Sweden-Number/server/fd.c

2564 lines
75 KiB
C

/*
* Server-side file descriptor management
*
* Copyright (C) 2000, 2003 Alexandre Julliard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "config.h"
#include "wine/port.h"
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <signal.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#ifdef HAVE_POLL_H
#include <poll.h>
#endif
#ifdef HAVE_SYS_POLL_H
#include <sys/poll.h>
#endif
#ifdef HAVE_LINUX_MAJOR_H
#include <linux/major.h>
#endif
#ifdef HAVE_SYS_STATVFS_H
#include <sys/statvfs.h>
#endif
#ifdef HAVE_SYS_VFS_H
/*
* Solaris defines its system list in sys/list.h.
* This need to be workaround it here.
*/
#define list SYSLIST
#define list_next SYSLIST_NEXT
#define list_prev SYSLIST_PREV
#define list_head SYSLIST_HEAD
#define list_tail SYSLIST_TAIL
#define list_move_tail SYSLIST_MOVE_TAIL
#define list_remove SYSLIST_REMOVE
#include <sys/vfs.h>
#undef list
#undef list_next
#undef list_prev
#undef list_head
#undef list_tail
#undef list_move_tail
#undef list_remove
#endif
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
#ifdef HAVE_SYS_MOUNT_H
#include <sys/mount.h>
#endif
#ifdef HAVE_SYS_STATFS_H
#include <sys/statfs.h>
#endif
#ifdef HAVE_SYS_SYSCTL_H
#include <sys/sysctl.h>
#endif
#ifdef HAVE_SYS_EVENT_H
#include <sys/event.h>
#undef LIST_INIT
#undef LIST_ENTRY
#endif
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#ifdef HAVE_SYS_SYSCALL_H
#include <sys/syscall.h>
#endif
#include "ntstatus.h"
#define WIN32_NO_STATUS
#include "object.h"
#include "file.h"
#include "handle.h"
#include "process.h"
#include "request.h"
#include "winternl.h"
#include "winioctl.h"
#if defined(HAVE_SYS_EPOLL_H) && defined(HAVE_EPOLL_CREATE)
# include <sys/epoll.h>
# define USE_EPOLL
#elif defined(linux) && defined(__i386__) && defined(HAVE_STDINT_H)
# define USE_EPOLL
# define EPOLLIN POLLIN
# define EPOLLOUT POLLOUT
# define EPOLLERR POLLERR
# define EPOLLHUP POLLHUP
# define EPOLL_CTL_ADD 1
# define EPOLL_CTL_DEL 2
# define EPOLL_CTL_MOD 3
typedef union epoll_data
{
void *ptr;
int fd;
uint32_t u32;
uint64_t u64;
} epoll_data_t;
struct epoll_event
{
uint32_t events;
epoll_data_t data;
};
static inline int epoll_create( int size )
{
return syscall( 254 /*NR_epoll_create*/, size );
}
static inline int epoll_ctl( int epfd, int op, int fd, const struct epoll_event *event )
{
return syscall( 255 /*NR_epoll_ctl*/, epfd, op, fd, event );
}
static inline int epoll_wait( int epfd, struct epoll_event *events, int maxevents, int timeout )
{
return syscall( 256 /*NR_epoll_wait*/, epfd, events, maxevents, timeout );
}
#endif /* linux && __i386__ && HAVE_STDINT_H */
#if defined(HAVE_PORT_H) && defined(HAVE_PORT_CREATE)
# include <port.h>
# define USE_EVENT_PORTS
#endif /* HAVE_PORT_H && HAVE_PORT_CREATE */
/* Because of the stupid Posix locking semantics, we need to keep
* track of all file descriptors referencing a given file, and not
* close a single one until all the locks are gone (sigh).
*/
/* file descriptor object */
/* closed_fd is used to keep track of the unix fd belonging to a closed fd object */
struct closed_fd
{
struct list entry; /* entry in inode closed list */
int unix_fd; /* the unix file descriptor */
int unlink; /* whether to unlink on close */
char *unix_name; /* name to unlink on close, points to parent fd unix_name */
};
struct fd
{
struct object obj; /* object header */
const struct fd_ops *fd_ops; /* file descriptor operations */
struct inode *inode; /* inode that this fd belongs to */
struct list inode_entry; /* entry in inode fd list */
struct closed_fd *closed; /* structure to store the unix fd at destroy time */
struct object *user; /* object using this file descriptor */
struct list locks; /* list of locks on this fd */
unsigned int access; /* file access (FILE_READ_DATA etc.) */
unsigned int options; /* file options (FILE_DELETE_ON_CLOSE, FILE_SYNCHRONOUS...) */
unsigned int sharing; /* file sharing mode */
char *unix_name; /* unix file name */
int unix_fd; /* unix file descriptor */
unsigned int no_fd_status;/* status to return when unix_fd is -1 */
unsigned int cacheable :1;/* can the fd be cached on the client side? */
unsigned int signaled :1; /* is the fd signaled? */
unsigned int fs_locks :1; /* can we use filesystem locks for this fd? */
int poll_index; /* index of fd in poll array */
struct async_queue *read_q; /* async readers of this fd */
struct async_queue *write_q; /* async writers of this fd */
struct async_queue *wait_q; /* other async waiters of this fd */
struct completion *completion; /* completion object attached to this fd */
apc_param_t comp_key; /* completion key to set in completion events */
};
static void fd_dump( struct object *obj, int verbose );
static void fd_destroy( struct object *obj );
static const struct object_ops fd_ops =
{
sizeof(struct fd), /* size */
fd_dump, /* dump */
no_get_type, /* get_type */
no_add_queue, /* add_queue */
NULL, /* remove_queue */
NULL, /* signaled */
NULL, /* satisfied */
no_signal, /* signal */
no_get_fd, /* get_fd */
no_map_access, /* map_access */
default_get_sd, /* get_sd */
default_set_sd, /* set_sd */
no_lookup_name, /* lookup_name */
no_open_file, /* open_file */
no_close_handle, /* close_handle */
fd_destroy /* destroy */
};
/* device object */
#define DEVICE_HASH_SIZE 7
#define INODE_HASH_SIZE 17
struct device
{
struct object obj; /* object header */
struct list entry; /* entry in device hash list */
dev_t dev; /* device number */
int removable; /* removable device? (or -1 if unknown) */
struct list inode_hash[INODE_HASH_SIZE]; /* inodes hash table */
};
static void device_dump( struct object *obj, int verbose );
static void device_destroy( struct object *obj );
static const struct object_ops device_ops =
{
sizeof(struct device), /* size */
device_dump, /* dump */
no_get_type, /* get_type */
no_add_queue, /* add_queue */
NULL, /* remove_queue */
NULL, /* signaled */
NULL, /* satisfied */
no_signal, /* signal */
no_get_fd, /* get_fd */
no_map_access, /* map_access */
default_get_sd, /* get_sd */
default_set_sd, /* set_sd */
no_lookup_name, /* lookup_name */
no_open_file, /* open_file */
no_close_handle, /* close_handle */
device_destroy /* destroy */
};
/* inode object */
struct inode
{
struct object obj; /* object header */
struct list entry; /* inode hash list entry */
struct device *device; /* device containing this inode */
ino_t ino; /* inode number */
struct list open; /* list of open file descriptors */
struct list locks; /* list of file locks */
struct list closed; /* list of file descriptors to close at destroy time */
};
static void inode_dump( struct object *obj, int verbose );
static void inode_destroy( struct object *obj );
static const struct object_ops inode_ops =
{
sizeof(struct inode), /* size */
inode_dump, /* dump */
no_get_type, /* get_type */
no_add_queue, /* add_queue */
NULL, /* remove_queue */
NULL, /* signaled */
NULL, /* satisfied */
no_signal, /* signal */
no_get_fd, /* get_fd */
no_map_access, /* map_access */
default_get_sd, /* get_sd */
default_set_sd, /* set_sd */
no_lookup_name, /* lookup_name */
no_open_file, /* open_file */
no_close_handle, /* close_handle */
inode_destroy /* destroy */
};
/* file lock object */
struct file_lock
{
struct object obj; /* object header */
struct fd *fd; /* fd owning this lock */
struct list fd_entry; /* entry in list of locks on a given fd */
struct list inode_entry; /* entry in inode list of locks */
int shared; /* shared lock? */
file_pos_t start; /* locked region is interval [start;end) */
file_pos_t end;
struct process *process; /* process owning this lock */
struct list proc_entry; /* entry in list of locks owned by the process */
};
static void file_lock_dump( struct object *obj, int verbose );
static int file_lock_signaled( struct object *obj, struct wait_queue_entry *entry );
static const struct object_ops file_lock_ops =
