Sweden-Number/dlls/d2d1/geometry.c

3459 lines
120 KiB
C

/*
* Copyright 2015 Henri Verbeet for CodeWeavers
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "config.h"
#include "wine/port.h"
#include "d2d1_private.h"
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif
WINE_DEFAULT_DEBUG_CHANNEL(d2d);
#define D2D_FIGURE_FLAG_CLOSED 0x00000001u
#define D2D_FIGURE_FLAG_HOLLOW 0x00000002u
#define D2D_CDT_EDGE_FLAG_FREED 0x80000000u
#define D2D_CDT_EDGE_FLAG_VISITED(r) (1u << (r))
#define D2D_FP_EPS (1.0f / (1 << FLT_MANT_DIG))
static const D2D1_MATRIX_3X2_F identity =
{
1.0f, 0.0f,
0.0f, 1.0f,
0.0f, 0.0f,
};
enum d2d_cdt_edge_next
{
D2D_EDGE_NEXT_ORIGIN = 0,
D2D_EDGE_NEXT_ROT = 1,
D2D_EDGE_NEXT_SYM = 2,
D2D_EDGE_NEXT_TOR = 3,
};
enum d2d_vertex_type
{
D2D_VERTEX_TYPE_NONE,
D2D_VERTEX_TYPE_LINE,
D2D_VERTEX_TYPE_BEZIER,
};
struct d2d_figure
{
D2D1_POINT_2F *vertices;
size_t vertices_size;
enum d2d_vertex_type *vertex_types;
size_t vertex_types_size;
size_t vertex_count;
D2D1_POINT_2F *bezier_controls;
size_t bezier_controls_size;
size_t bezier_control_count;
D2D1_RECT_F bounds;
unsigned int flags;
};
struct d2d_cdt_edge_ref
{
size_t idx;
enum d2d_cdt_edge_next r;
};
struct d2d_cdt_edge
{
struct d2d_cdt_edge_ref next[4];
size_t vertex[2];
unsigned int flags;
};
struct d2d_cdt
{
struct d2d_cdt_edge *edges;
size_t edges_size;
size_t edge_count;
size_t free_edge;
const D2D1_POINT_2F *vertices;
};
struct d2d_geometry_intersection
{
size_t figure_idx;
size_t segment_idx;
float t;
D2D1_POINT_2F p;
};
struct d2d_geometry_intersections
{
struct d2d_geometry_intersection *intersections;
size_t intersections_size;
size_t intersection_count;
};
struct d2d_fp_two_vec2
{
float x[2];
float y[2];
};
struct d2d_fp_fin
{
float *now, *other;
size_t length;
};
static void d2d_bezier_vertex_set(struct d2d_bezier_vertex *b,
const D2D1_POINT_2F *p, float u, float v, float sign)
{
b->position = *p;
b->texcoord.u = u;
b->texcoord.v = v;
b->texcoord.sign = sign;
}
static void d2d_face_set(struct d2d_face *f, UINT16 v0, UINT16 v1, UINT16 v2)
{
f->v[0] = v0;
f->v[1] = v1;
f->v[2] = v2;
}
static void d2d_outline_vertex_set(struct d2d_outline_vertex *v, float x, float y,
float prev_x, float prev_y, float next_x, float next_y)
{
d2d_point_set(&v->position, x, y);
d2d_point_set(&v->prev, prev_x, prev_y);
d2d_point_set(&v->next, next_x, next_y);
}
static void d2d_bezier_outline_vertex_set(struct d2d_bezier_outline_vertex *b, const D2D1_POINT_2F *position,
const D2D1_POINT_2F *p0, const D2D1_POINT_2F *p1, const D2D1_POINT_2F *p2,
float prev_x, float prev_y, float next_x, float next_y)
{
b->position = *position;
b->p0 = *p0;
b->p1 = *p1;
b->p2 = *p2;
d2d_point_set(&b->prev, prev_x, prev_y);
d2d_point_set(&b->next, next_x, next_y);
}
static void d2d_fp_two_sum(float *out, float a, float b)
{
float a_virt, a_round, b_virt, b_round;
out[1] = a + b;
b_virt = out[1] - a;
a_virt = out[1] - b_virt;
b_round = b - b_virt;
a_round = a - a_virt;
out[0] = a_round + b_round;
}
static void d2d_fp_fast_two_sum(float *out, float a, float b)
{
float b_virt;
out[1] = a + b;
b_virt = out[1] - a;
out[0] = b - b_virt;
}
static void d2d_fp_two_two_sum(float *out, const float *a, const float *b)
{
float sum[2];
d2d_fp_two_sum(out, a[0], b[0]);
d2d_fp_two_sum(sum, a[1], out[1]);
d2d_fp_two_sum(&out[1], sum[0], b[1]);
d2d_fp_two_sum(&out[2], sum[1], out[2]);
}
static void d2d_fp_two_diff_tail(float *out, float a, float b, float x)
{
float a_virt, a_round, b_virt, b_round;
b_virt = a - x;
a_virt = x + b_virt;
b_round = b_virt - b;
a_round = a - a_virt;
*out = a_round + b_round;
}
static void d2d_fp_two_two_diff(float *out, const float *a, const float *b)
{
float sum[2], diff;
diff = a[0] - b[0];
d2d_fp_two_diff_tail(out, a[0], b[0], diff);
d2d_fp_two_sum(sum, a[1], diff);
diff = sum[0] - b[1];
d2d_fp_two_diff_tail(&out[1], sum[0], b[1], diff);
d2d_fp_two_sum(&out[2], sum[1], diff);
}
static void d2d_fp_split(float *out, float a)
{
float a_big, c;
c = a * ((1 << (FLT_MANT_DIG / 2)) + 1.0f);
a_big = c - a;
out[1] = c - a_big;
out[0] = a - out[1];
}
static void d2d_fp_two_product_presplit(float *out, float a, float b, const float *b_split)
{
float a_split[2], err1, err2, err3;
out[1] = a * b;
d2d_fp_split(a_split, a);
err1 = out[1] - (a_split[1] * b_split[1]);
err2 = err1 - (a_split[0] * b_split[1]);
err3 = err2 - (a_split[1] * b_split[0]);
out[0] = (a_split[0] * b_split[0]) - err3;
}
static void d2d_fp_two_product(float *out, float a, float b)
{
float b_split[2];
d2d_fp_split(b_split, b);
d2d_fp_two_product_presplit(out, a, b, b_split);
}
static void d2d_fp_square(float *out, float a)
{
float a_split[2], err1, err2;
out[1] = a * a;
d2d_fp_split(a_split, a);
err1 = out[1] - (a_split[1] * a_split[1]);
err2 = err1 - ((a_split[1] + a_split[1]) * a_split[0]);
out[0] = (a_split[0] * a_split[0]) - err2;
}
static float d2d_fp_estimate(float *a, size_t len)
{
float out = a[0];
size_t idx = 1;
while (idx < len)
out += a[idx++];
return out;
}
static void d2d_fp_fast_expansion_sum_zeroelim(float *out, size_t *out_len,
const float *a, size_t a_len, const float *b, size_t b_len)
{
float sum[2], q, a_curr, b_curr;
size_t a_idx, b_idx, out_idx;
a_curr = a[0];
b_curr = b[0];
a_idx = b_idx = 0;
if ((b_curr > a_curr) == (b_curr > -a_curr))
{
q = a_curr;
a_curr = a[++a_idx];
}
else
{
q = b_curr;
b_curr = b[++b_idx];
}
out_idx = 0;
if (a_idx < a_len && b_idx < b_len)
{
if ((b_curr > a_curr) == (b_curr > -a_curr))
{
d2d_fp_fast_two_sum(sum, a_curr, q);
a_curr = a[++a_idx];
}
else
{
d2d_fp_fast_two_sum(sum, b_curr, q);
b_curr = b[++b_idx];
}
if (sum[0] != 0.0f)
out[out_idx++] = sum[0];
q = sum[1];
while (a_idx < a_len && b_idx < b_len)
{
if ((b_curr > a_curr) == (b_curr > -a_curr))
{
d2d_fp_two_sum(sum, q, a_curr);
a_curr = a[++a_idx];
}
else
{
d2d_fp_two_sum(sum, q, b_curr);
b_curr = b[++b_idx];
}
if (sum[0] != 0.0f)
out[out_idx++] = sum[0];
q = sum[1];
}
}
while (a_idx < a_len)
{
d2d_fp_two_sum(sum, q, a_curr);
a_curr = a[++a_idx];
if (sum[0] != 0.0f)
out[out_idx++] = sum[0];
q = sum[1];
}
while (b_idx < b_len)
{
d2d_fp_two_sum(sum, q, b_curr);
b_curr = b[++b_idx];
if (sum[0] != 0.0f)
out[out_idx++] = sum[0];
q = sum[1];
}
if (q != 0.0f || !out_idx)
out[out_idx++] = q;
*out_len = out_idx;
}
static void d2d_fp_scale_expansion_zeroelim(float *out, size_t *out_len, const float *a, size_t a_len, float b)
{
float product[2], sum[2], b_split[2], q[2], a_curr;
size_t a_idx, out_idx;
d2d_fp_split(b_split, b);
d2d_fp_two_product_presplit(q, a[0], b, b_split);
out_idx = 0;
if (q[0] != 0.0f)
out[out_idx++] = q[0];
for (a_idx = 1; a_idx < a_len; ++a_idx)
{
a_curr = a[a_idx];
d2d_fp_two_product_presplit(product, a_curr, b, b_split);
d2d_fp_two_sum(sum, q[1], product[0]);
if (sum[0] != 0.0f)
out[out_idx++] = sum[0];
d2d_fp_fast_two_sum(q, product[1], sum[1]);
if (q[0] != 0.0f)
out[out_idx++] = q[0];
}
if (q[1] != 0.0f || !out_idx)
out[out_idx++] = q[1];
*out_len = out_idx;
}
static void d2d_point_subtract(D2D1_POINT_2F *out,
const D2D1_POINT_2F *a, const D2D1_POINT_2F *b)
{
out->x = a->x - b->x;
out->y = a->y - b->y;
}
static void d2d_point_scale(D2D1_POINT_2F *p, float scale)
{
p->x *= scale;
p->y *= scale;
}
static void d2d_point_lerp(D2D1_POINT_2F *out,
const D2D1_POINT_2F *a, const D2D1_POINT_2F *b, float t)
{
out->x = a->x * (1.0f - t) + b->x * t;
out->y = a->y * (1.0f - t) + b->y * t;
}
static float d2d_point_dot(const D2D1_POINT_2F *p0, const D2D1_POINT_2F *p1)
{
return p0->x * p1->x + p0->y * p1->y;
}
static void d2d_point_normalise(D2D1_POINT_2F *p)
{
float l;
if ((l = sqrtf(d2d_point_dot(p, p))) != 0.0f)
d2d_point_scale(p, 1.0f / l);
}
