2497 lines
64 KiB
C
2497 lines
64 KiB
C
/*
|
|
* File msc.c - read VC++ debug information from COFF and eventually
|
|
* from PDB files.
|
|
*
|
|
* Copyright (C) 1996, Eric Youngdale.
|
|
*
|
|
* Note - this handles reading debug information for 32 bit applications
|
|
* that run under Windows-NT for example. I doubt that this would work well
|
|
* for 16 bit applications, but I don't think it really matters since the
|
|
* file format is different, and we should never get in here in such cases.
|
|
*
|
|
* TODO:
|
|
* Get 16 bit CV stuff working.
|
|
* Add symbol size to internal symbol table.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/mman.h>
|
|
#include <fcntl.h>
|
|
#include <sys/stat.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#ifndef PATH_MAX
|
|
#define PATH_MAX _MAX_PATH
|
|
#endif
|
|
#include "debugger.h"
|
|
#include "neexe.h"
|
|
#include "peexe.h"
|
|
#include "xmalloc.h"
|
|
#include "file.h"
|
|
|
|
/*
|
|
*dbg_filename must be at least MAX_PATHNAME_LEN bytes in size
|
|
*/
|
|
static void LocateDebugInfoFile(char *filename, char *dbg_filename)
|
|
{
|
|
char *str1 = xmalloc(MAX_PATHNAME_LEN*10);
|
|
char *str2 = xmalloc(MAX_PATHNAME_LEN);
|
|
char *file;
|
|
char *name_part;
|
|
DOS_FULL_NAME fullname;
|
|
|
|
file = strrchr(filename, '\\');
|
|
if( file == NULL ) file = filename; else file++;
|
|
|
|
if (GetEnvironmentVariableA("_NT_SYMBOL_PATH", str1, sizeof(str1)))
|
|
if (SearchPathA(str1, file, NULL, sizeof(str2), str2, &name_part))
|
|
goto ok;
|
|
if (GetEnvironmentVariableA("_NT_ALT_SYMBOL_PATH", str1, sizeof(str1)))
|
|
if (SearchPathA(str1, file, NULL, sizeof(str2), str2, &name_part))
|
|
goto ok;
|
|
if (SearchPathA(NULL, file, NULL, sizeof(str2), str2, &name_part))
|
|
goto ok;
|
|
else
|
|
{
|
|
quit:
|
|
memcpy(dbg_filename, filename, MAX_PATHNAME_LEN);
|
|
free(str1);
|
|
free(str2);
|
|
return;
|
|
}
|
|
ok:
|
|
if (DOSFS_GetFullName(str2, TRUE, &fullname))
|
|
memcpy(dbg_filename, fullname.long_name, MAX_PATHNAME_LEN);
|
|
else
|
|
goto quit;
|
|
free(str1);
|
|
free(str2);
|
|
return;
|
|
}
|
|
/*
|
|
* This is an index we use to keep track of the debug information
|
|
* when we have multiple sources. We use the same database to also
|
|
* allow us to do an 'info shared' type of deal, and we use the index
|
|
* to eliminate duplicates.
|
|
*/
|
|
static int DEBUG_next_index = 0;
|
|
|
|
union any_size
|
|
{
|
|
char * c;
|
|
short * s;
|
|
int * i;
|
|
unsigned int * ui;
|
|
};
|
|
|
|
/*
|
|
* This is a convenience structure used to map portions of the
|
|
* line number table.
|
|
*/
|
|
struct startend
|
|
{
|
|
unsigned int start;
|
|
unsigned int end;
|
|
};
|
|
|
|
/*
|
|
* This is how we reference the various record types.
|
|
*/
|
|
union codeview_symbol
|
|
{
|
|
struct
|
|
{
|
|
short int len;
|
|
short int id;
|
|
} generic;
|
|
|
|
struct
|
|
{
|
|
short int len;
|
|
short int id;
|
|
unsigned int offset;
|
|
unsigned short seg;
|
|
unsigned short symtype;
|
|
unsigned char namelen;
|
|
unsigned char name[1];
|
|
} data;
|
|
|
|
struct
|
|
{
|
|
short int len;
|
|
short int id;
|
|
unsigned int pparent;
|
|
unsigned int pend;
|
|
unsigned int next;
|
|
unsigned int offset;
|
|
unsigned short segment;
|
|
unsigned short thunk_len;
|
|
unsigned char thtype;
|
|
unsigned char namelen;
|
|
unsigned char name[1];
|
|
} thunk;
|
|
struct
|
|
{
|
|
short int len;
|
|
short int id;
|
|
unsigned int pparent;
|
|
unsigned int pend;
|
|
unsigned int next;
|
|
unsigned int proc_len;
|
|
unsigned int debug_start;
|
|
unsigned int debug_end;
|
|
unsigned int offset;
|
|
unsigned short segment;
|
|
unsigned short proctype;
|
|
unsigned char flags;
|
|
unsigned char namelen;
|
|
unsigned char name[1];
|
|
} proc;
|
|
struct
|
|
{
|
|
short int len; /* Total length of this entry */
|
|
short int id; /* Always S_BPREL32 */
|
|
unsigned int offset; /* Stack offset relative to BP */
|
|
unsigned short symtype;
|
|
unsigned char namelen;
|
|
unsigned char name[1];
|
|
} stack;
|
|
};
|
|
|
|
union codeview_type
|
|
{
|
|
struct
|
|
{
|
|
short int len;
|
|
short int id;
|
|
} generic;
|
|
|
|
struct
|
|
{
|
|
short int len;
|
|
short int id;
|
|
short int attribute;
|
|
short int datatype;
|
|
unsigned char variant[1];
|
|
} pointer;
|
|
|
|
struct
|
|
{
|
|
short int len;
|
|
short int id;
|
|
unsigned char nbits;
|
|
unsigned char bitoff;
|
|
unsigned short type;
|
|
} bitfield;
|
|
|
|
struct
|
|
{
|
|
short int len;
|
|
short int id;
|
|
short int elemtype;
|
|
short int idxtype;
|
|
unsigned char arrlen;
|
|
unsigned char namelen;
|
|
unsigned char name[1];
|
|
} array;
|
|
|
|
struct
|
|
{
|
|
short int len;
|
|
short int id;
|
|
short int n_element;
|
|
short int fieldlist;
|
|
short int property;
|
|
short int derived;
|
|
short int vshape;
|
|
unsigned short structlen;
|
|
unsigned char namelen;
|
|
unsigned char name[1];
|
|
} structure;
|
|
|
|
struct
|
|
{
|
|
short int len;
|
|
short int id;
|
|
short int count;
|
|
short int field;
|
|
short int property;
|
|
unsigned short un_len;
|
|
unsigned char namelen;
|
|
unsigned char name[1];
|
|
} t_union;
|
|
|
|
struct
|
|
{
|
|
short int len;
|
|
short int id;
|
|
short int count;
|
|
short int type;
|
|
short int field;
|
|
short int property;
|
|
unsigned char namelen;
|
|
unsigned char name[1];
|
|
} enumeration;
|
|
|
|
struct
|
|
{
|
|
short int id;
|
|
short int attribute;
|
|
unsigned short int value;
|
|
unsigned char namelen;
|
|
unsigned char name[1];
|
|
} enumerate;
|
|
|
|
struct
|
|
{
|
|
short int id;
|
|
short int type;
|
|
short int attribute;
|
|
unsigned short int offset;
|
|
unsigned char namelen;
|
|
unsigned char name[1];
|
|
} member;
|
|
|
|
struct
|
|
{
|
|
short int len;
|
|
short int id;
|
|
short int count;
|
|
short int type;
|
|
short int field;
|
|
short int property;
|
|
unsigned char namelen;
|
|
unsigned char name[1];
|
|
} fieldlist;
|
|
|
|
};
|
|
|
|
#define S_BPREL 0x200
|
|
#define S_LDATA 0x201
|
|
#define S_GDATA 0x202
|
|
#define S_PUB 0x203
|
|
#define S_LPROC 0x204
|
|
#define S_GPROC 0x205
|
|
#define S_THUNK 0x206
|
|
#define S_BLOCK 0x207
|
|
#define S_WITH 0x208
|
|
#define S_LABEL 0x209
|
|
|
|
#define S_PROCREF 0x400
|
|
#define S_DATAREF 0x401
|
|
#define S_ALIGN 0x402
|
|
#define S_UNKNOWN 0x403
|
|
|
|
/*
|
|
* This covers the basic datatypes that VC++ seems to be using these days.
|
|
* 32 bit mode only. There are additional numbers for the pointers in 16
|
|
* bit mode. There are many other types listed in the documents, but these
|
|
* are apparently not used by the compiler, or represent pointer types
|
|
* that are not used.
|
|
*/
|
|
#define T_NOTYPE 0x0000 /* Notype */
|
|
#define T_ABS 0x0001 /* Abs */
|
|
#define T_VOID 0x0003 /* Void */
|
|
#define T_CHAR 0x0010 /* signed char */
|
|
#define T_SHORT 0x0011 /* short */
|
|
#define T_LONG 0x0012 /* long */
|
|
#define T_QUAD 0x0013 /* long long */
|
|
#define T_UCHAR 0x0020 /* unsigned char */
|
|
#define T_USHORT 0x0021 /* unsigned short */
|
|
#define T_ULONG 0x0022 /* unsigned long */
|
|
#define T_UQUAD 0x0023 /* unsigned long long */
|
|
#define T_REAL32 0x0040 /* float */
|
|
#define T_REAL64 0x0041 /* double */
|
|
#define T_RCHAR 0x0070 /* real char */
|
|
#define T_WCHAR 0x0071 /* wide char */
|
|
#define T_INT4 0x0074 /* int */
|
|
#define T_UINT4 0x0075 /* unsigned int */
|
|
|
|
#define T_32PVOID 0x0403 /* 32 bit near pointer to void */
|
|
#define T_32PCHAR 0x0410 /* 16:32 near pointer to signed char */
|
|
#define T_32PSHORT 0x0411 /* 16:32 near pointer to short */
|
|
#define T_32PLONG 0x0412 /* 16:32 near pointer to int */
|
|
#define T_32PQUAD 0x0413 /* 16:32 near pointer to long long */
|
|
#define T_32PUCHAR 0x0420 /* 16:32 near pointer to unsigned char */
|
|
#define T_32PUSHORT 0x0421 /* 16:32 near pointer to unsigned short */
|
|
#define T_32PULONG 0x0422 /* 16:32 near pointer to unsigned int */
|
|
#define T_32PUQUAD 0x0423 /* 16:32 near pointer to long long */
|
|
#define T_32PREAL32 0x0440 /* 16:32 near pointer to float */
|
|
#define T_32PREAL64 0x0441 /* 16:32 near pointer to float */
|
|
#define T_32PRCHAR 0x0470 /* 16:32 near pointer to real char */
|
|
#define T_32PWCHAR 0x0471 /* 16:32 near pointer to real char */
|
|
#define T_32PINT4 0x0474 /* 16:32 near pointer to int */
|
|
#define T_32PUINT4 0x0475 /* 16:32 near pointer to unsigned int */
|
|
|
|
#define LF_MODIFIER 0x1
|
|
#define LF_POINTER 0x2
|
|
#define LF_ARRAY 0x3
|
|
#define LF_CLASS 0x4
|
|
#define LF_STRUCTURE 0x5
|
|
#define LF_UNION 0x6
|
|
#define LF_ENUMERATION 0x7
|
|
#define LF_PROCEDURE 0x8
|
|
#define LF_MFUNCTION 0x9
|
|
#define LF_VTSHAPE 0xa
|
|
#define LF_BARRAY 0xd
|
|
#define LF_DIMARRAY 0x11
|
|
#define LF_VFTPATH 0x12
|
|
|
|
#define LF_SKIP 0x200
|
|
#define LF_ARGLIST 0x201
|
|
#define LF_FIELDLIST 0x204
|
|
#define LF_DERIVED 0x205
|
|
#define LF_BITFIELD 0x206
|
|
|
|
#define LF_BCLASS 0x400
|
|
#define LF_VBCLASS 0x401
|
|
#define LF_IVBCLASS 0x402
|
|
#define LF_ENUMERATE 0x403
|
|
#define LF_FRIENDFCN 0x404
|
|
#define LF_INDEX 0x405
|
|
#define LF_MEMBER 0x406
|
|
#define LF_STMEMBER 0x407
|
|
#define LF_METHOD 0x408
|
|
#define LF_NESTEDTYPE 0x409
|
|
#define LF_VFUNCTAB 0x40a
|
|
#define LF_FRIENDCLS 0x40b
|
|
#define LF_ONEMETHOD 0x40c
|
|
#define LF_FUNCOFF 0x40d
|
|
|
|
#define MAX_BUILTIN_TYPES 0x480
|
|
static struct datatype * cv_basic_types[MAX_BUILTIN_TYPES];
|
|
static int num_cv_defined_types = 0;
|
|
static struct datatype **cv_defined_types = NULL;
|
|
|
|
/*
|
|
* For the type CODEVIEW debug directory entries, the debug directory
|
|
* points to a structure like this. The cv_name field is the name
|
|
* of an external .PDB file.