{
sizeof(struct file_lock), /* size */
file_lock_dump, /* dump */
no_get_type, /* get_type */
add_queue, /* add_queue */
remove_queue, /* remove_queue */
file_lock_signaled, /* signaled */
no_satisfied, /* satisfied */
no_signal, /* signal */
no_get_fd, /* get_fd */
no_map_access, /* map_access */
default_get_sd, /* get_sd */
default_set_sd, /* set_sd */
no_lookup_name, /* lookup_name */
no_open_file, /* open_file */
no_close_handle, /* close_handle */
no_destroy /* destroy */
};
#define OFF_T_MAX (~((file_pos_t)1 << (8*sizeof(off_t)-1)))
#define FILE_POS_T_MAX (~(file_pos_t)0)
static file_pos_t max_unix_offset = OFF_T_MAX;
#define DUMP_LONG_LONG(val) do { \
if (sizeof(val) > sizeof(unsigned long) && (val) > ~0UL) \
fprintf( stderr, "%lx%08lx", (unsigned long)((unsigned long long)(val) >> 32), (unsigned long)(val) ); \
else \
fprintf( stderr, "%lx", (unsigned long)(val) ); \
} while (0)
/****************************************************************/
/* timeouts support */
struct timeout_user
{
struct list entry; /* entry in sorted timeout list */
timeout_t when; /* timeout expiry (absolute time) */
timeout_callback callback; /* callback function */
void *private; /* callback private data */
};
static struct list timeout_list = LIST_INIT(timeout_list); /* sorted timeouts list */
timeout_t current_time;
static inline void set_current_time(void)
{
static const timeout_t ticks_1601_to_1970 = (timeout_t)86400 * (369 * 365 + 89) * TICKS_PER_SEC;
struct timeval now;
gettimeofday( &now, NULL );
current_time = (timeout_t)now.tv_sec * TICKS_PER_SEC + now.tv_usec * 10 + ticks_1601_to_1970;
}
/* add a timeout user */
struct timeout_user *add_timeout_user( timeout_t when, timeout_callback func, void *private )
{
struct timeout_user *user;
struct list *ptr;
if (!(user = mem_alloc( sizeof(*user) ))) return NULL;
user->when = (when > 0) ? when : current_time - when;
user->callback = func;
user->private = private;
/* Now insert it in the linked list */
LIST_FOR_EACH( ptr, &timeout_list )
{
struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry );
if (timeout->when >= user->when) break;
}
list_add_before( ptr, &user->entry );
return user;
}
/* remove a timeout user */
void remove_timeout_user( struct timeout_user *user )
{
list_remove( &user->entry );
free( user );
}
/* return a text description of a timeout for debugging purposes */
const char *get_timeout_str( timeout_t timeout )
{
static char buffer[64];
long secs, nsecs;
if (!timeout) return "0";
if (timeout == TIMEOUT_INFINITE) return "infinite";
if (timeout < 0) /* relative */
{
secs = -timeout / TICKS_PER_SEC;
nsecs = -timeout % TICKS_PER_SEC;
sprintf( buffer, "+%ld.%07ld", secs, nsecs );
}
else /* absolute */
{
secs = (timeout - current_time) / TICKS_PER_SEC;
nsecs = (timeout - current_time) % TICKS_PER_SEC;
if (nsecs < 0)
{
nsecs += TICKS_PER_SEC;
secs--;
}
if (secs >= 0)
sprintf( buffer, "%x%08x (+%ld.%07ld)",
(unsigned int)(timeout >> 32), (unsigned int)timeout, secs, nsecs );
else
sprintf( buffer, "%x%08x (-%ld.%07ld)",
(unsigned int)(timeout >> 32), (unsigned int)timeout,
-(secs + 1), TICKS_PER_SEC - nsecs );
}
return buffer;
}
/****************************************************************/
/* poll support */
static struct fd **poll_users; /* users array */
static struct pollfd *pollfd; /* poll fd array */
static int nb_users; /* count of array entries actually in use */
static int active_users; /* current number of active users */
static int allocated_users; /* count of allocated entries in the array */
static struct fd **freelist; /* list of free entries in the array */
static int get_next_timeout(void);
static inline void fd_poll_event( struct fd *fd, int event )
{
fd->fd_ops->poll_event( fd, event );
}
#ifdef USE_EPOLL
static int epoll_fd = -1;
static inline void init_epoll(void)
{
epoll_fd = epoll_create( 128 );
}
/* set the events that epoll waits for on this fd; helper for set_fd_events */
static inline void set_fd_epoll_events( struct fd *fd, int user, int events )
{
struct epoll_event ev;
int ctl;
if (epoll_fd == -1) return;
if (events == -1) /* stop waiting on this fd completely */
{
if (pollfd[user].fd == -1) return; /* already removed */
ctl = EPOLL_CTL_DEL;
}
else if (pollfd[user].fd == -1)
{
if (pollfd[user].events) return; /* stopped waiting on it, don't restart */
ctl = EPOLL_CTL_ADD;
}
else
{
if (pollfd[user].events == events) return; /* nothing to do */
ctl = EPOLL_CTL_MOD;
}
ev.events = events;
memset(&ev.data, 0, sizeof(ev.data));
ev.data.u32 = user;
if (epoll_ctl( epoll_fd, ctl, fd->unix_fd, &ev ) == -1)
{
if (errno == ENOMEM) /* not enough memory, give up on epoll */
{
close( epoll_fd );
epoll_fd = -1;
}
else perror( "epoll_ctl" ); /* should not happen */
}
}
static inline void remove_epoll_user( struct fd *fd, int user )
{
if (epoll_fd == -1) return;
if (pollfd[user].fd != -1)
{
struct epoll_event dummy;
epoll_ctl( epoll_fd, EPOLL_CTL_DEL, fd->unix_fd, &dummy );
}
}
static inline void main_loop_epoll(void)
{
int i, ret, timeout;
struct epoll_event events[128];
assert( POLLIN == EPOLLIN );
assert( POLLOUT == EPOLLOUT );
assert( POLLERR == EPOLLERR );
assert( POLLHUP == EPOLLHUP );
if (epoll_fd == -1) return;
while (active_users)
{
timeout = get_next_timeout();
if (!active_users) break; /* last user removed by a timeout */
if (epoll_fd == -1) break; /* an error occurred with epoll */
ret = epoll_wait( epoll_fd, events, sizeof(events)/sizeof(events[0]), timeout );
set_current_time();
/* put the events into the pollfd array first, like poll does */
for (i = 0; i < ret; i++)
{
int user = events[i].data.u32;
pollfd[user].revents = events[i].events;
}
/* read events from the pollfd array, as set_fd_events may modify them */
for (i = 0; i < ret; i++)
{
int user = events[i].data.u32;
if (pollfd[user].revents) fd_poll_event( poll_users[user], pollfd[user].revents );
}
}
}
#elif defined(HAVE_KQUEUE)
static int kqueue_fd = -1;
static inline void init_epoll(void)
{
#ifdef __APPLE__ /* kqueue support is broken in Mac OS < 10.5 */
int mib[2];
char release[32];
size_t len = sizeof(release);
mib[0] = CTL_KERN;
mib[1] = KERN_OSRELEASE;
if (sysctl( mib, 2, release, &len, NULL, 0 ) == -1) return;
if (atoi(release) < 9) return;
#endif
kqueue_fd = kqueue();
}
static inline void set_fd_epoll_events( struct fd *fd, int user, int events )
{
struct kevent ev[2];
if (kqueue_fd == -1) return;
EV_SET( &ev[0], fd->unix_fd, EVFILT_READ, 0, NOTE_LOWAT, 1, (void *)user );
EV_SET( &ev[1], fd->unix_fd, EVFILT_WRITE, 0, NOTE_LOWAT, 1, (void *)user );
if (events == -1) /* stop waiting on this fd completely */
{
if (pollfd[user].fd == -1) return; /* already removed */
ev[0].flags |= EV_DELETE;
ev[1].flags |= EV_DELETE;
}
else if (pollfd[user].fd == -1)
{
if (pollfd[user].events) return; /* stopped waiting on it, don't restart */
ev[0].flags |= EV_ADD | ((events & POLLIN) ? EV_ENABLE : EV_DISABLE);
ev[1].flags |= EV_ADD | ((events & POLLOUT) ? EV_ENABLE : EV_DISABLE);
}
else
{
if (pollfd[user].events == events) return; /* nothing to do */
ev[0].flags |= (events & POLLIN) ? EV_ENABLE : EV_DISABLE;
ev[1].flags |= (events & POLLOUT) ? EV_ENABLE : EV_DISABLE;
}
if (kevent( kqueue_fd, ev, 2, NULL, 0, NULL ) == -1)
{
if (errno == ENOMEM) /* not enough memory, give up on kqueue */
{
close( kqueue_fd );
kqueue_fd = -1;
}
else perror( "kevent" ); /* should not happen */
}
}
static inline void remove_epoll_user( struct fd *fd, int user )
{
if (kqueue_fd == -1) return;
if (pollfd[user].fd != -1)
{
struct kevent ev[2];
EV_SET( &ev[0], fd->unix_fd, EVFILT_READ, EV_DELETE, 0, 0, 0 );
EV_SET( &ev[1], fd->unix_fd, EVFILT_WRITE, EV_DELETE, 0, 0, 0 );
kevent( kqueue_fd, ev, 2, NULL, 0, NULL );
}
}
static inline void main_loop_epoll(void)
{
int i, ret, timeout;
struct kevent events[128];
if (kqueue_fd == -1) return;
while (active_users)
{
timeout = get_next_timeout();
