacturer = get_baseboard_manufacturer( buf, len );
rec->model = L"Base Board";
rec->name = L"Base Board";
rec->product = get_baseboard_product( buf, len );
rec->serialnumber = get_baseboard_serialnumber( buf, len );
rec->tag = L"Base Board";
rec->version = get_baseboard_version( buf, len );
if (!match_row( table, row, cond, &status )) free_row_values( table, row );
else row++;
heap_free( buf );
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static UINT16 get_bios_smbiosmajorversion( const char *buf, UINT len )
{
const struct smbios_prologue *prologue = (const struct smbios_prologue *)buf;
if (len < sizeof(*prologue)) return 2;
return prologue->major_version;
}
static UINT16 get_bios_smbiosminorversion( const char *buf, UINT len )
{
const struct smbios_prologue *prologue = (const struct smbios_prologue *)buf;
if (len < sizeof(*prologue)) return 0;
return prologue->minor_version;
}
static WCHAR *get_bios_string( BYTE id, const char *buf, UINT len )
{
const struct smbios_header *hdr;
const struct smbios_bios *bios;
UINT offset;
if (!(hdr = find_smbios_entry( SMBIOS_TYPE_BIOS, buf, len ))) return NULL;
bios = (const struct smbios_bios *)hdr;
offset = (const char *)bios - buf + bios->hdr.length;
return get_smbios_string( id, buf, offset, len );
}
static WCHAR *get_bios_manufacturer( const char *buf, UINT len )
{
WCHAR *ret = get_bios_string( 1, buf, len );
if (!ret) return heap_strdupW( L"The Wine Project" );
return ret;
}
static WCHAR *convert_bios_date( const WCHAR *str )
{
static const WCHAR fmtW[] = L"%04u%02u%02u000000.000000+000";
UINT year, month, day, len = lstrlenW( str );
const WCHAR *p = str, *q;
WCHAR *ret;
while (len && iswspace( *p )) { p++; len--; }
while (len && iswspace( p[len - 1] )) { len--; }
q = p;
while (len && is_digit( *q )) { q++; len--; };
if (q - p != 2 || !len || *q != '/') return NULL;
month = (p[0] - '0') * 10 + p[1] - '0';
p = ++q; len--;
while (len && is_digit( *q )) { q++; len--; };
if (q - p != 2 || !len || *q != '/') return NULL;
day = (p[0] - '0') * 10 + p[1] - '0';
p = ++q; len--;
while (len && is_digit( *q )) { q++; len--; };
if (q - p == 4) year = (p[0] - '0') * 1000 + (p[1] - '0') * 100 + (p[2] - '0') * 10 + p[3] - '0';
else if (q - p == 2) year = 1900 + (p[0] - '0') * 10 + p[1] - '0';
else return NULL;
if (!(ret = heap_alloc( sizeof(fmtW) ))) return NULL;
swprintf( ret, ARRAY_SIZE(fmtW), fmtW, year, month, day );
return ret;
}
static WCHAR *get_bios_releasedate( const char *buf, UINT len )
{
WCHAR *ret, *date = get_bios_string( 3, buf, len );
if (!date || !(ret = convert_bios_date( date ))) ret = heap_strdupW( L"20120608000000.000000+000" );
heap_free( date );
return ret;
}
static WCHAR *get_bios_smbiosbiosversion( const char *buf, UINT len )
{
WCHAR *ret = get_bios_string( 2, buf, len );
if (!ret) return heap_strdupW( L"Wine" );
return ret;
}
static BYTE get_bios_ec_firmware_major_release( const char *buf, UINT len )
{
const struct smbios_header *hdr;
const struct smbios_bios *bios;
if (!(hdr = find_smbios_entry( SMBIOS_TYPE_BIOS, buf, len ))) return 0xFF;
bios = (const struct smbios_bios *)hdr;
if (bios->hdr.length >= 0x18) return bios->ec_firmware_major_release;
else return 0xFF;
}
static BYTE get_bios_ec_firmware_minor_release( const char *buf, UINT len )
{
const struct smbios_header *hdr;
const struct smbios_bios *bios;
if (!(hdr = find_smbios_entry( SMBIOS_TYPE_BIOS, buf, len ))) return 0xFF;
bios = (const struct smbios_bios *)hdr;
if (bios->hdr.length >= 0x18) return bios->ec_firmware_minor_release;
else return 0xFF;
}
static BYTE get_bios_system_bios_major_release( const char *buf, UINT len )
{
const struct smbios_header *hdr;
const struct smbios_bios *bios;
if (!(hdr = find_smbios_entry( SMBIOS_TYPE_BIOS, buf, len ))) return 0xFF;
bios = (const struct smbios_bios *)hdr;
if (bios->hdr.length >= 0x18) return bios->system_bios_major_release;
else return 0xFF;
}
static BYTE get_bios_system_bios_minor_release( const char *buf, UINT len )
{
const struct smbios_header *hdr;
const struct smbios_bios *bios;
if (!(hdr = find_smbios_entry( SMBIOS_TYPE_BIOS, buf, len ))) return 0xFF;
bios = (const struct smbios_bios *)hdr;
if (bios->hdr.length >= 0x18) return bios->system_bios_minor_release;
else return 0xFF;
}
static enum fill_status fill_bios( struct table *table, const struct expr *cond )
{
struct record_bios *rec;
enum fill_status status = FILL_STATUS_UNFILTERED;
UINT row = 0, len;
char *buf;
if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
len = GetSystemFirmwareTable( RSMB, 0, NULL, 0 );
if (!(buf = heap_alloc( len ))) return FILL_STATUS_FAILED;
GetSystemFirmwareTable( RSMB, 0, buf, len );
rec = (struct record_bios *)table->data;
rec->currentlanguage = NULL;
rec->description = L"Default System BIOS";
rec->ecmajorversion = get_bios_ec_firmware_major_release( buf, len );
rec->ecminorversion = get_bios_ec_firmware_minor_release( buf, len );
rec->identificationcode = NULL;
rec->manufacturer = get_bios_manufacturer( buf, len );
rec->name = L"Default System BIOS";
rec->releasedate = get_bios_releasedate( buf, len );
rec->serialnumber = L"0";
rec->smbiosbiosversion = get_bios_smbiosbiosversion( buf, len );
rec->smbiosmajorversion = get_bios_smbiosmajorversion( buf, len );
rec->smbiosminorversion = get_bios_smbiosminorversion( buf, len );
rec->systembiosmajorversion = get_bios_system_bios_major_release( buf, len );
rec->systembiosminorversion = get_bios_system_bios_minor_release( buf, len );
rec->version = L"WINE - 1";
if (!match_row( table, row, cond, &status )) free_row_values( table, row );
else row++;
heap_free( buf );
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static enum fill_status fill_cdromdrive( struct table *table, const struct expr *cond )
{
WCHAR drive[3], root[] = L"A:\\";
struct record_cdromdrive *rec;
UINT i, row = 0, offset = 0;
DWORD drives = GetLogicalDrives();
enum fill_status status = FILL_STATUS_UNFILTERED;
if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
for (i = 0; i < 26; i++)
{
if (drives & (1 << i))
{
root[0] = 'A' + i;
if (GetDriveTypeW( root ) != DRIVE_CDROM)
continue;
if (!resize_table( table, row + 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
rec = (struct record_cdromdrive *)(table->data + offset);
rec->device_id = L"IDE\\CDROMWINE_CD-ROM_____________________________1.0_____\\5&3A2A5854&0&1.0.0";
swprintf( drive, ARRAY_SIZE( drive ), L"%c:", 'A' + i );
rec->drive = heap_strdupW( drive );
rec->mediatype = L"CR-ROM";
rec->name = L"Wine CD_ROM ATA Device";
rec->pnpdevice_id = L"IDE\\CDROMWINE_CD-ROM_____________________________1.0_____\\5&3A2A5854&0&1.0.0";
if (!match_row( table, row, cond, &status ))
{
free_row_values( table, row );
continue;
}
offset += sizeof(*rec);
row++;
}
}
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static UINT get_processor_count(void)
{
SYSTEM_BASIC_INFORMATION info;
if (NtQuerySystemInformation( SystemBasicInformation, &info, sizeof(info), NULL )) return 1;
return info.NumberOfProcessors;
}
static UINT get_logical_processor_count( UINT *num_physical, UINT *num_packages )
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *buf, *entry;
UINT core_relation_count = 0, package_relation_count = 0;
NTSTATUS status;
ULONG len, offset = 0;
BOOL smt_enabled = FALSE;
DWORD all = RelationAll;
if (num_packages) *num_packages = 1;
status = NtQuerySystemInformationEx( SystemLogicalProcessorInformationEx, &all, sizeof(all), NULL, 0, &len );
if (status != STATUS_INFO_LENGTH_MISMATCH) return get_processor_count();
if (!(buf = heap_alloc( len ))) return get_processor_count();
status = NtQuerySystemInformationEx( SystemLogicalProcessorInformationEx, &all, sizeof(all), buf, len, NULL );
if (status != STATUS_SUCCESS)
{
heap_free( buf );
return get_processor_count();
}
while (offset < len)
{
entry = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((char *)buf + offset);
if (entry->Relationship == RelationProcessorCore)
{
core_relation_count++;
if (entry->u.Processor.Flags & LTP_PC_SMT) smt_enabled = TRUE;
}
else if (entry->Relationship == RelationProcessorPackage)
{
package_relation_count++;
}
offset += entry->Size;
}
heap_free( buf );
if (num_physical) *num_physical = core_relation_count;
if (num_packages) *num_packages = package_relation_count;
return smt_enabled ? core_relation_count * 2 : core_relation_count;
}
static UINT64 get_total_physical_memory(void)
{
MEMORYSTATUSEX status;
status.dwLength = sizeof(status);
if (!GlobalMemoryStatusEx( &status )) return 1024 * 1024 * 1024;
return status.ullTotalPhys;
}
static UINT64 get_available_physical_memory(void)
{
MEMORYSTATUSEX status;
status.dwLength = sizeof(status);
if (!GlobalMemoryStatusEx( &status )) return 1024 * 1024 * 1024;
return status.ullAvailPhys;
}
static WCHAR *get_computername(void)
{
WCHAR *ret;
DWORD size = MAX_COMPUTERNAME_LENGTH + 1;
if (!(ret = heap_alloc( size * sizeof(WCHAR) ))) return NULL;
GetComputerNameW( ret, &size );
return ret;
}
static WCHAR *get_username(void)
{
WCHAR *ret;
DWORD compsize, usersize;
DWORD size;
compsize = 0;
GetComputerNameW( NULL, &compsize );
usersize = 0;
GetUserNameW( NULL, &usersize );
size = compsize + usersize; /* two null terminators account for the \ */
if (!(ret = heap_alloc( size * sizeof(WCHAR) ))) return NULL;
GetComputerNameW( ret, &compsize );
ret[compsize] = '\\';
GetUserNameW( ret + compsize + 1, &usersize );
return ret;
}
static enum fill_status fill_compsys( struct table *table, const struct expr *cond )
{
struct record_computersystem *rec;
enum fill_status status = FILL_STATUS_UNFILTERED;
UINT row = 0;
if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
rec = (struct record_computersystem *)table->data;
rec->description = L"AT/AT COMPATIBLE";
rec->domain = L"WORKGROUP";
rec->domainrole = 0; /* standalone workstation */
rec->manufacturer = L"The Wine Project";
rec->model = L"Wine";
rec->name = get_computername();
rec->num_logical_processors = get_logical_processor_count( NULL, &rec->num_processors );
rec->total_physical_memory = get_total_physical_memory();
rec->username = get_username();
if (!match_row( table, row, cond, &status )) free_row_values( table, row );
else row++;
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static WCHAR *get_compsysproduct_string( BYTE id, const char *buf, UINT len )
{
const struct smbios_header *hdr;
const struct smbios_system *system;
UINT offset;
if (!(hdr = find_smbios_entry( SMBIOS_TYPE_SYSTEM, buf, len ))) return NULL;
system = (const struct smbios_system *)hdr;