|
|
*/
|
|
struct CodeViewDebug
|
|
{
|
|
char cv_nbtype[8];
|
|
unsigned int cv_timestamp;
|
|
char cv_unknown[4];
|
|
char cv_name[1];
|
|
};
|
|
|
|
struct MiscDebug {
|
|
unsigned int DataType;
|
|
unsigned int Length;
|
|
char Unicode;
|
|
char Reserved[3];
|
|
char Data[1];
|
|
};
|
|
|
|
/*
|
|
* This is the header that the COFF variety of debug header points to.
|
|
*/
|
|
struct CoffDebug {
|
|
unsigned int N_Sym;
|
|
unsigned int SymbolOffset;
|
|
unsigned int N_Linenum;
|
|
unsigned int LinenumberOffset;
|
|
unsigned int Unused[4];
|
|
};
|
|
|
|
struct CoffLinenum {
|
|
unsigned int VirtualAddr;
|
|
unsigned short int Linenum;
|
|
};
|
|
|
|
struct CoffFiles {
|
|
unsigned int startaddr;
|
|
unsigned int endaddr;
|
|
char * filename;
|
|
int linetab_offset;
|
|
int linecnt;
|
|
struct name_hash **entries;
|
|
int neps;
|
|
int neps_alloc;
|
|
};
|
|
|
|
|
|
struct CoffSymbol {
|
|
union {
|
|
char ShortName[8];
|
|
struct {
|
|
unsigned int NotLong;
|
|
unsigned int StrTaboff;
|
|
} Name;
|
|
} N;
|
|
unsigned int Value;
|
|
short SectionNumber;
|
|
short Type;
|
|
char StorageClass;
|
|
unsigned char NumberOfAuxSymbols;
|
|
};
|
|
|
|
struct CoffAuxSection{
|
|
unsigned int Length;
|
|
unsigned short NumberOfRelocations;
|
|
unsigned short NumberOfLinenumbers;
|
|
unsigned int CheckSum;
|
|
short Number;
|
|
char Selection;
|
|
} Section;
|
|
|
|
/*
|
|
* These two structures are used in the directory within a .DBG file
|
|
* to locate the individual important bits that we might want to see.
|
|
*/
|
|
struct CV4_DirHead {
|
|
short unsigned int dhsize;
|
|
short unsigned int desize;
|
|
unsigned int ndir;
|
|
unsigned int next_offset;
|
|
unsigned int flags;
|
|
};
|
|
|
|
struct CV4_DirEnt {
|
|
short unsigned int subsect_number;
|
|
short unsigned int module_number;
|
|
unsigned int offset;
|
|
unsigned int size;
|
|
};
|
|
|
|
/*
|
|
* These are the values of interest that the subsect_number field takes.
|
|
*/
|
|
#define sstAlignSym 0x125
|
|
#define sstSrcModule 0x127
|
|
|
|
struct codeview_linetab_hdr
|
|
{
|
|
unsigned int nline;
|
|
unsigned int segno;
|
|
unsigned int start;
|
|
unsigned int end;
|
|
char * sourcefile;
|
|
unsigned short * linetab;
|
|
unsigned int * offtab;
|
|
};
|
|
|
|
struct codeview_pdb_hdr
|
|
{
|
|
char ident[44];
|
|
unsigned int blocksize; /* Extent size */
|
|
unsigned short loc_freelist; /* freelist. */
|
|
unsigned short alloc_filesize; /* # extents allocated. */
|
|
unsigned int toc_len;
|
|
unsigned int unknown;
|
|
unsigned short toc_ext[1]; /* array of extent #'s for toc. */
|
|
};
|
|
|
|
/*
|
|
* This is our own structure that we use to keep track of the contents
|
|
* of a PDB file.
|
|
*/
|
|
struct file_list
|
|
{
|
|
int record_len;
|
|
int nextents;
|
|
short int * extent_list;
|
|
unsigned int linetab_offset;
|
|
unsigned int linetab_len;
|
|
};
|
|
|
|
/*
|
|
* These are the structures that represent how the file table is set up
|
|
* within the PDB file.
|
|
*/
|
|
struct filetab_hdr
|
|
{
|
|
unsigned short tab1_file;
|
|
unsigned short tab2_file;
|
|
unsigned short gsym_file;
|
|
unsigned short padding;
|
|
unsigned int ftab_len;
|
|
unsigned int fofftab_len;
|
|
unsigned int hash_len;
|
|
unsigned int strtab_len;
|
|
};
|
|
|
|
struct file_ent
|
|
{
|
|
unsigned int reserved1;
|
|
unsigned short datasect_segment;
|
|
unsigned short reserved2;
|
|
unsigned int datasect_offset;
|
|
unsigned int datasect_size;
|
|
unsigned int datasect_flags;
|
|
unsigned short reserved3;
|
|
unsigned short index;
|
|
unsigned short num6a;
|
|
unsigned short file_number;
|
|
unsigned int linetab_offset;
|
|
unsigned int linetab_len;
|
|
unsigned int num9;
|
|
unsigned int num10;
|
|
unsigned int num11;
|
|
unsigned char filename[1];
|
|
};
|
|
|
|
/*
|
|
********************************************************************
|
|
*/
|
|
struct deferred_debug_info
|
|
{
|
|
struct deferred_debug_info * next;
|
|
char * load_addr;
|
|
char * module_name;
|
|
char * dbg_info;
|
|
int dbg_size;
|
|
HMODULE module;
|
|
PIMAGE_DEBUG_DIRECTORY dbgdir;
|
|
PIMAGE_SECTION_HEADER sectp;
|
|
int nsect;
|
|
short int dbg_index;
|
|
char loaded;
|
|
};
|
|
|
|
struct deferred_debug_info * dbglist = NULL;
|
|
|
|
/*
|
|
* A simple macro that tells us whether a given COFF symbol is a
|
|
* function or not.
|
|
*/
|
|
#define N_TMASK 0x0030
|
|
#define IMAGE_SYM_DTYPE_FUNCTION 2
|
|
#define N_BTSHFT 4
|
|
#define ISFCN(x) (((x) & N_TMASK) == (IMAGE_SYM_DTYPE_FUNCTION << N_BTSHFT))
|
|
|
|
|
|
/*
|
|
* This is what we are looking for in the COFF symbols.
|
|
*/
|
|
#define IMAGE_SYM_CLASS_EXTERNAL 0x2
|
|
#define IMAGE_SYM_CLASS_STATIC 0x3
|
|
#define IMAGE_SYM_CLASS_FILE 0x67
|
|
|
|
static
|
|
struct datatype * DEBUG_GetCVType(int typeno)
|
|
{
|
|
struct datatype * dt = NULL;
|
|
|
|
/*
|
|
* Convert Codeview type numbers into something we can grok internally.
|
|
* Numbers < 0x1000 are all fixed builtin types. Numbers from 0x1000 and
|
|
* up are all user defined (structs, etc).
|
|
*/
|
|
if( typeno < 0x1000 )
|
|
{
|
|
if( typeno < MAX_BUILTIN_TYPES )
|
|
{
|
|
dt = cv_basic_types[typeno];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( typeno - 0x1000 < num_cv_defined_types )
|
|
{
|
|
dt = cv_defined_types[typeno - 0x1000];
|
|
}
|
|
}
|
|
|
|
return dt;
|
|
}
|
|
|
|
static int
|
|
DEBUG_ParseTypeTable(char * table, int len)
|
|
{
|
|
int arr_max;
|
|
int curr_type;
|
|
enum debug_type fieldtype;
|
|
int elem_size;
|
|
union any_size ptr;
|
|
union any_size ptr2;
|
|
struct datatype * subtype;
|
|
char symname[256];
|
|
union codeview_type * type;
|
|
union codeview_type * type2;
|
|
struct datatype * typeptr;
|
|
|
|
curr_type = 0x1000;
|
|
|
|
ptr = (union any_size) (table + 16);
|
|
while( ptr.c - table < len )
|
|
{
|
|
type = (union codeview_type *) ptr.c;
|
|
|
|
if( curr_type - 0x1000 >= num_cv_defined_types )
|
|
{
|
|
num_cv_defined_types += 0x100;
|
|
cv_defined_types = (struct datatype **) realloc(cv_defined_types,
|
|
num_cv_defined_types * sizeof(struct datatype *));
|
|
memset(cv_defined_types + num_cv_defined_types - 0x100,
|
|
0,
|
|
0x100 * sizeof(struct datatype *));
|
|
if( cv_defined_types == NULL )
|
|
{
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
switch(type->generic.id)
|
|
{
|
|
case LF_POINTER:
|
|
cv_defined_types[curr_type - 0x1000] =
|
|
DEBUG_FindOrMakePointerType(DEBUG_GetCVType(type->pointer.datatype));
|
|
break;
|
|
case LF_ARRAY:
|
|
if( type->array.arrlen >= 0x8000 )
|
|
{
|
|
/*
|
|
* This is a numeric leaf, I am too lazy to handle this right
|
|
* now.
|
|
*/
|
|
fprintf(stderr, "Ignoring large numberic leaf.\n");
|
|
break;
|
|
}
|
|
if( type->array.namelen != 0 )
|
|
{
|
|
memset(symname, 0, sizeof(symname));
|
|
memcpy(symname, type->array.name, type->array.namelen);
|
|
typeptr = DEBUG_NewDataType(DT_ARRAY, symname);
|
|
}
|
|
else
|
|
{
|
|
typeptr = DEBUG_NewDataType(DT_ARRAY, NULL);
|
|
}
|
|
cv_defined_types[curr_type - 0x1000] = typeptr;
|
|
|
|
subtype = DEBUG_GetCVType(type->array.elemtype);
|
|
if( (subtype == NULL)
|
|
|| (elem_size = DEBUG_GetObjectSize(subtype)) == 0 )
|
|
{
|
|
arr_max = 0;
|
|
}
|
|
else
|
|
{
|
|
arr_max = type->array.arrlen / DEBUG_GetObjectSize(subtype);
|
|
}
|
|
|
|
DEBUG_SetArrayParams(typeptr, 0, arr_max, subtype);
|
|
break;
|
|
case LF_FIELDLIST:
|
|
/*
|
|
* This is where the basic list of fields is defined for
|
|
* structures and classes.