/* This implementation is based on the paper "Adaptive Precision
* Floating-Point Arithmetic and Fast Robust Geometric Predicates" and
* associated (Public Domain) code by Jonathan Richard Shewchuk. */
static float d2d_point_ccw(const D2D1_POINT_2F *a, const D2D1_POINT_2F *b, const D2D1_POINT_2F *c)
{
static const float err_bound_result = (3.0f + 8.0f * D2D_FP_EPS) * D2D_FP_EPS;
static const float err_bound_a = (3.0f + 16.0f * D2D_FP_EPS) * D2D_FP_EPS;
static const float err_bound_b = (2.0f + 12.0f * D2D_FP_EPS) * D2D_FP_EPS;
static const float err_bound_c = (9.0f + 64.0f * D2D_FP_EPS) * D2D_FP_EPS * D2D_FP_EPS;
float det_d[16], det_c2[12], det_c1[8], det_b[4], temp4[4], temp2a[2], temp2b[2], abxacy[2], abyacx[2];
size_t det_d_len, det_c2_len, det_c1_len;
float det, det_sum, err_bound;
struct d2d_fp_two_vec2 ab, ac;
ab.x[1] = b->x - a->x;
ab.y[1] = b->y - a->y;
ac.x[1] = c->x - a->x;
ac.y[1] = c->y - a->y;
abxacy[1] = ab.x[1] * ac.y[1];
abyacx[1] = ab.y[1] * ac.x[1];
det = abxacy[1] - abyacx[1];
if (abxacy[1] > 0.0f)
{
if (abyacx[1] <= 0.0f)
return det;
det_sum = abxacy[1] + abyacx[1];
}
else if (abxacy[1] < 0.0f)
{
if (abyacx[1] >= 0.0f)
return det;
det_sum = -abxacy[1] - abyacx[1];
}
else
{
return det;
}
err_bound = err_bound_a * det_sum;
if (det >= err_bound || -det >= err_bound)
return det;
d2d_fp_two_product(abxacy, ab.x[1], ac.y[1]);
d2d_fp_two_product(abyacx, ab.y[1], ac.x[1]);
d2d_fp_two_two_diff(det_b, abxacy, abyacx);
det = d2d_fp_estimate(det_b, 4);
err_bound = err_bound_b * det_sum;
if (det >= err_bound || -det >= err_bound)
return det;
d2d_fp_two_diff_tail(&ab.x[0], b->x, a->x, ab.x[1]);
d2d_fp_two_diff_tail(&ab.y[0], b->y, a->y, ab.y[1]);
d2d_fp_two_diff_tail(&ac.x[0], c->x, a->x, ac.x[1]);
d2d_fp_two_diff_tail(&ac.y[0], c->y, a->y, ac.y[1]);
if (ab.x[0] == 0.0f && ab.y[0] == 0.0f && ac.x[0] == 0.0f && ac.y[0] == 0.0f)
return det;
err_bound = err_bound_c * det_sum + err_bound_result * fabsf(det);
det += (ab.x[1] * ac.y[0] + ac.y[1] * ab.x[0]) - (ab.y[1] * ac.x[0] + ac.x[1] * ab.y[0]);
if (det >= err_bound || -det >= err_bound)
return det;
d2d_fp_two_product(temp2a, ab.x[0], ac.y[1]);
d2d_fp_two_product(temp2b, ab.y[0], ac.x[1]);
d2d_fp_two_two_diff(temp4, temp2a, temp2b);
d2d_fp_fast_expansion_sum_zeroelim(det_c1, &det_c1_len, det_b, 4, temp4, 4);
d2d_fp_two_product(temp2a, ab.x[1], ac.y[0]);
d2d_fp_two_product(temp2b, ab.y[1], ac.x[0]);
d2d_fp_two_two_diff(temp4, temp2a, temp2b);
d2d_fp_fast_expansion_sum_zeroelim(det_c2, &det_c2_len, det_c1, det_c1_len, temp4, 4);
d2d_fp_two_product(temp2a, ab.x[0], ac.y[0]);
d2d_fp_two_product(temp2b, ab.y[0], ac.x[0]);
d2d_fp_two_two_diff(temp4, temp2a, temp2b);
d2d_fp_fast_expansion_sum_zeroelim(det_d, &det_d_len, det_c2, det_c2_len, temp4, 4);
return det_d[det_d_len - 1];
}
static BOOL d2d_array_reserve(void **elements, size_t *capacity, size_t element_count, size_t element_size)
{
size_t new_capacity, max_capacity;
void *new_elements;
if (element_count <= *capacity)
return TRUE;
max_capacity = ~(size_t)0 / element_size;
if (max_capacity < element_count)
return FALSE;
new_capacity = max(*capacity, 4);
while (new_capacity < element_count && new_capacity <= max_capacity / 2)
new_capacity *= 2;
if (new_capacity < element_count)
new_capacity = max_capacity;
if (*elements)
new_elements = HeapReAlloc(GetProcessHeap(), 0, *elements, new_capacity * element_size);
else
new_elements = HeapAlloc(GetProcessHeap(), 0, new_capacity * element_size);
if (!new_elements)
return FALSE;
*elements = new_elements;
*capacity = new_capacity;
return TRUE;
}
static BOOL d2d_figure_insert_vertex(struct d2d_figure *figure, size_t idx, D2D1_POINT_2F vertex)
{
if (!d2d_array_reserve((void **)&figure->vertices, &figure->vertices_size,
figure->vertex_count + 1, sizeof(*figure->vertices)))
{
ERR("Failed to grow vertices array.\n");
return FALSE;
}
if (!d2d_array_reserve((void **)&figure->vertex_types, &figure->vertex_types_size,
figure->vertex_count + 1, sizeof(*figure->vertex_types)))
{
ERR("Failed to grow vertex types array.\n");
return FALSE;
}
memmove(&figure->vertices[idx + 1], &figure->vertices[idx],
(figure->vertex_count - idx) * sizeof(*figure->vertices));
memmove(&figure->vertex_types[idx + 1], &figure->vertex_types[idx],
(figure->vertex_count - idx) * sizeof(*figure->vertex_types));
figure->vertices[idx] = vertex;
figure->vertex_types[idx] = D2D_VERTEX_TYPE_NONE;
d2d_rect_expand(&figure->bounds, &vertex);
++figure->vertex_count;
return TRUE;
}
static BOOL d2d_figure_add_vertex(struct d2d_figure *figure, D2D1_POINT_2F vertex)
{
size_t last = figure->vertex_count - 1;
if (figure->vertex_count && figure->vertex_types[last] == D2D_VERTEX_TYPE_LINE
&& !memcmp(&figure->vertices[last], &vertex, sizeof(vertex)))
return TRUE;
if (!d2d_array_reserve((void **)&figure->vertices, &figure->vertices_size,
figure->vertex_count + 1, sizeof(*figure->vertices)))
{
ERR("Failed to grow vertices array.\n");
return FALSE;
}
if (!d2d_array_reserve((void **)&figure->vertex_types, &figure->vertex_types_size,
figure->vertex_count + 1, sizeof(*figure->vertex_types)))
{
ERR("Failed to grow vertex types array.\n");
return FALSE;
}
figure->vertices[figure->vertex_count] = vertex;
figure->vertex_types[figure->vertex_count] = D2D_VERTEX_TYPE_NONE;
d2d_rect_expand(&figure->bounds, &vertex);
++figure->vertex_count;
return TRUE;
}
static BOOL d2d_figure_add_bezier_control(struct d2d_figure *figure, const D2D1_POINT_2F *p)
{
if (!d2d_array_reserve((void **)&figure->bezier_controls, &figure->bezier_controls_size,
figure->bezier_control_count + 1, sizeof(*figure->bezier_controls)))
{
ERR("Failed to grow bezier controls array.\n");
return FALSE;
}
figure->bezier_controls[figure->bezier_control_count++] = *p;
return TRUE;
}
static void d2d_cdt_edge_rot(struct d2d_cdt_edge_ref *dst, const struct d2d_cdt_edge_ref *src)
{
dst->idx = src->idx;
dst->r = (src->r + D2D_EDGE_NEXT_ROT) & 3;
}
static void d2d_cdt_edge_sym(struct d2d_cdt_edge_ref *dst, const struct d2d_cdt_edge_ref *src)
{
dst->idx = src->idx;
dst->r = (src->r + D2D_EDGE_NEXT_SYM) & 3;
}
static void d2d_cdt_edge_tor(struct d2d_cdt_edge_ref *dst, const struct d2d_cdt_edge_ref *src)
{
dst->idx = src->idx;
dst->r = (src->r + D2D_EDGE_NEXT_TOR) & 3;
}
static void d2d_cdt_edge_next_left(const struct d2d_cdt *cdt,
struct d2d_cdt_edge_ref *dst, const struct d2d_cdt_edge_ref *src)
{
d2d_cdt_edge_rot(dst, &cdt->edges[src->idx].next[(src->r + D2D_EDGE_NEXT_TOR) & 3]);
}
static void d2d_cdt_edge_next_origin(const struct d2d_cdt *cdt,
struct d2d_cdt_edge_ref *dst, const struct d2d_cdt_edge_ref *src)
{
*dst = cdt->edges[src->idx].next[src->r];
}
static void d2d_cdt_edge_prev_origin(const struct d2d_cdt *cdt,
struct d2d_cdt_edge_ref *dst, const struct d2d_cdt_edge_ref *src)
{
d2d_cdt_edge_rot(dst, &cdt->edges[src->idx].next[(src->r + D2D_EDGE_NEXT_ROT) & 3]);
}
static size_t d2d_cdt_edge_origin(const struct d2d_cdt *cdt, const struct d2d_cdt_edge_ref *e)
{
return cdt->edges[e->idx].vertex[e->r >> 1];
}
static size_t d2d_cdt_edge_destination(const struct d2d_cdt *cdt, const struct d2d_cdt_edge_ref *e)
{
return cdt->edges[e->idx].vertex[!(e->r >> 1)];
}
static void d2d_cdt_edge_set_origin(const struct d2d_cdt *cdt,
const struct d2d_cdt_edge_ref *e, size_t vertex)
{
cdt->edges[e->idx].vertex[e->r >> 1] = vertex;
}
static void d2d_cdt_edge_set_destination(const struct d2d_cdt *cdt,
const struct d2d_cdt_edge_ref *e, size_t vertex)
{
cdt->edges[e->idx].vertex[!(e->r >> 1)] = vertex;
}
static float d2d_cdt_ccw(const struct d2d_cdt *cdt, size_t a, size_t b, size_t c)
{
return d2d_point_ccw(&cdt->vertices[a], &cdt->vertices[b], &cdt->vertices[c]);