if (!active_users) break; /* last user removed by a timeout */
if (kqueue_fd == -1) break; /* an error occurred with kqueue */
if (timeout != -1)
{
struct timespec ts;
ts.tv_sec = timeout / 1000;
ts.tv_nsec = (timeout % 1000) * 1000000;
ret = kevent( kqueue_fd, NULL, 0, events, sizeof(events)/sizeof(events[0]), &ts );
}
else ret = kevent( kqueue_fd, NULL, 0, events, sizeof(events)/sizeof(events[0]), NULL );
set_current_time();
/* put the events into the pollfd array first, like poll does */
for (i = 0; i < ret; i++)
{
long user = (long)events[i].udata;
pollfd[user].revents = 0;
}
for (i = 0; i < ret; i++)
{
long user = (long)events[i].udata;
if (events[i].filter == EVFILT_READ) pollfd[user].revents |= POLLIN;
else if (events[i].filter == EVFILT_WRITE) pollfd[user].revents |= POLLOUT;
if (events[i].flags & EV_EOF) pollfd[user].revents |= POLLHUP;
if (events[i].flags & EV_ERROR) pollfd[user].revents |= POLLERR;
}
/* read events from the pollfd array, as set_fd_events may modify them */
for (i = 0; i < ret; i++)
{
long user = (long)events[i].udata;
if (pollfd[user].revents) fd_poll_event( poll_users[user], pollfd[user].revents );
pollfd[user].revents = 0;
}
}
}
#elif defined(USE_EVENT_PORTS)
static int port_fd = -1;
static inline void init_epoll(void)
{
port_fd = port_create();
}
static inline void set_fd_epoll_events( struct fd *fd, int user, int events )
{
int ret;
if (port_fd == -1) return;
if (events == -1) /* stop waiting on this fd completely */
{
if (pollfd[user].fd == -1) return; /* already removed */
port_dissociate( port_fd, PORT_SOURCE_FD, fd->unix_fd );
}
else if (pollfd[user].fd == -1)
{
if (pollfd[user].events) return; /* stopped waiting on it, don't restart */
ret = port_associate( port_fd, PORT_SOURCE_FD, fd->unix_fd, events, (void *)user );
}
else
{
if (pollfd[user].events == events) return; /* nothing to do */
ret = port_associate( port_fd, PORT_SOURCE_FD, fd->unix_fd, events, (void *)user );
}
if (ret == -1)
{
if (errno == ENOMEM) /* not enough memory, give up on port_associate */
{
close( port_fd );
port_fd = -1;
}
else perror( "port_associate" ); /* should not happen */
}
}
static inline void remove_epoll_user( struct fd *fd, int user )
{
if (port_fd == -1) return;
if (pollfd[user].fd != -1)
{
port_dissociate( port_fd, PORT_SOURCE_FD, fd->unix_fd );
}
}
static inline void main_loop_epoll(void)
{
int i, nget, ret, timeout;
port_event_t events[128];
if (port_fd == -1) return;
while (active_users)
{
timeout = get_next_timeout();
nget = 1;
if (!active_users) break; /* last user removed by a timeout */
if (port_fd == -1) break; /* an error occurred with event completion */
if (timeout != -1)
{
struct timespec ts;
ts.tv_sec = timeout / 1000;
ts.tv_nsec = (timeout % 1000) * 1000000;
ret = port_getn( port_fd, events, sizeof(events)/sizeof(events[0]), &nget, &ts );
}
else ret = port_getn( port_fd, events, sizeof(events)/sizeof(events[0]), &nget, NULL );
if (ret == -1) break; /* an error occurred with event completion */
set_current_time();
/* put the events into the pollfd array first, like poll does */
for (i = 0; i < nget; i++)
{
long user = (long)events[i].portev_user;
pollfd[user].revents = events[i].portev_events;
}
/* read events from the pollfd array, as set_fd_events may modify them */
for (i = 0; i < nget; i++)
{
long user = (long)events[i].portev_user;
if (pollfd[user].revents) fd_poll_event( poll_users[user], pollfd[user].revents );
/* if we are still interested, reassociate the fd */
if (pollfd[user].fd != -1) {
port_associate( port_fd, PORT_SOURCE_FD, pollfd[user].fd, pollfd[user].events, (void *)user );
}
}
}
}
#else /* HAVE_KQUEUE */
static inline void init_epoll(void) { }
static inline void set_fd_epoll_events( struct fd *fd, int user, int events ) { }
static inline void remove_epoll_user( struct fd *fd, int user ) { }
static inline void main_loop_epoll(void) { }
#endif /* USE_EPOLL */
/* add a user in the poll array and return its index, or -1 on failure */
static int add_poll_user( struct fd *fd )
{
int ret;
if (freelist)
{
ret = freelist - poll_users;
freelist = (struct fd **)poll_users[ret];
}
else
{
if (nb_users == allocated_users)
{
struct fd **newusers;
struct pollfd *newpoll;
int new_count = allocated_users ? (allocated_users + allocated_users / 2) : 16;
if (!(newusers = realloc( poll_users, new_count * sizeof(*poll_users) ))) return -1;
if (!(newpoll = realloc( pollfd, new_count * sizeof(*pollfd) )))
{
if (allocated_users)
poll_users = newusers;
else
free( newusers );
return -1;
}
poll_users = newusers;
pollfd = newpoll;
if (!allocated_users) init_epoll();
allocated_users = new_count;
}
ret = nb_users++;
}
pollfd[ret].fd = -1;
pollfd[ret].events = 0;
pollfd[ret].revents = 0;
poll_users[ret] = fd;
active_users++;
return ret;
}
/* remove a user from the poll list */
static void remove_poll_user( struct fd *fd, int user )
{
assert( user >= 0 );
assert( poll_users[user] == fd );
remove_epoll_user( fd, user );
pollfd[user].fd = -1;
pollfd[user].events = 0;
pollfd[user].revents = 0;
poll_users[user] = (struct fd *)freelist;
freelist = &poll_users[user];
active_users--;
}
/* process pending timeouts and return the time until the next timeout, in milliseconds */
static int get_next_timeout(void)
{
if (!list_empty( &timeout_list ))
{
struct list expired_list, *ptr;
/* first remove all expired timers from the list */
list_init( &expired_list );
while ((ptr = list_head( &timeout_list )) != NULL)
{
struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry );
if (timeout->when <= current_time)
{
list_remove( &timeout->entry );
list_add_tail( &expired_list, &timeout->entry );
}
else break;
}
/* now call the callback for all the removed timers */
while ((ptr = list_head( &expired_list )) != NULL)
{
struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry );
list_remove( &timeout->entry );
timeout->callback( timeout->private );
free( timeout );
}
if ((ptr = list_head( &timeout_list )) != NULL)
{
struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry );
int diff = (timeout->when - current_time + 9999) / 10000;
if (diff < 0) diff = 0;
return diff;
}
}
return -1; /* no pending timeouts */
}
/* server main poll() loop */
void main_loop(void)
{
int i, ret, timeout;
set_current_time();
server_start_time = current_time;
main_loop_epoll();
/* fall through to normal poll loop */
while (active_users)
{
timeout = get_next_timeout();
if (!active_users) break; /* last user removed by a timeout */
ret = poll( pollfd, nb_users, timeout );
set_current_time();
if (ret > 0)
{
for (i = 0; i < nb_users; i++)
{
if (pollfd[i].revents)
{
fd_poll_event( poll_users[i], pollfd[i].revents );
if (!--ret) break;
}
}
}
}
}
/****************************************************************/
/* device functions */
static struct list device_hash[DEVICE_HASH_SIZE];
static int is_device_removable( dev_t dev, int unix_fd )
{
#if defined(linux) && defined(HAVE_FSTATFS)
struct statfs stfs;
/* check for floppy disk */
if (major(dev) == FLOPPY_MAJOR) return 1;
if (fstatfs( unix_fd, &stfs ) == -1) return 0;
return (stfs.f_type == 0x9660 || /* iso9660 */
stfs.f_type == 0x9fa1 || /* supermount */
stfs.f_type == 0x15013346); /* udf */
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) || defined(__APPLE__)
struct statfs stfs;
if (fstatfs( unix_fd, &stfs ) == -1) return 0;
return (!strcmp("cd9660", stfs.f_fstypename) || !strcmp("udf", stfs.f_fstypename));
#elif defined(__NetBSD__)
struct statvfs stfs;
if (fstatvfs( unix_fd, &stfs ) == -1) return 0;
return (!strcmp("cd9660", stfs.f_fstypename) || !strcmp("udf", stfs.f_fstypename));
#elif defined(sun)
# include <sys/dkio.h>
# include <sys/vtoc.h>
struct dk_cinfo dkinf;
if (ioctl( unix_fd, DKIOCINFO, &dkinf ) == -1) return 0;
return (dkinf.dki_ctype == DKC_CDROM ||
dkinf.dki_ctype == DKC_NCRFLOPPY ||
dkinf.dki_ctype == DKC_SMSFLOPPY ||
dkinf.dki_ctype == DKC_INTEL82072 ||