|
|
*
|
|
* First, we need to look ahead and see whether we are building
|
|
* a fieldlist for an enum or a struct.
|
|
*/
|
|
ptr2.i = ptr.i + 1;
|
|
type2 = (union codeview_type *) ptr2.c;
|
|
if( type2->member.id == LF_MEMBER )
|
|
{
|
|
typeptr = DEBUG_NewDataType(DT_STRUCT, NULL);
|
|
fieldtype = DT_STRUCT;
|
|
}
|
|
else if( type2->member.id == LF_ENUMERATE )
|
|
{
|
|
typeptr = DEBUG_NewDataType(DT_ENUM, NULL);
|
|
fieldtype = DT_ENUM;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
|
|
cv_defined_types[curr_type - 0x1000] = typeptr;
|
|
while( ptr2.c < (ptr.c + ((type->generic.len + 3) & ~3)) )
|
|
{
|
|
type2 = (union codeview_type *) ptr2.c;
|
|
if( type2->member.id == LF_MEMBER && fieldtype == DT_STRUCT )
|
|
{
|
|
memset(symname, 0, sizeof(symname));
|
|
memcpy(symname, type2->member.name, type2->member.namelen);
|
|
|
|
subtype = DEBUG_GetCVType(type2->member.type);
|
|
elem_size = 0;
|
|
if( subtype != NULL )
|
|
{
|
|
elem_size = DEBUG_GetObjectSize(subtype);
|
|
}
|
|
|
|
if( type2->member.offset >= 0x8000 )
|
|
{
|
|
/*
|
|
* This is a numeric leaf, I am too lazy to handle this right
|
|
* now.
|
|
*/
|
|
fprintf(stderr, "Ignoring large numberic leaf.\n");
|
|
}
|
|
else
|
|
{
|
|
DEBUG_AddStructElement(typeptr, symname, subtype,
|
|
type2->member.offset << 3,
|
|
elem_size << 3);
|
|
}
|
|
}
|
|
else if( type2->member.id == LF_ENUMERATE && fieldtype == DT_ENUM )
|
|
{
|
|
memset(symname, 0, sizeof(symname));
|
|
memcpy(symname, type2->enumerate.name, type2->enumerate.namelen);
|
|
|
|
if( type2->enumerate.value >= 0x8000 )
|
|
{
|
|
/*
|
|
* This is a numeric leaf, I am too lazy to handle this right
|
|
* now.
|
|
*/
|
|
fprintf(stderr, "Ignoring large numberic leaf.\n");
|
|
}
|
|
else
|
|
{
|
|
DEBUG_AddStructElement(typeptr, symname, NULL,
|
|
type2->enumerate.value, 0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Something else I have never seen before. Either wrong type of
|
|
* object in the fieldlist, or some other problem which I wouldn't
|
|
* really know how to handle until it came up.
|
|
*/
|
|
fprintf(stderr, "Unexpected entry in fieldlist\n");
|
|
break;
|
|
}
|
|
|
|
|
|
ptr2.c += ((type2->member.namelen + 9 + 3) & ~3);
|
|
}
|
|
break;
|
|
case LF_STRUCTURE:
|
|
case LF_CLASS:
|
|
if( type->structure.structlen >= 0x8000 )
|
|
{
|
|
/*
|
|
* This is a numeric leaf, I am too lazy to handle this right
|
|
* now.
|
|
*/
|
|
fprintf(stderr, "Ignoring large numberic leaf.\n");
|
|
break;
|
|
}
|
|
memset(symname, 0, sizeof(symname));
|
|
memcpy(symname, type->structure.name, type->structure.namelen);
|
|
if( strcmp(symname, "__unnamed") == 0 )
|
|
{
|
|
typeptr = DEBUG_NewDataType(DT_STRUCT, NULL);
|
|
}
|
|
else
|
|
{
|
|
typeptr = DEBUG_NewDataType(DT_STRUCT, symname);
|
|
}
|
|
cv_defined_types[curr_type - 0x1000] = typeptr;
|
|
|
|
/*
|
|
* Now copy the relevant bits from the fieldlist that we specified.
|
|
*/
|
|
subtype = DEBUG_GetCVType(type->structure.fieldlist);
|
|
|
|
if( subtype != NULL )
|
|
{
|
|
DEBUG_SetStructSize(typeptr, type->structure.structlen);
|
|
DEBUG_CopyFieldlist(typeptr, subtype);
|
|
}
|
|
break;
|
|
case LF_UNION:
|
|
if( type->t_union.un_len >= 0x8000 )
|
|
{
|
|
/*
|
|
* This is a numeric leaf, I am too lazy to handle this right
|
|
* now.
|
|
*/
|
|
fprintf(stderr, "Ignoring large numberic leaf.\n");
|
|
break;
|
|
}
|
|
memset(symname, 0, sizeof(symname));
|
|
memcpy(symname, type->t_union.name, type->t_union.namelen);
|
|
|
|
if( strcmp(symname, "__unnamed") == 0 )
|
|
{
|
|
typeptr = DEBUG_NewDataType(DT_STRUCT, NULL);
|
|
}
|
|
else
|
|
{
|
|
typeptr = DEBUG_NewDataType(DT_STRUCT, symname);
|
|
}
|
|
|
|
cv_defined_types[curr_type - 0x1000] = typeptr;
|
|
|
|
/*
|
|
* Now copy the relevant bits from the fieldlist that we specified.
|
|
*/
|
|
subtype = DEBUG_GetCVType(type->t_union.field);
|
|
|
|
if( subtype != NULL )
|
|
{
|
|
DEBUG_SetStructSize(typeptr, type->t_union.un_len);
|
|
DEBUG_CopyFieldlist(typeptr, subtype);
|
|
}
|
|
break;
|
|
case LF_BITFIELD:
|
|
typeptr = DEBUG_NewDataType(DT_BITFIELD, NULL);
|
|
cv_defined_types[curr_type - 0x1000] = typeptr;
|
|
DEBUG_SetBitfieldParams(typeptr, type->bitfield.bitoff,
|
|
type->bitfield.nbits,
|
|
DEBUG_GetCVType(type->bitfield.type));
|
|
break;
|
|
case LF_ENUMERATION:
|
|
memset(symname, 0, sizeof(symname));
|
|
memcpy(symname, type->enumeration.name, type->enumeration.namelen);
|
|
typeptr = DEBUG_NewDataType(DT_ENUM, symname);
|
|
cv_defined_types[curr_type - 0x1000] = typeptr;
|
|
|
|
/*
|
|
* Now copy the relevant bits from the fieldlist that we specified.
|
|
*/
|
|
subtype = DEBUG_GetCVType(type->enumeration.field);
|
|
|
|
if( subtype != NULL )
|
|
{
|
|
DEBUG_CopyFieldlist(typeptr, subtype);
|
|
}
|
|
break;
|
|
case LF_DIMARRAY:
|
|
default:
|
|
break;
|
|
}
|
|
curr_type++;
|
|
ptr.c += (type->generic.len + 3) & ~3;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
void
|
|
DEBUG_InitCVDataTypes()
|
|
{
|
|
/*
|
|
* These are the common builtin types that are used by VC++.
|
|
*/
|
|
cv_basic_types[T_NOTYPE] = NULL;
|
|
cv_basic_types[T_ABS] = NULL;
|
|
cv_basic_types[T_VOID] = DEBUG_NewDataType(DT_BASIC, "void");
|
|
cv_basic_types[T_CHAR] = DEBUG_NewDataType(DT_BASIC, "char");
|
|
cv_basic_types[T_SHORT] = DEBUG_NewDataType(DT_BASIC, "short int");
|
|
cv_basic_types[T_LONG] = DEBUG_NewDataType(DT_BASIC, "long int");
|
|
cv_basic_types[T_QUAD] = DEBUG_NewDataType(DT_BASIC, "long long int");
|
|
cv_basic_types[T_UCHAR] = DEBUG_NewDataType(DT_BASIC, "unsigned char");
|
|
cv_basic_types[T_USHORT] = DEBUG_NewDataType(DT_BASIC, "short unsigned int");
|
|
cv_basic_types[T_ULONG] = DEBUG_NewDataType(DT_BASIC, "long unsigned int");
|
|
cv_basic_types[T_UQUAD] = DEBUG_NewDataType(DT_BASIC, "long long unsigned int");
|
|
cv_basic_types[T_REAL32] = DEBUG_NewDataType(DT_BASIC, "float");
|
|
cv_basic_types[T_REAL64] = DEBUG_NewDataType(DT_BASIC, "double");
|
|
cv_basic_types[T_RCHAR] = DEBUG_NewDataType(DT_BASIC, "char");
|
|
cv_basic_types[T_WCHAR] = DEBUG_NewDataType(DT_BASIC, "short");
|
|
cv_basic_types[T_INT4] = DEBUG_NewDataType(DT_BASIC, "int");
|
|
cv_basic_types[T_UINT4] = DEBUG_NewDataType(DT_BASIC, "unsigned int");
|
|
|
|
cv_basic_types[T_32PVOID] = DEBUG_FindOrMakePointerType(cv_basic_types[T_VOID]);
|
|
cv_basic_types[T_32PCHAR] = DEBUG_FindOrMakePointerType(cv_basic_types[T_CHAR]);
|
|
cv_basic_types[T_32PSHORT] = DEBUG_FindOrMakePointerType(cv_basic_types[T_SHORT]);
|
|
cv_basic_types[T_32PLONG] = DEBUG_FindOrMakePointerType(cv_basic_types[T_LONG]);
|
|
cv_basic_types[T_32PQUAD] = DEBUG_FindOrMakePointerType(cv_basic_types[T_QUAD]);
|
|
cv_basic_types[T_32PUCHAR] = DEBUG_FindOrMakePointerType(cv_basic_types[T_UCHAR]);
|
|
cv_basic_types[T_32PUSHORT] = DEBUG_FindOrMakePointerType(cv_basic_types[T_USHORT]);
|
|
cv_basic_types[T_32PULONG] = DEBUG_FindOrMakePointerType(cv_basic_types[T_ULONG]);
|
|
cv_basic_types[T_32PUQUAD] = DEBUG_FindOrMakePointerType(cv_basic_types[T_UQUAD]);
|
|
cv_basic_types[T_32PREAL32] = DEBUG_FindOrMakePointerType(cv_basic_types[T_REAL32]);
|
|
cv_basic_types[T_32PREAL64] = DEBUG_FindOrMakePointerType(cv_basic_types[T_REAL64]);
|
|
cv_basic_types[T_32PRCHAR] = DEBUG_FindOrMakePointerType(cv_basic_types[T_RCHAR]);
|
|
cv_basic_types[T_32PWCHAR] = DEBUG_FindOrMakePointerType(cv_basic_types[T_WCHAR]);
|
|
cv_basic_types[T_32PINT4] = DEBUG_FindOrMakePointerType(cv_basic_types[T_INT4]);
|
|
cv_basic_types[T_32PUINT4] = DEBUG_FindOrMakePointerType(cv_basic_types[T_UINT4]);
|
|
}
|
|
|
|
/*
|
|
* In this function, we keep track of deferred debugging information
|
|
* that we may need later if we were to need to use the internal debugger.