}
static BOOL d2d_cdt_rightof(const struct d2d_cdt *cdt, size_t p, const struct d2d_cdt_edge_ref *e)
{
return d2d_cdt_ccw(cdt, p, d2d_cdt_edge_destination(cdt, e), d2d_cdt_edge_origin(cdt, e)) > 0.0f;
}
static BOOL d2d_cdt_leftof(const struct d2d_cdt *cdt, size_t p, const struct d2d_cdt_edge_ref *e)
{
return d2d_cdt_ccw(cdt, p, d2d_cdt_edge_origin(cdt, e), d2d_cdt_edge_destination(cdt, e)) > 0.0f;
}
/* |ax ay|
* |bx by| */
static void d2d_fp_four_det2x2(float *out, float ax, float ay, float bx, float by)
{
float axby[2], aybx[2];
d2d_fp_two_product(axby, ax, by);
d2d_fp_two_product(aybx, ay, bx);
d2d_fp_two_two_diff(out, axby, aybx);
}
/* (a->x² + a->y²) * det2x2 */
static void d2d_fp_sub_det3x3(float *out, size_t *out_len, const struct d2d_fp_two_vec2 *a, const float *det2x2)
{
size_t axd_len, ayd_len, axxd_len, ayyd_len;
float axd[8], ayd[8], axxd[16], ayyd[16];
d2d_fp_scale_expansion_zeroelim(axd, &axd_len, det2x2, 4, a->x[1]);
d2d_fp_scale_expansion_zeroelim(axxd, &axxd_len, axd, axd_len, a->x[1]);
d2d_fp_scale_expansion_zeroelim(ayd, &ayd_len, det2x2, 4, a->y[1]);
d2d_fp_scale_expansion_zeroelim(ayyd, &ayyd_len, ayd, ayd_len, a->y[1]);
d2d_fp_fast_expansion_sum_zeroelim(out, out_len, axxd, axxd_len, ayyd, ayyd_len);
}
/* det_abt = det_ab * c[0]
* fin += c[0] * (az * b - bz * a + c[1] * det_ab * 2.0f) */
static void d2d_cdt_incircle_refine1(struct d2d_fp_fin *fin, float *det_abt, size_t *det_abt_len,
const float *det_ab, float a, const float *az, float b, const float *bz, const float *c)
{
size_t temp48_len, temp32_len, temp16a_len, temp16b_len, temp16c_len, temp8_len;
float temp48[48], temp32[32], temp16a[16], temp16b[16], temp16c[16], temp8[8];
float *swap;
d2d_fp_scale_expansion_zeroelim(det_abt, det_abt_len, det_ab, 4, c[0]);
d2d_fp_scale_expansion_zeroelim(temp16a, &temp16a_len, det_abt, *det_abt_len, 2.0f * c[1]);
d2d_fp_scale_expansion_zeroelim(temp8, &temp8_len, az, 4, c[0]);
d2d_fp_scale_expansion_zeroelim(temp16b, &temp16b_len, temp8, temp8_len, b);
d2d_fp_scale_expansion_zeroelim(temp8, &temp8_len, bz, 4, c[0]);
d2d_fp_scale_expansion_zeroelim(temp16c, &temp16c_len, temp8, temp8_len, -a);
d2d_fp_fast_expansion_sum_zeroelim(temp32, &temp32_len, temp16a, temp16a_len, temp16b, temp16b_len);
d2d_fp_fast_expansion_sum_zeroelim(temp48, &temp48_len, temp16c, temp16c_len, temp32, temp32_len);
d2d_fp_fast_expansion_sum_zeroelim(fin->other, &fin->length, fin->now, fin->length, temp48, temp48_len);
swap = fin->now; fin->now = fin->other; fin->other = swap;
}
static void d2d_cdt_incircle_refine2(struct d2d_fp_fin *fin, const struct d2d_fp_two_vec2 *a,
const struct d2d_fp_two_vec2 *b, const float *bz, const struct d2d_fp_two_vec2 *c, const float *cz,
const float *axt_det_bc, size_t axt_det_bc_len, const float *ayt_det_bc, size_t ayt_det_bc_len)
{
size_t temp64_len, temp48_len, temp32a_len, temp32b_len, temp16a_len, temp16b_len, temp8_len;
float temp64[64], temp48[48], temp32a[32], temp32b[32], temp16a[16], temp16b[16], temp8[8];
float bct[8], bctt[4], temp4a[4], temp4b[4], temp2a[2], temp2b[2];
size_t bct_len, bctt_len;
float *swap;
/* bct = (b->x[0] * c->y[1] + b->x[1] * c->y[0]) - (c->x[0] * b->y[1] + c->x[1] * b->y[0]) */
/* bctt = b->x[0] * c->y[0] + c->x[0] * b->y[0] */
if (b->x[0] != 0.0f || b->y[0] != 0.0f || c->x[0] != 0.0f || c->y[0] != 0.0f)
{
d2d_fp_two_product(temp2a, b->x[0], c->y[1]);
d2d_fp_two_product(temp2b, b->x[1], c->y[0]);
d2d_fp_two_two_sum(temp4a, temp2a, temp2b);
d2d_fp_two_product(temp2a, c->x[0], -b->y[1]);
d2d_fp_two_product(temp2b, c->x[1], -b->y[0]);
d2d_fp_two_two_sum(temp4b, temp2a, temp2b);
d2d_fp_fast_expansion_sum_zeroelim(bct, &bct_len, temp4a, 4, temp4b, 4);
d2d_fp_two_product(temp2a, b->x[0], c->y[0]);
d2d_fp_two_product(temp2b, c->x[0], b->y[0]);
d2d_fp_two_two_diff(bctt, temp2a, temp2b);
bctt_len = 4;
}
else
{
bct[0] = 0.0f;
bct_len = 1;
bctt[0] = 0.0f;
bctt_len = 1;
}
if (a->x[0] != 0.0f)
{
size_t axt_bct_len, axt_bctt_len;
float axt_bct[16], axt_bctt[8];
/* fin += a->x[0] * (axt_det_bc + bct * 2.0f * a->x[1]) */
d2d_fp_scale_expansion_zeroelim(temp16a, &temp16a_len, axt_det_bc, axt_det_bc_len, a->x[0]);
d2d_fp_scale_expansion_zeroelim(axt_bct, &axt_bct_len, bct, bct_len, a->x[0]);
d2d_fp_scale_expansion_zeroelim(temp32a, &temp32a_len, axt_bct, axt_bct_len, 2.0f * a->x[1]);
d2d_fp_fast_expansion_sum_zeroelim(temp48, &temp48_len, temp16a, temp16a_len, temp32a, temp32a_len);
d2d_fp_fast_expansion_sum_zeroelim(fin->other, &fin->length, fin->now, fin->length, temp48, temp48_len);
swap = fin->now; fin->now = fin->other; fin->other = swap;
if (b->y[0] != 0.0f)
{
/* fin += a->x[0] * cz * b->y[0] */
d2d_fp_scale_expansion_zeroelim(temp8, &temp8_len, cz, 4, a->x[0]);
d2d_fp_scale_expansion_zeroelim(temp16a, &temp16a_len, temp8, temp8_len, b->y[0]);
d2d_fp_fast_expansion_sum_zeroelim(fin->other, &fin->length, fin->now, fin->length, temp16a, temp16a_len);
swap = fin->now; fin->now = fin->other; fin->other = swap;
}
if (c->y[0] != 0.0f)
{
/* fin -= a->x[0] * bz * c->y[0] */
d2d_fp_scale_expansion_zeroelim(temp8, &temp8_len, bz, 4, -a->x[0]);
d2d_fp_scale_expansion_zeroelim(temp16a, &temp16a_len, temp8, temp8_len, c->y[0]);
d2d_fp_fast_expansion_sum_zeroelim(fin->other, &fin->length, fin->now, fin->length, temp16a, temp16a_len);
swap = fin->now; fin->now = fin->other; fin->other = swap;
}
/* fin += a->x[0] * (bct * a->x[0] + bctt * (2.0f * a->x[1] + a->x[0])) */
d2d_fp_scale_expansion_zeroelim(temp32a, &temp32a_len, axt_bct, axt_bct_len, a->x[0]);
d2d_fp_scale_expansion_zeroelim(axt_bctt, &axt_bctt_len, bctt, bctt_len, a->x[0]);
d2d_fp_scale_expansion_zeroelim(temp16a, &temp16a_len, axt_bctt, axt_bctt_len, 2.0f * a->x[1]);
d2d_fp_scale_expansion_zeroelim(temp16b, &temp16b_len, axt_bctt, axt_bctt_len, a->x[0]);
d2d_fp_fast_expansion_sum_zeroelim(temp32b, &temp32b_len, temp16a, temp16a_len, temp16b, temp16b_len);
d2d_fp_fast_expansion_sum_zeroelim(temp64, &temp64_len, temp32a, temp32a_len, temp32b, temp32b_len);
d2d_fp_fast_expansion_sum_zeroelim(fin->other, &fin->length, fin->now, fin->length, temp64, temp64_len);
swap = fin->now; fin->now = fin->other; fin->other = swap;
}
if (a->y[0] != 0.0f)
{
size_t ayt_bct_len, ayt_bctt_len;
float ayt_bct[16], ayt_bctt[8];
/* fin += a->y[0] * (ayt_det_bc + bct * 2.0f * a->y[1]) */
d2d_fp_scale_expansion_zeroelim(temp16a, &temp16a_len, ayt_det_bc, ayt_det_bc_len, a->y[0]);
d2d_fp_scale_expansion_zeroelim(ayt_bct, &ayt_bct_len, bct, bct_len, a->y[0]);
d2d_fp_scale_expansion_zeroelim(temp32a, &temp32a_len, ayt_bct, ayt_bct_len, 2.0f * a->y[1]);
d2d_fp_fast_expansion_sum_zeroelim(temp48, &temp48_len, temp16a, temp16a_len, temp32a, temp32a_len);
d2d_fp_fast_expansion_sum_zeroelim(fin->other, &fin->length, fin->now, fin->length, temp48, temp48_len);
swap = fin->now; fin->now = fin->other; fin->other = swap;
/* fin += a->y[0] * (bct * a->y[0] + bctt * (2.0f * a->y[1] + a->y[0])) */
d2d_fp_scale_expansion_zeroelim(temp32a, &temp32a_len, ayt_bct, ayt_bct_len, a->y[0]);
d2d_fp_scale_expansion_zeroelim(ayt_bctt, &ayt_bctt_len, bctt, bctt_len, a->y[0]);
d2d_fp_scale_expansion_zeroelim(temp16a, &temp16a_len, ayt_bctt, ayt_bctt_len, 2.0f * a->y[1]);
d2d_fp_scale_expansion_zeroelim(temp16b, &temp16b_len, ayt_bctt, ayt_bctt_len, a->y[0]);
d2d_fp_fast_expansion_sum_zeroelim(temp32b, &temp32b_len, temp16a, temp16a_len, temp16b, temp16b_len);
d2d_fp_fast_expansion_sum_zeroelim(temp64, &temp64_len, temp32a, temp32a_len, temp32b, temp32b_len);
d2d_fp_fast_expansion_sum_zeroelim(fin->other, &fin->length, fin->now, fin->length, temp64, temp64_len);
swap = fin->now; fin->now = fin->other; fin->other = swap;