offset = (const char *)system - buf + system->hdr.length;
return get_smbios_string( id, buf, offset, len );
}
static WCHAR *get_compsysproduct_identifyingnumber( const char *buf, UINT len )
{
WCHAR *ret = get_compsysproduct_string( 4, buf, len );
if (!ret) return heap_strdupW( L"0" );
return ret;
}
static WCHAR *get_compsysproduct_name( const char *buf, UINT len )
{
WCHAR *ret = get_compsysproduct_string( 2, buf, len );
if (!ret) return heap_strdupW( L"Wine" );
return ret;
}
static WCHAR *get_compsysproduct_uuid( const char *buf, UINT len )
{
static const BYTE none[] = {0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};
const struct smbios_header *hdr;
const struct smbios_system *system;
const BYTE *ptr;
WCHAR *ret = NULL;
if (!(hdr = find_smbios_entry( SMBIOS_TYPE_SYSTEM, buf, len )) || hdr->length < sizeof(*system)) goto done;
system = (const struct smbios_system *)hdr;
if (!memcmp( system->uuid, none, sizeof(none) ) || !(ret = heap_alloc( 37 * sizeof(WCHAR) ))) goto done;
ptr = system->uuid;
swprintf( ret, 37, L"%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", ptr[0], ptr[1],
ptr[2], ptr[3], ptr[4], ptr[5], ptr[6], ptr[7], ptr[8], ptr[9], ptr[10], ptr[11], ptr[12], ptr[13],
ptr[14], ptr[15] );
done:
if (!ret) ret = heap_strdupW( L"deaddead-dead-dead-dead-deaddeaddead" );
return ret;
}
static WCHAR *get_compsysproduct_vendor( const char *buf, UINT len )
{
WCHAR *ret = get_compsysproduct_string( 1, buf, len );
if (!ret) return heap_strdupW( L"The Wine Project" );
return ret;
}
static WCHAR *get_compsysproduct_version( const char *buf, UINT len )
{
WCHAR *ret = get_compsysproduct_string( 3, buf, len );
if (!ret) return heap_strdupW( L"1.0" );
return ret;
}
static enum fill_status fill_compsysproduct( struct table *table, const struct expr *cond )
{
struct record_computersystemproduct *rec;
enum fill_status status = FILL_STATUS_UNFILTERED;
UINT row = 0, len;
char *buf;
if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
len = GetSystemFirmwareTable( RSMB, 0, NULL, 0 );
if (!(buf = heap_alloc( len ))) return FILL_STATUS_FAILED;
GetSystemFirmwareTable( RSMB, 0, buf, len );
rec = (struct record_computersystemproduct *)table->data;
rec->identifyingnumber = get_compsysproduct_identifyingnumber( buf, len );
rec->name = get_compsysproduct_name( buf, len );
rec->skunumber = NULL;
rec->uuid = get_compsysproduct_uuid( buf, len );
rec->vendor = get_compsysproduct_vendor( buf, len );
rec->version = get_compsysproduct_version( buf, len );
if (!match_row( table, row, cond, &status )) free_row_values( table, row );
else row++;
heap_free( buf );
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
struct dirstack
{
WCHAR **dirs;
UINT *len_dirs;
UINT num_dirs;
UINT num_allocated;
};
static struct dirstack *alloc_dirstack( UINT size )
{
struct dirstack *dirstack;
if (!(dirstack = heap_alloc( sizeof(*dirstack) ))) return NULL;
if (!(dirstack->dirs = heap_alloc( sizeof(WCHAR *) * size )))
{
heap_free( dirstack );
return NULL;
}
if (!(dirstack->len_dirs = heap_alloc( sizeof(UINT) * size )))
{
heap_free( dirstack->dirs );
heap_free( dirstack );
return NULL;
}
dirstack->num_dirs = 0;
dirstack->num_allocated = size;
return dirstack;
}
static void clear_dirstack( struct dirstack *dirstack )
{
UINT i;
for (i = 0; i < dirstack->num_dirs; i++) heap_free( dirstack->dirs[i] );
dirstack->num_dirs = 0;
}
static void free_dirstack( struct dirstack *dirstack )
{
clear_dirstack( dirstack );
heap_free( dirstack->dirs );
heap_free( dirstack->len_dirs );
heap_free( dirstack );
}
static BOOL push_dir( struct dirstack *dirstack, WCHAR *dir, UINT len )
{
UINT size, i = dirstack->num_dirs;
if (!dir) return FALSE;
if (i == dirstack->num_allocated)
{
WCHAR **tmp;
UINT *len_tmp;
size = dirstack->num_allocated * 2;
if (!(tmp = heap_realloc( dirstack->dirs, size * sizeof(WCHAR *) ))) return FALSE;
dirstack->dirs = tmp;
if (!(len_tmp = heap_realloc( dirstack->len_dirs, size * sizeof(UINT) ))) return FALSE;
dirstack->len_dirs = len_tmp;
dirstack->num_allocated = size;
}
dirstack->dirs[i] = dir;
dirstack->len_dirs[i] = len;
dirstack->num_dirs++;
return TRUE;
}
static WCHAR *pop_dir( struct dirstack *dirstack, UINT *len )
{
if (!dirstack->num_dirs)
{
*len = 0;
return NULL;
}
dirstack->num_dirs--;
*len = dirstack->len_dirs[dirstack->num_dirs];
return dirstack->dirs[dirstack->num_dirs];
}
static const WCHAR *peek_dir( struct dirstack *dirstack )
{
if (!dirstack->num_dirs) return NULL;
return dirstack->dirs[dirstack->num_dirs - 1];
}
static WCHAR *build_glob( WCHAR drive, const WCHAR *path, UINT len )
{
UINT i = 0;
WCHAR *ret;
if (!(ret = heap_alloc( (len + 6) * sizeof(WCHAR) ))) return NULL;
ret[i++] = drive;
ret[i++] = ':';
ret[i++] = '\\';
if (path && len)
{
memcpy( ret + i, path, len * sizeof(WCHAR) );
i += len;
ret[i++] = '\\';
}
ret[i++] = '*';
ret[i] = 0;
return ret;
}
static WCHAR *build_name( WCHAR drive, const WCHAR *path )
{
UINT i = 0, len = 0;
const WCHAR *p;
WCHAR *ret;
for (p = path; *p; p++)
{
if (*p == '\\') len += 2;
else len++;
};
if (!(ret = heap_alloc( (len + 5) * sizeof(WCHAR) ))) return NULL;
ret[i++] = drive;
ret[i++] = ':';
ret[i++] = '\\';
ret[i++] = '\\';
for (p = path; *p; p++)
{
if (*p != '\\') ret[i++] = *p;
else
{
ret[i++] = '\\';
ret[i++] = '\\';
}
}
ret[i] = 0;
return ret;
}
static WCHAR *build_dirname( const WCHAR *path, UINT *ret_len )
{
const WCHAR *p = path, *start;
UINT len, i;
WCHAR *ret;
if (!iswalpha( p[0] ) || p[1] != ':' || p[2] != '\\' || p[3] != '\\' || !p[4]) return NULL;
start = path + 4;
len = lstrlenW( start );
p = start + len - 1;
if (*p == '\\') return NULL;
while (p >= start && *p != '\\') { len--; p--; };
while (p >= start && *p == '\\') { len--; p--; };
if (!(ret = heap_alloc( (len + 1) * sizeof(WCHAR) ))) return NULL;
for (i = 0, p = start; p < start + len; p++)
{
if (p[0] == '\\' && p[1] == '\\')
{
ret[i++] = '\\';
p++;
}
else ret[i++] = *p;
}
ret[i] = 0;
*ret_len = i;
return ret;
}
static BOOL seen_dir( struct dirstack *dirstack, const WCHAR *path )
{
UINT i;
for (i = 0; i < dirstack->num_dirs; i++) if (!wcscmp( dirstack->dirs[i], path )) return TRUE;
return FALSE;
}
/* optimize queries of the form WHERE Name='...' [OR Name='...']* */
static UINT seed_dirs( struct dirstack *dirstack, const struct expr *cond, WCHAR root, UINT *count )
{
const struct expr *left, *right;
if (!cond || cond->type != EXPR_COMPLEX) return *count = 0;
left = cond->u.expr.left;
right = cond->u.expr.right;
if (cond->u.expr.op == OP_EQ)
{
UINT len;
WCHAR *path;
const WCHAR *str = NULL;
if (left->type == EXPR_PROPVAL && right->type == EXPR_SVAL &&
!wcscmp( left->u.propval->name, L"Name" ) &&
towupper( right->u.sval[0] ) == towupper( root ))
{
str = right->u.sval;
}
else if (left->type == EXPR_SVAL && right->type == EXPR_PROPVAL &&
!wcscmp( right->u.propval->name, L"Name" ) &&
towupper( left->u.sval[0] ) == towupper( root ))
{
str = left->u.sval;
}
if (str && (path = build_dirname( str, &len )))
{
if (seen_dir( dirstack, path ))
{
heap_free( path );
return ++*count;
}
else if (push_dir( dirstack, path, len )) return ++*count;
heap_free( path );
return *count = 0;
}
}
else if (cond->u.expr.op == OP_OR)
{
UINT left_count = 0, right_count = 0;
if (!(seed_dirs( dirstack, left, root, &left_count ))) return *count = 0;
if (!(seed_dirs( dirstack, right, root, &right_count ))) return *count = 0;
return *count += left_count + right_count;
}
return *count = 0;
}
static WCHAR *append_path( const WCHAR *path, const WCHAR *segment, UINT *len )
{
UINT len_path = 0, len_segment = lstrlenW( segment );
WCHAR *ret;
*len = 0;
if (path) len_path = lstrlenW( path );
if (!(ret = heap_alloc( (len_path + len_segment + 2) * sizeof(WCHAR) ))) return NULL;
if (path && len_path)
{
memcpy( ret, path, len_path * sizeof(WCHAR) );
ret[len_path] = '\\';
*len += len_path + 1;
}
memcpy( ret + *len, segment, len_segment * sizeof(WCHAR) );
*len += len_segment;
ret[*len] = 0;
return ret;
}
static WCHAR *get_file_version( const WCHAR *filename )
{
VS_FIXEDFILEINFO *info;
DWORD size, len = 4 * 5 + ARRAY_SIZE( L"%u.%u.%u.%u" );
void *block;
WCHAR *ret;
if (!(ret = heap_alloc( len * sizeof(WCHAR) ))) return NULL;
if (!(size = GetFileVersionInfoSizeW( filename, NULL )) || !(block = heap_alloc( size )))
{
heap_free( ret );
return NULL;
}
if (!GetFileVersionInfoW( filename, 0, size, block ) ||
!VerQueryValueW( block, L"\\", (void **)&info, &size ))
{
heap_free( block );
heap_free( ret );
return NULL;
}
swprintf( ret, len, L"%u.%u.%u.%u", info->dwFileVersionMS >> 16, info->dwFileVersionMS & 0xffff,
info->dwFileVersionLS >> 16, info->dwFileVersionLS & 0xffff );
heap_free( block );
return ret;
}
static enum fill_status fill_datafile( struct table *table, const struct expr *cond )
{
struct record_datafile *rec;
UINT i, len, row = 0, offset = 0, num_expected_rows;
WCHAR *glob = NULL, *path = NULL, *new_path, root[] = L"A:\\";
DWORD drives = GetLogicalDrives();
WIN32_FIND_DATAW data;
HANDLE handle;
struct dirstack *dirstack;
enum fill_status status = FILL_STATUS_UNFILTERED;
if (!resize_table( table, 8, sizeof(*rec) )) return FILL_STATUS_FAILED;
dirstack = alloc_dirstack(2);
for (i = 0; i < 26; i++)
{
if (!(drives & (1 << i))) continue;
root[0] = 'A' + i;
if (GetDriveTypeW( root ) != DRIVE_FIXED) continue;
num_expected_rows = 0;
if (!seed_dirs( dirstack, cond, root[0], &num_expected_rows )) clear_dirstack( dirstack );
for (;;)
{
heap_free( glob );
heap_free( path );
path = pop_dir( dirstack, &len );
if (!(glob = build_glob( root[0], path, len )))
{
status = FILL_STATUS_FAILED;
goto done;
}
if ((handle = FindFirstFileW( glob, &data )) != INVALID_HANDLE_VALUE)
{
do
{
if (!resize_table( table, row + 1, sizeof(*rec) ))
{
status = FILL_STATUS_FAILED;
FindClose( handle );
goto done;
}
if (!wcscmp( data.cFileName, L"." ) || !wcscmp( data.cFileName, L".." )) continue;
if (!(new_path = append_path( path, data.cFileName, &len )))
{
status = FILL_STATUS_FAILED;
FindClose( handle );
goto done;
}
if (data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)
{
if (push_dir( dirstack, new_path, len )) continue;
heap_free( new_path );
FindClose( handle );
status = FILL_STATUS_FAILED;
goto done;
}
rec = (struct record_datafile *)(table->data + offset);
rec->name = build_name( root[0], new_path );
rec->version = get_file_version( rec->name );
heap_free( new_path );
if (!match_row( table, row, cond, &status ))
{
free_row_values( table, row );
continue;
}
else if (num_expected_rows && row == num_expected_rows - 1)
{
row++;
FindClose( handle );