|
|
* We don't fully process it here for performance reasons.
|
|
*/
|
|
int
|
|
DEBUG_RegisterDebugInfo( HMODULE hModule, const char *module_name)
|
|
{
|
|
int has_codeview = FALSE;
|
|
int rtn = FALSE;
|
|
int orig_size;
|
|
PIMAGE_DEBUG_DIRECTORY dbgptr;
|
|
u_long v_addr, size;
|
|
PIMAGE_NT_HEADERS nth = PE_HEADER(hModule);
|
|
|
|
size = nth->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_DEBUG].Size;
|
|
if (size) {
|
|
v_addr = nth->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress;
|
|
dbgptr = (PIMAGE_DEBUG_DIRECTORY) (hModule + v_addr);
|
|
orig_size = size;
|
|
for(; size >= sizeof(*dbgptr); size -= sizeof(*dbgptr), dbgptr++ )
|
|
{
|
|
switch(dbgptr->Type)
|
|
{
|
|
case IMAGE_DEBUG_TYPE_CODEVIEW:
|
|
case IMAGE_DEBUG_TYPE_MISC:
|
|
has_codeview = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
size = orig_size;
|
|
dbgptr = (PIMAGE_DEBUG_DIRECTORY) (hModule + v_addr);
|
|
for(; size >= sizeof(*dbgptr); size -= sizeof(*dbgptr), dbgptr++ )
|
|
{
|
|
switch(dbgptr->Type)
|
|
{
|
|
case IMAGE_DEBUG_TYPE_COFF:
|
|
/*
|
|
* If we have both codeview and COFF debug info, ignore the
|
|
* coff debug info as it would just confuse us, and it is
|
|
* less complete.
|
|
*
|
|
* FIXME - this is broken - if we cannot find the PDB file, then
|
|
* we end up with no debugging info at all. In this case, we
|
|
* should use the COFF info as a backup.
|
|
*/
|
|
if( has_codeview )
|
|
{
|
|
break;
|
|
}
|
|
case IMAGE_DEBUG_TYPE_CODEVIEW:
|
|
case IMAGE_DEBUG_TYPE_MISC:
|
|
/*
|
|
* This is usually an indirection to a .DBG file.
|
|
* This is similar to (but a slightly older format) from the
|
|
* PDB file.
|
|
*
|
|
* First check to see if the image was 'stripped'. If so, it
|
|
* means that this entry points to a .DBG file. Otherwise,
|
|
* it just points to itself, and we can ignore this.
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if( (dbgptr->Type != IMAGE_DEBUG_TYPE_MISC) ||
|
|
(PE_HEADER(hModule)->FileHeader.Characteristics & IMAGE_FILE_DEBUG_STRIPPED) != 0 )
|
|
{
|
|
char fn[PATH_MAX];
|
|
int fd = -1;
|
|
DOS_FULL_NAME full_name;
|
|
struct deferred_debug_info* deefer = (struct deferred_debug_info *) xmalloc(sizeof(*deefer));
|
|
|
|
deefer->module = hModule;
|
|
deefer->load_addr = (char *)hModule;
|
|
|
|
/*
|
|
* Read the important bits. What we do after this depends
|
|
* upon the type, but this is always enough so we are able
|
|
* to proceed if we know what we need to do next.
|
|
*/
|
|
/* basically, the PE loader maps all sections (data, resources...), but doesn't map
|
|
* the DataDirectory array's content. One its entry contains the *beloved*
|
|
* debug information. (Note the DataDirectory is mapped, not its content)
|
|
*/
|
|
|
|
if (GetModuleFileNameA(hModule, fn, sizeof(fn)) > 0 &&
|
|
DOSFS_GetFullName(fn, TRUE, &full_name) &&
|
|
(fd = open(full_name.long_name, O_RDONLY)) > 0)
|
|
{
|
|
deefer->dbg_info = mmap(NULL, dbgptr->SizeOfData,
|
|
PROT_READ, MAP_PRIVATE, fd, dbgptr->PointerToRawData);
|
|
close(fd);
|
|
if( deefer->dbg_info == (char *) 0xffffffff )
|
|
{
|
|
free(deefer);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
free(deefer);
|
|
fprintf(stderr, " (not mapped: fn=%s, lfn=%s, fd=%d)", fn, full_name.long_name, fd);
|
|
break;
|
|
}
|
|
deefer->dbg_size = dbgptr->SizeOfData;
|
|
deefer->dbgdir = dbgptr;
|
|
deefer->next = dbglist;
|
|
deefer->loaded = FALSE;
|
|
deefer->dbg_index = DEBUG_next_index;
|
|
deefer->module_name = xstrdup(module_name);
|
|
|
|
deefer->sectp = PE_SECTIONS(hModule);
|
|
deefer->nsect = PE_HEADER(hModule)->FileHeader.NumberOfSections;
|
|
|
|
dbglist = deefer;
|
|
}
|
|
break;
|
|
default:
|
|
}
|
|
}
|
|
DEBUG_next_index++;
|
|
}
|
|
/* look for .stabs/.stabstr sections */
|
|
{
|
|
PIMAGE_SECTION_HEADER pe_seg = PE_SECTIONS(hModule);
|
|
int i,stabsize=0,stabstrsize=0;
|
|
unsigned int stabs=0,stabstr=0;
|
|
|
|
for (i=0;i<nth->FileHeader.NumberOfSections;i++) {
|
|
if (!strcasecmp(pe_seg[i].Name,".stab")) {
|
|
stabs = pe_seg[i].VirtualAddress;
|
|
stabsize = pe_seg[i].SizeOfRawData;
|
|
}
|
|
if (!strncasecmp(pe_seg[i].Name,".stabstr",8)) {
|
|
stabstr = pe_seg[i].VirtualAddress;
|
|
stabstrsize = pe_seg[i].SizeOfRawData;
|
|
}
|
|
}
|
|
if (stabstrsize && stabsize) {
|
|
#ifdef _WE_SUPPORT_THE_STAB_TYPES_USED_BY_MINGW_TOO
|
|
/* Won't work currently, since MINGW32 uses some special typedefs
|
|
* which we do not handle yet. Support for them is a bit difficult.
|
|
*/
|
|
DEBUG_ParseStabs(hModule,0,stabs,stabsize,stabstr,stabstrsize);
|
|
#endif
|
|
fprintf(stderr,"(stabs not loaded)");
|
|
}
|
|
}
|
|
return (rtn);
|
|
}
|
|
|
|
/*
|
|
* ELF modules are also entered into the list - this is so that we
|
|
* can make 'info shared' types of displays possible.
|
|
*/
|
|
int
|
|
DEBUG_RegisterELFDebugInfo(int load_addr, u_long size, char * name)
|
|
{
|
|
struct deferred_debug_info * deefer;
|
|
|
|
deefer = (struct deferred_debug_info *) xmalloc(sizeof(*deefer));
|
|
deefer->module = 0;
|
|
|
|
/*
|
|
* Read the important bits. What we do after this depends
|
|
* upon the type, but this is always enough so we are able
|
|
* to proceed if we know what we need to do next.
|
|
*/
|
|
deefer->dbg_size = size;
|
|
deefer->dbg_info = (char *) NULL;
|
|
|
|
deefer->load_addr = (char *) load_addr;
|
|
deefer->dbgdir = NULL;
|
|
deefer->next = dbglist;
|
|
deefer->loaded = TRUE;
|
|
deefer->dbg_index = DEBUG_next_index;
|
|
deefer->module_name = xstrdup(name);
|
|
dbglist = deefer;
|
|
|
|
DEBUG_next_index++;
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Process COFF debugging information embedded in a Win32 application.
|
|
*
|
|
*/
|
|
static
|
|
int
|
|
DEBUG_ProcessCoff(struct deferred_debug_info * deefer)
|
|
{
|
|
struct CoffAuxSection * aux;
|
|
struct CoffDebug * coff;
|
|
struct CoffFiles * coff_files = NULL;
|
|
struct CoffLinenum * coff_linetab;
|
|
char * coff_strtab;
|
|
struct CoffSymbol * coff_sym;
|
|
struct CoffSymbol * coff_symbol;
|
|
struct CoffFiles * curr_file = NULL;
|
|
int i;
|
|
int j;
|
|
int k;
|
|
struct CoffLinenum * linepnt;
|
|
int linetab_indx;
|
|
char namebuff[9];
|
|
char * nampnt;
|
|
int naux;
|
|
DBG_ADDR new_addr;
|
|
int nfiles = 0;
|
|
int nfiles_alloc = 0;
|
|
struct CoffFiles orig_file;
|
|
int rtn = FALSE;
|
|
char * this_file = NULL;
|
|
|
|
coff = (struct CoffDebug *) deefer->dbg_info;
|
|
|
|
coff_symbol = (struct CoffSymbol *) ((unsigned int) coff + coff->SymbolOffset);
|
|
coff_linetab = (struct CoffLinenum *) ((unsigned int) coff + coff->LinenumberOffset);
|
|
coff_strtab = (char *) ((unsigned int) coff_symbol + 18*coff->N_Sym);
|
|
|
|
linetab_indx = 0;
|
|
|
|
for(i=0; i < coff->N_Sym; i++ )
|
|
{
|
|
/*
|
|
* We do this because some compilers (i.e. gcc) incorrectly
|
|
* pad the structure up to a 4 byte boundary. The structure
|
|
* is really only 18 bytes long, so we have to manually make sure
|
|
* we get it right.
|
|
*
|
|
* FIXME - there must be a way to have autoconf figure out the
|
|
* correct compiler option for this. If it is always gcc, that
|
|
* makes life simpler, but I don't want to force this.
|
|
*/
|
|
coff_sym = (struct CoffSymbol *) ((unsigned int) coff_symbol + 18*i);
|
|
naux = coff_sym->NumberOfAuxSymbols;
|
|
|
|
if( coff_sym->StorageClass == IMAGE_SYM_CLASS_FILE )
|
|
{
|
|
if( nfiles + 1 >= nfiles_alloc )
|
|
{
|
|
nfiles_alloc += 10;
|
|
coff_files = (struct CoffFiles *) realloc( coff_files,
|
|
nfiles_alloc * sizeof(struct CoffFiles));
|
|
}
|
|
curr_file = coff_files + nfiles;
|
|
nfiles++;
|
|
curr_file->startaddr = 0xffffffff;
|
|
curr_file->endaddr = 0;
|
|
curr_file->filename = ((char *) coff_sym) + 18;
|
|
curr_file->linetab_offset = -1;
|
|
curr_file->linecnt = 0;
|
|
curr_file->entries = NULL;
|
|
curr_file->neps = curr_file->neps_alloc = 0;
|
|
#if 0
|
|
fprintf(stderr,"New file %s\n", curr_file->filename);
|
|
#endif
|
|
i += naux;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* This guy marks the size and location of the text section
|
|
* for the current file. We need to keep track of this so
|
|
* we can figure out what file the different global functions
|
|
* go with.