}
}
/* Determine if point D is inside or outside the circle defined by points A,
* B, C. As explained in the paper by Guibas and Stolfi, this is equivalent to
* calculating the signed volume of the tetrahedron defined by projecting the
* points onto the paraboloid of revolution x = x² + y²,
* λ:(x, y) → (x, y, x² + y²). I.e., D is inside the cirlce if
*
* |λ(A) 1|
* |λ(B) 1| > 0
* |λ(C) 1|
* |λ(D) 1|
*
* After translating D to the origin, that becomes:
*
* |λ(A-D)|
* |λ(B-D)| > 0
* |λ(C-D)|
*
* This implementation is based on the paper "Adaptive Precision
* Floating-Point Arithmetic and Fast Robust Geometric Predicates" and
* associated (Public Domain) code by Jonathan Richard Shewchuk. */
static BOOL d2d_cdt_incircle(const struct d2d_cdt *cdt, size_t a, size_t b, size_t c, size_t d)
{
static const float err_bound_result = (3.0f + 8.0f * D2D_FP_EPS) * D2D_FP_EPS;
static const float err_bound_a = (10.0f + 96.0f * D2D_FP_EPS) * D2D_FP_EPS;
static const float err_bound_b = (4.0f + 48.0f * D2D_FP_EPS) * D2D_FP_EPS;
static const float err_bound_c = (44.0f + 576.0f * D2D_FP_EPS) * D2D_FP_EPS * D2D_FP_EPS;
size_t axt_det_bc_len, ayt_det_bc_len, bxt_det_ca_len, byt_det_ca_len, cxt_det_ab_len, cyt_det_ab_len;
float axt_det_bc[8], ayt_det_bc[8], bxt_det_ca[8], byt_det_ca[8], cxt_det_ab[8], cyt_det_ab[8];
float fin1[1152], fin2[1152], temp64[64], sub_det_a[32], sub_det_b[32], sub_det_c[32];
float det_bc[4], det_ca[4], det_ab[4], daz[4], dbz[4], dcz[4], temp2a[2], temp2b[2];
size_t temp64_len, sub_det_a_len, sub_det_b_len, sub_det_c_len;
float dbxdcy, dbydcx, dcxday, dcydax, daxdby, daydbx;
const D2D1_POINT_2F *p = cdt->vertices;
struct d2d_fp_two_vec2 da, db, dc;
float permanent, err_bound, det;
struct d2d_fp_fin fin;
da.x[1] = p[a].x - p[d].x;
da.y[1] = p[a].y - p[d].y;
db.x[1] = p[b].x - p[d].x;
db.y[1] = p[b].y - p[d].y;
dc.x[1] = p[c].x - p[d].x;
dc.y[1] = p[c].y - p[d].y;
daz[3] = da.x[1] * da.x[1] + da.y[1] * da.y[1];
dbxdcy = db.x[1] * dc.y[1];
dbydcx = db.y[1] * dc.x[1];
dbz[3] = db.x[1] * db.x[1] + db.y[1] * db.y[1];
dcxday = dc.x[1] * da.y[1];
dcydax = dc.y[1] * da.x[1];
dcz[3] = dc.x[1] * dc.x[1] + dc.y[1] * dc.y[1];
daxdby = da.x[1] * db.y[1];
daydbx = da.y[1] * db.x[1];
det = daz[3] * (dbxdcy - dbydcx) + dbz[3] * (dcxday - dcydax) + dcz[3] * (daxdby - daydbx);
permanent = daz[3] * (fabsf(dbxdcy) + fabsf(dbydcx))
+ dbz[3] * (fabsf(dcxday) + fabsf(dcydax))
+ dcz[3] * (fabsf(daxdby) + fabsf(daydbx));
err_bound = err_bound_a * permanent;
if (det > err_bound || -det > err_bound)
return det > 0.0f;
fin.now = fin1;
fin.other = fin2;
d2d_fp_four_det2x2(det_bc, db.x[1], db.y[1], dc.x[1], dc.y[1]);
d2d_fp_sub_det3x3(sub_det_a, &sub_det_a_len, &da, det_bc);
d2d_fp_four_det2x2(det_ca, dc.x[1], dc.y[1], da.x[1], da.y[1]);
d2d_fp_sub_det3x3(sub_det_b, &sub_det_b_len, &db, det_ca);
d2d_fp_four_det2x2(det_ab, da.x[1], da.y[1], db.x[1], db.y[1]);
d2d_fp_sub_det3x3(sub_det_c, &sub_det_c_len, &dc, det_ab);
d2d_fp_fast_expansion_sum_zeroelim(temp64, &temp64_len, sub_det_a, sub_det_a_len, sub_det_b, sub_det_b_len);
d2d_fp_fast_expansion_sum_zeroelim(fin.now, &fin.length, temp64, temp64_len, sub_det_c, sub_det_c_len);
det = d2d_fp_estimate(fin.now, fin.length);
err_bound = err_bound_b * permanent;
if (det >= err_bound || -det >= err_bound)
return det > 0.0f;
d2d_fp_two_diff_tail(&da.x[0], p[a].x, p[d].x, da.x[1]);
d2d_fp_two_diff_tail(&da.y[0], p[a].y, p[d].y, da.y[1]);
d2d_fp_two_diff_tail(&db.x[0], p[b].x, p[d].x, db.x[1]);
d2d_fp_two_diff_tail(&db.y[0], p[b].y, p[d].y, db.y[1]);
d2d_fp_two_diff_tail(&dc.x[0], p[c].x, p[d].x, dc.x[1]);
d2d_fp_two_diff_tail(&dc.y[0], p[c].y, p[d].y, dc.y[1]);
if (da.x[0] == 0.0f && db.x[0] == 0.0f && dc.x[0] == 0.0f
&& da.y[0] == 0.0f && db.y[0] == 0.0f && dc.y[0] == 0.0f)
return det > 0.0f;
err_bound = err_bound_c * permanent + err_bound_result * fabsf(det);
det += (daz[3] * ((db.x[1] * dc.y[0] + dc.y[1] * db.x[0]) - (db.y[1] * dc.x[0] + dc.x[1] * db.y[0]))
+ 2.0f * (da.x[1] * da.x[0] + da.y[1] * da.y[0]) * (db.x[1] * dc.y[1] - db.y[1] * dc.x[1]))
+ (dbz[3] * ((dc.x[1] * da.y[0] + da.y[1] * dc.x[0]) - (dc.y[1] * da.x[0] + da.x[1] * dc.y[0]))
+ 2.0f * (db.x[1] * db.x[0] + db.y[1] * db.y[0]) * (dc.x[1] * da.y[1] - dc.y[1] * da.x[1]))
+ (dcz[3] * ((da.x[1] * db.y[0] + db.y[1] * da.x[0]) - (da.y[1] * db.x[0] + db.x[1] * da.y[0]))
+ 2.0f * (dc.x[1] * dc.x[0] + dc.y[1] * dc.y[0]) * (da.x[1] * db.y[1] - da.y[1] * db.x[1]));
if (det >= err_bound || -det >= err_bound)
return det > 0.0f;
if (db.x[0] != 0.0f || db.y[0] != 0.0f || dc.x[0] != 0.0f || dc.y[0] != 0.0f)
{
d2d_fp_square(temp2a, da.x[1]);
d2d_fp_square(temp2b, da.y[1]);
d2d_fp_two_two_sum(daz, temp2a, temp2b);
}
if (dc.x[0] != 0.0f || dc.y[0] != 0.0f || da.x[0] != 0.0f || da.y[0] != 0.0f)
{
d2d_fp_square(temp2a, db.x[1]);
d2d_fp_square(temp2b, db.y[1]);
d2d_fp_two_two_sum(dbz, temp2a, temp2b);
}
if (da.x[0] != 0.0f || da.y[0] != 0.0f || db.x[0] != 0.0f || db.y[0] != 0.0f)
{
d2d_fp_square(temp2a, dc.x[1]);
d2d_fp_square(temp2b, dc.y[1]);
d2d_fp_two_two_sum(dcz, temp2a, temp2b);
}
if (da.x[0] != 0.0f)
d2d_cdt_incircle_refine1(&fin, axt_det_bc, &axt_det_bc_len, det_bc, dc.y[1], dcz, db.y[1], dbz, da.x);
if (da.y[0] != 0.0f)
d2d_cdt_incircle_refine1(&fin, ayt_det_bc, &ayt_det_bc_len, det_bc, db.x[1], dbz, dc.x[1], dcz, da.y);
if (db.x[0] != 0.0f)
d2d_cdt_incircle_refine1(&fin, bxt_det_ca, &bxt_det_ca_len, det_ca, da.y[1], daz, dc.y[1], dcz, db.x);
if (db.y[0] != 0.0f)
d2d_cdt_incircle_refine1(&fin, byt_det_ca, &byt_det_ca_len, det_ca, dc.x[1], dcz, da.x[1], daz, db.y);
if (dc.x[0] != 0.0f)
d2d_cdt_incircle_refine1(&fin, cxt_det_ab, &cxt_det_ab_len, det_ab, db.y[1], dbz, da.y[1], daz, dc.x);
if (dc.y[0] != 0.0f)
d2d_cdt_incircle_refine1(&fin, cyt_det_ab, &cyt_det_ab_len, det_ab, da.x[1], daz, db.x[1], dbz, dc.y);
if (da.x[0] != 0.0f || da.y[0] != 0.0f)
d2d_cdt_incircle_refine2(&fin, &da, &db, dbz, &dc, dcz,
axt_det_bc, axt_det_bc_len, ayt_det_bc, ayt_det_bc_len);
if (db.x[0] != 0.0f || db.y[0] != 0.0f)
d2d_cdt_incircle_refine2(&fin, &db, &dc, dcz, &da, daz,
bxt_det_ca, bxt_det_ca_len, byt_det_ca, byt_det_ca_len);
if (dc.x[0] != 0.0f || dc.y[0] != 0.0f)
d2d_cdt_incircle_refine2(&fin, &dc, &da, daz, &db, dbz,
cxt_det_ab, cxt_det_ab_len, cyt_det_ab, cyt_det_ab_len);
return fin.now[fin.length - 1] > 0.0f;
}
static void d2d_cdt_splice(const struct d2d_cdt *cdt, const struct d2d_cdt_edge_ref *a,
const struct d2d_cdt_edge_ref *b)
{
struct d2d_cdt_edge_ref ta, tb, alpha, beta;
ta = cdt->edges[a->idx].next[a->r];
tb = cdt->edges[b->idx].next[b->r];
cdt->edges[a->idx].next[a->r] = tb;
cdt->edges[b->idx].next[b->r] = ta;
d2d_cdt_edge_rot(&alpha, &ta);
d2d_cdt_edge_rot(&beta, &tb);
ta = cdt->edges[alpha.idx].next[alpha.r];
tb = cdt->edges[beta.idx].next[beta.r];
cdt->edges[alpha.idx].next[alpha.r] = tb;
cdt->edges[beta.idx].next[beta.r] = ta;
}
static BOOL d2d_cdt_create_edge(struct d2d_cdt *cdt, struct d2d_cdt_edge_ref *e)
{
struct d2d_cdt_edge *edge;
if (cdt->free_edge != ~0u)
{
e->idx = cdt->free_edge;
cdt->free_edge = cdt->edges[e->idx].next[D2D_EDGE_NEXT_ORIGIN].idx;
}
else
{
if (!d2d_array_reserve((void **)&cdt->edges, &cdt->edges_size, cdt->edge_count + 1, sizeof(*cdt->edges)))
{
ERR("Failed to grow edges array.\n");
return FALSE;
}
e->idx = cdt->edge_count++;
}
e->r = 0;
edge = &cdt->edges[e->idx];
edge->next[D2D_EDGE_NEXT_ORIGIN] = *e;
d2d_cdt_edge_tor(&edge->next[D2D_EDGE_NEXT_ROT], e);
d2d_cdt_edge_sym(&edge->next[D2D_EDGE_NEXT_SYM], e);
d2d_cdt_edge_rot(&edge->next[D2D_EDGE_NEXT_TOR], e);
edge->flags = 0;
return TRUE;
}
static void d2d_cdt_destroy_edge(struct d2d_cdt *cdt, const struct d2d_cdt_edge_ref *e)