status = FILL_STATUS_FILTERED;
goto done;
}
offset += sizeof(*rec);
row++;
}
while (FindNextFileW( handle, &data ));
FindClose( handle );
}
if (!peek_dir( dirstack )) break;
}
}
done:
free_dirstack( dirstack );
heap_free( glob );
heap_free( path );
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static UINT32 get_pixelsperxlogicalinch(void)
{
HDC hdc = GetDC( NULL );
UINT32 ret;
if (!hdc) return 96;
ret = GetDeviceCaps( hdc, LOGPIXELSX );
ReleaseDC( NULL, hdc );
return ret;
}
static enum fill_status fill_desktopmonitor( struct table *table, const struct expr *cond )
{
struct record_desktopmonitor *rec;
enum fill_status status = FILL_STATUS_UNFILTERED;
UINT row = 0;
if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
rec = (struct record_desktopmonitor *)table->data;
rec->name = L"Generic Non-PnP Monitor";
rec->pixelsperxlogicalinch = get_pixelsperxlogicalinch();
if (match_row( table, row, cond, &status )) row++;
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static enum fill_status fill_directory( struct table *table, const struct expr *cond )
{
struct record_directory *rec;
UINT i, len, row = 0, offset = 0, num_expected_rows;
WCHAR *glob = NULL, *path = NULL, *new_path, root[] = L"A:\\";
DWORD drives = GetLogicalDrives();
WIN32_FIND_DATAW data;
HANDLE handle;
struct dirstack *dirstack;
enum fill_status status = FILL_STATUS_UNFILTERED;
if (!resize_table( table, 4, sizeof(*rec) )) return FILL_STATUS_FAILED;
dirstack = alloc_dirstack(2);
for (i = 0; i < 26; i++)
{
if (!(drives & (1 << i))) continue;
root[0] = 'A' + i;
if (GetDriveTypeW( root ) != DRIVE_FIXED) continue;
num_expected_rows = 0;
if (!seed_dirs( dirstack, cond, root[0], &num_expected_rows )) clear_dirstack( dirstack );
for (;;)
{
heap_free( glob );
heap_free( path );
path = pop_dir( dirstack, &len );
if (!(glob = build_glob( root[0], path, len )))
{
status = FILL_STATUS_FAILED;
goto done;
}
if ((handle = FindFirstFileW( glob, &data )) != INVALID_HANDLE_VALUE)
{
do
{
if (!resize_table( table, row + 1, sizeof(*rec) ))
{
FindClose( handle );
status = FILL_STATUS_FAILED;
goto done;
}
if (!(data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) ||
!wcscmp( data.cFileName, L"." ) || !wcscmp( data.cFileName, L".." ))
continue;
if (!(new_path = append_path( path, data.cFileName, &len )))
{
FindClose( handle );
status = FILL_STATUS_FAILED;
goto done;
}
if (!(push_dir( dirstack, new_path, len )))
{
heap_free( new_path );
FindClose( handle );
status = FILL_STATUS_FAILED;
goto done;
}
rec = (struct record_directory *)(table->data + offset);
rec->accessmask = FILE_ALL_ACCESS;
rec->name = build_name( root[0], new_path );
heap_free( new_path );
if (!match_row( table, row, cond, &status ))
{
free_row_values( table, row );
continue;
}
else if (num_expected_rows && row == num_expected_rows - 1)
{
row++;
FindClose( handle );
status = FILL_STATUS_FILTERED;
goto done;
}
offset += sizeof(*rec);
row++;
}
while (FindNextFileW( handle, &data ));
FindClose( handle );
}
if (!peek_dir( dirstack )) break;
}
}
done:
free_dirstack( dirstack );
heap_free( glob );
heap_free( path );
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static UINT64 get_freespace( const WCHAR *dir, UINT64 *disksize )
{
WCHAR root[] = L"\\\\.\\A:";
ULARGE_INTEGER free;
DISK_GEOMETRY_EX info;
HANDLE handle;
DWORD bytes_returned;
free.QuadPart = 512 * 1024 * 1024;
GetDiskFreeSpaceExW( dir, NULL, NULL, &free );
root[4] = dir[0];
handle = CreateFileW( root, GENERIC_READ, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, 0 );
if (handle != INVALID_HANDLE_VALUE)
{
if (DeviceIoControl( handle, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX, NULL, 0, &info, sizeof(info), &bytes_returned, NULL ))
*disksize = info.DiskSize.QuadPart;
CloseHandle( handle );
}
return free.QuadPart;
}
static WCHAR *get_diskdrive_serialnumber( WCHAR letter )
{
WCHAR *ret = NULL;
STORAGE_DEVICE_DESCRIPTOR *desc;
HANDLE handle = INVALID_HANDLE_VALUE;
STORAGE_PROPERTY_QUERY query = {0};
WCHAR drive[7];
DWORD size;
swprintf( drive, ARRAY_SIZE(drive), L"\\\\.\\%c:", letter );
handle = CreateFileW( drive, 0, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, 0 );
if (handle == INVALID_HANDLE_VALUE) goto done;
query.PropertyId = StorageDeviceProperty;
query.QueryType = PropertyStandardQuery;
size = sizeof(*desc) + 256;
for (;;)
{
if (!(desc = heap_alloc( size ))) break;
if (DeviceIoControl( handle, IOCTL_STORAGE_QUERY_PROPERTY, &query, sizeof(query), desc, size, NULL, NULL ))
{
if (desc->SerialNumberOffset) ret = heap_strdupAW( (const char *)desc + desc->SerialNumberOffset );
heap_free( desc );
break;
}
size = desc->Size;
heap_free( desc );
if (GetLastError() != ERROR_MORE_DATA) break;
}
done:
if (handle != INVALID_HANDLE_VALUE) CloseHandle( handle );
if (!ret) ret = heap_strdupW( L"WINEHDISK" );
return ret;
}
static enum fill_status fill_diskdrive( struct table *table, const struct expr *cond )
{
static const WCHAR fmtW[] = L"\\\\\\\\.\\\\PHYSICALDRIVE%u";
WCHAR device_id[ARRAY_SIZE( fmtW ) + 10], root[] = L"A:\\";
struct record_diskdrive *rec;
UINT i, row = 0, offset = 0, index = 0, type;
UINT64 size = 1024 * 1024 * 1024;
DWORD drives = GetLogicalDrives();
enum fill_status status = FILL_STATUS_UNFILTERED;
if (!resize_table( table, 2, sizeof(*rec) )) return FILL_STATUS_FAILED;
for (i = 0; i < 26; i++)
{
if (drives & (1 << i))
{
root[0] = 'A' + i;
type = GetDriveTypeW( root );
if (type != DRIVE_FIXED && type != DRIVE_REMOVABLE)
continue;
if (!resize_table( table, row + 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
rec = (struct record_diskdrive *)(table->data + offset);
swprintf( device_id, ARRAY_SIZE( device_id ), fmtW, index );
rec->device_id = heap_strdupW( device_id );
rec->index = index++;
rec->interfacetype = L"IDE";
rec->manufacturer = L"(Standard disk drives)";
rec->mediatype = (type == DRIVE_FIXED) ? L"Fixed hard disk" : L"Removable media";
rec->model = L"Wine Disk Drive";
rec->pnpdevice_id = L"IDE\\Disk\\VEN_WINE";
rec->serialnumber = get_diskdrive_serialnumber( root[0] );
get_freespace( root, &size );
rec->size = size;
if (!match_row( table, row, cond, &status ))
{
free_row_values( table, row );
continue;
}
offset += sizeof(*rec);
row++;
}
}
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
struct association
{
WCHAR *ref;
WCHAR *ref2;
};
static void free_associations( struct association *assoc, UINT count )
{
UINT i;
if (!assoc) return;
for (i = 0; i < count; i++)
{
heap_free( assoc[i].ref );
heap_free( assoc[i].ref2 );
}
heap_free( assoc );
}
static struct association *get_diskdrivetodiskpartition_pairs( UINT *count )
{
struct association *ret = NULL;
struct query *query, *query2 = NULL;
VARIANT val;
HRESULT hr;
UINT i;
if (!(query = create_query( WBEMPROX_NAMESPACE_CIMV2 ))) return NULL;
if ((hr = parse_query( WBEMPROX_NAMESPACE_CIMV2, L"SELECT * FROM Win32_DiskDrive",
&query->view, &query->mem )) != S_OK) goto done;
if ((hr = execute_view( query->view )) != S_OK) goto done;
if (!(query2 = create_query( WBEMPROX_NAMESPACE_CIMV2 ))) return FALSE;
if ((hr = parse_query( WBEMPROX_NAMESPACE_CIMV2, L"SELECT * FROM Win32_DiskPartition",
&query2->view, &query2->mem )) != S_OK) goto done;
if ((hr = execute_view( query2->view )) != S_OK) goto done;
if (!(ret = heap_alloc_zero( query->view->result_count * sizeof(*ret) ))) goto done;
for (i = 0; i < query->view->result_count; i++)
{
if ((hr = get_propval( query->view, i, L"__PATH", &val, NULL, NULL )) != S_OK) goto done;
if (!(ret[i].ref = heap_strdupW( V_BSTR(&val) ))) goto done;
VariantClear( &val );
if ((hr = get_propval( query2->view, i, L"__PATH", &val, NULL, NULL )) != S_OK) goto done;
if (!(ret[i].ref2 = heap_strdupW( V_BSTR(&val) ))) goto done;
VariantClear( &val );
}
*count = query->view->result_count;
done:
if (!ret) free_associations( ret, query->view->result_count );
free_query( query );
free_query( query2 );
return ret;
}
static enum fill_status fill_diskdrivetodiskpartition( struct table *table, const struct expr *cond )
{
struct record_diskdrivetodiskpartition *rec;
UINT i, row = 0, offset = 0, count = 0;
enum fill_status status = FILL_STATUS_UNFILTERED;
struct association *assoc;
if (!(assoc = get_diskdrivetodiskpartition_pairs( &count ))) return FILL_STATUS_FAILED;
if (!count)
{
free_associations( assoc, count );
return FILL_STATUS_UNFILTERED;
}
if (!resize_table( table, count, sizeof(*rec) ))
{
free_associations( assoc, count );
return FILL_STATUS_FAILED;
}
for (i = 0; i < count; i++)
{
rec = (struct record_diskdrivetodiskpartition *)(table->data + offset);
rec->antecedent = assoc[i].ref;
rec->dependent = assoc[i].ref2;
if (!match_row( table, row, cond, &status ))
{
free_row_values( table, row );
continue;
}
offset += sizeof(*rec);
row++;
}
heap_free( assoc );
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static WCHAR *get_filesystem( const WCHAR *root )
{
WCHAR buffer[MAX_PATH + 1];
if (GetVolumeInformationW( root, NULL, 0, NULL, NULL, NULL, buffer, MAX_PATH + 1 ))
return heap_strdupW( buffer );
return heap_strdupW( L"NTFS" );
}
static enum fill_status fill_diskpartition( struct table *table, const struct expr *cond )
{
WCHAR device_id[32], root[] = L"A:\\";
struct record_diskpartition *rec;
UINT i, row = 0, offset = 0, type, index = 0;
UINT64 size = 1024 * 1024 * 1024;
DWORD drives = GetLogicalDrives();
enum fill_status status = FILL_STATUS_UNFILTERED;
if (!resize_table( table, 4, sizeof(*rec) )) return FILL_STATUS_FAILED;
for (i = 0; i < 26; i++)
{
if (drives & (1 << i))
{
root[0] = 'A' + i;
type = GetDriveTypeW( root );
if (type != DRIVE_FIXED && type != DRIVE_REMOVABLE)
continue;
if (!resize_table( table, row + 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
rec = (struct record_diskpartition *)(table->data + offset);
rec->bootable = (i == 2) ? -1 : 0;
rec->bootpartition = (i == 2) ? -1 : 0;
swprintf( device_id, ARRAY_SIZE( device_id ), L"Disk #%u, Partition #0", index );
rec->device_id = heap_strdupW( device_id );
rec->diskindex = index++;
rec->index = 0;
rec->pnpdevice_id = heap_strdupW( device_id );
get_freespace( root, &size );
rec->size = size;
rec->startingoffset = 0;
rec->type = get_filesystem( root );
if (!match_row( table, row, cond, &status ))
{
free_row_values( table, row );
continue;
}
offset += sizeof(*rec);
row++;
}
}
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static UINT32 get_bitsperpixel( UINT *hres, UINT *vres )
{
HDC hdc = GetDC( NULL );
UINT32 ret;
if (!hdc) return 32;
ret = GetDeviceCaps( hdc, BITSPIXEL );