dkinf.dki_ctype == DKC_INTEL82077);
#else
return 0;
#endif
}
/* retrieve the device object for a given fd, creating it if needed */
static struct device *get_device( dev_t dev, int unix_fd )
{
struct device *device;
unsigned int i, hash = dev % DEVICE_HASH_SIZE;
if (device_hash[hash].next)
{
LIST_FOR_EACH_ENTRY( device, &device_hash[hash], struct device, entry )
if (device->dev == dev) return (struct device *)grab_object( device );
}
else list_init( &device_hash[hash] );
/* not found, create it */
if (unix_fd == -1) return NULL;
if ((device = alloc_object( &device_ops )))
{
device->dev = dev;
device->removable = is_device_removable( dev, unix_fd );
for (i = 0; i < INODE_HASH_SIZE; i++) list_init( &device->inode_hash[i] );
list_add_head( &device_hash[hash], &device->entry );
}
return device;
}
static void device_dump( struct object *obj, int verbose )
{
struct device *device = (struct device *)obj;
fprintf( stderr, "Device dev=" );
DUMP_LONG_LONG( device->dev );
fprintf( stderr, "\n" );
}
static void device_destroy( struct object *obj )
{
struct device *device = (struct device *)obj;
unsigned int i;
for (i = 0; i < INODE_HASH_SIZE; i++)
assert( list_empty(&device->inode_hash[i]) );
list_remove( &device->entry ); /* remove it from the hash table */
}
/****************************************************************/
/* inode functions */
/* close all pending file descriptors in the closed list */
static void inode_close_pending( struct inode *inode, int keep_unlinks )
{
struct list *ptr = list_head( &inode->closed );
while (ptr)
{
struct closed_fd *fd = LIST_ENTRY( ptr, struct closed_fd, entry );
struct list *next = list_next( &inode->closed, ptr );
if (fd->unix_fd != -1)
{
close( fd->unix_fd );
fd->unix_fd = -1;
}
if (!keep_unlinks || !fd->unlink) /* get rid of it unless there's an unlink pending on that file */
{
list_remove( ptr );
free( fd->unix_name );
free( fd );
}
ptr = next;
}
}
static void inode_dump( struct object *obj, int verbose )
{
struct inode *inode = (struct inode *)obj;
fprintf( stderr, "Inode device=%p ino=", inode->device );
DUMP_LONG_LONG( inode->ino );
fprintf( stderr, "\n" );
}
static void inode_destroy( struct object *obj )
{
struct inode *inode = (struct inode *)obj;
struct list *ptr;
assert( list_empty(&inode->open) );
assert( list_empty(&inode->locks) );
list_remove( &inode->entry );
while ((ptr = list_head( &inode->closed )))
{
struct closed_fd *fd = LIST_ENTRY( ptr, struct closed_fd, entry );
list_remove( ptr );
if (fd->unix_fd != -1) close( fd->unix_fd );
if (fd->unlink)
{
/* make sure it is still the same file */
struct stat st;
if (!stat( fd->unix_name, &st ) && st.st_dev == inode->device->dev && st.st_ino == inode->ino)
{
if (S_ISDIR(st.st_mode)) rmdir( fd->unix_name );
else unlink( fd->unix_name );
}
}
free( fd->unix_name );
free( fd );
}
release_object( inode->device );
}
/* retrieve the inode object for a given fd, creating it if needed */
static struct inode *get_inode( dev_t dev, ino_t ino, int unix_fd )
{
struct device *device;
struct inode *inode;
unsigned int hash = ino % INODE_HASH_SIZE;
if (!(device = get_device( dev, unix_fd ))) return NULL;
LIST_FOR_EACH_ENTRY( inode, &device->inode_hash[hash], struct inode, entry )
{
if (inode->ino == ino)
{
release_object( device );
return (struct inode *)grab_object( inode );
}
}
/* not found, create it */
if ((inode = alloc_object( &inode_ops )))
{
inode->device = device;
inode->ino = ino;
list_init( &inode->open );
list_init( &inode->locks );
list_init( &inode->closed );
list_add_head( &device->inode_hash[hash], &inode->entry );
}
else release_object( device );
return inode;
}
/* add fd to the inode list of file descriptors to close */
static void inode_add_closed_fd( struct inode *inode, struct closed_fd *fd )
{
if (!list_empty( &inode->locks ))
{
list_add_head( &inode->closed, &fd->entry );
}
else if (fd->unlink) /* close the fd but keep the structure around for unlink */
{
if (fd->unix_fd != -1) close( fd->unix_fd );
fd->unix_fd = -1;
list_add_head( &inode->closed, &fd->entry );
}
else /* no locks on this inode and no unlink, get rid of the fd */
{
if (fd->unix_fd != -1) close( fd->unix_fd );
free( fd->unix_name );
free( fd );
}
}
/****************************************************************/
/* file lock functions */
static void file_lock_dump( struct object *obj, int verbose )
{
struct file_lock *lock = (struct file_lock *)obj;
fprintf( stderr, "Lock %s fd=%p proc=%p start=",
lock->shared ? "shared" : "excl", lock->fd, lock->process );
DUMP_LONG_LONG( lock->start );
fprintf( stderr, " end=" );
DUMP_LONG_LONG( lock->end );
fprintf( stderr, "\n" );
}
static int file_lock_signaled( struct object *obj, struct wait_queue_entry *entry )
{
struct file_lock *lock = (struct file_lock *)obj;
/* lock is signaled if it has lost its owner */
return !lock->process;
}
/* set (or remove) a Unix lock if possible for the given range */
static int set_unix_lock( struct fd *fd, file_pos_t start, file_pos_t end, int type )
{
struct flock fl;
if (!fd->fs_locks) return 1; /* no fs locks possible for this fd */
for (;;)
{
if (start == end) return 1; /* can't set zero-byte lock */
if (start > max_unix_offset) return 1; /* ignore it */
fl.l_type = type;
fl.l_whence = SEEK_SET;
fl.l_start = start;
if (!end || end > max_unix_offset) fl.l_len = 0;
else fl.l_len = end - start;
if (fcntl( fd->unix_fd, F_SETLK, &fl ) != -1) return 1;
switch(errno)
{
case EACCES:
/* check whether locks work at all on this file system */
if (fcntl( fd->unix_fd, F_GETLK, &fl ) != -1)
{
set_error( STATUS_FILE_LOCK_CONFLICT );
return 0;
}
/* fall through */
case EIO:
case ENOLCK:
case ENOTSUP:
/* no locking on this fs, just ignore it */
fd->fs_locks = 0;
return 1;
case EAGAIN:
set_error( STATUS_FILE_LOCK_CONFLICT );
return 0;
case EBADF:
/* this can happen if we try to set a write lock on a read-only file */
/* try to at least grab a read lock */
if (fl.l_type == F_WRLCK)
{
type = F_RDLCK;
break; /* retry */
}
set_error( STATUS_ACCESS_DENIED );
return 0;
#ifdef EOVERFLOW
case EOVERFLOW:
#endif
case EINVAL:
/* this can happen if off_t is 64-bit but the kernel only supports 32-bit */
/* in that case we shrink the limit and retry */
if (max_unix_offset > INT_MAX)
{
max_unix_offset = INT_MAX;
break; /* retry */
}
/* fall through */
default:
file_set_error();
return 0;
}
}
}
/* check if interval [start;end) overlaps the lock */
static inline int lock_overlaps( struct file_lock *lock, file_pos_t start, file_pos_t end )
{
if (lock->end && start >= lock->end) return 0;
if (end && lock->start >= end) return 0;
return 1;
}
/* remove Unix locks for all bytes in the specified area that are no longer locked */
static void remove_unix_locks( struct fd *fd, file_pos_t start, file_pos_t end )
{
struct hole
{
struct hole *next;
struct hole *prev;
file_pos_t start;
file_pos_t end;
} *first, *cur, *next, *buffer;
struct list *ptr;
int count = 0;
if (!fd->inode) return;
if (!fd->fs_locks) return;
if (start == end || start > max_unix_offset) return;
if (!end || end > max_unix_offset) end = max_unix_offset + 1;
/* count the number of locks overlapping the specified area */
LIST_FOR_EACH( ptr, &fd->inode->locks )
{
struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, inode_entry );
if (lock->start == lock->end) continue;
if (lock_overlaps( lock, start, end )) count++;
}
if (!count) /* no locks at all, we can unlock everything */
{
set_unix_lock( fd, start, end, F_UNLCK );
return;
}
/* allocate space for the list of holes */
/* max. number of holes is number of locks + 1 */
if (!(buffer = malloc( sizeof(*buffer) * (count+1) ))) return;
first = buffer;
first->next = NULL;
first->prev = NULL;
first->start = start;
first->end = end;
next = first + 1;
/* build a sorted list of unlocked holes in the specified area */
LIST_FOR_EACH( ptr, &fd->inode->locks )
{
struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, inode_entry );
if (lock->start == lock->end) continue;
if (!lock_overlaps( lock, start, end )) continue;
/* go through all the holes touched by this lock */
for (cur = first; cur; cur = cur->next)
{
if (cur->end <= lock->start) continue; /* hole is before start of lock */
if (lock->end && cur->start >= lock->end) break; /* hole is after end of lock */
/* now we know that lock is overlapping hole */
if (cur->start >= lock->start) /* lock starts before hole, shrink from start */
{
cur->start = lock->end;
if (cur->start && cur->start < cur->end) break; /* done with this lock */
/* now hole is empty, remove it */
if (cur->next) cur->next->prev = cur->prev;
if (cur->prev) cur->prev->next = cur->next;
else if (!(first = cur->next)) goto done; /* no more holes at all */
}
else if (!lock->end || cur->end <= lock->end) /* lock larger than hole, shrink from end */
{
cur->end = lock->start;
assert( cur->start < cur->end );
}
else /* lock is in the middle of hole, split hole in two */
{
next->prev = cur;
next->next = cur->next;
cur->next = next;
next->start = lock->end;
next->end = cur->end;
cur->end = lock->start;
assert( next->start < next->end );
assert( cur->end < next->start );
next++;
break; /* done with this lock */
}
}
}
/* clear Unix locks for all the holes */
for (cur = first; cur; cur = cur->next)
set_unix_lock( fd, cur->start, cur->end, F_UNLCK );
done:
free( buffer );
}
/* create a new lock on a fd */
static struct file_lock *add_lock( struct fd *fd, int shared, file_pos_t start, file_pos_t end )
{
struct file_lock *lock;
if (!(lock = alloc_object( &file_lock_ops ))) return NULL;
lock->shared = shared;
lock->start = start;
lock->end = end;
lock->fd = fd;
lock->process = current->process;
/* now try to set a Unix lock */
if (!set_unix_lock( lock->fd, lock->start, lock->end, lock->shared ? F_RDLCK : F_WRLCK ))
{
release_object( lock );
return NULL;
}
list_add_tail( &fd->locks, &lock->fd_entry );
list_add_tail( &fd->inode->locks, &lock->inode_entry );
list_add_tail( &lock->process->locks, &lock->proc_entry );
return lock;
}
/* remove an existing lock */
static void remove_lock( struct file_lock *lock, int remove_unix )
{
struct inode *inode = lock->fd->inode;
list_remove( &lock->fd_entry );
list_remove( &lock->inode_entry );
list_remove( &lock->proc_entry );
if (remove_unix) remove_unix_locks( lock->fd, lock->start, lock->end );
if (list_empty( &inode->locks )) inode_close_pending( inode, 1 );
lock->process = NULL;
wake_up( &lock->obj, 0 );
release_object( lock );
}
/* remove all locks owned by a given process */
void remove_process_locks( struct process *process )
{
struct list *ptr;
while ((ptr = list_head( &process->locks )))
{
struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, proc_entry );
remove_lock( lock, 1 ); /* this removes it from the list */
}
}
/* remove all locks on a given fd */
static void remove_fd_locks( struct fd *fd )
{
file_pos_t start = FILE_POS_T_MAX, end = 0;
struct list *ptr;
while ((ptr = list_head( &fd->locks )))
{
struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, fd_entry );
if (lock->start < start) start = lock->start;
if (!lock->end || lock->end > end) end = lock->end - 1;
remove_lock( lock, 0 );
}
if (start < end) remove_unix_locks( fd, start, end + 1 );
}
/* add a lock on an fd */
/* returns handle to wait on */
obj_handle_t lock_fd( struct fd *fd, file_pos_t start, file_pos_t count, int shared, int wait )
{
struct list *ptr;
file_pos_t end = start + count;
if (!fd->inode) /* not a regular file */
{
set_error( STATUS_INVALID_DEVICE_REQUEST );
return 0;
}
/* don't allow wrapping locks */
if (end && end < start)
{
set_error( STATUS_INVALID_PARAMETER );
return 0;
}
/* check if another lock on that file overlaps the area */
LIST_FOR_EACH( ptr, &fd->inode->locks )
{
struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, inode_entry );
if (!lock_overlaps( lock, start, end )) continue;
if (shared && (lock->shared || lock->fd == fd)) continue;
/* found one */
if (!wait)
{
set_error( STATUS_FILE_LOCK_CONFLICT );
return 0;
}
set_error( STATUS_PENDING );
return alloc_handle( current->process, lock, SYNCHRONIZE, 0 );
}
/* not found, add it */
if (add_lock( fd, shared, start, end )) return 0;
if (get_error() == STATUS_FILE_LOCK_CONFLICT)
{
/* Unix lock conflict -> tell client to wait and retry */
if (wait) set_error( STATUS_PENDING );
}
return 0;
}
/* remove a lock on an fd */
void unlock_fd( struct fd *fd, file_pos_t start, file_pos_t count )
{
struct list *ptr;
file_pos_t end = start + count;
/* find an existing lock with the exact same parameters */
LIST_FOR_EACH( ptr, &fd->locks )
{
struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, fd_entry );
if ((lock->start == start) && (lock->end == end))
{
remove_lock( lock, 1 );
return;
}
}
set_error( STATUS_FILE_LOCK_CONFLICT );
}
/****************************************************************/
/* file descriptor functions */
static void fd_dump( struct object *obj, int verbose )
{
struct fd *fd = (struct fd *)obj;
fprintf( stderr, "Fd unix_fd=%d user=%p options=%08x", fd->unix_fd, fd->user, fd->options );
if (fd->inode) fprintf( stderr, " inode=%p unlink=%d", fd->inode, fd->closed->unlink );
fprintf( stderr, "\n" );
}
static void fd_destroy( struct object *obj )
{
struct fd *fd = (struct fd *)obj;
free_async_queue( fd->read_q );
free_async_queue( fd->write_q );
free_async_queue( fd->wait_q );
if (fd->completion) release_object( fd->completion );
remove_fd_locks( fd );
list_remove( &fd->inode_entry );
if (fd->poll_index != -1) remove_poll_user( fd, fd->poll_index );
if (fd->inode)
{
inode_add_closed_fd( fd->inode, fd->closed );
release_object( fd->inode );
}
else /* no inode, close it right away */
{
if (fd->unix_fd != -1) close( fd->unix_fd );
free( fd->unix_name );
}
}
/* check if the desired access is possible without violating */
/* the sharing mode of other opens of the same file */
static unsigned int check_sharing( struct fd *fd, unsigned int access, unsigned int sharing,
unsigned int open_flags, unsigned int options )
{
/* only a few access bits are meaningful wrt sharing */
const unsigned int read_access = FILE_READ_DATA | FILE_EXECUTE;
const unsigned int write_access = FILE_WRITE_DATA | FILE_APPEND_DATA;
const unsigned int all_access = read_access | write_access | DELETE;
unsigned int existing_sharing = FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE;
unsigned int existing_access = 0;
struct list *ptr;
fd->access = access;
fd->sharing = sharing;
LIST_FOR_EACH( ptr, &fd->inode->open )
{
struct fd *fd_ptr = LIST_ENTRY( ptr, struct fd, inode_entry );
if (fd_ptr != fd)
{
/* if access mode is 0, sharing mode is ignored */
if (fd_ptr->access & all_access) existing_sharing &= fd_ptr->sharing;
existing_access |= fd_ptr->access;
}
}
if (((access & read_access) && !(existing_sharing & FILE_SHARE_READ)) ||
((access & write_access) && !(existing_sharing & FILE_SHARE_WRITE)) ||
((access & DELETE) && !(existing_sharing & FILE_SHARE_DELETE)))
return STATUS_SHARING_VIOLATION;
if (((existing_access & FILE_MAPPING_WRITE) && !(sharing & FILE_SHARE_WRITE)) ||
((existing_access & FILE_MAPPING_IMAGE) && (access & FILE_WRITE_DATA)))
return STATUS_SHARING_VIOLATION;
if ((existing_access & FILE_MAPPING_IMAGE) && (options & FILE_DELETE_ON_CLOSE))
return STATUS_CANNOT_DELETE;
if ((existing_access & FILE_MAPPING_ACCESS) && (open_flags & O_TRUNC))
return STATUS_USER_MAPPED_FILE;
if (!(access & all_access))
return 0; /* if access mode is 0, sharing mode is ignored (except for mappings) */
if (((existing_access & read_access) && !(sharing & FILE_SHARE_READ)) ||
((existing_access & write_access) && !(sharing & FILE_SHARE_WRITE)) ||
((existing_access & DELETE) && !(sharing & FILE_SHARE_DELETE)))
return STATUS_SHARING_VIOLATION;
return 0;
}
/* set the events that select waits for on this fd */