{
struct d2d_cdt_edge_ref next, sym, prev;
d2d_cdt_edge_next_origin(cdt, &next, e);
if (next.idx != e->idx || next.r != e->r)
{
d2d_cdt_edge_prev_origin(cdt, &prev, e);
d2d_cdt_splice(cdt, e, &prev);
}
d2d_cdt_edge_sym(&sym, e);
d2d_cdt_edge_next_origin(cdt, &next, &sym);
if (next.idx != sym.idx || next.r != sym.r)
{
d2d_cdt_edge_prev_origin(cdt, &prev, &sym);
d2d_cdt_splice(cdt, &sym, &prev);
}
cdt->edges[e->idx].flags |= D2D_CDT_EDGE_FLAG_FREED;
cdt->edges[e->idx].next[D2D_EDGE_NEXT_ORIGIN].idx = cdt->free_edge;
cdt->free_edge = e->idx;
}
static BOOL d2d_cdt_connect(struct d2d_cdt *cdt, struct d2d_cdt_edge_ref *e,
const struct d2d_cdt_edge_ref *a, const struct d2d_cdt_edge_ref *b)
{
struct d2d_cdt_edge_ref tmp;
if (!d2d_cdt_create_edge(cdt, e))
return FALSE;
d2d_cdt_edge_set_origin(cdt, e, d2d_cdt_edge_destination(cdt, a));
d2d_cdt_edge_set_destination(cdt, e, d2d_cdt_edge_origin(cdt, b));
d2d_cdt_edge_next_left(cdt, &tmp, a);
d2d_cdt_splice(cdt, e, &tmp);
d2d_cdt_edge_sym(&tmp, e);
d2d_cdt_splice(cdt, &tmp, b);
return TRUE;
}
static BOOL d2d_cdt_merge(struct d2d_cdt *cdt, struct d2d_cdt_edge_ref *left_outer,
struct d2d_cdt_edge_ref *left_inner, struct d2d_cdt_edge_ref *right_inner,
struct d2d_cdt_edge_ref *right_outer)
{
struct d2d_cdt_edge_ref base_edge, tmp;
/* Create the base edge between both parts. */
for (;;)
{
if (d2d_cdt_leftof(cdt, d2d_cdt_edge_origin(cdt, right_inner), left_inner))
{
d2d_cdt_edge_next_left(cdt, left_inner, left_inner);
}
else if (d2d_cdt_rightof(cdt, d2d_cdt_edge_origin(cdt, left_inner), right_inner))
{
d2d_cdt_edge_sym(&tmp, right_inner);
d2d_cdt_edge_next_origin(cdt, right_inner, &tmp);
}
else
{
break;
}
}
d2d_cdt_edge_sym(&tmp, right_inner);
if (!d2d_cdt_connect(cdt, &base_edge, &tmp, left_inner))
return FALSE;
if (d2d_cdt_edge_origin(cdt, left_inner) == d2d_cdt_edge_origin(cdt, left_outer))
d2d_cdt_edge_sym(left_outer, &base_edge);
if (d2d_cdt_edge_origin(cdt, right_inner) == d2d_cdt_edge_origin(cdt, right_outer))
*right_outer = base_edge;
for (;;)
{
struct d2d_cdt_edge_ref left_candidate, right_candidate, sym_base_edge;
BOOL left_valid, right_valid;
/* Find the left candidate. */
d2d_cdt_edge_sym(&sym_base_edge, &base_edge);
d2d_cdt_edge_next_origin(cdt, &left_candidate, &sym_base_edge);
if ((left_valid = d2d_cdt_leftof(cdt, d2d_cdt_edge_destination(cdt, &left_candidate), &sym_base_edge)))
{
d2d_cdt_edge_next_origin(cdt, &tmp, &left_candidate);
while (d2d_cdt_edge_destination(cdt, &tmp) != d2d_cdt_edge_destination(cdt, &sym_base_edge)
&& d2d_cdt_incircle(cdt,
d2d_cdt_edge_origin(cdt, &sym_base_edge), d2d_cdt_edge_destination(cdt, &sym_base_edge),
d2d_cdt_edge_destination(cdt, &left_candidate), d2d_cdt_edge_destination(cdt, &tmp)))
{
d2d_cdt_destroy_edge(cdt, &left_candidate);
left_candidate = tmp;
d2d_cdt_edge_next_origin(cdt, &tmp, &left_candidate);
}
}
d2d_cdt_edge_sym(&left_candidate, &left_candidate);
/* Find the right candidate. */
d2d_cdt_edge_prev_origin(cdt, &right_candidate, &base_edge);
if ((right_valid = d2d_cdt_rightof(cdt, d2d_cdt_edge_destination(cdt, &right_candidate), &base_edge)))
{
d2d_cdt_edge_prev_origin(cdt, &tmp, &right_candidate);
while (d2d_cdt_edge_destination(cdt, &tmp) != d2d_cdt_edge_destination(cdt, &base_edge)
&& d2d_cdt_incircle(cdt,
d2d_cdt_edge_origin(cdt, &sym_base_edge), d2d_cdt_edge_destination(cdt, &sym_base_edge),
d2d_cdt_edge_destination(cdt, &right_candidate), d2d_cdt_edge_destination(cdt, &tmp)))
{
d2d_cdt_destroy_edge(cdt, &right_candidate);
right_candidate = tmp;
d2d_cdt_edge_prev_origin(cdt, &tmp, &right_candidate);
}
}
if (!left_valid && !right_valid)
break;
/* Connect the appropriate candidate with the base edge. */
if (!left_valid || (right_valid && d2d_cdt_incircle(cdt,
d2d_cdt_edge_origin(cdt, &left_candidate), d2d_cdt_edge_destination(cdt, &left_candidate),
d2d_cdt_edge_origin(cdt, &right_candidate), d2d_cdt_edge_destination(cdt, &right_candidate))))
{
if (!d2d_cdt_connect(cdt, &base_edge, &right_candidate, &sym_base_edge))
return FALSE;
}
else
{
if (!d2d_cdt_connect(cdt, &base_edge, &sym_base_edge, &left_candidate))
return FALSE;
}
}
return TRUE;
}
/* Create a Delaunay triangulation from a set of vertices. This is an
* implementation of the divide-and-conquer algorithm described by Guibas and
* Stolfi. Should be called with at least two vertices. */
static BOOL d2d_cdt_triangulate(struct d2d_cdt *cdt, size_t start_vertex, size_t vertex_count,
struct d2d_cdt_edge_ref *left_edge, struct d2d_cdt_edge_ref *right_edge)
{
struct d2d_cdt_edge_ref left_inner, left_outer, right_inner, right_outer, tmp;
size_t cut;
/* Only two vertices, create a single edge. */
if (vertex_count == 2)
{
struct d2d_cdt_edge_ref a;
if (!d2d_cdt_create_edge(cdt, &a))
return FALSE;
d2d_cdt_edge_set_origin(cdt, &a, start_vertex);
d2d_cdt_edge_set_destination(cdt, &a, start_vertex + 1);
*left_edge = a;
d2d_cdt_edge_sym(right_edge, &a);
return TRUE;
}
/* Three vertices, create a triangle. */
if (vertex_count == 3)
{
struct d2d_cdt_edge_ref a, b, c;
float det;
if (!d2d_cdt_create_edge(cdt, &a))
return FALSE;
if (!d2d_cdt_create_edge(cdt, &b))
return FALSE;
d2d_cdt_edge_sym(&tmp, &a);
d2d_cdt_splice(cdt, &tmp, &b);
d2d_cdt_edge_set_origin(cdt, &a, start_vertex);
d2d_cdt_edge_set_destination(cdt, &a, start_vertex + 1);
d2d_cdt_edge_set_origin(cdt, &b, start_vertex + 1);
d2d_cdt_edge_set_destination(cdt, &b, start_vertex + 2);
det = d2d_cdt_ccw(cdt, start_vertex, start_vertex + 1, start_vertex + 2);
if (det != 0.0f && !d2d_cdt_connect(cdt, &c, &b, &a))
return FALSE;
if (det < 0.0f)
{
d2d_cdt_edge_sym(left_edge, &c);
*right_edge = c;
}
else
{
*left_edge = a;
d2d_cdt_edge_sym(right_edge, &b);
}
return TRUE;
}
/* More than tree vertices, divide. */
cut = vertex_count / 2;
if (!d2d_cdt_triangulate(cdt, start_vertex, cut, &left_outer, &left_inner))
return FALSE;
if (!d2d_cdt_triangulate(cdt, start_vertex + cut, vertex_count - cut, &right_inner, &right_outer))
return FALSE;
/* Merge the left and right parts. */
if (!d2d_cdt_merge(cdt, &left_outer, &left_inner, &right_inner, &right_outer))
return FALSE;
*left_edge = left_outer;
*right_edge = right_outer;
return TRUE;
}
static int d2d_cdt_compare_vertices(const void *a, const void *b)
{
const D2D1_POINT_2F *p0 = a;
const D2D1_POINT_2F *p1 = b;
float diff = p0->x - p1->x;
if (diff == 0.0f)
diff = p0->y - p1->y;
return diff == 0.0f ? 0 : (diff > 0.0f ? 1 : -1);
}
/* Determine whether a given point is inside the geometry, using the current
* fill mode rule. */
static BOOL d2d_path_geometry_point_inside(const struct d2d_geometry *geometry,
const D2D1_POINT_2F *probe, BOOL triangles_only)
{
const D2D1_POINT_2F *p0, *p1;
D2D1_POINT_2F v_p, v_probe;
unsigned int score;
size_t i, j, last;
for (i = 0, score = 0; i < geometry->u.path.figure_count; ++i)
{
const struct d2d_figure *figure = &geometry->u.path.figures[i];
if (probe->x < figure->bounds.left || probe->x > figure->bounds.right
|| probe->y < figure->bounds.top || probe->y > figure->bounds.bottom)
continue;
last = figure->vertex_count - 1;
if (!triangles_only)
{
while (last && figure->vertex_types[last] == D2D_VERTEX_TYPE_NONE)
--last;
}
p0 = &figure->vertices[last];
for (j = 0; j <= last; ++j)
{
if (!triangles_only && figure->vertex_types[j] == D2D_VERTEX_TYPE_NONE)
continue;
p1 = &figure->vertices[j];
d2d_point_subtract(&v_p, p1, p0);
d2d_point_subtract(&v_probe, probe, p0);
if ((probe->y < p0->y) != (probe->y < p1->y) && v_probe.x < v_p.x * (v_probe.y / v_p.y))
{
if (geometry->u.path.fill_mode == D2D1_FILL_MODE_ALTERNATE || (probe->y < p0->y))
++score;
else
--score;
}
p0 = p1;
}
}