*hres = GetDeviceCaps( hdc, HORZRES );
*vres = GetDeviceCaps( hdc, VERTRES );
ReleaseDC( NULL, hdc );
return ret;
}
static enum fill_status fill_displaycontrollerconfig( struct table *table, const struct expr *cond )
{
struct record_displaycontrollerconfig *rec;
UINT row = 0, hres = 1024, vres = 768;
enum fill_status status = FILL_STATUS_UNFILTERED;
if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
rec = (struct record_displaycontrollerconfig *)table->data;
rec->bitsperpixel = get_bitsperpixel( &hres, &vres );
rec->caption = L"VideoController1";
rec->horizontalresolution = hres;
rec->name = L"VideoController1";
rec->verticalresolution = vres;
if (!match_row( table, row, cond, &status )) free_row_values( table, row );
else row++;
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static WCHAR *get_ip4_string( DWORD addr )
{
DWORD len = sizeof("ddd.ddd.ddd.ddd");
WCHAR *ret;
if (!(ret = heap_alloc( len * sizeof(WCHAR) ))) return NULL;
swprintf( ret, len, L"%u.%u.%u.%u", (addr >> 24) & 0xff, (addr >> 16) & 0xff, (addr >> 8) & 0xff, addr & 0xff );
return ret;
}
static enum fill_status fill_ip4routetable( struct table *table, const struct expr *cond )
{
struct record_ip4routetable *rec;
UINT i, row = 0, offset = 0, size = 0;
MIB_IPFORWARDTABLE *forwards;
enum fill_status status = FILL_STATUS_UNFILTERED;
if (GetIpForwardTable( NULL, &size, TRUE ) != ERROR_INSUFFICIENT_BUFFER) return FILL_STATUS_FAILED;
if (!(forwards = heap_alloc( size ))) return FILL_STATUS_FAILED;
if (GetIpForwardTable( forwards, &size, TRUE ))
{
heap_free( forwards );
return FILL_STATUS_FAILED;
}
if (!resize_table( table, max(forwards->dwNumEntries, 1), sizeof(*rec) ))
{
heap_free( forwards );
return FILL_STATUS_FAILED;
}
for (i = 0; i < forwards->dwNumEntries; i++)
{
rec = (struct record_ip4routetable *)(table->data + offset);
rec->destination = get_ip4_string( ntohl(forwards->table[i].dwForwardDest) );
rec->interfaceindex = forwards->table[i].dwForwardIfIndex;
rec->nexthop = get_ip4_string( ntohl(forwards->table[i].dwForwardNextHop) );
if (!match_row( table, row, cond, &status ))
{
free_row_values( table, row );
continue;
}
offset += sizeof(*rec);
row++;
}
TRACE("created %u rows\n", row);
table->num_rows = row;
heap_free( forwards );
return status;
}
static WCHAR *get_volumename( const WCHAR *root )
{
WCHAR buf[MAX_PATH + 1] = {0};
GetVolumeInformationW( root, buf, ARRAY_SIZE( buf ), NULL, NULL, NULL, NULL, 0 );
return heap_strdupW( buf );
}
static WCHAR *get_volumeserialnumber( const WCHAR *root )
{
DWORD serial = 0;
WCHAR buffer[9];
GetVolumeInformationW( root, NULL, 0, &serial, NULL, NULL, NULL, 0 );
swprintf( buffer, ARRAY_SIZE( buffer ), L"%08X", serial );
return heap_strdupW( buffer );
}
static enum fill_status fill_logicaldisk( struct table *table, const struct expr *cond )
{
WCHAR device_id[3], root[] = L"A:\\";
struct record_logicaldisk *rec;
UINT i, row = 0, offset = 0, type;
UINT64 size = 1024 * 1024 * 1024;
DWORD drives = GetLogicalDrives();
enum fill_status status = FILL_STATUS_UNFILTERED;
if (!resize_table( table, 4, sizeof(*rec) )) return FILL_STATUS_FAILED;
for (i = 0; i < 26; i++)
{
if (drives & (1 << i))
{
root[0] = 'A' + i;
type = GetDriveTypeW( root );
if (type != DRIVE_FIXED && type != DRIVE_CDROM && type != DRIVE_REMOVABLE)
continue;
if (!resize_table( table, row + 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
rec = (struct record_logicaldisk *)(table->data + offset);
swprintf( device_id, ARRAY_SIZE( device_id ), L"%c:", 'A' + i );
rec->caption = heap_strdupW( device_id );
rec->device_id = heap_strdupW( device_id );
rec->drivetype = type;
rec->filesystem = get_filesystem( root );
rec->freespace = get_freespace( root, &size );
rec->name = heap_strdupW( device_id );
rec->size = size;
rec->volumename = get_volumename( root );
rec->volumeserialnumber = get_volumeserialnumber( root );
if (!match_row( table, row, cond, &status ))
{
free_row_values( table, row );
continue;
}
offset += sizeof(*rec);
row++;
}
}
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static struct association *get_logicaldisktopartition_pairs( UINT *count )
{
struct association *ret = NULL;
struct query *query, *query2 = NULL;
VARIANT val;
HRESULT hr;
UINT i;
if (!(query = create_query( WBEMPROX_NAMESPACE_CIMV2 ))) return NULL;
if ((hr = parse_query( WBEMPROX_NAMESPACE_CIMV2, L"SELECT * FROM Win32_DiskPartition",
&query->view, &query->mem )) != S_OK) goto done;
if ((hr = execute_view( query->view )) != S_OK) goto done;
if (!(query2 = create_query( WBEMPROX_NAMESPACE_CIMV2 ))) return FALSE;
if ((hr = parse_query( WBEMPROX_NAMESPACE_CIMV2,
L"SELECT * FROM Win32_LogicalDisk WHERE DriveType=2 OR DriveType=3", &query2->view,
&query2->mem )) != S_OK) goto done;
if ((hr = execute_view( query2->view )) != S_OK) goto done;
if (!(ret = heap_alloc_zero( query->view->result_count * sizeof(*ret) ))) goto done;
/* assume fixed and removable disks are enumerated in the same order as partitions */
for (i = 0; i < query->view->result_count; i++)
{
if ((hr = get_propval( query->view, i, L"__PATH", &val, NULL, NULL )) != S_OK) goto done;
if (!(ret[i].ref = heap_strdupW( V_BSTR(&val) ))) goto done;
VariantClear( &val );
if ((hr = get_propval( query2->view, i, L"__PATH", &val, NULL, NULL )) != S_OK) goto done;
if (!(ret[i].ref2 = heap_strdupW( V_BSTR(&val) ))) goto done;
VariantClear( &val );
}
*count = query->view->result_count;
done:
if (!ret) free_associations( ret, query->view->result_count );
free_query( query );
free_query( query2 );
return ret;
}
static enum fill_status fill_logicaldisktopartition( struct table *table, const struct expr *cond )
{
struct record_logicaldisktopartition *rec;
UINT i, row = 0, offset = 0, count = 0;
enum fill_status status = FILL_STATUS_UNFILTERED;
struct association *assoc;
if (!(assoc = get_logicaldisktopartition_pairs( &count ))) return FILL_STATUS_FAILED;
if (!count)
{
free_associations( assoc, count );
return FILL_STATUS_UNFILTERED;
}
if (!resize_table( table, count, sizeof(*rec) ))
{
free_associations( assoc, count );
return FILL_STATUS_FAILED;
}
for (i = 0; i < count; i++)
{
rec = (struct record_logicaldisktopartition *)(table->data + offset);
rec->antecedent = assoc[i].ref;
rec->dependent = assoc[i].ref2;
if (!match_row( table, row, cond, &status ))
{
free_row_values( table, row );
continue;
}
offset += sizeof(*rec);
row++;
}
heap_free( assoc );
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static UINT16 get_connection_status( IF_OPER_STATUS status )
{
switch (status)
{
case IfOperStatusDown:
return 0; /* Disconnected */
case IfOperStatusUp:
return 2; /* Connected */
default:
ERR("unhandled status %u\n", status);
break;
}
return 0;
}
static WCHAR *get_mac_address( const BYTE *addr, DWORD len )
{
WCHAR *ret;
if (len != 6 || !(ret = heap_alloc( 18 * sizeof(WCHAR) ))) return NULL;
swprintf( ret, 18, L"%02x:%02x:%02x:%02x:%02x:%02x", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5] );
return ret;
}
static const WCHAR *get_adaptertype( DWORD type, int *id, int *physical )
{
switch (type)
{
case IF_TYPE_ETHERNET_CSMACD:
*id = 0;
*physical = -1;
return L"Ethernet 802.3";
case IF_TYPE_IEEE80211:
*id = 9;
*physical = -1;
return L"Wireless";
case IF_TYPE_IEEE1394:
*id = 13;
*physical = -1;
return L"1394";
case IF_TYPE_TUNNEL:
*id = 15;
*physical = 0;
return L"Tunnel";
default:
*id = -1;
*physical = 0;
return NULL;
}
}
#define GUID_SIZE 39
static WCHAR *guid_to_str( const GUID *ptr )
{
WCHAR *ret;
if (!(ret = heap_alloc( GUID_SIZE * sizeof(WCHAR) ))) return NULL;
swprintf( ret, GUID_SIZE, L"{%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X}",
ptr->Data1, ptr->Data2, ptr->Data3, ptr->Data4[0], ptr->Data4[1], ptr->Data4[2],
ptr->Data4[3], ptr->Data4[4], ptr->Data4[5], ptr->Data4[6], ptr->Data4[7] );
return ret;
}
static WCHAR *get_networkadapter_guid( const IF_LUID *luid )
{
GUID guid;
if (ConvertInterfaceLuidToGuid( luid, &guid )) return NULL;
return guid_to_str( &guid );
}
static enum fill_status fill_networkadapter( struct table *table, const struct expr *cond )
{
WCHAR device_id[11];
struct record_networkadapter *rec;
IP_ADAPTER_ADDRESSES *aa, *buffer;
UINT row = 0, offset = 0, count = 0;
DWORD size = 0, ret;
int adaptertypeid, physical;
enum fill_status status = FILL_STATUS_UNFILTERED;
ret = GetAdaptersAddresses( AF_UNSPEC, 0, NULL, NULL, &size );
if (ret != ERROR_BUFFER_OVERFLOW) return FILL_STATUS_FAILED;
if (!(buffer = heap_alloc( size ))) return FILL_STATUS_FAILED;
if (GetAdaptersAddresses( AF_UNSPEC, 0, NULL, buffer, &size ))
{
heap_free( buffer );
return FILL_STATUS_FAILED;
}
for (aa = buffer; aa; aa = aa->Next)
{
if (aa->IfType != IF_TYPE_SOFTWARE_LOOPBACK) count++;
}
if (!resize_table( table, count, sizeof(*rec) ))
{
heap_free( buffer );
return FILL_STATUS_FAILED;
}
for (aa = buffer; aa; aa = aa->Next)
{
if (aa->IfType == IF_TYPE_SOFTWARE_LOOPBACK) continue;
rec = (struct record_networkadapter *)(table->data + offset);
swprintf( device_id, ARRAY_SIZE( device_id ), L"%u", aa->u.s.IfIndex );
rec->adaptertype = get_adaptertype( aa->IfType, &adaptertypeid, &physical );
rec->adaptertypeid = adaptertypeid;
rec->description = heap_strdupW( aa->Description );
rec->device_id = heap_strdupW( device_id );
rec->guid = get_networkadapter_guid( &aa->Luid );
rec->index = aa->u.s.IfIndex;
rec->interface_index = aa->u.s.IfIndex;
rec->mac_address = get_mac_address( aa->PhysicalAddress, aa->PhysicalAddressLength );
rec->manufacturer = L"The Wine Project";
rec->name = heap_strdupW( aa->FriendlyName );
rec->netconnection_status = get_connection_status( aa->OperStatus );
rec->physicaladapter = physical;
rec->pnpdevice_id = L"PCI\\VEN_8086&DEV_100E&SUBSYS_001E8086&REV_02\\3&267A616A&1&18";
rec->servicename = heap_strdupW( aa->FriendlyName );
rec->speed = 1000000;
if (!match_row( table, row, cond, &status ))
{
free_row_values( table, row );
continue;
}
offset += sizeof(*rec);
row++;
}
TRACE("created %u rows\n", row);
table->num_rows = row;
heap_free( buffer );
return status;
}
static WCHAR *get_dnshostname( IP_ADAPTER_UNICAST_ADDRESS *addr )
{
const SOCKET_ADDRESS *sa = &addr->Address;
WCHAR buf[NI_MAXHOST];
if (!addr) return NULL;
if (GetNameInfoW( sa->lpSockaddr, sa->iSockaddrLength, buf, ARRAY_SIZE( buf ), NULL,
0, NI_NAMEREQD )) return NULL;
return heap_strdupW( buf );
}
static struct array *get_defaultipgateway( IP_ADAPTER_GATEWAY_ADDRESS *list )
{
IP_ADAPTER_GATEWAY_ADDRESS *gateway;
struct array *ret;
ULONG buflen, i = 0, count = 0;