|
|
*/
|
|
if( (coff_sym->StorageClass == IMAGE_SYM_CLASS_STATIC)
|
|
&& (naux != 0)
|
|
&& (coff_sym->Type == 0)
|
|
&& (coff_sym->SectionNumber == 1) )
|
|
{
|
|
aux = (struct CoffAuxSection *) ((unsigned int) coff_sym + 18);
|
|
|
|
if( curr_file->linetab_offset != -1 )
|
|
{
|
|
#if 0
|
|
fprintf(stderr, "Duplicating sect from %s: %x %x %x %d %d\n",
|
|
curr_file->filename,
|
|
aux->Length,
|
|
aux->NumberOfRelocations,
|
|
aux->NumberOfLinenumbers,
|
|
aux->Number,
|
|
aux->Selection);
|
|
fprintf(stderr, "More sect %d %x %d %d %d\n",
|
|
coff_sym->SectionNumber,
|
|
coff_sym->Value,
|
|
coff_sym->Type,
|
|
coff_sym->StorageClass,
|
|
coff_sym->NumberOfAuxSymbols);
|
|
#endif
|
|
|
|
/*
|
|
* Save this so we can copy bits from it.
|
|
*/
|
|
orig_file = *curr_file;
|
|
|
|
/*
|
|
* Duplicate the file entry. We have no way to describe
|
|
* multiple text sections in our current way of handling things.
|
|
*/
|
|
if( nfiles + 1 >= nfiles_alloc )
|
|
{
|
|
nfiles_alloc += 10;
|
|
coff_files = (struct CoffFiles *) realloc( coff_files,
|
|
nfiles_alloc * sizeof(struct CoffFiles));
|
|
}
|
|
curr_file = coff_files + nfiles;
|
|
nfiles++;
|
|
curr_file->startaddr = 0xffffffff;
|
|
curr_file->endaddr = 0;
|
|
curr_file->filename = orig_file.filename;
|
|
curr_file->linetab_offset = -1;
|
|
curr_file->linecnt = 0;
|
|
curr_file->entries = NULL;
|
|
curr_file->neps = curr_file->neps_alloc = 0;
|
|
}
|
|
#if 0
|
|
else
|
|
{
|
|
fprintf(stderr, "New text sect from %s: %x %x %x %d %d\n",
|
|
curr_file->filename,
|
|
aux->Length,
|
|
aux->NumberOfRelocations,
|
|
aux->NumberOfLinenumbers,
|
|
aux->Number,
|
|
aux->Selection);
|
|
}
|
|
#endif
|
|
|
|
if( curr_file->startaddr > coff_sym->Value )
|
|
{
|
|
curr_file->startaddr = coff_sym->Value;
|
|
}
|
|
|
|
if( curr_file->startaddr > coff_sym->Value )
|
|
{
|
|
curr_file->startaddr = coff_sym->Value;
|
|
}
|
|
|
|
if( curr_file->endaddr < coff_sym->Value + aux->Length )
|
|
{
|
|
curr_file->endaddr = coff_sym->Value + aux->Length;
|
|
}
|
|
|
|
curr_file->linetab_offset = linetab_indx;
|
|
curr_file->linecnt = aux->NumberOfLinenumbers;
|
|
linetab_indx += aux->NumberOfLinenumbers;
|
|
i += naux;
|
|
continue;
|
|
}
|
|
|
|
if( (coff_sym->StorageClass == IMAGE_SYM_CLASS_STATIC)
|
|
&& (naux == 0)
|
|
&& (coff_sym->SectionNumber == 1) )
|
|
{
|
|
/*
|
|
* This is a normal static function when naux == 0.
|
|
* Just register it. The current file is the correct
|
|
* one in this instance.
|
|
*/
|
|
if( coff_sym->N.Name.NotLong )
|
|
{
|
|
memcpy(namebuff, coff_sym->N.ShortName, 8);
|
|
namebuff[8] = '\0';
|
|
nampnt = &namebuff[0];
|
|
}
|
|
else
|
|
{
|
|
nampnt = coff_strtab + coff_sym->N.Name.StrTaboff;
|
|
}
|
|
|
|
if( nampnt[0] == '_' )
|
|
{
|
|
nampnt++;
|
|
}
|
|
|
|
new_addr.seg = 0;
|
|
new_addr.off = (int) (deefer->load_addr + coff_sym->Value);
|
|
|
|
if( curr_file->neps + 1 >= curr_file->neps_alloc )
|
|
{
|
|
curr_file->neps_alloc += 10;
|
|
curr_file->entries = (struct name_hash **)
|
|
realloc( curr_file->entries,
|
|
curr_file->neps_alloc * sizeof(struct name_hash *));
|
|
}
|
|
#if 0
|
|
fprintf(stderr,"\tAdding static symbol %s\n", nampnt);
|
|
#endif
|
|
curr_file->entries[curr_file->neps++] =
|
|
DEBUG_AddSymbol( nampnt, &new_addr, this_file, SYM_WIN32 );
|
|
i += naux;
|
|
continue;
|
|
}
|
|
|
|
if( (coff_sym->StorageClass == IMAGE_SYM_CLASS_EXTERNAL)
|
|
&& ISFCN(coff_sym->Type)
|
|
&& (coff_sym->SectionNumber > 0) )
|
|
{
|
|
if( coff_sym->N.Name.NotLong )
|
|
{
|
|
memcpy(namebuff, coff_sym->N.ShortName, 8);
|
|
namebuff[8] = '\0';
|
|
nampnt = &namebuff[0];
|
|
}
|
|
else
|
|
{
|
|
nampnt = coff_strtab + coff_sym->N.Name.StrTaboff;
|
|
}
|
|
|
|
|
|
if( nampnt[0] == '_' )
|
|
{
|
|
nampnt++;
|
|
}
|
|
|
|
new_addr.seg = 0;
|
|
new_addr.off = (int) (deefer->load_addr + coff_sym->Value);
|
|
|
|
#if 0
|
|
fprintf(stderr, "%d: %x %s\n", i, new_addr.off, nampnt);
|
|
|
|
fprintf(stderr,"\tAdding global symbol %s\n", nampnt);
|
|
#endif
|
|
|
|
/*
|
|
* Now we need to figure out which file this guy belongs to.
|
|
*/
|
|
this_file = NULL;
|
|
for(j=0; j < nfiles; j++)
|
|
{
|
|
if( coff_files[j].startaddr <= coff_sym->Value
|
|
&& coff_files[j].endaddr > coff_sym->Value )
|
|
{
|
|
this_file = coff_files[j].filename;
|
|
break;
|
|
}
|
|
}
|
|
if( coff_files[j].neps + 1 >= coff_files[j].neps_alloc )
|
|
{
|
|
coff_files[j].neps_alloc += 10;
|
|
coff_files[j].entries = (struct name_hash **)
|
|
realloc( coff_files[j].entries,
|
|
coff_files[j].neps_alloc * sizeof(struct name_hash *));
|
|
}
|
|
coff_files[j].entries[coff_files[j].neps++] =
|
|
DEBUG_AddSymbol( nampnt, &new_addr, this_file, SYM_WIN32 );
|
|
i += naux;
|
|
continue;
|
|
}
|
|
|
|
if( (coff_sym->StorageClass == IMAGE_SYM_CLASS_EXTERNAL)
|
|
&& (coff_sym->SectionNumber > 0) )
|
|
{
|
|
/*
|
|
* Similar to above, but for the case of data symbols.
|
|
* These aren't treated as entrypoints.
|
|
*/
|
|
if( coff_sym->N.Name.NotLong )
|
|
{
|
|
memcpy(namebuff, coff_sym->N.ShortName, 8);
|
|
namebuff[8] = '\0';
|
|
nampnt = &namebuff[0];
|
|
}
|
|
else
|
|
{
|
|
nampnt = coff_strtab + coff_sym->N.Name.StrTaboff;
|
|
}
|
|
|
|
|
|
if( nampnt[0] == '_' )
|
|
{
|
|
nampnt++;
|
|
}
|
|
|
|
new_addr.seg = 0;
|
|
new_addr.off = (int) (deefer->load_addr + coff_sym->Value);
|
|
|
|
#if 0
|
|
fprintf(stderr, "%d: %x %s\n", i, new_addr.off, nampnt);
|
|
|
|
fprintf(stderr,"\tAdding global data symbol %s\n", nampnt);
|
|
#endif
|
|
|
|
/*
|
|
* Now we need to figure out which file this guy belongs to.
|
|
*/
|
|
DEBUG_AddSymbol( nampnt, &new_addr, NULL, SYM_WIN32 );
|
|
i += naux;
|
|
continue;
|
|
}
|
|
|
|
if( (coff_sym->StorageClass == IMAGE_SYM_CLASS_STATIC)
|
|
&& (naux == 0) )
|
|
{
|
|
/*
|
|
* Ignore these. They don't have anything to do with
|
|
* reality.
|
|
*/
|
|
i += naux;
|
|
continue;
|
|
}
|
|
|
|
#if 0
|
|
fprintf(stderr,"Skipping unknown entry %d %d %d\n", coff_sym->StorageClass,
|
|
coff_sym->SectionNumber, naux);
|
|
#endif
|
|
|
|
/*
|
|
* For now, skip past the aux entries.
|
|
*/
|
|
i += naux;
|
|
|
|
}
|
|
|
|
/*
|
|
* OK, we now should have a list of files, and we should have a list
|
|
* of entrypoints. We need to sort the entrypoints so that we are
|
|
* able to tie the line numbers with the given functions within the
|
|
* file.
|
|
*/
|
|
if( coff_files != NULL )
|
|
{
|
|
for(j=0; j < nfiles; j++)
|
|
{
|
|
if( coff_files[j].entries != NULL )
|
|
{
|
|
qsort(coff_files[j].entries, coff_files[j].neps,
|
|
sizeof(struct name_hash *), DEBUG_cmp_sym);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now pick apart the line number tables, and attach the entries
|
|
* to the given functions.
|
|
*/
|
|
for(j=0; j < nfiles; j++)
|
|
{
|
|
i = 0;
|
|
if( coff_files[j].neps != 0 )
|
|
for(k=0; k < coff_files[j].linecnt; k++)
|
|
{
|
|
/*
|
|
* Another monstrosity caused by the fact that we are using
|
|
* a 6 byte structure, and gcc wants to pad structures to 4 byte
|
|
* boundaries. Otherwise we could just index into an array.
|
|
*/
|
|
linepnt = (struct CoffLinenum *)
|
|
((unsigned int) coff_linetab +
|
|
6*(coff_files[j].linetab_offset + k));
|
|
/*
|
|
* If we have spilled onto the next entrypoint, then
|
|
* bump the counter..
|
|
*/
|
|
while(TRUE)
|
|
{
|
|
if (i+1 >= coff_files[j].neps) break;
|
|
DEBUG_GetSymbolAddr(coff_files[j].entries[i+1], &new_addr);
|
|
if( (((unsigned int)deefer->load_addr +
|
|
linepnt->VirtualAddr) >= new_addr.off) )
|
|
{
|
|
i++;
|
|
} else break;
|
|
}
|
|
|
|
/*
|
|
* Add the line number. This is always relative to the
|
|
* start of the function, so we need to subtract that offset
|
|
* first.