return geometry->u.path.fill_mode == D2D1_FILL_MODE_ALTERNATE ? score & 1 : score;
}
static BOOL d2d_path_geometry_add_fill_face(struct d2d_geometry *geometry, const struct d2d_cdt *cdt,
const struct d2d_cdt_edge_ref *base_edge)
{
struct d2d_cdt_edge_ref tmp;
struct d2d_face *face;
D2D1_POINT_2F probe;
if (cdt->edges[base_edge->idx].flags & D2D_CDT_EDGE_FLAG_VISITED(base_edge->r))
return TRUE;
if (!d2d_array_reserve((void **)&geometry->fill.faces, &geometry->fill.faces_size,
geometry->fill.face_count + 1, sizeof(*geometry->fill.faces)))
{
ERR("Failed to grow faces array.\n");
return FALSE;
}
face = &geometry->fill.faces[geometry->fill.face_count];
/* It may seem tempting to use the center of the face as probe origin, but
* multiplying by powers of two works much better for preserving accuracy. */
tmp = *base_edge;
cdt->edges[tmp.idx].flags |= D2D_CDT_EDGE_FLAG_VISITED(tmp.r);
face->v[0] = d2d_cdt_edge_origin(cdt, &tmp);
probe.x = cdt->vertices[d2d_cdt_edge_origin(cdt, &tmp)].x * 0.25f;
probe.y = cdt->vertices[d2d_cdt_edge_origin(cdt, &tmp)].y * 0.25f;
d2d_cdt_edge_next_left(cdt, &tmp, &tmp);
cdt->edges[tmp.idx].flags |= D2D_CDT_EDGE_FLAG_VISITED(tmp.r);
face->v[1] = d2d_cdt_edge_origin(cdt, &tmp);
probe.x += cdt->vertices[d2d_cdt_edge_origin(cdt, &tmp)].x * 0.25f;
probe.y += cdt->vertices[d2d_cdt_edge_origin(cdt, &tmp)].y * 0.25f;
d2d_cdt_edge_next_left(cdt, &tmp, &tmp);
cdt->edges[tmp.idx].flags |= D2D_CDT_EDGE_FLAG_VISITED(tmp.r);
face->v[2] = d2d_cdt_edge_origin(cdt, &tmp);
probe.x += cdt->vertices[d2d_cdt_edge_origin(cdt, &tmp)].x * 0.50f;
probe.y += cdt->vertices[d2d_cdt_edge_origin(cdt, &tmp)].y * 0.50f;
if (d2d_cdt_leftof(cdt, face->v[2], base_edge) && d2d_path_geometry_point_inside(geometry, &probe, TRUE))
++geometry->fill.face_count;
return TRUE;
}
static BOOL d2d_cdt_generate_faces(const struct d2d_cdt *cdt, struct d2d_geometry *geometry)
{
struct d2d_cdt_edge_ref base_edge;
size_t i;
for (i = 0; i < cdt->edge_count; ++i)
{
if (cdt->edges[i].flags & D2D_CDT_EDGE_FLAG_FREED)
continue;
base_edge.idx = i;
base_edge.r = 0;
if (!d2d_path_geometry_add_fill_face(geometry, cdt, &base_edge))
goto fail;
d2d_cdt_edge_sym(&base_edge, &base_edge);
if (!d2d_path_geometry_add_fill_face(geometry, cdt, &base_edge))
goto fail;
}
return TRUE;
fail:
HeapFree(GetProcessHeap(), 0, geometry->fill.faces);
geometry->fill.faces = NULL;
geometry->fill.faces_size = 0;
geometry->fill.face_count = 0;
return FALSE;
}
static BOOL d2d_cdt_fixup(struct d2d_cdt *cdt, const struct d2d_cdt_edge_ref *base_edge)
{
struct d2d_cdt_edge_ref candidate, next, new_base;
unsigned int count = 0;
d2d_cdt_edge_next_left(cdt, &next, base_edge);
if (next.idx == base_edge->idx)
{
ERR("Degenerate face.\n");
return FALSE;
}
candidate = next;
while (d2d_cdt_edge_destination(cdt, &next) != d2d_cdt_edge_origin(cdt, base_edge))
{
if (d2d_cdt_incircle(cdt, d2d_cdt_edge_origin(cdt, base_edge), d2d_cdt_edge_destination(cdt, base_edge),
d2d_cdt_edge_destination(cdt, &candidate), d2d_cdt_edge_destination(cdt, &next)))
candidate = next;
d2d_cdt_edge_next_left(cdt, &next, &next);
++count;
}
if (count > 1)
{
d2d_cdt_edge_next_left(cdt, &next, &candidate);
if (d2d_cdt_edge_destination(cdt, &next) == d2d_cdt_edge_origin(cdt, base_edge))
d2d_cdt_edge_next_left(cdt, &next, base_edge);
else
next = *base_edge;
if (!d2d_cdt_connect(cdt, &new_base, &candidate, &next))
return FALSE;
if (!d2d_cdt_fixup(cdt, &new_base))
return FALSE;
d2d_cdt_edge_sym(&new_base, &new_base);
if (!d2d_cdt_fixup(cdt, &new_base))
return FALSE;
}
return TRUE;
}
static void d2d_cdt_cut_edges(struct d2d_cdt *cdt, struct d2d_cdt_edge_ref *end_edge,
const struct d2d_cdt_edge_ref *base_edge, size_t start_vertex, size_t end_vertex)
{
struct d2d_cdt_edge_ref next;
float ccw;
d2d_cdt_edge_next_left(cdt, &next, base_edge);
if (d2d_cdt_edge_destination(cdt, &next) == end_vertex)
{
*end_edge = next;
return;
}
ccw = d2d_cdt_ccw(cdt, d2d_cdt_edge_destination(cdt, &next), end_vertex, start_vertex);
if (ccw == 0.0f)
{
*end_edge = next;
return;
}
if (ccw > 0.0f)
d2d_cdt_edge_next_left(cdt, &next, &next);
d2d_cdt_edge_sym(&next, &next);
d2d_cdt_cut_edges(cdt, end_edge, &next, start_vertex, end_vertex);
d2d_cdt_destroy_edge(cdt, &next);
}
static BOOL d2d_cdt_insert_segment(struct d2d_cdt *cdt, struct d2d_geometry *geometry,
const struct d2d_cdt_edge_ref *origin, struct d2d_cdt_edge_ref *edge, size_t end_vertex)
{
struct d2d_cdt_edge_ref base_edge, current, new_origin, next, target;
size_t current_destination, current_origin;
for (current = *origin;; current = next)
{
d2d_cdt_edge_next_origin(cdt, &next, &current);
current_destination = d2d_cdt_edge_destination(cdt, &current);
if (current_destination == end_vertex)
{
d2d_cdt_edge_sym(edge, &current);
return TRUE;
}
current_origin = d2d_cdt_edge_origin(cdt, &current);
if (d2d_cdt_ccw(cdt, end_vertex, current_origin, current_destination) == 0.0f
&& (cdt->vertices[current_destination].x > cdt->vertices[current_origin].x)
== (cdt->vertices[end_vertex].x > cdt->vertices[current_origin].x)
&& (cdt->vertices[current_destination].y > cdt->vertices[current_origin].y)
== (cdt->vertices[end_vertex].y > cdt->vertices[current_origin].y))
{
d2d_cdt_edge_sym(&new_origin, &current);
return d2d_cdt_insert_segment(cdt, geometry, &new_origin, edge, end_vertex);
}
if (d2d_cdt_rightof(cdt, end_vertex, &next) && d2d_cdt_leftof(cdt, end_vertex, &current))
{
d2d_cdt_edge_next_left(cdt, &base_edge, &current);
d2d_cdt_edge_sym(&base_edge, &base_edge);
d2d_cdt_cut_edges(cdt, &target, &base_edge, d2d_cdt_edge_origin(cdt, origin), end_vertex);
d2d_cdt_destroy_edge(cdt, &base_edge);
if (!d2d_cdt_connect(cdt, &base_edge, &target, &current))
return FALSE;
*edge = base_edge;
if (!d2d_cdt_fixup(cdt, &base_edge))
return FALSE;
d2d_cdt_edge_sym(&base_edge, &base_edge);
if (!d2d_cdt_fixup(cdt, &base_edge))
return FALSE;
if (d2d_cdt_edge_origin(cdt, edge) == end_vertex)
return TRUE;
new_origin = *edge;
return d2d_cdt_insert_segment(cdt, geometry, &new_origin, edge, end_vertex);
}
if (next.idx == origin->idx)
{
ERR("Triangle not found.\n");
return FALSE;
}
}
}
static BOOL d2d_cdt_insert_segments(struct d2d_cdt *cdt, struct d2d_geometry *geometry)
{
size_t start_vertex, end_vertex, i, j, k;
struct d2d_cdt_edge_ref edge, new_edge;
const struct d2d_figure *figure;
const D2D1_POINT_2F *p;
BOOL found;
for (i = 0; i < geometry->u.path.figure_count; ++i)
{
figure = &geometry->u.path.figures[i];
/* Degenerate figure. */
if (figure->vertex_count < 2)
continue;
p = bsearch(&figure->vertices[figure->vertex_count - 1], cdt->vertices,
geometry->fill.vertex_count, sizeof(*p), d2d_cdt_compare_vertices);
start_vertex = p - cdt->vertices;
for (k = 0, found = FALSE; k < cdt->edge_count; ++k)
{
if (cdt->edges[k].flags & D2D_CDT_EDGE_FLAG_FREED)
continue;
edge.idx = k;
edge.r = 0;
if (d2d_cdt_edge_origin(cdt, &edge) == start_vertex)
{
found = TRUE;
break;
}
d2d_cdt_edge_sym(&edge, &edge);
if (d2d_cdt_edge_origin(cdt, &edge) == start_vertex)
{
found = TRUE;
break;
}
}
if (!found)
{
ERR("Edge not found.\n");
return FALSE;
}
for (j = 0; j < figure->vertex_count; start_vertex = end_vertex, ++j)
{
p = bsearch(&figure->vertices[j], cdt->vertices,
geometry->fill.vertex_count, sizeof(*p), d2d_cdt_compare_vertices);
end_vertex = p - cdt->vertices;
if (start_vertex == end_vertex)
continue;
if (!d2d_cdt_insert_segment(cdt, geometry, &edge, &new_edge, end_vertex))
return FALSE;
edge = new_edge;
}
}
return TRUE;
}
static BOOL d2d_geometry_intersections_add(struct d2d_geometry_intersections *i,
size_t figure_idx, size_t segment_idx, float t, D2D1_POINT_2F p)
{
struct d2d_geometry_intersection *intersection;