WCHAR **ptr, buf[54]; /* max IPv6 address length */
if (!list) return NULL;
for (gateway = list; gateway; gateway = gateway->Next) count++;
if (!(ret = heap_alloc( sizeof(*ret) ))) return NULL;
if (!(ptr = heap_alloc( sizeof(*ptr) * count )))
{
heap_free( ret );
return NULL;
}
for (gateway = list; gateway; gateway = gateway->Next)
{
buflen = ARRAY_SIZE( buf );
if (WSAAddressToStringW( gateway->Address.lpSockaddr, gateway->Address.iSockaddrLength,
NULL, buf, &buflen) || !(ptr[i++] = heap_strdupW( buf )))
{
for (; i > 0; i--) heap_free( ptr[i - 1] );
heap_free( ptr );
heap_free( ret );
return NULL;
}
}
ret->elem_size = sizeof(*ptr);
ret->count = count;
ret->ptr = ptr;
return ret;
}
static struct array *get_dnsserversearchorder( IP_ADAPTER_DNS_SERVER_ADDRESS *list )
{
IP_ADAPTER_DNS_SERVER_ADDRESS *server;
struct array *ret;
ULONG buflen, i = 0, count = 0;
WCHAR **ptr, *p, buf[54]; /* max IPv6 address length */
if (!list) return NULL;
for (server = list; server; server = server->Next) count++;
if (!(ret = heap_alloc( sizeof(*ret) ))) return NULL;
if (!(ptr = heap_alloc( sizeof(*ptr) * count )))
{
heap_free( ret );
return NULL;
}
for (server = list; server; server = server->Next)
{
buflen = ARRAY_SIZE( buf );
if (WSAAddressToStringW( server->Address.lpSockaddr, server->Address.iSockaddrLength,
NULL, buf, &buflen) || !(ptr[i++] = heap_strdupW( buf )))
{
for (; i > 0; i--) heap_free( ptr[i - 1] );
heap_free( ptr );
heap_free( ret );
return NULL;
}
if ((p = wcsrchr( ptr[i - 1], ':' ))) *p = 0;
}
ret->elem_size = sizeof(*ptr);
ret->count = count;
ret->ptr = ptr;
return ret;
}
static struct array *get_ipaddress( IP_ADAPTER_UNICAST_ADDRESS_LH *list )
{
IP_ADAPTER_UNICAST_ADDRESS_LH *address;
struct array *ret;
ULONG buflen, i = 0, count = 0;
WCHAR **ptr, buf[54]; /* max IPv6 address length */
if (!list) return NULL;
for (address = list; address; address = address->Next) count++;
if (!(ret = heap_alloc( sizeof(*ret) ))) return NULL;
if (!(ptr = heap_alloc( sizeof(*ptr) * count )))
{
heap_free( ret );
return NULL;
}
for (address = list; address; address = address->Next)
{
buflen = ARRAY_SIZE( buf );
if (WSAAddressToStringW( address->Address.lpSockaddr, address->Address.iSockaddrLength,
NULL, buf, &buflen) || !(ptr[i++] = heap_strdupW( buf )))
{
for (; i > 0; i--) heap_free( ptr[i - 1] );
heap_free( ptr );
heap_free( ret );
return NULL;
}
}
ret->elem_size = sizeof(*ptr);
ret->count = count;
ret->ptr = ptr;
return ret;
}
static struct array *get_ipsubnet( IP_ADAPTER_UNICAST_ADDRESS_LH *list )
{
IP_ADAPTER_UNICAST_ADDRESS_LH *address;
struct array *ret;
ULONG i = 0, count = 0;
WCHAR **ptr;
if (!list) return NULL;
for (address = list; address; address = address->Next) count++;
if (!(ret = heap_alloc( sizeof(*ret) ))) return NULL;
if (!(ptr = heap_alloc( sizeof(*ptr) * count )))
{
heap_free( ret );
return NULL;
}
for (address = list; address; address = address->Next)
{
if (address->Address.lpSockaddr->sa_family == AF_INET)
{
WCHAR buf[INET_ADDRSTRLEN];
SOCKADDR_IN addr;
ULONG buflen = ARRAY_SIZE( buf );
memset( &addr, 0, sizeof(addr) );
addr.sin_family = AF_INET;
if (ConvertLengthToIpv4Mask( address->OnLinkPrefixLength, &addr.sin_addr.S_un.S_addr ) != NO_ERROR
|| WSAAddressToStringW( (SOCKADDR*)&addr, sizeof(addr), NULL, buf, &buflen))
ptr[i] = NULL;
else
ptr[i] = heap_strdupW( buf );
}
else
{
WCHAR buf[11];
swprintf( buf, ARRAY_SIZE( buf ), L"%u", address->OnLinkPrefixLength );
ptr[i] = heap_strdupW( buf );
}
if (!ptr[i++])
{
for (; i > 0; i--) heap_free( ptr[i - 1] );
heap_free( ptr );
heap_free( ret );
return NULL;
}
}
ret->elem_size = sizeof(*ptr);
ret->count = count;
ret->ptr = ptr;
return ret;
}
static WCHAR *get_settingid( UINT32 index )
{
GUID guid;
memset( &guid, 0, sizeof(guid) );
guid.Data1 = index;
return guid_to_str( &guid );
}
static enum fill_status fill_networkadapterconfig( struct table *table, const struct expr *cond )
{
struct record_networkadapterconfig *rec;
IP_ADAPTER_ADDRESSES *aa, *buffer;
UINT row = 0, offset = 0, count = 0;
DWORD size = 0, ret;
enum fill_status status = FILL_STATUS_UNFILTERED;
ret = GetAdaptersAddresses( AF_UNSPEC, GAA_FLAG_INCLUDE_ALL_GATEWAYS, NULL, NULL, &size );
if (ret != ERROR_BUFFER_OVERFLOW) return FILL_STATUS_FAILED;
if (!(buffer = heap_alloc( size ))) return FILL_STATUS_FAILED;
if (GetAdaptersAddresses( AF_UNSPEC, GAA_FLAG_INCLUDE_ALL_GATEWAYS, NULL, buffer, &size ))
{
heap_free( buffer );
return FILL_STATUS_FAILED;
}
for (aa = buffer; aa; aa = aa->Next)
{
if (aa->IfType != IF_TYPE_SOFTWARE_LOOPBACK) count++;
}
if (!resize_table( table, count, sizeof(*rec) ))
{
heap_free( buffer );
return FILL_STATUS_FAILED;
}
for (aa = buffer; aa; aa = aa->Next)
{
if (aa->IfType == IF_TYPE_SOFTWARE_LOOPBACK) continue;
rec = (struct record_networkadapterconfig *)(table->data + offset);
rec->defaultipgateway = get_defaultipgateway( aa->FirstGatewayAddress );
rec->description = heap_strdupW( aa->Description );
rec->dhcpenabled = -1;
rec->dnsdomain = L"";
rec->dnshostname = get_dnshostname( aa->FirstUnicastAddress );
rec->dnsserversearchorder = get_dnsserversearchorder( aa->FirstDnsServerAddress );
rec->index = aa->u.s.IfIndex;
rec->ipaddress = get_ipaddress( aa->FirstUnicastAddress );
rec->ipconnectionmetric = 20;
rec->ipenabled = -1;
rec->ipsubnet = get_ipsubnet( aa->FirstUnicastAddress );
rec->mac_address = get_mac_address( aa->PhysicalAddress, aa->PhysicalAddressLength );
rec->settingid = get_settingid( rec->index );
if (!match_row( table, row, cond, &status ))
{
free_row_values( table, row );
continue;
}
offset += sizeof(*rec);
row++;
}
TRACE("created %u rows\n", row);
table->num_rows = row;
heap_free( buffer );
return status;
}
static enum fill_status fill_physicalmemory( struct table *table, const struct expr *cond )
{
struct record_physicalmemory *rec;
enum fill_status status = FILL_STATUS_UNFILTERED;
UINT row = 0;
if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
rec = (struct record_physicalmemory *)table->data;
rec->banklabel = L"BANK 0";
rec->capacity = get_total_physical_memory();
rec->caption = L"Physical Memory";
rec->configuredclockspeed = 1600;
rec->devicelocator = L"DIMM 0";
rec->formfactor = 8; /* DIMM */
rec->memorytype = 9; /* RAM */
rec->partnumber = L"";
rec->serial = L"";
if (!match_row( table, row, cond, &status )) free_row_values( table, row );
else row++;
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static enum fill_status fill_pnpentity( struct table *table, const struct expr *cond )
{
struct record_pnpentity *rec;
enum fill_status status = FILL_STATUS_UNFILTERED;
HDEVINFO device_info_set;
SP_DEVINFO_DATA devinfo = {0};
DWORD idx;
device_info_set = SetupDiGetClassDevsW( NULL, NULL, NULL, DIGCF_ALLCLASSES|DIGCF_PRESENT );
devinfo.cbSize = sizeof(devinfo);
idx = 0;
while (SetupDiEnumDeviceInfo( device_info_set, idx++, &devinfo ))
{
/* noop */
}
resize_table( table, idx, sizeof(*rec) );
table->num_rows = 0;
rec = (struct record_pnpentity *)table->data;
idx = 0;
while (SetupDiEnumDeviceInfo( device_info_set, idx++, &devinfo ))
{
WCHAR device_id[MAX_PATH];
if (SetupDiGetDeviceInstanceIdW( device_info_set, &devinfo, device_id,
ARRAY_SIZE(device_id), NULL ))
{
rec->device_id = heap_strdupW( device_id );
rec->manufacturer = L"The Wine Project";
rec->name = L"Wine PnP Device";
table->num_rows++;
if (!match_row( table, table->num_rows - 1, cond, &status ))
{
free_row_values( table, table->num_rows - 1 );
table->num_rows--;
}
else
rec++;
}
}
SetupDiDestroyDeviceInfoList( device_info_set );
return status;
}
static enum fill_status fill_printer( struct table *table, const struct expr *cond )
{
struct record_printer *rec;
enum fill_status status = FILL_STATUS_UNFILTERED;
PRINTER_INFO_2W *info;
DWORD i, offset = 0, count = 0, size = 0, num_rows = 0;
WCHAR id[20];
EnumPrintersW( PRINTER_ENUM_LOCAL, NULL, 2, NULL, 0, &size, &count );
if (!count) return FILL_STATUS_UNFILTERED;
if (!(info = heap_alloc( size ))) return FILL_STATUS_FAILED;
if (!EnumPrintersW( PRINTER_ENUM_LOCAL, NULL, 2, (BYTE *)info, size, &size, &count ))
{
heap_free( info );
return FILL_STATUS_FAILED;
}
if (!resize_table( table, count, sizeof(*rec) ))
{
heap_free( info );
return FILL_STATUS_FAILED;
}
for (i = 0; i < count; i++)
{
rec = (struct record_printer *)(table->data + offset);
rec->attributes = info[i].Attributes;
swprintf( id, ARRAY_SIZE( id ), L"Printer%u", i );
rec->device_id = heap_strdupW( id );
rec->drivername = heap_strdupW( info[i].pDriverName );
rec->horizontalresolution = info[i].pDevMode->u1.s1.dmPrintQuality;
rec->local = -1;
rec->location = heap_strdupW( info[i].pLocation );
rec->name = heap_strdupW( info[i].pPrinterName );
rec->network = 0;
rec->portname = heap_strdupW( info[i].pPortName );
if (!match_row( table, i, cond, &status ))
{
free_row_values( table, i );
continue;
}
offset += sizeof(*rec);
num_rows++;
}
TRACE("created %u rows\n", num_rows);
table->num_rows = num_rows;
heap_free( info );
return status;
}
static WCHAR *get_cmdline( DWORD process_id )
{
if (process_id == GetCurrentProcessId()) return heap_strdupW( GetCommandLineW() );
return NULL; /* FIXME handle different process case */
}
static enum fill_status fill_process( struct table *table, const struct expr *cond )
{
WCHAR handle[11];
struct record_process *rec;
PROCESSENTRY32W entry;
HANDLE snap;
enum fill_status status = FILL_STATUS_FAILED;
UINT row = 0, offset = 0;
snap = CreateToolhelp32Snapshot( TH32CS_SNAPPROCESS, 0 );
if (snap == INVALID_HANDLE_VALUE) return FILL_STATUS_FAILED;
entry.dwSize = sizeof(entry);
if (!Process32FirstW( snap, &entry )) goto done;
if (!resize_table( table, 8, sizeof(*rec) )) goto done;
do
{
if (!resize_table( table, row + 1, sizeof(*rec) ))
{
status = FILL_STATUS_FAILED;
goto done;
}
rec = (struct record_process *)(table->data + offset);
rec->caption = heap_strdupW( entry.szExeFile );
rec->commandline = get_cmdline( entry.th32ProcessID );
rec->description = heap_strdupW( entry.szExeFile );
swprintf( handle, ARRAY_SIZE( handle ), L"%u", entry.th32ProcessID );
rec->handle = heap_strdupW( handle );
rec->name = heap_strdupW( entry.szExeFile );
rec->process_id = entry.th32ProcessID;
rec->pprocess_id = entry.th32ParentProcessID;
rec->thread_count = entry.cntThreads;
rec->workingsetsize = 0;
/* methods */
rec->create = process_create;
rec->get_owner = process_get_owner;
if (!match_row( table, row, cond, &status ))
{
free_row_values( table, row );
continue;
}
offset += sizeof(*rec);
row++;
} while (Process32NextW( snap, &entry ));