|
|
*/
|
|
DEBUG_GetSymbolAddr(coff_files[j].entries[i], &new_addr);
|
|
DEBUG_AddLineNumber(coff_files[j].entries[i],
|
|
linepnt->Linenum,
|
|
(unsigned int) deefer->load_addr
|
|
+ linepnt->VirtualAddr
|
|
- new_addr.off);
|
|
}
|
|
}
|
|
}
|
|
|
|
rtn = TRUE;
|
|
|
|
if( coff_files != NULL )
|
|
{
|
|
for(j=0; j < nfiles; j++)
|
|
{
|
|
if( coff_files[j].entries != NULL )
|
|
{
|
|
free(coff_files[j].entries);
|
|
}
|
|
}
|
|
free(coff_files);
|
|
}
|
|
|
|
return (rtn);
|
|
|
|
}
|
|
|
|
/*
|
|
* Process a codeview line number table. Digestify the thing so that
|
|
* we can easily reference the thing when we process the rest of
|
|
* the information.
|
|
*/
|
|
static struct codeview_linetab_hdr *
|
|
DEBUG_SnarfLinetab(char * linetab,
|
|
int size)
|
|
{
|
|
int file_segcount;
|
|
char filename[PATH_MAX];
|
|
unsigned int * filetab;
|
|
char * fn;
|
|
int i;
|
|
int k;
|
|
struct codeview_linetab_hdr * lt_hdr;
|
|
unsigned int * lt_ptr;
|
|
int nfile;
|
|
int nseg;
|
|
union any_size pnt;
|
|
union any_size pnt2;
|
|
struct startend * start;
|
|
int this_seg;
|
|
|
|
/*
|
|
* Now get the important bits.
|
|
*/
|
|
pnt = (union any_size) linetab;
|
|
nfile = *pnt.s++;
|
|
nseg = *pnt.s++;
|
|
|
|
filetab = (unsigned int *) pnt.c;
|
|
|
|
/*
|
|
* Now count up the number of segments in the file.
|
|
*/
|
|
nseg = 0;
|
|
for(i=0; i<nfile; i++)
|
|
{
|
|
pnt2 = (union any_size) (linetab + filetab[i]);
|
|
nseg += *pnt2.s;
|
|
}
|
|
|
|
/*
|
|
* Next allocate the header we will be returning.
|
|
* There is one header for each segment, so that we can reach in
|
|
* and pull bits as required.
|
|
*/
|
|
lt_hdr = (struct codeview_linetab_hdr *)
|
|
xmalloc((nseg + 1) * sizeof(*lt_hdr));
|
|
if( lt_hdr == NULL )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
memset(lt_hdr, 0, sizeof(*lt_hdr) * (nseg+1));
|
|
|
|
/*
|
|
* Now fill the header we will be returning, one for each segment.
|
|
* Note that this will basically just contain pointers into the existing
|
|
* line table, and we do not actually copy any additional information
|
|
* or allocate any additional memory.
|
|
*/
|
|
|
|
this_seg = 0;
|
|
for(i=0; i<nfile; i++)
|
|
{
|
|
/*
|
|
* Get the pointer into the segment information.
|
|
*/
|
|
pnt2 = (union any_size) (linetab + filetab[i]);
|
|
file_segcount = *pnt2.s;
|
|
|
|
pnt2.ui++;
|
|
lt_ptr = (unsigned int *) pnt2.c;
|
|
start = (struct startend *) (lt_ptr + file_segcount);
|
|
|
|
/*
|
|
* Now snarf the filename for all of the segments for this file.
|
|
*/
|
|
fn = (unsigned char *) (start + file_segcount);
|
|
memset(filename, 0, sizeof(filename));
|
|
memcpy(filename, fn + 1, *fn);
|
|
fn = strdup(filename);
|
|
|
|
for(k = 0; k < file_segcount; k++, this_seg++)
|
|
{
|
|
pnt2 = (union any_size) (linetab + lt_ptr[k]);
|
|
lt_hdr[this_seg].start = start[k].start;
|
|
lt_hdr[this_seg].end = start[k].end;
|
|
lt_hdr[this_seg].sourcefile = fn;
|
|
lt_hdr[this_seg].segno = *pnt2.s++;
|
|
lt_hdr[this_seg].nline = *pnt2.s++;
|
|
lt_hdr[this_seg].offtab = pnt2.ui;
|
|
lt_hdr[this_seg].linetab = (unsigned short *)
|
|
(pnt2.ui + lt_hdr[this_seg].nline);
|
|
}
|
|
}
|
|
|
|
leave:
|
|
|
|
return lt_hdr;
|
|
|
|
}
|
|
|
|
static int
|
|
DEBUG_SnarfCodeView( struct deferred_debug_info * deefer,
|
|
char * cv_data,
|
|
int size,
|
|
struct codeview_linetab_hdr * linetab)
|
|
{
|
|
struct name_hash * curr_func = NULL;
|
|
struct wine_locals * curr_sym = NULL;
|
|
int i;
|
|
int j;
|
|
int len;
|
|
DBG_ADDR new_addr;
|
|
int nsect;
|
|
union any_size ptr;
|
|
IMAGE_SECTION_HEADER * sectp;
|
|
union codeview_symbol * sym;
|
|
char symname[PATH_MAX];
|
|
struct name_hash * thunk_sym = NULL;
|
|
|
|
ptr = (union any_size) cv_data;
|
|
nsect = deefer->nsect;
|
|
sectp = deefer->sectp;
|
|
|
|
/*
|
|
* Skip over the first word. Don't really know what it means, but
|
|
* it is useless.
|
|
*/
|
|
ptr.ui++;
|
|
|
|
/*
|
|
* Loop over the different types of records and whenever we
|
|
* find something we are interested in, record it and move on.
|
|
*/
|
|
while( ptr.c - cv_data < size )
|
|
{
|
|
sym = (union codeview_symbol *) ptr.c;
|
|
|
|
if( sym->generic.len - sizeof(int) == (ptr.c - cv_data) )
|
|
{
|
|
/*
|
|
* This happens when we have indirect symbols that VC++ 4.2
|
|
* sometimes uses when there isn't a line number table.
|
|
* We ignore it - we will process and enter all of the
|
|
* symbols in the global symbol table anyways, so there
|
|
* isn't much point in keeping track of all of this crap.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
memset(symname, 0, sizeof(symname));
|
|
switch(sym->generic.id)
|
|
{
|
|
case S_GDATA:
|
|
case S_LDATA:
|
|
case S_PUB:
|
|
/*
|
|
* First, a couple of sanity checks.
|
|
*/
|
|
if( sym->data.namelen == 0 )
|
|
{
|
|
break;
|
|
}
|
|
|
|
if( sym->data.seg == 0 || sym->data.seg > nsect )
|
|
{
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Global and local data symbols. We don't associate these
|
|
* with any given source file.
|
|
*/
|
|
|
|
memcpy(symname, sym->data.name, sym->data.namelen);
|
|
new_addr.seg = 0;
|
|
new_addr.type = DEBUG_GetCVType(sym->data.symtype);
|
|
new_addr.off = (unsigned int) deefer->load_addr +
|
|
sectp[sym->data.seg - 1].VirtualAddress +
|
|
sym->data.offset;
|
|
DEBUG_AddSymbol( symname, &new_addr, NULL, SYM_WIN32 | SYM_DATA );
|
|
break;
|
|
case S_THUNK:
|
|
/*
|
|
* Sort of like a global function, but it just points
|
|
* to a thunk, which is a stupid name for what amounts to
|
|
* a PLT slot in the normal jargon that everyone else uses.
|
|
*/
|
|
memcpy(symname, sym->thunk.name, sym->thunk.namelen);
|
|
new_addr.seg = 0;
|
|
new_addr.type = NULL;
|
|
new_addr.off = (unsigned int) deefer->load_addr +
|
|
sectp[sym->thunk.segment - 1].VirtualAddress +
|
|
sym->thunk.offset;
|
|
thunk_sym = DEBUG_AddSymbol( symname, &new_addr, NULL,
|
|
SYM_WIN32 | SYM_FUNC);
|
|
DEBUG_SetSymbolSize(thunk_sym, sym->thunk.thunk_len);
|
|
break;
|
|
case S_GPROC:
|
|
case S_LPROC:
|
|
/*
|
|
* Global and static functions.
|
|
*/
|
|
memcpy(symname, sym->proc.name, sym->proc.namelen);
|
|
new_addr.seg = 0;
|
|
new_addr.type = DEBUG_GetCVType(sym->proc.proctype);
|
|
new_addr.off = (unsigned int) deefer->load_addr +
|
|
sectp[sym->proc.segment - 1].VirtualAddress +
|
|
sym->proc.offset;
|
|
/*
|
|
* See if we can find a segment that this goes with. If so,
|
|
* it means that we also may have line number information
|
|
* for this function.
|
|
*/
|
|
for(i=0; linetab[i].linetab != NULL; i++)
|
|
{
|
|
if( ((unsigned int) deefer->load_addr
|
|
+ sectp[linetab[i].segno - 1].VirtualAddress
|
|
+ linetab[i].start <= new_addr.off)
|
|
&& ((unsigned int) deefer->load_addr
|
|
+ sectp[linetab[i].segno - 1].VirtualAddress
|
|
+ linetab[i].end > new_addr.off) )
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
DEBUG_Normalize(curr_func);
|
|
if( linetab[i].linetab == NULL )
|
|
{
|
|
curr_func = DEBUG_AddSymbol( symname, &new_addr, NULL,
|
|
SYM_WIN32 | SYM_FUNC);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* First, create the entry. Then dig through the linetab
|
|
* and add whatever line numbers are appropriate for this
|
|
* function.
|
|
*/
|
|
curr_func = DEBUG_AddSymbol( symname, &new_addr,
|
|
linetab[i].sourcefile,
|
|
SYM_WIN32 | SYM_FUNC);
|
|
for(j=0; j < linetab[i].nline; j++)
|
|
{
|
|
if( linetab[i].offtab[j] >= sym->proc.offset
|
|
&& linetab[i].offtab[j] < sym->proc.offset
|
|
+ sym->proc.proc_len )
|
|
{
|
|
DEBUG_AddLineNumber(curr_func, linetab[i].linetab[j],
|
|
linetab[i].offtab[j] - sym->proc.offset);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Add information about where we should set breakpoints
|
|
* in this function.
|
|
*/
|
|
DEBUG_SetSymbolBPOff(curr_func, sym->proc.debug_start);
|
|
DEBUG_SetSymbolSize(curr_func, sym->proc.proc_len);
|
|
break;
|
|
case S_BPREL:
|
|
/*
|
|
* Function parameters and stack variables.
|
|
*/
|
|
memcpy(symname, sym->stack.name, sym->stack.namelen);
|
|
curr_sym = DEBUG_AddLocal(curr_func,
|
|
0,
|
|
sym->stack.offset,
|
|
0,
|
|
0,
|
|
symname);
|
|
DEBUG_SetLocalSymbolType(curr_sym, DEBUG_GetCVType(sym->stack.symtype));
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Adjust pointer to point to next entry, rounding up to a word
|
|
* boundary. MS preserving alignment? Stranger things have
|
|
* happened.
|
|
*/
|
|
if( sym->generic.id == S_PROCREF
|
|
|| sym->generic.id == S_DATAREF
|
|
|| sym->generic.id == S_UNKNOWN )
|
|
{
|
|
len = (sym->generic.len + 3) & ~3;
|
|
len += ptr.c[16] + 1;
|
|
ptr.c += (len + 3) & ~3;
|
|
}
|
|
else
|
|
{
|
|
ptr.c += (sym->generic.len + 3) & ~3;
|
|
}
|
|
}
|
|
|
|
if( linetab != NULL )
|
|
{
|
|
free(linetab);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Process PDB file which contains debug information.