if (!d2d_array_reserve((void **)&i->intersections, &i->intersections_size,
i->intersection_count + 1, sizeof(*i->intersections)))
{
ERR("Failed to grow intersections array.\n");
return FALSE;
}
intersection = &i->intersections[i->intersection_count++];
intersection->figure_idx = figure_idx;
intersection->segment_idx = segment_idx;
intersection->t = t;
intersection->p = p;
return TRUE;
}
static int d2d_geometry_intersections_compare(const void *a, const void *b)
{
const struct d2d_geometry_intersection *i0 = a;
const struct d2d_geometry_intersection *i1 = b;
if (i0->figure_idx != i1->figure_idx)
return i0->figure_idx - i1->figure_idx;
if (i0->segment_idx != i1->segment_idx)
return i0->segment_idx - i1->segment_idx;
if (i0->t != i1->t)
return i0->t > i1->t ? 1 : -1;
return 0;
}
/* Intersect the geometry's segments with themselves. This uses the
* straightforward approach of testing everything against everything, but
* there certainly exist more scalable algorithms for this. */
/* FIXME: Beziers can't currently self-intersect. */
static BOOL d2d_geometry_intersect_self(struct d2d_geometry *geometry)
{
D2D1_POINT_2F p0, p1, q0, q1, v_p, v_q, v_qp, intersection;
struct d2d_geometry_intersections intersections = {0};
struct d2d_figure *figure_p, *figure_q;
size_t i, j, k, l, max_l;
BOOL ret = FALSE;
float s, t, det;
for (i = 0; i < geometry->u.path.figure_count; ++i)
{
figure_p = &geometry->u.path.figures[i];
p0 = figure_p->vertices[figure_p->vertex_count - 1];
for (k = 0; k < figure_p->vertex_count; p0 = p1, ++k)
{
p1 = figure_p->vertices[k];
d2d_point_subtract(&v_p, &p1, &p0);
for (j = 0; j < i || (j == i && k); ++j)
{
figure_q = &geometry->u.path.figures[j];
if (figure_p->bounds.left > figure_q->bounds.right
|| figure_q->bounds.left > figure_p->bounds.right
|| figure_p->bounds.top > figure_q->bounds.bottom
|| figure_q->bounds.top > figure_p->bounds.bottom)
continue;
max_l = j == i ? k - 1 : figure_q->vertex_count;
q0 = figure_q->vertices[figure_q->vertex_count - 1];
for (l = 0; l < max_l; q0 = q1, ++l)
{
q1 = figure_q->vertices[l];
d2d_point_subtract(&v_q, &q1, &q0);
d2d_point_subtract(&v_qp, &p0, &q0);
det = v_p.x * v_q.y - v_p.y * v_q.x;
if (det == 0.0f)
continue;
s = (v_q.x * v_qp.y - v_q.y * v_qp.x) / det;
t = (v_p.x * v_qp.y - v_p.y * v_qp.x) / det;
if (s < 0.0f || s > 1.0f || t < 0.0f || t > 1.0f)
continue;
intersection.x = p0.x + v_p.x * s;
intersection.y = p0.y + v_p.y * s;
if (t > 0.0f && t < 1.0f
&& !d2d_geometry_intersections_add(&intersections, j, l, t, intersection))
goto done;
if (s > 0.0f && s < 1.0f
&& !d2d_geometry_intersections_add(&intersections, i, k, s, intersection))
goto done;
}
}
}
}
qsort(intersections.intersections, intersections.intersection_count,
sizeof(*intersections.intersections), d2d_geometry_intersections_compare);
for (i = 0; i < intersections.intersection_count; ++i)
{
const struct d2d_geometry_intersection *inter = &intersections.intersections[i];
if (!i || inter->figure_idx != intersections.intersections[i - 1].figure_idx)
j = 0;
if (!d2d_figure_insert_vertex(&geometry->u.path.figures[inter->figure_idx],
inter->segment_idx + j, inter->p))
goto done;
++j;
}
ret = TRUE;
done:
HeapFree(GetProcessHeap(), 0, intersections.intersections);
return ret;
}
static HRESULT d2d_path_geometry_triangulate(struct d2d_geometry *geometry)
{
struct d2d_cdt_edge_ref left_edge, right_edge;
size_t vertex_count, i, j;
struct d2d_cdt cdt = {0};
D2D1_POINT_2F *vertices;
for (i = 0, vertex_count = 0; i < geometry->u.path.figure_count; ++i)
{
vertex_count += geometry->u.path.figures[i].vertex_count;
}
if (vertex_count < 3)
{
WARN("Geometry has %lu vertices.\n", (long)vertex_count);
return S_OK;
}
if (!(vertices = HeapAlloc(GetProcessHeap(), 0, vertex_count * sizeof(*vertices))))
return E_OUTOFMEMORY;
for (i = 0, j = 0; i < geometry->u.path.figure_count; ++i)
{
memcpy(&vertices[j], geometry->u.path.figures[i].vertices,
geometry->u.path.figures[i].vertex_count * sizeof(*vertices));
j += geometry->u.path.figures[i].vertex_count;
}
/* Sort vertices, eliminate duplicates. */
qsort(vertices, vertex_count, sizeof(*vertices), d2d_cdt_compare_vertices);
for (i = 1; i < vertex_count; ++i)
{
if (!memcmp(&vertices[i - 1], &vertices[i], sizeof(*vertices)))
{
--vertex_count;
memmove(&vertices[i], &vertices[i + 1], (vertex_count - i) * sizeof(*vertices));
--i;
}
}
geometry->fill.vertices = vertices;
geometry->fill.vertex_count = vertex_count;
cdt.free_edge = ~0u;
cdt.vertices = vertices;
if (!d2d_cdt_triangulate(&cdt, 0, vertex_count, &left_edge, &right_edge))
goto fail;
if (!d2d_cdt_insert_segments(&cdt, geometry))
goto fail;
if (!d2d_cdt_generate_faces(&cdt, geometry))
goto fail;
HeapFree(GetProcessHeap(), 0, cdt.edges);
return S_OK;
fail:
geometry->fill.vertices = NULL;
geometry->fill.vertex_count = 0;
HeapFree(GetProcessHeap(), 0, vertices);
HeapFree(GetProcessHeap(), 0, cdt.edges);
return E_FAIL;
}
static BOOL d2d_path_geometry_add_figure(struct d2d_geometry *geometry)
{
struct d2d_figure *figure;
if (!d2d_array_reserve((void **)&geometry->u.path.figures, &geometry->u.path.figures_size,
geometry->u.path.figure_count + 1, sizeof(*geometry->u.path.figures)))
{
ERR("Failed to grow figures array.\n");
return FALSE;
}
figure = &geometry->u.path.figures[geometry->u.path.figure_count];
memset(figure, 0, sizeof(*figure));
figure->bounds.left = FLT_MAX;
figure->bounds.top = FLT_MAX;
figure->bounds.right = -FLT_MAX;
figure->bounds.bottom = -FLT_MAX;
++geometry->u.path.figure_count;
return TRUE;
}
static BOOL d2d_geometry_outline_add_join(struct d2d_geometry *geometry,
const D2D1_POINT_2F *prev, const D2D1_POINT_2F *p0, const D2D1_POINT_2F *next)
{
D2D1_POINT_2F q_prev, q_next;
struct d2d_outline_vertex *v;
struct d2d_face *f;
size_t base_idx;
float ccw;
if (!d2d_array_reserve((void **)&geometry->outline.vertices, &geometry->outline.vertices_size,
geometry->outline.vertex_count + 4, sizeof(*geometry->outline.vertices)))
{
ERR("Failed to grow outline vertices array.\n");
return FALSE;
}
base_idx = geometry->outline.vertex_count;
v = &geometry->outline.vertices[base_idx];
if (!d2d_array_reserve((void **)&geometry->outline.faces, &geometry->outline.faces_size,
geometry->outline.face_count + 2, sizeof(*geometry->outline.faces)))
{
ERR("Failed to grow outline faces array.\n");
return FALSE;
}
f = &geometry->outline.faces[geometry->outline.face_count];
d2d_point_subtract(&q_prev, p0, prev);
d2d_point_subtract(&q_next, next, p0);
d2d_point_normalise(&q_prev);
d2d_point_normalise(&q_next);
ccw = d2d_point_ccw(p0, prev, next);
if (ccw == 0.0f)
{
d2d_outline_vertex_set(&v[0], p0->x, p0->y, q_prev.x, q_prev.y, q_prev.x, q_prev.y);
d2d_outline_vertex_set(&v[1], p0->x, p0->y, -q_prev.x, -q_prev.y, -q_prev.x, -q_prev.y);
d2d_outline_vertex_set(&v[2], p0->x + 25.0f * q_prev.x, p0->y + 25.0f * q_prev.y,
-q_prev.x, -q_prev.y, -q_prev.x, -q_prev.y);
d2d_outline_vertex_set(&v[3], p0->x + 25.0f * q_prev.x, p0->y + 25.0f * q_prev.y,
q_prev.x, q_prev.y, q_prev.x, q_prev.y);
}
else if (ccw < 0.0f)
{
d2d_outline_vertex_set(&v[0], p0->x, p0->y, 0.0f, 0.0f, 0.0f, 0.0f);
d2d_outline_vertex_set(&v[1], p0->x, p0->y, -q_next.x, -q_next.y, -q_next.x, -q_next.y);
d2d_outline_vertex_set(&v[2], p0->x, p0->y, -q_next.x, -q_next.y, -q_prev.x, -q_prev.y);
d2d_outline_vertex_set(&v[3], p0->x, p0->y, -q_prev.x, -q_prev.y, -q_prev.x, -q_prev.y);
}
else
{
d2d_outline_vertex_set(&v[0], p0->x, p0->y, 0.0f, 0.0f, 0.0f, 0.0f);
d2d_outline_vertex_set(&v[1], p0->x, p0->y, q_prev.x, q_prev.y, q_prev.x, q_prev.y);
d2d_outline_vertex_set(&v[2], p0->x, p0->y, q_prev.x, q_prev.y, q_next.x, q_next.y);