TRACE("created %u rows\n", row);
table->num_rows = row;
done:
CloseHandle( snap );
return status;
}
void do_cpuid( unsigned int ax, int *p )
{
#if defined(__i386__) || defined(__x86_64__)
__cpuid( p, ax );
#else
FIXME("\n");
#endif
}
static unsigned int get_processor_model( unsigned int reg0, unsigned int *stepping, unsigned int *family )
{
unsigned int model, family_id = (reg0 & (0x0f << 8)) >> 8;
model = (reg0 & (0x0f << 4)) >> 4;
if (family_id == 6 || family_id == 15) model |= (reg0 & (0x0f << 16)) >> 12;
if (family)
{
*family = family_id;
if (family_id == 15) *family += (reg0 & (0xff << 20)) >> 20;
}
*stepping = reg0 & 0x0f;
return model;
}
static void regs_to_str( int *regs, unsigned int len, WCHAR *buffer )
{
unsigned int i;
unsigned char *p = (unsigned char *)regs;
for (i = 0; i < len; i++) { buffer[i] = *p++; }
buffer[i] = 0;
}
static void get_processor_manufacturer( WCHAR *manufacturer, UINT len )
{
int tmp, regs[4] = {0, 0, 0, 0};
do_cpuid( 0, regs );
tmp = regs[2]; /* swap edx and ecx */
regs[2] = regs[3];
regs[3] = tmp;
regs_to_str( regs + 1, min( 12, len ), manufacturer );
}
static const WCHAR *get_osarchitecture(void)
{
SYSTEM_INFO info;
GetNativeSystemInfo( &info );
if (info.u.s.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) return L"64-bit";
return L"32-bit";
}
static void get_processor_caption( WCHAR *caption, UINT len )
{
const WCHAR *arch;
WCHAR manufacturer[13];
int regs[4] = {0, 0, 0, 0};
unsigned int family, model, stepping;
get_processor_manufacturer( manufacturer, ARRAY_SIZE( manufacturer ) );
if (!wcscmp( get_osarchitecture(), L"32-bit" )) arch = L"x86";
else if (!wcscmp( manufacturer, L"AuthenticAMD" )) arch = L"AMD64";
else arch = L"Intel64";
do_cpuid( 1, regs );
model = get_processor_model( regs[0], &stepping, &family );
swprintf( caption, len, L"%s Family %u Model %u Stepping %u", arch, family, model, stepping );
}
static void get_processor_version( WCHAR *version, UINT len )
{
int regs[4] = {0, 0, 0, 0};
unsigned int model, stepping;
do_cpuid( 1, regs );
model = get_processor_model( regs[0], &stepping, NULL );
swprintf( version, len, L"Model %u Stepping %u", model, stepping );
}
static UINT16 get_processor_revision(void)
{
int regs[4] = {0, 0, 0, 0};
do_cpuid( 1, regs );
return regs[0];
}
static void get_processor_id( WCHAR *processor_id, UINT len )
{
int regs[4] = {0, 0, 0, 0};
do_cpuid( 1, regs );
swprintf( processor_id, len, L"%08X%08X", regs[3], regs[0] );
}
static void get_processor_name( WCHAR *name )
{
int regs[4] = {0, 0, 0, 0};
int i;
do_cpuid( 0x80000000, regs );
if (regs[0] >= 0x80000004)
{
do_cpuid( 0x80000002, regs );
regs_to_str( regs, 16, name );
do_cpuid( 0x80000003, regs );
regs_to_str( regs, 16, name + 16 );
do_cpuid( 0x80000004, regs );
regs_to_str( regs, 16, name + 32 );
}
for (i = lstrlenW(name) - 1; i >= 0 && name[i] == ' '; i--) name[i] = 0;
}
static UINT get_processor_currentclockspeed( UINT index )
{
PROCESSOR_POWER_INFORMATION *info;
UINT ret = 1000, size = get_processor_count() * sizeof(PROCESSOR_POWER_INFORMATION);
NTSTATUS status;
if ((info = heap_alloc( size )))
{
status = NtPowerInformation( ProcessorInformation, NULL, 0, info, size );
if (!status) ret = info[index].CurrentMhz;
heap_free( info );
}
return ret;
}
static UINT get_processor_maxclockspeed( UINT index )
{
PROCESSOR_POWER_INFORMATION *info;
UINT ret = 1000, size = get_processor_count() * sizeof(PROCESSOR_POWER_INFORMATION);
NTSTATUS status;
if ((info = heap_alloc( size )))
{
status = NtPowerInformation( ProcessorInformation, NULL, 0, info, size );
if (!status) ret = info[index].MaxMhz;
heap_free( info );
}
return ret;
}
static enum fill_status fill_processor( struct table *table, const struct expr *cond )
{
WCHAR caption[100], device_id[14], processor_id[17], manufacturer[13], name[49] = {0}, version[50];
struct record_processor *rec;
UINT i, offset = 0, num_rows = 0, num_logical, num_physical, num_packages;
enum fill_status status = FILL_STATUS_UNFILTERED;
num_logical = get_logical_processor_count( &num_physical, &num_packages );
if (!resize_table( table, num_packages, sizeof(*rec) )) return FILL_STATUS_FAILED;
get_processor_caption( caption, ARRAY_SIZE( caption ) );
get_processor_id( processor_id, ARRAY_SIZE( processor_id ) );
get_processor_manufacturer( manufacturer, ARRAY_SIZE( manufacturer ) );
get_processor_name( name );
get_processor_version( version, ARRAY_SIZE( version ) );
for (i = 0; i < num_packages; i++)
{
rec = (struct record_processor *)(table->data + offset);
rec->addresswidth = !wcscmp( get_osarchitecture(), L"32-bit" ) ? 32 : 64;
rec->architecture = !wcscmp( get_osarchitecture(), L"32-bit" ) ? 0 : 9;
rec->caption = heap_strdupW( caption );
rec->cpu_status = 1; /* CPU Enabled */
rec->currentclockspeed = get_processor_currentclockspeed( i );
rec->datawidth = !wcscmp( get_osarchitecture(), L"32-bit" ) ? 32 : 64;
rec->description = heap_strdupW( caption );
swprintf( device_id, ARRAY_SIZE( device_id ), L"CPU%u", i );
rec->device_id = heap_strdupW( device_id );
rec->family = 2; /* Unknown */
rec->level = 15;
rec->manufacturer = heap_strdupW( manufacturer );
rec->maxclockspeed = get_processor_maxclockspeed( i );
rec->name = heap_strdupW( name );
rec->num_cores = num_physical / num_packages;
rec->num_logical_processors = num_logical / num_packages;
rec->processor_id = heap_strdupW( processor_id );
rec->processortype = 3; /* central processor */
rec->revision = get_processor_revision();
rec->unique_id = NULL;
rec->version = heap_strdupW( version );
if (!match_row( table, i, cond, &status ))
{
free_row_values( table, i );
continue;
}
offset += sizeof(*rec);
num_rows++;
}
TRACE("created %u rows\n", num_rows);
table->num_rows = num_rows;
return status;
}
static WCHAR *get_lastbootuptime(void)
{
SYSTEM_TIMEOFDAY_INFORMATION ti;
TIME_FIELDS tf;
WCHAR *ret;
if (!(ret = heap_alloc( 26 * sizeof(WCHAR) ))) return NULL;
NtQuerySystemInformation( SystemTimeOfDayInformation, &ti, sizeof(ti), NULL );
RtlTimeToTimeFields( &ti.BootTime, &tf );
swprintf( ret, 26, L"%04u%02u%02u%02u%02u%02u.%06u+000", tf.Year, tf.Month, tf.Day, tf.Hour, tf.Minute,
tf.Second, tf.Milliseconds * 1000 );
return ret;
}
static WCHAR *get_localdatetime(void)
{
TIME_ZONE_INFORMATION tzi;
SYSTEMTIME st;
WCHAR *ret;
DWORD Status;
LONG Bias;
Status = GetTimeZoneInformation(&tzi);
if(Status == TIME_ZONE_ID_INVALID) return NULL;
Bias = tzi.Bias;
if(Status == TIME_ZONE_ID_DAYLIGHT)
Bias+= tzi.DaylightBias;
else
Bias+= tzi.StandardBias;
if (!(ret = heap_alloc( 26 * sizeof(WCHAR) ))) return NULL;
GetLocalTime(&st);
swprintf( ret, 26, L"%04u%02u%02u%02u%02u%02u.%06u%+03d", st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute,
st.wSecond, st.wMilliseconds * 1000, -Bias );
return ret;
}
static WCHAR *get_systemdirectory(void)
{
void *redir;
WCHAR *ret;
if (!(ret = heap_alloc( MAX_PATH * sizeof(WCHAR) ))) return NULL;
Wow64DisableWow64FsRedirection( &redir );
GetSystemDirectoryW( ret, MAX_PATH );
Wow64RevertWow64FsRedirection( redir );
return ret;
}
static WCHAR *get_systemdrive(void)
{
WCHAR *ret = heap_alloc( 3 * sizeof(WCHAR) ); /* "c:" */
if (ret && GetEnvironmentVariableW( L"SystemDrive", ret, 3 )) return ret;
heap_free( ret );
return NULL;
}
static WCHAR *get_codeset(void)
{
WCHAR *ret = heap_alloc( 11 * sizeof(WCHAR) );
if (ret) swprintf( ret, 11, L"%u", GetACP() );
return ret;
}
static WCHAR *get_countrycode(void)
{
WCHAR *ret = heap_alloc( 6 * sizeof(WCHAR) );
if (ret) GetLocaleInfoW( LOCALE_SYSTEM_DEFAULT, LOCALE_ICOUNTRY, ret, 6 );
return ret;
}
static WCHAR *get_locale(void)
{
WCHAR *ret = heap_alloc( 5 * sizeof(WCHAR) );
if (ret) GetLocaleInfoW( LOCALE_SYSTEM_DEFAULT, LOCALE_ILANGUAGE, ret, 5 );
return ret;
}
static WCHAR *get_osbuildnumber( OSVERSIONINFOEXW *ver )
{
WCHAR *ret = heap_alloc( 11 * sizeof(WCHAR) );
if (ret) swprintf( ret, 11, L"%u", ver->dwBuildNumber );
return ret;
}
static WCHAR *get_oscaption( OSVERSIONINFOEXW *ver )
{
static const WCHAR windowsW[] = L"Microsoft Windows ";
static const WCHAR win2000W[] = L"2000 Professional";
static const WCHAR win2003W[] = L"Server 2003 Standard Edition";
static const WCHAR winxpW[] = L"XP Professional";
static const WCHAR winxp64W[] = L"XP Professional x64 Edition";
static const WCHAR vistaW[] = L"Vista Ultimate";
static const WCHAR win2008W[] = L"Server 2008 Standard";
static const WCHAR win7W[] = L"7 Professional";
static const WCHAR win2008r2W[] = L"Server 2008 R2 Standard";
static const WCHAR win8W[] = L"8 Pro";
static const WCHAR win81W[] = L"8.1 Pro";
static const WCHAR win10W[] = L"10 Pro";
int len = ARRAY_SIZE( windowsW ) - 1;
WCHAR *ret;
if (!(ret = heap_alloc( len * sizeof(WCHAR) + sizeof(win2003W) ))) return NULL;
memcpy( ret, windowsW, sizeof(windowsW) );
if (ver->dwMajorVersion == 10 && ver->dwMinorVersion == 0) memcpy( ret + len, win10W, sizeof(win10W) );
else if (ver->dwMajorVersion == 6 && ver->dwMinorVersion == 3) memcpy( ret + len, win81W, sizeof(win81W) );
else if (ver->dwMajorVersion == 6 && ver->dwMinorVersion == 2) memcpy( ret + len, win8W, sizeof(win8W) );
else if (ver->dwMajorVersion == 6 && ver->dwMinorVersion == 1)
{
if (ver->wProductType == VER_NT_WORKSTATION) memcpy( ret + len, win7W, sizeof(win7W) );
else memcpy( ret + len, win2008r2W, sizeof(win2008r2W) );
}
else if (ver->dwMajorVersion == 6 && ver->dwMinorVersion == 0)
{
if (ver->wProductType == VER_NT_WORKSTATION) memcpy( ret + len, vistaW, sizeof(vistaW) );
else memcpy( ret + len, win2008W, sizeof(win2008W) );
}
else if (ver->dwMajorVersion == 5 && ver->dwMinorVersion == 2)
{
if (ver->wProductType == VER_NT_WORKSTATION) memcpy( ret + len, winxp64W, sizeof(winxp64W) );
else memcpy( ret + len, win2003W, sizeof(win2003W) );
}
else if (ver->dwMajorVersion == 5 && ver->dwMinorVersion == 1) memcpy( ret + len, winxpW, sizeof(winxpW) );
else memcpy( ret + len, win2000W, sizeof(win2000W) );
return ret;
}
static WCHAR *get_osname( const WCHAR *caption )
{
static const WCHAR partitionW[] = L"|C:\\WINDOWS|\\Device\\Harddisk0\\Partition1";
int len = lstrlenW( caption );
WCHAR *ret;
if (!(ret = heap_alloc( len * sizeof(WCHAR) + sizeof(partitionW) ))) return NULL;
memcpy( ret, caption, len * sizeof(WCHAR) );
memcpy( ret + len, partitionW, sizeof(partitionW) );
return ret;
}
static WCHAR *get_osserialnumber(void)
{
HKEY hkey = 0;
DWORD size, type;
WCHAR *ret = NULL;
if (!RegOpenKeyExW( HKEY_LOCAL_MACHINE, L"Software\\Microsoft\\Windows NT\\CurrentVersion", 0, KEY_READ, &hkey ) &&
!RegQueryValueExW( hkey, L"ProductId", NULL, &type, NULL, &size ) && type == REG_SZ &&