|
|
*
|
|
* These are really weird beasts. They are intended to be incrementally
|
|
* updated by the incremental linker, and this means that you need to
|
|
* be able to remove and add information. Thus the PDB file is sort of
|
|
* like a block structured device, with a freelist and lists of extent numbers
|
|
* that are used to get the relevant pieces. In all cases seen so far, the
|
|
* blocksize is always 0x400 bytes. The header has a field which apparently
|
|
* holds the blocksize, so if it ever changes we are safe.
|
|
*
|
|
* In general, every time we need to extract something from the pdb file,
|
|
* it is easier to copy it into another buffer so we have the information
|
|
* in one contiguous block rather than attempt to try and keep track of when
|
|
* we need to grab another extent from the pdb file.
|
|
*
|
|
* The thing that is a real pain about some MS stuff is that they choose
|
|
* data structures which are not representable in C. Thus we have to
|
|
* hack around and diddle pointers.
|
|
*/
|
|
/* static */
|
|
int
|
|
DEBUG_ProcessPDBFile(struct deferred_debug_info * deefer, char * full_filename)
|
|
{
|
|
char * addr = (char *) 0xffffffff;
|
|
unsigned int blocksize;
|
|
unsigned int bufflen = 0;
|
|
char * buffer = NULL;
|
|
unsigned short * extent_table;
|
|
int fd = -1;
|
|
struct file_ent * fent;
|
|
char filename[MAX_PATHNAME_LEN];
|
|
struct file_list * filelist = NULL;
|
|
unsigned int gsym_record = 0;
|
|
char * gsymtab = NULL;
|
|
struct filetab_hdr * hd;
|
|
int i;
|
|
int j;
|
|
unsigned int last_extent;
|
|
struct codeview_linetab_hdr * linetab;
|
|
unsigned int nblocks;
|
|
unsigned int npair;
|
|
unsigned int offset;
|
|
struct codeview_pdb_hdr * pdbhdr;
|
|
unsigned int * pnt;
|
|
struct stat statbuf;
|
|
int status;
|
|
unsigned short * table;
|
|
char * toc;
|
|
unsigned int toc_blocks;
|
|
|
|
LocateDebugInfoFile(full_filename, filename);
|
|
status = stat(filename, &statbuf);
|
|
if( status == -1 )
|
|
{
|
|
fprintf(stderr, "-Unable to open .PDB file %s\n", filename);
|
|
goto leave;
|
|
}
|
|
|
|
/*
|
|
* Now open the file, so that we can mmap() it.
|
|
*/
|
|
fd = open(filename, O_RDONLY);
|
|
if( fd == -1 )
|
|
{
|
|
fprintf(stderr, "-Unable to open .DBG file %s\n", filename);
|
|
goto leave;
|
|
}
|
|
|
|
|
|
/*
|
|
* Now mmap() the file.
|
|
*/
|
|
addr = mmap(0, statbuf.st_size, PROT_READ,
|
|
MAP_PRIVATE, fd, 0);
|
|
if( addr == (char *) 0xffffffff )
|
|
{
|
|
fprintf(stderr, "-Unable to mmap .DBG file %s\n", filename);
|
|
goto leave;
|
|
}
|
|
|
|
/*
|
|
* Now that we have the formalities over and done with, we need
|
|
* to find the table of contents for the PDB file.
|
|
*/
|
|
pdbhdr = (struct codeview_pdb_hdr *) addr;
|
|
blocksize = pdbhdr->blocksize;
|
|
last_extent = (statbuf.st_size + blocksize - 1) / blocksize;
|
|
|
|
/*
|
|
* The TOC itself isn't always contiguous, so we need to extract a few
|
|
* extents from the file to form the TOC.
|
|
*/
|
|
toc_blocks = (pdbhdr->toc_len + blocksize - 1) / blocksize;
|
|
toc = (char *) xmalloc(toc_blocks * blocksize);
|
|
table = pdbhdr->toc_ext;
|
|
for(i=0; i < toc_blocks; i++)
|
|
{
|
|
memcpy(toc + blocksize*i, addr + table[i]*blocksize, blocksize);
|
|
}
|
|
|
|
/*
|
|
* Next build our own table which will have the size and extent block
|
|
* list for each record in the PDB file.
|
|
*
|
|
* The TOC starts out with the number of files. Then it is followed by
|
|
* (npair * 2*sizeof(int)) bytes of information, which are pairs of ints.
|
|
* The first one is the size of the record (in bytes), and the second one
|
|
* is something else which I haven't figured out yet.
|
|
*/
|
|
pnt = (unsigned int *) toc;
|
|
npair = *pnt++;
|
|
extent_table = (unsigned short *) ((unsigned int) toc +
|
|
npair * 2 * sizeof(int) + sizeof(int));
|
|
|
|
/*
|
|
* Sanity check.
|
|
*/
|
|
if( sizeof(int) + 2*sizeof(int)*npair > pdbhdr->toc_len )
|
|
{
|
|
goto leave;
|
|
}
|
|
|
|
filelist = (struct file_list *) xmalloc(npair * sizeof(*filelist));
|
|
if( filelist == NULL )
|
|
{
|
|
goto leave;
|
|
}
|
|
memset(filelist, 0, npair * sizeof(*filelist));
|
|
|
|
nblocks = 0;
|
|
for(i=0; i < npair; i++)
|
|
{
|
|
filelist[i].record_len = pnt[i*2];
|
|
filelist[i].nextents = (filelist[i].record_len + blocksize - 1)
|
|
/ blocksize;
|
|
filelist[i].extent_list = extent_table + nblocks;
|
|
nblocks += filelist[i].nextents;
|
|
|
|
/*
|
|
* These get filled in later when we parse one of the records.
|
|
*/
|
|
filelist[i].linetab_offset = 0;
|
|
filelist[i].linetab_len = 0;
|
|
}
|
|
|
|
/*
|
|
* OK, now walk through the various records and pick out the bits we
|
|
* really want to see. Some of the records are extra special, and
|
|
* we need to handle these a little bit differently.
|
|
*/
|
|
for(i=0; i < npair; i++)
|
|
{
|
|
if( filelist[i].record_len == 0xffffffff )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Make sure our buffer is large enough to hold the record.
|
|
*/
|
|
if( bufflen < filelist[i].nextents * blocksize )
|
|
{
|
|
bufflen = filelist[i].nextents * blocksize;
|
|
buffer = (char *) realloc(buffer, bufflen);
|
|
}
|
|
|
|
/*
|
|
* Do this just for completeness. It makes debugging easier
|
|
* if we have a clean indication of where the record ends.
|
|
*/
|
|
memset(buffer, 0, filelist[i].nextents * blocksize);
|
|
|
|
/*
|
|
* Next, build the record using the extent list.
|
|
*/
|
|
for(j=0; j < filelist[i].nextents; j++)
|
|
{
|
|
memcpy(buffer + j * blocksize,
|
|
addr + filelist[i].extent_list[j] * blocksize,
|
|
blocksize);
|
|
}
|
|
|
|
pnt = (unsigned int *) buffer;
|
|
|
|
/*
|
|
* OK, now figure out what to do with it.
|
|
*/
|
|
|
|
/*
|
|
* Always ignore the first entry. It seems to contain a backup copy
|
|
* of the TOC (the last time the file was modified??)
|
|
*/
|
|
if( i == 0 )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The second entry as a id block. It contains a magic number
|
|
* to identify the compiler, plus it also contains the timestamp
|
|
* which must match the timestamp in the executable.
|
|
*/
|
|
if( i == 1 )
|
|
{
|
|
|
|
if( ((*pnt != 19950623) && (*pnt != 19950814))
|
|
|| (filelist[i].record_len != 0x24)
|
|
|| (pnt[1] != ((struct CodeViewDebug *)(deefer->dbg_info))->cv_timestamp) )
|
|
{
|
|
goto leave;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The third entry contains pointers to the global symbol table,
|
|
* plus it also contains additional information about each record
|
|
* in the PDB file.
|
|
*/
|
|
if( i == 3 )
|
|
{
|
|
hd = (struct filetab_hdr *) buffer;
|
|
|
|
gsym_record = hd->gsym_file;
|
|
gsymtab = (char *) xmalloc( filelist[gsym_record].nextents
|
|
* blocksize);
|
|
memset(gsymtab, 0, filelist[gsym_record].nextents * blocksize);
|
|
|
|
for(j=0; j < filelist[gsym_record].nextents; j++)
|
|
{
|
|
memcpy(gsymtab + j * blocksize,
|
|
addr + filelist[gsym_record].extent_list[j] * blocksize,
|
|
blocksize);
|
|
}
|
|
|
|
/*
|
|
* This record also contains information about where in the
|
|
* remaining records we will be able to find the start of the
|
|
* line number table. We could locate that bit using heuristics,
|
|
* but since we have the info handy, we might as well use it.
|
|
*/
|
|
offset = sizeof(*hd);
|
|
while(1==1)
|
|
{
|
|
fent = (struct file_ent *) (buffer + offset);
|
|
if( offset > hd->ftab_len )
|
|
{
|
|
break;
|
|
}
|
|
|
|
if( fent->file_number == 0 || fent->file_number >= npair )
|
|
{
|
|
break;
|
|
}
|
|
|
|
filelist[fent->file_number].linetab_offset =
|
|
fent->linetab_offset;
|
|
filelist[fent->file_number].linetab_len =
|
|
fent->linetab_len;
|
|
/*
|
|
* Figure out the offset of the next entry.
|
|
* There is a fixed part of the record and a variable
|
|
* length filename which we must also skip past.
|
|
*/
|
|
offset += ((unsigned int) &fent->filename - (unsigned int) fent)
|
|
+ strlen(fent->filename) + 1;
|
|
offset += strlen(buffer+offset) + 1;
|
|
offset = (offset + 3) & ~3;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Two different magic numbers used as dates.
|
|
* These indicate the 'type' table.
|
|
*/
|
|
if( *pnt == 19950410
|
|
|| *pnt == 19951122 )
|
|
{
|
|
DEBUG_ParseTypeTable(buffer, filelist[i].record_len);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* This is something we really want to look at, since it contains
|
|
* real debug info. Anything that doesn't match this can be
|
|
* ignored for now.
|
|
*/
|
|
if( *pnt == 1 )
|
|
{
|
|
/*
|
|
* First, snag the line table, if we have one. This always
|
|
* occurs at the end of the record, so we take the linetab
|
|
* offset as the end of the normal part of the record.
|
|
*/
|
|
linetab = NULL;
|
|
if( filelist[i].linetab_len != 0 )
|
|
{
|
|
linetab = DEBUG_SnarfLinetab(buffer + filelist[i].linetab_offset,
|
|
filelist[i].linetab_len);
|
|
DEBUG_SnarfCodeView(deefer, buffer,
|
|
filelist[i].linetab_offset,
|
|
linetab);
|
|
}
|
|
else
|
|
{
|
|
DEBUG_SnarfCodeView(deefer, buffer,
|
|
filelist[i].record_len,
|
|
linetab);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finally, process the global symbol table itself. There isn't
|
|
* a line number component to this, so we just toss everything
|
|
* into the mix and it all should work out.