void set_fd_events( struct fd *fd, int events )
{
int user = fd->poll_index;
assert( poll_users[user] == fd );
set_fd_epoll_events( fd, user, events );
if (events == -1) /* stop waiting on this fd completely */
{
pollfd[user].fd = -1;
pollfd[user].events = POLLERR;
pollfd[user].revents = 0;
}
else if (pollfd[user].fd != -1 || !pollfd[user].events)
{
pollfd[user].fd = fd->unix_fd;
pollfd[user].events = events;
}
}
/* prepare an fd for unmounting its corresponding device */
static inline void unmount_fd( struct fd *fd )
{
assert( fd->inode );
async_wake_up( fd->read_q, STATUS_VOLUME_DISMOUNTED );
async_wake_up( fd->write_q, STATUS_VOLUME_DISMOUNTED );
if (fd->poll_index != -1) set_fd_events( fd, -1 );
if (fd->unix_fd != -1) close( fd->unix_fd );
fd->unix_fd = -1;
fd->no_fd_status = STATUS_VOLUME_DISMOUNTED;
fd->closed->unix_fd = -1;
fd->closed->unlink = 0;
/* stop using Unix locks on this fd (existing locks have been removed by close) */
fd->fs_locks = 0;
}
/* allocate an fd object, without setting the unix fd yet */
static struct fd *alloc_fd_object(void)
{
struct fd *fd = alloc_object( &fd_ops );
if (!fd) return NULL;
fd->fd_ops = NULL;
fd->user = NULL;
fd->inode = NULL;
fd->closed = NULL;
fd->access = 0;
fd->options = 0;
fd->sharing = 0;
fd->unix_fd = -1;
fd->unix_name = NULL;
fd->cacheable = 0;
fd->signaled = 1;
fd->fs_locks = 1;
fd->poll_index = -1;
fd->read_q = NULL;
fd->write_q = NULL;
fd->wait_q = NULL;
fd->completion = NULL;
list_init( &fd->inode_entry );
list_init( &fd->locks );
if ((fd->poll_index = add_poll_user( fd )) == -1)
{
release_object( fd );
return NULL;
}
return fd;
}
/* allocate a pseudo fd object, for objects that need to behave like files but don't have a unix fd */
struct fd *alloc_pseudo_fd( const struct fd_ops *fd_user_ops, struct object *user, unsigned int options )
{
struct fd *fd = alloc_object( &fd_ops );
if (!fd) return NULL;
fd->fd_ops = fd_user_ops;
fd->user = user;
fd->inode = NULL;
fd->closed = NULL;
fd->access = 0;
fd->options = options;
fd->sharing = 0;
fd->unix_name = NULL;
fd->unix_fd = -1;
fd->cacheable = 0;
fd->signaled = 0;
fd->fs_locks = 0;
fd->poll_index = -1;
fd->read_q = NULL;
fd->write_q = NULL;
fd->wait_q = NULL;
fd->completion = NULL;
fd->no_fd_status = STATUS_BAD_DEVICE_TYPE;
list_init( &fd->inode_entry );
list_init( &fd->locks );
return fd;
}
/* duplicate an fd object for a different user */
struct fd *dup_fd_object( struct fd *orig, unsigned int access, unsigned int sharing, unsigned int options )
{
unsigned int err;
struct fd *fd = alloc_fd_object();
if (!fd) return NULL;
fd->options = options;
fd->cacheable = orig->cacheable;
if (orig->unix_name)
{
if (!(fd->unix_name = mem_alloc( strlen(orig->unix_name) + 1 ))) goto failed;
strcpy( fd->unix_name, orig->unix_name );
}
if (orig->inode)
{
struct closed_fd *closed = mem_alloc( sizeof(*closed) );
if (!closed) goto failed;
if ((fd->unix_fd = dup( orig->unix_fd )) == -1)
{
file_set_error();
free( closed );
goto failed;
}
closed->unix_fd = fd->unix_fd;
closed->unlink = 0;
closed->unix_name = fd->unix_name;
fd->closed = closed;
fd->inode = (struct inode *)grab_object( orig->inode );
list_add_head( &fd->inode->open, &fd->inode_entry );
if ((err = check_sharing( fd, access, sharing, 0, options )))
{
set_error( err );
goto failed;
}
}
else if ((fd->unix_fd = dup( orig->unix_fd )) == -1)
{
file_set_error();
goto failed;
}
return fd;
failed:
release_object( fd );
return NULL;
}
/* find an existing fd object that can be reused for a mapping */
struct fd *get_fd_object_for_mapping( struct fd *fd, unsigned int access, unsigned int sharing )
{
struct fd *fd_ptr;
if (!fd->inode) return NULL;
LIST_FOR_EACH_ENTRY( fd_ptr, &fd->inode->open, struct fd, inode_entry )
if (fd_ptr->access == access && fd_ptr->sharing == sharing)
return (struct fd *)grab_object( fd_ptr );
return NULL;
}
/* set the status to return when the fd has no associated unix fd */
void set_no_fd_status( struct fd *fd, unsigned int status )
{
fd->no_fd_status = status;
}
/* sets the user of an fd that previously had no user */
void set_fd_user( struct fd *fd, const struct fd_ops *user_ops, struct object *user )
{
assert( fd->fd_ops == NULL );
fd->fd_ops = user_ops;
fd->user = user;
}
static char *dup_fd_name( struct fd *root, const char *name )
{
char *ret;
if (!root) return strdup( name );
if (!root->unix_name) return NULL;
/* skip . prefix */
if (name[0] == '.' && (!name[1] || name[1] == '/')) name++;
if ((ret = malloc( strlen(root->unix_name) + strlen(name) + 2 )))
{
strcpy( ret, root->unix_name );
if (name[0] && name[0] != '/') strcat( ret, "/" );
strcat( ret, name );
}
return ret;
}
/* open() wrapper that returns a struct fd with no fd user set */
struct fd *open_fd( struct fd *root, const char *name, int flags, mode_t *mode, unsigned int access,
unsigned int sharing, unsigned int options )
{
struct stat st;
struct closed_fd *closed_fd;
struct fd *fd;
int root_fd = -1;
int rw_mode;
if (((options & FILE_DELETE_ON_CLOSE) && !(access & DELETE)) ||
((options & FILE_DIRECTORY_FILE) && (flags & O_TRUNC)))
{
set_error( STATUS_INVALID_PARAMETER );
return NULL;
}
if (!(fd = alloc_fd_object())) return NULL;
fd->options = options;
if (!(closed_fd = mem_alloc( sizeof(*closed_fd) )))
{
release_object( fd );
return NULL;
}
if (root)
{
if ((root_fd = get_unix_fd( root )) == -1) goto error;
if (fchdir( root_fd ) == -1)
{
file_set_error();
root_fd = -1;
goto error;
}
}
/* create the directory if needed */
if ((options & FILE_DIRECTORY_FILE) && (flags & O_CREAT))
{
if (mkdir( name, *mode ) == -1)
{
if (errno != EEXIST || (flags & O_EXCL))
{
file_set_error();
goto error;
}
}
flags &= ~(O_CREAT | O_EXCL | O_TRUNC);
}
if ((access & FILE_UNIX_WRITE_ACCESS) && !(options & FILE_DIRECTORY_FILE))
{
if (access & FILE_UNIX_READ_ACCESS) rw_mode = O_RDWR;
else rw_mode = O_WRONLY;
}
else rw_mode = O_RDONLY;
fd->unix_name = dup_fd_name( root, name );
if ((fd->unix_fd = open( name, rw_mode | (flags & ~O_TRUNC), *mode )) == -1)
{
/* if we tried to open a directory for write access, retry read-only */
if (errno == EISDIR)
{
if ((access & FILE_UNIX_WRITE_ACCESS) || (flags & O_CREAT))
fd->unix_fd = open( name, O_RDONLY | (flags & ~(O_TRUNC | O_CREAT | O_EXCL)), *mode );
}
if (fd->unix_fd == -1)
{
file_set_error();
goto error;
}
}
closed_fd->unix_fd = fd->unix_fd;
closed_fd->unlink = 0;
closed_fd->unix_name = fd->unix_name;
fstat( fd->unix_fd, &st );
*mode = st.st_mode;
/* only bother with an inode for normal files and directories */
if (S_ISREG(st.st_mode) || S_ISDIR(st.st_mode))
{
unsigned int err;
struct inode *inode = get_inode( st.st_dev, st.st_ino, fd->unix_fd );
if (!inode)
{
/* we can close the fd because there are no others open on the same file,
* otherwise we wouldn't have failed to allocate a new inode
*/
goto error;
}
fd->inode = inode;
fd->closed = closed_fd;
fd->cacheable = !inode->device->removable;
list_add_head( &inode->open, &fd->inode_entry );
/* check directory options */
if ((options & FILE_DIRECTORY_FILE) && !S_ISDIR(st.st_mode))
{
release_object( fd );
set_error( STATUS_NOT_A_DIRECTORY );
return NULL;
}
if ((options & FILE_NON_DIRECTORY_FILE) && S_ISDIR(st.st_mode))
{
release_object( fd );
set_error( STATUS_FILE_IS_A_DIRECTORY );
return NULL;
}
if ((err = check_sharing( fd, access, sharing, flags, options )))
{
release_object( fd );
set_error( err );
return NULL;
}
closed_fd->unlink = (options & FILE_DELETE_ON_CLOSE) != 0;
if (flags & O_TRUNC)
{
if (S_ISDIR(st.st_mode))
{
release_object( fd );
set_error( STATUS_OBJECT_NAME_COLLISION );
return NULL;
}
ftruncate( fd->unix_fd, 0 );
}
}
else /* special file */
{
if (options & FILE_DELETE_ON_CLOSE) /* we can't unlink special files */
{
set_error( STATUS_INVALID_PARAMETER );
goto error;
}
free( closed_fd );
fd->cacheable = 1;
}
return fd;
error:
release_object( fd );
free( closed_fd );