(ret = heap_alloc( size + sizeof(WCHAR) )))
{
size += sizeof(WCHAR);
if (RegQueryValueExW( hkey, L"ProductId", NULL, NULL, (BYTE *)ret, &size ))
{
heap_free( ret );
ret = NULL;
}
}
if (hkey) RegCloseKey( hkey );
if (!ret) return heap_strdupW( L"12345-OEM-1234567-12345" );
return ret;
}
static WCHAR *get_osversion( OSVERSIONINFOEXW *ver )
{
WCHAR *ret = heap_alloc( 33 * sizeof(WCHAR) );
if (ret) swprintf( ret, 33, L"%u.%u.%u", ver->dwMajorVersion, ver->dwMinorVersion, ver->dwBuildNumber );
return ret;
}
static DWORD get_operatingsystemsku(void)
{
DWORD ret = PRODUCT_UNDEFINED;
GetProductInfo( 6, 0, 0, 0, &ret );
return ret;
}
static INT16 get_currenttimezone(void)
{
TIME_ZONE_INFORMATION info;
DWORD status = GetTimeZoneInformation( &info );
if (status == TIME_ZONE_ID_INVALID) return 0;
if (status == TIME_ZONE_ID_DAYLIGHT) return -(info.Bias + info.DaylightBias);
return -(info.Bias + info.StandardBias);
}
static enum fill_status fill_operatingsystem( struct table *table, const struct expr *cond )
{
struct record_operatingsystem *rec;
enum fill_status status = FILL_STATUS_UNFILTERED;
RTL_OSVERSIONINFOEXW ver;
UINT row = 0;
if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
ver.dwOSVersionInfoSize = sizeof(ver);
RtlGetVersion( &ver );
rec = (struct record_operatingsystem *)table->data;
rec->buildnumber = get_osbuildnumber( &ver );
rec->caption = get_oscaption( &ver );
rec->codeset = get_codeset();
rec->countrycode = get_countrycode();
rec->csdversion = ver.szCSDVersion[0] ? heap_strdupW( ver.szCSDVersion ) : NULL;
rec->csname = get_computername();
rec->currenttimezone = get_currenttimezone();
rec->freephysicalmemory = get_available_physical_memory() / 1024;
rec->installdate = L"20140101000000.000000+000";
rec->lastbootuptime = get_lastbootuptime();
rec->localdatetime = get_localdatetime();
rec->locale = get_locale();
rec->manufacturer = L"The Wine Project";
rec->name = get_osname( rec->caption );
rec->operatingsystemsku = get_operatingsystemsku();
rec->osarchitecture = get_osarchitecture();
rec->oslanguage = GetSystemDefaultLangID();
rec->osproductsuite = 2461140; /* Windows XP Professional */
rec->ostype = 18; /* WINNT */
rec->primary = -1;
rec->producttype = 1;
rec->serialnumber = get_osserialnumber();
rec->servicepackmajor = ver.wServicePackMajor;
rec->servicepackminor = ver.wServicePackMinor;
rec->status = L"OK";
rec->suitemask = 272; /* Single User + Terminal */
rec->systemdirectory = get_systemdirectory();
rec->systemdrive = get_systemdrive();
rec->totalvirtualmemorysize = get_total_physical_memory() / 1024;
rec->totalvisiblememorysize = rec->totalvirtualmemorysize;
rec->version = get_osversion( &ver );
if (!match_row( table, row, cond, &status )) free_row_values( table, row );
else row++;
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static const WCHAR *get_service_type( DWORD type )
{
if (type & SERVICE_KERNEL_DRIVER) return L"Kernel Driver";
else if (type & SERVICE_FILE_SYSTEM_DRIVER) return L"File System Driver";
else if (type & SERVICE_WIN32_OWN_PROCESS) return L"Own Process";
else if (type & SERVICE_WIN32_SHARE_PROCESS) return L"Share Process";
else ERR("unhandled type 0x%08x\n", type);
return NULL;
}
static const WCHAR *get_service_state( DWORD state )
{
switch (state)
{
case SERVICE_STOPPED: return L"Stopped";
case SERVICE_START_PENDING: return L"Start Pending";
case SERVICE_STOP_PENDING: return L"Stop Pending";
case SERVICE_RUNNING: return L"Running";
default:
ERR("unknown state %u\n", state);
return L"Unknown";
}
}
static const WCHAR *get_service_startmode( DWORD mode )
{
switch (mode)
{
case SERVICE_BOOT_START: return L"Boot";
case SERVICE_SYSTEM_START: return L"System";
case SERVICE_AUTO_START: return L"Auto";
case SERVICE_DEMAND_START: return L"Manual";
case SERVICE_DISABLED: return L"Disabled";
default:
ERR("unknown mode 0x%x\n", mode);
return L"Unknown";
}
}
static QUERY_SERVICE_CONFIGW *query_service_config( SC_HANDLE manager, const WCHAR *name )
{
QUERY_SERVICE_CONFIGW *config = NULL;
SC_HANDLE service;
DWORD size;
if (!(service = OpenServiceW( manager, name, SERVICE_QUERY_CONFIG ))) return NULL;
QueryServiceConfigW( service, NULL, 0, &size );
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) goto done;
if (!(config = heap_alloc( size ))) goto done;
if (QueryServiceConfigW( service, config, size, &size )) goto done;
heap_free( config );
config = NULL;
done:
CloseServiceHandle( service );
return config;
}
static enum fill_status fill_service( struct table *table, const struct expr *cond )
{
struct record_service *rec;
SC_HANDLE manager;
ENUM_SERVICE_STATUS_PROCESSW *tmp, *services = NULL;
SERVICE_STATUS_PROCESS *status;
WCHAR sysnameW[MAX_COMPUTERNAME_LENGTH + 1];
DWORD len = ARRAY_SIZE( sysnameW );
UINT i, row = 0, offset = 0, size = 256, needed, count;
enum fill_status fill_status = FILL_STATUS_FAILED;
BOOL ret;
if (!(manager = OpenSCManagerW( NULL, NULL, SC_MANAGER_ENUMERATE_SERVICE ))) return FILL_STATUS_FAILED;
if (!(services = heap_alloc( size ))) goto done;
ret = EnumServicesStatusExW( manager, SC_ENUM_PROCESS_INFO, SERVICE_TYPE_ALL,
SERVICE_STATE_ALL, (BYTE *)services, size, &needed,
&count, NULL, NULL );
if (!ret)
{
if (GetLastError() != ERROR_MORE_DATA) goto done;
size = needed;
if (!(tmp = heap_realloc( services, size ))) goto done;
services = tmp;
ret = EnumServicesStatusExW( manager, SC_ENUM_PROCESS_INFO, SERVICE_TYPE_ALL,
SERVICE_STATE_ALL, (BYTE *)services, size, &needed,
&count, NULL, NULL );
if (!ret) goto done;
}
if (!resize_table( table, count, sizeof(*rec) )) goto done;
GetComputerNameW( sysnameW, &len );
fill_status = FILL_STATUS_UNFILTERED;
for (i = 0; i < count; i++)
{
QUERY_SERVICE_CONFIGW *config;
if (!(config = query_service_config( manager, services[i].lpServiceName ))) continue;
status = &services[i].ServiceStatusProcess;
rec = (struct record_service *)(table->data + offset);
rec->accept_pause = (status->dwControlsAccepted & SERVICE_ACCEPT_PAUSE_CONTINUE) ? -1 : 0;
rec->accept_stop = (status->dwControlsAccepted & SERVICE_ACCEPT_STOP) ? -1 : 0;
rec->displayname = heap_strdupW( services[i].lpDisplayName );
rec->name = heap_strdupW( services[i].lpServiceName );
rec->process_id = status->dwProcessId;
rec->servicetype = get_service_type( status->dwServiceType );
rec->startmode = get_service_startmode( config->dwStartType );
rec->state = get_service_state( status->dwCurrentState );
rec->systemname = heap_strdupW( sysnameW );
rec->pause_service = service_pause_service;
rec->resume_service = service_resume_service;
rec->start_service = service_start_service;
rec->stop_service = service_stop_service;
heap_free( config );
if (!match_row( table, row, cond, &fill_status ))
{
free_row_values( table, row );
continue;
}
offset += sizeof(*rec);
row++;
}
TRACE("created %u rows\n", row);
table->num_rows = row;
done:
CloseServiceHandle( manager );
heap_free( services );
return fill_status;
}
static WCHAR *get_accountname( LSA_TRANSLATED_NAME *name )
{
if (!name || !name->Name.Buffer) return NULL;
return heap_strdupW( name->Name.Buffer );
}
static struct array *get_binaryrepresentation( PSID sid, UINT len )
{
struct array *ret;
UINT8 *ptr;
if (!(ret = heap_alloc( sizeof(*ret) ))) return NULL;
if (!(ptr = heap_alloc( len )))
{
heap_free( ret );
return NULL;
}
memcpy( ptr, sid, len );
ret->elem_size = sizeof(*ptr);
ret->count = len;
ret->ptr = ptr;
return ret;
}
static WCHAR *get_referenceddomainname( LSA_REFERENCED_DOMAIN_LIST *domain )
{
if (!domain || !domain->Domains || !domain->Domains->Name.Buffer) return NULL;
return heap_strdupW( domain->Domains->Name.Buffer );
}
static const WCHAR *find_sid_str( const struct expr *cond )
{
const struct expr *left, *right;
const WCHAR *ret = NULL;
if (!cond || cond->type != EXPR_COMPLEX || cond->u.expr.op != OP_EQ) return NULL;
left = cond->u.expr.left;
right = cond->u.expr.right;
if (left->type == EXPR_PROPVAL && right->type == EXPR_SVAL && !wcsicmp( left->u.propval->name, L"SID" ))
{
ret = right->u.sval;
}
else if (left->type == EXPR_SVAL && right->type == EXPR_PROPVAL && !wcsicmp( right->u.propval->name, L"SID" ))
{
ret = left->u.sval;
}
return ret;
}
static enum fill_status fill_sid( struct table *table, const struct expr *cond )
{
PSID sid;
LSA_REFERENCED_DOMAIN_LIST *domain;
LSA_TRANSLATED_NAME *name;
LSA_HANDLE handle;
LSA_OBJECT_ATTRIBUTES attrs;
const WCHAR *str;
struct record_sid *rec;
UINT len;
if (!(str = find_sid_str( cond ))) return FILL_STATUS_FAILED;
if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
if (!ConvertStringSidToSidW( str, &sid )) return FILL_STATUS_FAILED;
len = GetLengthSid( sid );
memset( &attrs, 0, sizeof(attrs) );
attrs.Length = sizeof(attrs);
if (LsaOpenPolicy( NULL, &attrs, POLICY_ALL_ACCESS, &handle ))
{
LocalFree( sid );
return FILL_STATUS_FAILED;
}
if (LsaLookupSids( handle, 1, &sid, &domain, &name ))
{
LocalFree( sid );
LsaClose( handle );
return FILL_STATUS_FAILED;
}
rec = (struct record_sid *)table->data;
rec->accountname = get_accountname( name );
rec->binaryrepresentation = get_binaryrepresentation( sid, len );
rec->referenceddomainname = get_referenceddomainname( domain );
rec->sid = heap_strdupW( str );
rec->sidlength = len;
TRACE("created 1 row\n");
table->num_rows = 1;
LsaFreeMemory( domain );
LsaFreeMemory( name );
LocalFree( sid );
LsaClose( handle );
return FILL_STATUS_FILTERED;
}
static WCHAR *get_systemenclosure_string( BYTE id, const char *buf, UINT len )
{
const struct smbios_header *hdr;
const struct smbios_chassis *chassis;
UINT offset;
if (!(hdr = find_smbios_entry( SMBIOS_TYPE_CHASSIS, buf, len ))) return NULL;
chassis = (const struct smbios_chassis *)hdr;
offset = (const char *)chassis - buf + chassis->hdr.length;
return get_smbios_string( id, buf, offset, len );
}
static WCHAR *get_systemenclosure_manufacturer( const char *buf, UINT len )
{
WCHAR *ret = get_systemenclosure_string( 1, buf, len );
if (!ret) return heap_strdupW( L"Wine" );
return ret;
}
static int get_systemenclosure_lockpresent( const char *buf, UINT len )
{
const struct smbios_header *hdr;
const struct smbios_chassis *chassis;
if (!(hdr = find_smbios_entry( SMBIOS_TYPE_CHASSIS, buf, len )) || hdr->length < sizeof(*chassis)) return 0;
chassis = (const struct smbios_chassis *)hdr;
return (chassis->type & 0x80) ? -1 : 0;
}
static struct array *dup_array( const struct array *src )
{
struct array *dst;
if (!(dst = heap_alloc( sizeof(*dst) ))) return NULL;
if (!(dst->ptr = heap_alloc( src->count * src->elem_size )))
{