|
|
*/
|
|
if( gsym_record != 0 )
|
|
{
|
|
DEBUG_SnarfCodeView(deefer, gsymtab - sizeof(int),
|
|
filelist[gsym_record].record_len,
|
|
NULL);
|
|
}
|
|
|
|
leave:
|
|
|
|
if( gsymtab != NULL )
|
|
{
|
|
free(gsymtab);
|
|
gsymtab = NULL;
|
|
}
|
|
|
|
if( buffer != NULL )
|
|
{
|
|
free(buffer);
|
|
}
|
|
|
|
if( filelist != NULL )
|
|
{
|
|
free(filelist);
|
|
}
|
|
|
|
if( addr != (char *) 0xffffffff )
|
|
{
|
|
munmap(addr, statbuf.st_size);
|
|
}
|
|
|
|
if( fd != -1 )
|
|
{
|
|
close(fd);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Process DBG file which contains debug information.
|
|
*/
|
|
/* static */
|
|
int
|
|
DEBUG_ProcessDBGFile(struct deferred_debug_info * deefer, char * filename)
|
|
{
|
|
char * addr = (char *) 0xffffffff;
|
|
char * codeview;
|
|
struct CV4_DirHead * codeview_dir;
|
|
struct CV4_DirEnt * codeview_dent;
|
|
PIMAGE_DEBUG_DIRECTORY dbghdr;
|
|
struct deferred_debug_info deefer2;
|
|
int fd = -1;
|
|
int i;
|
|
int j;
|
|
struct codeview_linetab_hdr * linetab;
|
|
int nsect;
|
|
PIMAGE_SEPARATE_DEBUG_HEADER pdbg = NULL;
|
|
IMAGE_SECTION_HEADER * sectp;
|
|
struct stat statbuf;
|
|
int status;
|
|
char dbg_file[MAX_PATHNAME_LEN];
|
|
|
|
LocateDebugInfoFile(filename, dbg_file);
|
|
status = stat(dbg_file, &statbuf);
|
|
if( status == -1 )
|
|
{
|
|
fprintf(stderr, "-Unable to open .DBG file %s\n", dbg_file);
|
|
goto leave;
|
|
}
|
|
|
|
/*
|
|
* Now open the file, so that we can mmap() it.
|
|
*/
|
|
fd = open(dbg_file, O_RDONLY);
|
|
if( fd == -1 )
|
|
{
|
|
fprintf(stderr, "Unable to open .DBG file %s\n", dbg_file);
|
|
goto leave;
|
|
}
|
|
|
|
|
|
/*
|
|
* Now mmap() the file.
|
|
*/
|
|
addr = mmap(0, statbuf.st_size, PROT_READ,
|
|
MAP_PRIVATE, fd, 0);
|
|
if( addr == (char *) 0xffffffff )
|
|
{
|
|
fprintf(stderr, "Unable to mmap .DBG file %s\n", dbg_file);
|
|
goto leave;
|
|
}
|
|
|
|
pdbg = (PIMAGE_SEPARATE_DEBUG_HEADER) addr;
|
|
|
|
if( pdbg->TimeDateStamp != deefer->dbgdir->TimeDateStamp )
|
|
{
|
|
fprintf(stderr, "Warning - %s has incorrect internal timestamp\n",
|
|
dbg_file);
|
|
/* goto leave; */
|
|
/*
|
|
Well, sometimes this happens to DBG files which ARE REALLY the right .DBG
|
|
files but nonetheless this check fails. Anyway, WINDBG (debugger for
|
|
Windows by Microsoft) loads debug symbols which have incorrect timestamps.
|
|
*/
|
|
}
|
|
|
|
fprintf(stderr, "Processing symbols from %s...\n", dbg_file);
|
|
|
|
dbghdr = (PIMAGE_DEBUG_DIRECTORY) ( addr + sizeof(*pdbg)
|
|
+ pdbg->NumberOfSections * sizeof(IMAGE_SECTION_HEADER)
|
|
+ pdbg->ExportedNamesSize);
|
|
|
|
sectp = (PIMAGE_SECTION_HEADER) ((char *) pdbg + sizeof(*pdbg));
|
|
nsect = pdbg->NumberOfSections;
|
|
|
|
for( i=0; i < pdbg->DebugDirectorySize / sizeof(*pdbg); i++, dbghdr++ )
|
|
{
|
|
switch(dbghdr->Type)
|
|
{
|
|
case IMAGE_DEBUG_TYPE_COFF:
|
|
/*
|
|
* Dummy up a deferred debug header to handle the
|
|
* COFF stuff embedded within the DBG file.
|
|
*/
|
|
memset((char *) &deefer2, 0, sizeof(deefer2));
|
|
deefer2.dbg_info = (addr + dbghdr->PointerToRawData);
|
|
deefer2.dbg_size = dbghdr->SizeOfData;
|
|
deefer2.load_addr = deefer->load_addr;
|
|
|
|
DEBUG_ProcessCoff(&deefer2);
|
|
break;
|
|
case IMAGE_DEBUG_TYPE_CODEVIEW:
|
|
/*
|
|
* This is the older format by which codeview stuff is
|
|
* stored, known as the 'NB09' format. Newer executables
|
|
* and dlls created by VC++ use PDB files instead, which
|
|
* have lots of internal similarities, but the overall
|
|
* format and structure is quite different.
|
|
*/
|
|
codeview = (addr + dbghdr->PointerToRawData);
|
|
|
|
/*
|
|
* The first thing in the codeview section should be
|
|
* an 'NB09' identifier. As a sanity check, make sure
|
|
* it is there.
|
|
*/
|
|
if( *((unsigned int*) codeview) != 0x3930424e )
|
|
{
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Next we need to find the directory. This is easy too.
|
|
*/
|
|
codeview_dir = (struct CV4_DirHead *)
|
|
(codeview + ((unsigned int*) codeview)[1]);
|
|
|
|
/*
|
|
* Some more sanity checks. Make sure that everything
|
|
* is as we expect it.
|
|
*/
|
|
if( codeview_dir->next_offset != 0
|
|
|| codeview_dir->dhsize != sizeof(*codeview_dir)
|
|
|| codeview_dir->desize != sizeof(*codeview_dent) )
|
|
{
|
|
break;
|
|
}
|
|
codeview_dent = (struct CV4_DirEnt *) (codeview_dir + 1);
|
|
|
|
for(j=0; j < codeview_dir->ndir; j++, codeview_dent++)
|
|
{
|
|
if( codeview_dent->subsect_number == sstAlignSym )
|
|
{
|
|
/*
|
|
* Check the previous entry. If it is a
|
|
* sstSrcModule, it contains the line number
|
|
* info for this file.
|
|
*/
|
|
linetab = NULL;
|
|
if( codeview_dent[1].module_number == codeview_dent[0].module_number
|
|
&& codeview_dent[1].subsect_number == sstSrcModule )
|
|
{
|
|
linetab = DEBUG_SnarfLinetab(
|
|
codeview + codeview_dent[1].offset,
|
|
codeview_dent[1].size);
|
|
}
|
|
|
|
if( codeview_dent[-1].module_number == codeview_dent[0].module_number
|
|
&& codeview_dent[-1].subsect_number == sstSrcModule )
|
|
{
|
|
linetab = DEBUG_SnarfLinetab(
|
|
codeview + codeview_dent[-1].offset,
|
|
codeview_dent[-1].size);
|
|
}
|
|
/*
|
|
* Now process the CV stuff.
|
|
*/
|
|
DEBUG_SnarfCodeView(deefer,
|
|
codeview + codeview_dent->offset,
|
|
codeview_dent->size,
|
|
linetab);
|
|
}
|
|
}
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
leave:
|
|
|
|
if( addr != (char *) 0xffffffff )
|
|
{
|
|
munmap(addr, statbuf.st_size);
|
|
}
|
|
|
|
if( fd != -1 )
|
|
{
|
|
close(fd);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
int
|
|
DEBUG_ProcessDeferredDebug()
|
|
{
|
|
struct deferred_debug_info * deefer;
|
|
struct CodeViewDebug * cvd;
|
|
struct MiscDebug * misc;
|
|
char * filename;
|
|
int last_proc = -1;
|
|
int need_print =0;
|
|
|
|
DEBUG_InitCVDataTypes();
|
|
|
|
for(deefer = dbglist; deefer; deefer = deefer->next)
|
|
{
|
|
if( deefer->loaded )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if( last_proc != deefer->dbg_index )
|
|
{
|
|
if (!need_print)
|
|
{
|
|
fprintf(stderr, "DeferredDebug for:");
|
|
need_print=1;
|
|
}
|
|
fprintf(stderr, " %s",deefer->module_name);
|
|
last_proc = deefer->dbg_index;
|
|
}
|
|
|
|
switch(deefer->dbgdir->Type)
|
|
{
|
|
case IMAGE_DEBUG_TYPE_COFF:
|
|
/*
|
|
* Standard COFF debug information that VC++ adds when you
|
|
* use /debugtype:both with the linker.
|
|
*/
|
|
#if 0
|
|
fprintf(stderr, "Processing COFF symbols...\n");
|
|
#endif
|
|
DEBUG_ProcessCoff(deefer);
|
|
break;
|
|
case IMAGE_DEBUG_TYPE_CODEVIEW:
|
|
/*
|
|
* This is a pointer to a PDB file of some sort.
|
|
*/
|
|
cvd = (struct CodeViewDebug *) deefer->dbg_info;
|
|
|
|
if( strcmp(cvd->cv_nbtype, "NB10") != 0 )
|
|
{
|
|
/*
|
|
* Whatever this is, we don't know how to deal with
|
|
* it yet.
|
|
*/
|
|
break;
|
|
}
|
|
DEBUG_ProcessPDBFile(deefer, cvd->cv_name);
|
|
#if 0
|
|
fprintf(stderr, "Processing PDB file %s\n", cvd->cv_name);
|
|
#endif
|
|
break;
|
|
case IMAGE_DEBUG_TYPE_MISC:
|
|
/*
|
|
* A pointer to a .DBG file of some sort. These files
|
|
* can contain either CV4 or COFF information. Open
|
|
* the file, and try to do the right thing with it.
|
|
*/
|
|
misc = (struct MiscDebug *) deefer->dbg_info;
|
|
|
|
filename = strrchr((char *) &misc->Data, '.');
|
|
|
|
/*
|
|
* Ignore the file if it doesn't have a .DBG extension.
|
|
*/
|
|
if( (filename == NULL)
|
|
|| ( (strcmp(filename, ".dbg") != 0)
|
|
&& (strcmp(filename, ".DBG") != 0)) )
|
|
{
|
|
break;
|
|
}
|
|
|
|
filename = (char *) &misc->Data;
|
|
|
|
/*
|
|
* Do the dirty deed...
|
|
*/
|
|
DEBUG_ProcessDBGFile(deefer, filename);
|
|
|
|
break;
|
|
default:
|
|
/*
|
|
* We should never get here...
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
if(need_print)
|
|
fprintf(stderr, "\n");
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
/***********************************************************************
|
|
* DEBUG_InfoShare
|
|
*
|
|
* Display shared libarary information.
|
|
*/
|
|
void DEBUG_InfoShare(void)
|
|
{
|
|
struct deferred_debug_info * deefer;
|
|
|
|
fprintf(stderr,"Address\t\tModule\tName\n");
|
|
|
|
for(deefer = dbglist; deefer; deefer = deefer->next)
|
|
{
|
|
fprintf(stderr,"0x%8.8x\t(%s)\t%s\n", (unsigned int) deefer->load_addr,
|
|
deefer->module ? "Win32" : "ELF", deefer->module_name);
|
|
}
|
|
}
|
|
|