if (root_fd != -1) fchdir( server_dir_fd ); /* go back to the server dir */
return NULL;
}
/* create an fd for an anonymous file */
/* if the function fails the unix fd is closed */
struct fd *create_anonymous_fd( const struct fd_ops *fd_user_ops, int unix_fd, struct object *user,
unsigned int options )
{
struct fd *fd = alloc_fd_object();
if (fd)
{
set_fd_user( fd, fd_user_ops, user );
fd->unix_fd = unix_fd;
fd->options = options;
return fd;
}
close( unix_fd );
return NULL;
}
/* retrieve the object that is using an fd */
void *get_fd_user( struct fd *fd )
{
return fd->user;
}
/* retrieve the opening options for the fd */
unsigned int get_fd_options( struct fd *fd )
{
return fd->options;
}
/* retrieve the unix fd for an object */
int get_unix_fd( struct fd *fd )
{
if (fd->unix_fd == -1) set_error( fd->no_fd_status );
return fd->unix_fd;
}
/* check if two file descriptors point to the same file */
int is_same_file_fd( struct fd *fd1, struct fd *fd2 )
{
return fd1->inode == fd2->inode;
}
/* allow the fd to be cached (can't be reset once set) */
void allow_fd_caching( struct fd *fd )
{
fd->cacheable = 1;
}
/* check if fd is on a removable device */
int is_fd_removable( struct fd *fd )
{
return (fd->inode && fd->inode->device->removable);
}
/* set or clear the fd signaled state */
void set_fd_signaled( struct fd *fd, int signaled )
{
fd->signaled = signaled;
if (signaled) wake_up( fd->user, 0 );
}
/* set or clear the fd signaled state */
int is_fd_signaled( struct fd *fd )
{
return fd->signaled;
}
/* handler for close_handle that refuses to close fd-associated handles in other processes */
int fd_close_handle( struct object *obj, struct process *process, obj_handle_t handle )
{
return (!current || current->process == process);
}
/* check if events are pending and if yes return which one(s) */
int check_fd_events( struct fd *fd, int events )
{
struct pollfd pfd;
if (fd->unix_fd == -1) return POLLERR;
if (fd->inode) return events; /* regular files are always signaled */
pfd.fd = fd->unix_fd;
pfd.events = events;
if (poll( &pfd, 1, 0 ) <= 0) return 0;
return pfd.revents;
}
/* default signaled() routine for objects that poll() on an fd */
int default_fd_signaled( struct object *obj, struct wait_queue_entry *entry )
{
struct fd *fd = get_obj_fd( obj );
int ret = fd->signaled;
release_object( fd );
return ret;
}
/* default map_access() routine for objects that behave like an fd */
unsigned int default_fd_map_access( struct object *obj, unsigned int access )
{
if (access & GENERIC_READ) access |= FILE_GENERIC_READ;
if (access & GENERIC_WRITE) access |= FILE_GENERIC_WRITE;
if (access & GENERIC_EXECUTE) access |= FILE_GENERIC_EXECUTE;
if (access & GENERIC_ALL) access |= FILE_ALL_ACCESS;
return access & ~(GENERIC_READ | GENERIC_WRITE | GENERIC_EXECUTE | GENERIC_ALL);
}
int default_fd_get_poll_events( struct fd *fd )
{
int events = 0;
if (async_waiting( fd->read_q )) events |= POLLIN;
if (async_waiting( fd->write_q )) events |= POLLOUT;
return events;
}
/* default handler for poll() events */
void default_poll_event( struct fd *fd, int event )
{
if (event & (POLLIN | POLLERR | POLLHUP)) async_wake_up( fd->read_q, STATUS_ALERTED );
if (event & (POLLOUT | POLLERR | POLLHUP)) async_wake_up( fd->write_q, STATUS_ALERTED );
/* if an error occurred, stop polling this fd to avoid busy-looping */
if (event & (POLLERR | POLLHUP)) set_fd_events( fd, -1 );
else if (!fd->inode) set_fd_events( fd, fd->fd_ops->get_poll_events( fd ) );
}
struct async *fd_queue_async( struct fd *fd, const async_data_t *data, int type )
{
struct async_queue *queue;
struct async *async;
switch (type)
{
case ASYNC_TYPE_READ:
if (!fd->read_q && !(fd->read_q = create_async_queue( fd ))) return NULL;
queue = fd->read_q;
break;
case ASYNC_TYPE_WRITE:
if (!fd->write_q && !(fd->write_q = create_async_queue( fd ))) return NULL;
queue = fd->write_q;
break;
case ASYNC_TYPE_WAIT:
if (!fd->wait_q && !(fd->wait_q = create_async_queue( fd ))) return NULL;
queue = fd->wait_q;
break;
default:
queue = NULL;
assert(0);
}
if ((async = create_async( current, queue, data )) && type != ASYNC_TYPE_WAIT)
{
if (!fd->inode)
set_fd_events( fd, fd->fd_ops->get_poll_events( fd ) );
else /* regular files are always ready for read and write */
async_wake_up( queue, STATUS_ALERTED );
}
return async;
}
void fd_async_wake_up( struct fd *fd, int type, unsigned int status )
{
switch (type)
{
case ASYNC_TYPE_READ:
async_wake_up( fd->read_q, status );
break;
case ASYNC_TYPE_WRITE:
async_wake_up( fd->write_q, status );
break;
case ASYNC_TYPE_WAIT:
async_wake_up( fd->wait_q, status );
break;
default:
assert(0);
}
}
void fd_reselect_async( struct fd *fd, struct async_queue *queue )
{
fd->fd_ops->reselect_async( fd, queue );
}
void no_fd_queue_async( struct fd *fd, const async_data_t *data, int type, int count )
{
set_error( STATUS_OBJECT_TYPE_MISMATCH );
}
void default_fd_queue_async( struct fd *fd, const async_data_t *data, int type, int count )
{
struct async *async;
if ((async = fd_queue_async( fd, data, type )))
{
release_object( async );
set_error( STATUS_PENDING );
}
}
/* default reselect_async() fd routine */
void default_fd_reselect_async( struct fd *fd, struct async_queue *queue )
{
if (queue != fd->wait_q)
{
int poll_events = fd->fd_ops->get_poll_events( fd );
int events = check_fd_events( fd, poll_events );
if (events) fd->fd_ops->poll_event( fd, events );
else set_fd_events( fd, poll_events );
}
}
/* default cancel_async() fd routine */
int default_fd_cancel_async( struct fd *fd, struct process *process, struct thread *thread, client_ptr_t iosb )
{
int n = 0;
n += async_wake_up_by( fd->read_q, process, thread, iosb, STATUS_CANCELLED );
n += async_wake_up_by( fd->write_q, process, thread, iosb, STATUS_CANCELLED );
n += async_wake_up_by( fd->wait_q, process, thread, iosb, STATUS_CANCELLED );
return n;
}
static inline int is_valid_mounted_device( struct stat *st )
{
#if defined(linux) || defined(__sun__)
return S_ISBLK( st->st_mode );
#else
/* disks are char devices on *BSD */
return S_ISCHR( st->st_mode );
#endif
}
/* close all Unix file descriptors on a device to allow unmounting it */
static void unmount_device( struct fd *device_fd )
{
unsigned int i;
struct stat st;
struct device *device;
struct inode *inode;
struct fd *fd;
int unix_fd = get_unix_fd( device_fd );
if (unix_fd == -1) return;
if (fstat( unix_fd, &st ) == -1 || !is_valid_mounted_device( &st ))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
if (!(device = get_device( st.st_rdev, -1 ))) return;
for (i = 0; i < INODE_HASH_SIZE; i++)
{
LIST_FOR_EACH_ENTRY( inode, &device->inode_hash[i], struct inode, entry )
{
LIST_FOR_EACH_ENTRY( fd, &inode->open, struct fd, inode_entry )
{
unmount_fd( fd );
}
inode_close_pending( inode, 0 );
}
}
/* remove it from the hash table */
list_remove( &device->entry );
list_init( &device->entry );
release_object( device );
}
/* default read() routine */
obj_handle_t no_fd_read( struct fd *fd, const async_data_t *async, int blocking, file_pos_t pos )
{
set_error( STATUS_OBJECT_TYPE_MISMATCH );
return 0;
}
/* default write() routine */
obj_handle_t no_fd_write( struct fd *fd, const async_data_t *async, int blocking,
file_pos_t pos, data_size_t *written )
{
set_error( STATUS_OBJECT_TYPE_MISMATCH );
return 0;
}
/* default flush() routine */
obj_handle_t no_fd_flush( struct fd *fd, const async_data_t *async, int blocking )
{
set_error( STATUS_OBJECT_TYPE_MISMATCH );
return 0;
}
/* default ioctl() routine */
obj_handle_t no_fd_ioctl( struct fd *fd, ioctl_code_t code, const async_data_t *async, int blocking )
{
set_error( STATUS_OBJECT_TYPE_MISMATCH );
return 0;
}
/* default ioctl() routine */
obj_handle_t default_fd_ioctl( struct fd *fd, ioctl_code_t code, const async_data_t *async, int blocking )
{
switch(code)
{
case FSCTL_DISMOUNT_VOLUME:
unmount_device( fd );
return 0;
default:
set_error( STATUS_NOT_SUPPORTED );