heap_free( dst );
return NULL;
}
memcpy( dst->ptr, src->ptr, src->count * src->elem_size );
dst->elem_size = src->elem_size;
dst->count = src->count;
return dst;
}
static struct array *get_systemenclosure_chassistypes( const char *buf, UINT len )
{
const struct smbios_header *hdr;
const struct smbios_chassis *chassis;
struct array *ret = NULL;
UINT16 *types;
if (!(hdr = find_smbios_entry( SMBIOS_TYPE_CHASSIS, buf, len )) || hdr->length < sizeof(*chassis)) goto done;
chassis = (const struct smbios_chassis *)hdr;
if (!(ret = heap_alloc( sizeof(*ret) ))) goto done;
if (!(types = heap_alloc( sizeof(*types) )))
{
heap_free( ret );
return NULL;
}
types[0] = chassis->type & ~0x80;
ret->elem_size = sizeof(*types);
ret->count = 1;
ret->ptr = types;
done:
if (!ret) ret = dup_array( &systemenclosure_chassistypes_array );
return ret;
}
static enum fill_status fill_systemenclosure( struct table *table, const struct expr *cond )
{
struct record_systemenclosure *rec;
enum fill_status status = FILL_STATUS_UNFILTERED;
UINT row = 0, len;
char *buf;
if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
len = GetSystemFirmwareTable( RSMB, 0, NULL, 0 );
if (!(buf = heap_alloc( len ))) return FILL_STATUS_FAILED;
GetSystemFirmwareTable( RSMB, 0, buf, len );
rec = (struct record_systemenclosure *)table->data;
rec->caption = L"System Enclosure";
rec->chassistypes = get_systemenclosure_chassistypes( buf, len );
rec->description = L"System Enclosure";
rec->lockpresent = get_systemenclosure_lockpresent( buf, len );
rec->manufacturer = get_systemenclosure_manufacturer( buf, len );
rec->name = L"System Enclosure";
rec->tag = L"System Enclosure 0";
if (!match_row( table, row, cond, &status )) free_row_values( table, row );
else row++;
heap_free( buf );
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static WCHAR *get_videocontroller_pnpdeviceid( DXGI_ADAPTER_DESC *desc )
{
static const WCHAR fmtW[] = L"PCI\\VEN_%04X&DEV_%04X&SUBSYS_%08X&REV_%02X\\0&DEADBEEF&0&DEAD";
UINT len = sizeof(fmtW) + 2;
WCHAR *ret;
if (!(ret = heap_alloc( len * sizeof(WCHAR) ))) return NULL;
swprintf( ret, len, fmtW, desc->VendorId, desc->DeviceId, desc->SubSysId, desc->Revision );
return ret;
}
#define HW_VENDOR_AMD 0x1002
#define HW_VENDOR_NVIDIA 0x10de
#define HW_VENDOR_VMWARE 0x15ad
#define HW_VENDOR_INTEL 0x8086
static const WCHAR *get_videocontroller_installeddriver( UINT vendorid )
{
/* FIXME: wined3d has a better table, but we cannot access this information through dxgi */
if (vendorid == HW_VENDOR_AMD) return L"aticfx32.dll";
else if (vendorid == HW_VENDOR_NVIDIA) return L"nvd3dum.dll";
else if (vendorid == HW_VENDOR_INTEL) return L"igdudim32.dll";
return L"wine.dll";
}
static BOOL get_dxgi_adapter_desc( DXGI_ADAPTER_DESC *desc )
{
IDXGIFactory *factory;
IDXGIAdapter *adapter;
HRESULT hr;
memset( desc, 0, sizeof(*desc) );
hr = CreateDXGIFactory( &IID_IDXGIFactory, (void **)&factory );
if (FAILED( hr )) return FALSE;
hr = IDXGIFactory_EnumAdapters( factory, 0, &adapter );
if (FAILED( hr ))
{
IDXGIFactory_Release( factory );
return FALSE;
}
hr = IDXGIAdapter_GetDesc( adapter, desc );
IDXGIAdapter_Release( adapter );
IDXGIFactory_Release( factory );
return SUCCEEDED( hr );
}
static enum fill_status fill_videocontroller( struct table *table, const struct expr *cond )
{
struct record_videocontroller *rec;
DXGI_ADAPTER_DESC desc;
UINT row = 0, hres = 1024, vres = 768, vidmem = 512 * 1024 * 1024;
const WCHAR *name = L"VideoController1";
enum fill_status status = FILL_STATUS_UNFILTERED;
WCHAR mode[44];
if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
if (get_dxgi_adapter_desc( &desc ))
{
if (desc.DedicatedVideoMemory > UINT_MAX) vidmem = 0xfff00000;
else vidmem = desc.DedicatedVideoMemory;
name = desc.Description;
}
rec = (struct record_videocontroller *)table->data;
rec->adapter_compatibility = L"(Standard display types)";
rec->adapter_dactype = L"Integrated RAMDAC";
rec->adapter_ram = vidmem;
rec->availability = 3; /* Running or Full Power */
rec->config_errorcode = 0; /* no error */
rec->caption = heap_strdupW( name );
rec->current_bitsperpixel = get_bitsperpixel( &hres, &vres );
rec->current_horizontalres = hres;
rec->current_refreshrate = 0; /* default refresh rate */
rec->current_scanmode = 2; /* Unknown */
rec->current_verticalres = vres;
rec->description = heap_strdupW( name );
rec->device_id = L"VideoController1";
rec->driverdate = L"20170101000000.000000+000";
rec->driverversion = L"1.0";
rec->installeddriver = get_videocontroller_installeddriver( desc.VendorId );
rec->name = heap_strdupW( name );
rec->pnpdevice_id = get_videocontroller_pnpdeviceid( &desc );
rec->status = L"OK";
rec->videoarchitecture = 2; /* Unknown */
rec->videomemorytype = 2; /* Unknown */
swprintf( mode, ARRAY_SIZE( mode ), L"%u x %u x %I64u colors", hres, vres, (UINT64)1 << rec->current_bitsperpixel );
rec->videomodedescription = heap_strdupW( mode );
rec->videoprocessor = heap_strdupW( name );
if (!match_row( table, row, cond, &status )) free_row_values( table, row );
else row++;
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
static WCHAR *get_sounddevice_pnpdeviceid( DXGI_ADAPTER_DESC *desc )
{
static const WCHAR fmtW[] = L"HDAUDIO\\FUNC_01&VEN_%04X&DEV_%04X&SUBSYS_%08X&REV_%04X\\0&DEADBEEF&0&DEAD";
UINT len = sizeof(fmtW) + 2;
WCHAR *ret;
if (!(ret = heap_alloc( len * sizeof(WCHAR) ))) return NULL;
swprintf( ret, len, fmtW, desc->VendorId, desc->DeviceId, desc->SubSysId, desc->Revision );
return ret;
}
static enum fill_status fill_sounddevice( struct table *table, const struct expr *cond )
{
struct record_sounddevice *rec;
DXGI_ADAPTER_DESC desc;
UINT row = 0;
enum fill_status status = FILL_STATUS_UNFILTERED;
if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED;
get_dxgi_adapter_desc( &desc );
rec = (struct record_sounddevice *)table->data;
rec->deviceid = get_sounddevice_pnpdeviceid( &desc );
rec->manufacturer = L"The Wine Project";
rec->name = L"Wine Audio Device";
rec->pnpdeviceid = get_sounddevice_pnpdeviceid( &desc );
rec->productname = L"Wine Audio Device";
rec->status = L"OK";
rec->statusinfo = 3;
if (!match_row( table, row, cond, &status )) free_row_values( table, row );
else row++;
TRACE("created %u rows\n", row);
table->num_rows = row;
return status;
}
#define C(c) sizeof(c)/sizeof(c[0]), c
#define D(d) sizeof(d)/sizeof(d[0]), 0, (BYTE *)d
static struct table cimv2_builtin_classes[] =
{
{ L"__ASSOCIATORS", C(col_associator), D(data_associator) },
{ L"__PARAMETERS", C(col_param), D(data_param) },
{ L"__QUALIFIERS", C(col_qualifier), D(data_qualifier) },
{ L"__SystemSecurity", C(col_systemsecurity), D(data_systemsecurity) },
{ L"CIM_DataFile", C(col_datafile), 0, 0, NULL, fill_datafile },
{ L"CIM_LogicalDisk", C(col_logicaldisk), 0, 0, NULL, fill_logicaldisk },
{ L"CIM_Processor", C(col_processor), 0, 0, NULL, fill_processor },
{ L"StdRegProv", C(col_stdregprov), D(data_stdregprov) },
{ L"SystemRestore", C(col_sysrestore), D(data_sysrestore) },
{ L"Win32_BIOS", C(col_bios), 0, 0, NULL, fill_bios },
{ L"Win32_BaseBoard", C(col_baseboard), 0, 0, NULL, fill_baseboard },
{ L"Win32_CDROMDrive", C(col_cdromdrive), 0, 0, NULL, fill_cdromdrive },
{ L"Win32_ComputerSystem", C(col_compsys), 0, 0, NULL, fill_compsys },
{ L"Win32_ComputerSystemProduct", C(col_compsysproduct), 0, 0, NULL, fill_compsysproduct },
{ L"Win32_DesktopMonitor", C(col_desktopmonitor), 0, 0, NULL, fill_desktopmonitor },
{ L"Win32_Directory", C(col_directory), 0, 0, NULL, fill_directory },
{ L"Win32_DiskDrive", C(col_diskdrive), 0, 0, NULL, fill_diskdrive },
{ L"Win32_DiskDriveToDiskPartition", C(col_diskdrivetodiskpartition), 0, 0, NULL, fill_diskdrivetodiskpartition },
{ L"Win32_DiskPartition", C(col_diskpartition), 0, 0, NULL, fill_diskpartition },
{ L"Win32_DisplayControllerConfiguration", C(col_displaycontrollerconfig), 0, 0, NULL, fill_displaycontrollerconfig },
{ L"Win32_IP4RouteTable", C(col_ip4routetable), 0, 0, NULL, fill_ip4routetable },
{ L"Win32_LogicalDisk", C(col_logicaldisk), 0, 0, NULL, fill_logicaldisk },
{ L"Win32_LogicalDiskToPartition", C(col_logicaldisktopartition), 0, 0, NULL, fill_logicaldisktopartition },
{ L"Win32_NetworkAdapter", C(col_networkadapter), 0, 0, NULL, fill_networkadapter },
{ L"Win32_NetworkAdapterConfiguration", C(col_networkadapterconfig), 0, 0, NULL, fill_networkadapterconfig },
{ L"Win32_OperatingSystem", C(col_operatingsystem), 0, 0, NULL, fill_operatingsystem },
{ L"Win32_PhysicalMedia", C(col_physicalmedia), D(data_physicalmedia) },
{ L"Win32_PhysicalMemory", C(col_physicalmemory), 0, 0, NULL, fill_physicalmemory },
{ L"Win32_PnPEntity", C(col_pnpentity), 0, 0, NULL, fill_pnpentity },
{ L"Win32_Printer", C(col_printer), 0, 0, NULL, fill_printer },
{ L"Win32_Process", C(col_process), 0, 0, NULL, fill_process },
{ L"Win32_Processor", C(col_processor), 0, 0, NULL, fill_processor },
{ L"Win32_QuickFixEngineering", C(col_quickfixengineering), D(data_quickfixengineering) },
{ L"Win32_SID", C(col_sid), 0, 0, NULL, fill_sid },
{ L"Win32_Service", C(col_service), 0, 0, NULL, fill_service },
{ L"Win32_SoundDevice", C(col_sounddevice), 0, 0, NULL, fill_sounddevice },
{ L"Win32_SystemEnclosure", C(col_systemenclosure), 0, 0, NULL, fill_systemenclosure },
{ L"Win32_VideoController", C(col_videocontroller), 0, 0, NULL, fill_videocontroller },
{ L"Win32_WinSAT", C(col_winsat), D(data_winsat) },
};
static struct table wmi_builtin_classes[] =
{
{ L"MSSMBios_RawSMBiosTables", C(col_rawsmbiostables), D(data_rawsmbiostables) },
};
#undef C
#undef D
static const struct
{
const WCHAR *name;
struct table *classes;
unsigned int table_count;
}
builtin_namespaces[WBEMPROX_NAMESPACE_LAST] =
{
{L"cimv2", cimv2_builtin_classes, ARRAY_SIZE(cimv2_builtin_classes)},
{L"Microsoft\\Windows\\Storage", NULL, 0},
{L"wmi", wmi_builtin_classes, ARRAY_SIZE(wmi_builtin_classes)},
};
void init_table_list( void )
{
static struct list tables[WBEMPROX_NAMESPACE_LAST];
UINT ns, i;
for (ns = 0; ns < ARRAY_SIZE(builtin_namespaces); ns++)
{
list_init( &tables[ns] );
for (i = 0; i < builtin_namespaces[ns].table_count; i++)
list_add_tail( &tables[ns], &builtin_namespaces[ns].classes[i].entry );
table_list[ns] = &tables[ns];
}
}
enum wbm_namespace get_namespace_from_string( const WCHAR *namespace )
{
unsigned int i;
if (!wcsicmp( namespace, L"default" )) return WBEMPROX_NAMESPACE_CIMV2;
for (i = 0; i < WBEMPROX_NAMESPACE_LAST; ++i)
if (!wcsicmp( namespace, builtin_namespaces[i].name )) return i;
return WBEMPROX_NAMESPACE_LAST;
}