return 0;
}
}
/* same as get_handle_obj but retrieve the struct fd associated to the object */
static struct fd *get_handle_fd_obj( struct process *process, obj_handle_t handle,
unsigned int access )
{
struct fd *fd = NULL;
struct object *obj;
if ((obj = get_handle_obj( process, handle, access, NULL )))
{
fd = get_obj_fd( obj );
release_object( obj );
}
return fd;
}
/* set disposition for the fd */
static void set_fd_disposition( struct fd *fd, int unlink )
{
struct stat st;
if (!fd->inode)
{
set_error( STATUS_OBJECT_TYPE_MISMATCH );
return;
}
if (fd->unix_fd == -1)
{
set_error( fd->no_fd_status );
return;
}
if (fstat( fd->unix_fd, &st ) == -1)
{
file_set_error();
return;
}
/* can't unlink special files */
if (unlink && !S_ISDIR(st.st_mode) && !S_ISREG(st.st_mode))
{
set_error( STATUS_INVALID_PARAMETER );
return;
}
/* can't unlink files we don't have permission to access */
if (unlink && !(st.st_mode & (S_IWUSR | S_IWGRP | S_IWOTH)))
{
set_error( STATUS_CANNOT_DELETE );
return;
}
fd->closed->unlink = unlink || (fd->options & FILE_DELETE_ON_CLOSE);
}
/* set new name for the fd */
static void set_fd_name( struct fd *fd, struct fd *root, const char *nameptr, data_size_t len )
{
struct inode *inode;
struct stat st;
char *name;
if (!fd->inode || !fd->unix_name)
{
set_error( STATUS_OBJECT_TYPE_MISMATCH );
return;
}
if (!len || ((nameptr[0] == '/') ^ !root))
{
set_error( STATUS_OBJECT_PATH_SYNTAX_BAD );
return;
}
if (!(name = mem_alloc( len + 1 ))) return;
memcpy( name, nameptr, len );
name[len] = 0;
if (root)
{
char *combined_name = dup_fd_name( root, name );
if (!combined_name)
{
set_error( STATUS_NO_MEMORY );
goto failed;
}
free( name );
name = combined_name;
}
if (!stat( name, &st ))
{
/* can't replace directories or special files */
if (!S_ISREG( st.st_mode ))
{
set_error( STATUS_ACCESS_DENIED );
goto failed;
}
/* can't replace an opened file */
if ((inode = get_inode( st.st_dev, st.st_ino, -1 )))
{
int is_empty = list_empty( &inode->open );
release_object( inode );
if (!is_empty)
{
set_error( STATUS_ACCESS_DENIED );
goto failed;
}
}
/* rename() cannot replace files with directories */
if (fd->unix_fd != -1 && !fstat( fd->unix_fd, &st ) &&
S_ISDIR( st.st_mode ) && unlink( name ))
{
file_set_error();
goto failed;
}
}
if (rename( fd->unix_name, name ))
{
file_set_error();
goto failed;
}
free( fd->unix_name );
fd->unix_name = name;
fd->closed->unix_name = name;
return;
failed:
free( name );
}
struct completion *fd_get_completion( struct fd *fd, apc_param_t *p_key )
{
*p_key = fd->comp_key;
return fd->completion ? (struct completion *)grab_object( fd->completion ) : NULL;
}
void fd_copy_completion( struct fd *src, struct fd *dst )
{
assert( !dst->completion );
dst->completion = fd_get_completion( src, &dst->comp_key );
}
/* flush a file buffers */
DECL_HANDLER(flush)
{
struct fd *fd = get_handle_fd_obj( current->process, req->async.handle, 0 );
if (fd)
{
reply->event = fd->fd_ops->flush( fd, &req->async, req->blocking );
release_object( fd );
}
}
/* open a file object */
DECL_HANDLER(open_file_object)
{
struct unicode_str name;
struct directory *root = NULL;
struct object *obj, *result;
get_req_unicode_str( &name );
if (req->rootdir && !(root = get_directory_obj( current->process, req->rootdir, 0 )))
return;
if ((obj = open_object_dir( root, &name, req->attributes, NULL )))
{
if ((result = obj->ops->open_file( obj, req->access, req->sharing, req->options )))
{
reply->handle = alloc_handle( current->process, result, req->access, req->attributes );
release_object( result );
}
release_object( obj );
}
if (root) release_object( root );
}
/* get the Unix name from a file handle */
DECL_HANDLER(get_handle_unix_name)
{
struct fd *fd;
if ((fd = get_handle_fd_obj( current->process, req->handle, 0 )))
{
if (fd->unix_name)
{
data_size_t name_len = strlen( fd->unix_name );
reply->name_len = name_len;
if (name_len <= get_reply_max_size()) set_reply_data( fd->unix_name, name_len );
else set_error( STATUS_BUFFER_OVERFLOW );
}
else set_error( STATUS_OBJECT_TYPE_MISMATCH );
release_object( fd );
}
}
/* get a Unix fd to access a file */
DECL_HANDLER(get_handle_fd)
{
struct fd *fd;
if ((fd = get_handle_fd_obj( current->process, req->handle, 0 )))
{
int unix_fd = get_unix_fd( fd );
if (unix_fd != -1)
{
reply->type = fd->fd_ops->get_fd_type( fd );
reply->cacheable = fd->cacheable;
reply->options = fd->options;
reply->access = get_handle_access( current->process, req->handle );
send_client_fd( current->process, unix_fd, req->handle );
}
release_object( fd );
}
}
/* perform a read on a file object */
DECL_HANDLER(read)
{
struct fd *fd = get_handle_fd_obj( current->process, req->async.handle, FILE_READ_DATA );
if (fd)
{
reply->wait = fd->fd_ops->read( fd, &req->async, req->blocking, req->pos );
reply->options = fd->options;
release_object( fd );
}
}
/* perform a write on a file object */
DECL_HANDLER(write)
{
struct fd *fd = get_handle_fd_obj( current->process, req->async.handle, FILE_WRITE_DATA );
if (fd)
{
reply->wait = fd->fd_ops->write( fd, &req->async, req->blocking, req->pos, &reply->size );
reply->options = fd->options;
release_object( fd );
}
}
/* perform an ioctl on a file */
DECL_HANDLER(ioctl)
{
unsigned int access = (req->code >> 14) & (FILE_READ_DATA|FILE_WRITE_DATA);
struct fd *fd = get_handle_fd_obj( current->process, req->async.handle, access );
if (fd)
{
reply->wait = fd->fd_ops->ioctl( fd, req->code, &req->async, req->blocking );
reply->options = fd->options;
release_object( fd );
}
}
/* create / reschedule an async I/O */
DECL_HANDLER(register_async)
{
unsigned int access;
struct fd *fd;
switch(req->type)
{
case ASYNC_TYPE_READ:
access = FILE_READ_DATA;
break;
case ASYNC_TYPE_WRITE:
access = FILE_WRITE_DATA;
break;
default:
set_error( STATUS_INVALID_PARAMETER );
return;
}
if ((fd = get_handle_fd_obj( current->process, req->async.handle, access )))
{
if (get_unix_fd( fd ) != -1) fd->fd_ops->queue_async( fd, &req->async, req->type, req->count );
release_object( fd );
}
}
/* cancels all async I/O */
DECL_HANDLER(cancel_async)
{
struct fd *fd = get_handle_fd_obj( current->process, req->handle, 0 );
struct thread *thread = req->only_thread ? current : NULL;
if (fd)
{
int count = fd->fd_ops->cancel_async( fd, current->process, thread, req->iosb );
if (!count && req->iosb) set_error( STATUS_NOT_FOUND );
release_object( fd );
}
}
/* attach completion object to a fd */
DECL_HANDLER(set_completion_info)
{
struct fd *fd = get_handle_fd_obj( current->process, req->handle, 0 );
if (fd)
{
if (!(fd->options & (FILE_SYNCHRONOUS_IO_ALERT | FILE_SYNCHRONOUS_IO_NONALERT)) && !fd->completion)
{
fd->completion = get_completion_obj( current->process, req->chandle, IO_COMPLETION_MODIFY_STATE );
fd->comp_key = req->ckey;
}
else set_error( STATUS_INVALID_PARAMETER );
release_object( fd );
}
}
/* push new completion msg into a completion queue attached to the fd */
DECL_HANDLER(add_fd_completion)
{
struct fd *fd = get_handle_fd_obj( current->process, req->handle, 0 );
if (fd)
{
if (fd->completion)
add_completion( fd->completion, fd->comp_key, req->cvalue, req->status, req->information );
release_object( fd );
}
}
/* set fd disposition information */
DECL_HANDLER(set_fd_disp_info)
{
struct fd *fd = get_handle_fd_obj( current->process, req->handle, DELETE );
if (fd)
{
set_fd_disposition( fd, req->unlink );
release_object( fd );
}
}
/* set fd name information */
DECL_HANDLER(set_fd_name_info)
{
struct fd *fd, *root_fd = NULL;
if (req->rootdir)
{
struct dir *root;
if (!(root = get_dir_obj( current->process, req->rootdir, 0 ))) return;
root_fd = get_obj_fd( (struct object *)root );
release_object( root );
if (!root_fd) return;
}
if ((fd = get_handle_fd_obj( current->process, req->handle, 0 )))
{
set_fd_name( fd, root_fd, get_req_data(), get_req_data_size() );
release_object( fd );
}
if (root_fd) release_object( root_fd );
}