d2d_outline_vertex_set(&v[3], p0->x, p0->y, q_next.x, q_next.y, q_next.x, q_next.y);
}
geometry->outline.vertex_count += 4;
d2d_face_set(&f[0], base_idx + 1, base_idx + 0, base_idx + 2);
d2d_face_set(&f[1], base_idx + 2, base_idx + 0, base_idx + 3);
geometry->outline.face_count += 2;
return TRUE;
}
static BOOL d2d_geometry_outline_add_line_segment(struct d2d_geometry *geometry,
const D2D1_POINT_2F *p0, const D2D1_POINT_2F *next)
{
struct d2d_outline_vertex *v;
D2D1_POINT_2F q_next;
struct d2d_face *f;
size_t base_idx;
if (!d2d_array_reserve((void **)&geometry->outline.vertices, &geometry->outline.vertices_size,
geometry->outline.vertex_count + 4, sizeof(*geometry->outline.vertices)))
{
ERR("Failed to grow outline vertices array.\n");
return FALSE;
}
base_idx = geometry->outline.vertex_count;
v = &geometry->outline.vertices[base_idx];
if (!d2d_array_reserve((void **)&geometry->outline.faces, &geometry->outline.faces_size,
geometry->outline.face_count + 2, sizeof(*geometry->outline.faces)))
{
ERR("Failed to grow outline faces array.\n");
return FALSE;
}
f = &geometry->outline.faces[geometry->outline.face_count];
d2d_point_subtract(&q_next, next, p0);
d2d_point_normalise(&q_next);
d2d_outline_vertex_set(&v[0], p0->x, p0->y, q_next.x, q_next.y, q_next.x, q_next.y);
d2d_outline_vertex_set(&v[1], p0->x, p0->y, -q_next.x, -q_next.y, -q_next.x, -q_next.y);
d2d_outline_vertex_set(&v[2], next->x, next->y, q_next.x, q_next.y, q_next.x, q_next.y);
d2d_outline_vertex_set(&v[3], next->x, next->y, -q_next.x, -q_next.y, -q_next.x, -q_next.y);
geometry->outline.vertex_count += 4;
d2d_face_set(&f[0], base_idx + 0, base_idx + 1, base_idx + 2);
d2d_face_set(&f[1], base_idx + 2, base_idx + 1, base_idx + 3);
geometry->outline.face_count += 2;
return TRUE;
}
static BOOL d2d_geometry_outline_add_bezier_segment(struct d2d_geometry *geometry,
const D2D1_POINT_2F *p0, const D2D1_POINT_2F *p1, const D2D1_POINT_2F *p2)
{
struct d2d_bezier_outline_vertex *b;
D2D1_POINT_2F r0, r1, r2;
D2D1_POINT_2F q0, q1, q2;
struct d2d_face *f;
size_t base_idx;
if (!d2d_array_reserve((void **)&geometry->outline.beziers, &geometry->outline.beziers_size,
geometry->outline.bezier_count + 7, sizeof(*geometry->outline.beziers)))
{
ERR("Failed to grow outline beziers array.\n");
return FALSE;
}
base_idx = geometry->outline.bezier_count;
b = &geometry->outline.beziers[base_idx];
if (!d2d_array_reserve((void **)&geometry->outline.bezier_faces, &geometry->outline.bezier_faces_size,
geometry->outline.bezier_face_count + 5, sizeof(*geometry->outline.bezier_faces)))
{
ERR("Failed to grow outline faces array.\n");
return FALSE;
}
f = &geometry->outline.bezier_faces[geometry->outline.bezier_face_count];
d2d_point_lerp(&q0, p0, p1, 0.5f);
d2d_point_lerp(&q1, p1, p2, 0.5f);
d2d_point_lerp(&q2, &q0, &q1, 0.5f);
d2d_point_subtract(&r0, &q0, p0);
d2d_point_subtract(&r1, &q1, &q0);
d2d_point_subtract(&r2, p2, &q1);
d2d_point_normalise(&r0);
d2d_point_normalise(&r1);
d2d_point_normalise(&r2);
if (d2d_point_ccw(p0, p1, p2) > 0.0f)
{
d2d_point_scale(&r0, -1.0f);
d2d_point_scale(&r1, -1.0f);
d2d_point_scale(&r2, -1.0f);
}
d2d_bezier_outline_vertex_set(&b[0], p0, p0, p1, p2, r0.x, r0.y, r0.x, r0.y);
d2d_bezier_outline_vertex_set(&b[1], p0, p0, p1, p2, -r0.x, -r0.y, -r0.x, -r0.y);
d2d_bezier_outline_vertex_set(&b[2], &q0, p0, p1, p2, r0.x, r0.y, r1.x, r1.y);
d2d_bezier_outline_vertex_set(&b[3], &q2, p0, p1, p2, -r1.x, -r1.y, -r1.x, -r1.y);
d2d_bezier_outline_vertex_set(&b[4], &q1, p0, p1, p2, r1.x, r1.y, r2.x, r2.y);
d2d_bezier_outline_vertex_set(&b[5], p2, p0, p1, p2, -r2.x, -r2.y, -r2.x, -r2.y);
d2d_bezier_outline_vertex_set(&b[6], p2, p0, p1, p2, r2.x, r2.y, r2.x, r2.y);
geometry->outline.bezier_count += 7;
d2d_face_set(&f[0], base_idx + 0, base_idx + 1, base_idx + 2);
d2d_face_set(&f[1], base_idx + 2, base_idx + 1, base_idx + 3);
d2d_face_set(&f[2], base_idx + 3, base_idx + 4, base_idx + 2);
d2d_face_set(&f[3], base_idx + 5, base_idx + 4, base_idx + 3);
d2d_face_set(&f[4], base_idx + 5, base_idx + 6, base_idx + 4);
geometry->outline.bezier_face_count += 5;
return TRUE;
}
static BOOL d2d_geometry_add_figure_outline(struct d2d_geometry *geometry,
struct d2d_figure *figure, D2D1_FIGURE_END figure_end)
{
const D2D1_POINT_2F *prev, *p0, *next;
enum d2d_vertex_type prev_type, type;
size_t bezier_idx, i;
for (i = 0, bezier_idx = 0; i < figure->vertex_count; ++i)
{
type = figure->vertex_types[i];
if (type == D2D_VERTEX_TYPE_NONE)
continue;
p0 = &figure->vertices[i];
if (!i)
{
prev_type = figure->vertex_types[figure->vertex_count - 1];
if (prev_type == D2D_VERTEX_TYPE_BEZIER)
prev = &figure->bezier_controls[figure->bezier_control_count - 1];
else
prev = &figure->vertices[figure->vertex_count - 1];
}
else
{
prev_type = figure->vertex_types[i - 1];
if (prev_type == D2D_VERTEX_TYPE_BEZIER)
prev = &figure->bezier_controls[bezier_idx - 1];
else
prev = &figure->vertices[i - 1];
}
if (type == D2D_VERTEX_TYPE_BEZIER)
next = &figure->bezier_controls[bezier_idx++];
else if (i == figure->vertex_count - 1)
next = &figure->vertices[0];
else
next = &figure->vertices[i + 1];
if ((figure_end == D2D1_FIGURE_END_CLOSED || (i && i < figure->vertex_count - 1))
&& !d2d_geometry_outline_add_join(geometry, prev, p0, next))
{
ERR("Failed to add join.\n");
return FALSE;
}
if (type == D2D_VERTEX_TYPE_LINE && (figure_end == D2D1_FIGURE_END_CLOSED || i < figure->vertex_count - 1)
&& !d2d_geometry_outline_add_line_segment(geometry, p0, next))
{
ERR("Failed to add line segment.\n");
return FALSE;
}
else if (type == D2D_VERTEX_TYPE_BEZIER)
{
const D2D1_POINT_2F *p2;
if (i == figure->vertex_count - 1)
p2 = &figure->vertices[0];
else
p2 = &figure->vertices[i + 1];
if (!d2d_geometry_outline_add_bezier_segment(geometry, p0, next, p2))
{
ERR("Failed to add bezier segment.\n");
return FALSE;
}
}
}
return TRUE;
}
static void d2d_geometry_cleanup(struct d2d_geometry *geometry)
{
HeapFree(GetProcessHeap(), 0, geometry->outline.bezier_faces);
HeapFree(GetProcessHeap(), 0, geometry->outline.beziers);
HeapFree(GetProcessHeap(), 0, geometry->outline.faces);
HeapFree(GetProcessHeap(), 0, geometry->outline.vertices);
HeapFree(GetProcessHeap(), 0, geometry->fill.bezier_vertices);
HeapFree(GetProcessHeap(), 0, geometry->fill.faces);
HeapFree(GetProcessHeap(), 0, geometry->fill.vertices);
ID2D1Factory_Release(geometry->factory);
}
static void d2d_geometry_init(struct d2d_geometry *geometry, ID2D1Factory *factory,
const D2D1_MATRIX_3X2_F *transform, const struct ID2D1GeometryVtbl *vtbl)
{
geometry->ID2D1Geometry_iface.lpVtbl = vtbl;
geometry->refcount = 1;
ID2D1Factory_AddRef(geometry->factory = factory);
geometry->transform = *transform;
}
static inline struct d2d_geometry *impl_from_ID2D1GeometrySink(ID2D1GeometrySink *iface)
{
return CONTAINING_RECORD(iface, struct d2d_geometry, u.path.ID2D1GeometrySink_iface);
}
static HRESULT STDMETHODCALLTYPE d2d_geometry_sink_QueryInterface(ID2D1GeometrySink *iface, REFIID iid, void **out)
{
TRACE("iface %p, iid %s, out %p.\n", iface, debugstr_guid(iid), out);
if (IsEqualGUID(iid, &IID_ID2D1GeometrySink)
|| IsEqualGUID(iid, &IID_ID2D1SimplifiedGeometrySink)
|| IsEqualGUID(iid, &IID_IUnknown))
{
ID2D1GeometrySink_AddRef(iface);
*out = iface;
return S_OK;
}
WARN("%s not implemented, returning E_NOINTERFACE.\n", debugstr_guid(iid));
*out = NULL;
return E_NOINTERFACE;
}
static ULONG STDMETHODCALLTYPE d2d_geometry_sink_AddRef(ID2D1GeometrySink *iface)
{
struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface);
TRACE("iface %p.\n", iface);
return ID2D1Geometry_AddRef(&geometry->ID2D1Geometry_iface);
}
static ULONG STDMETHODCALLTYPE d2d_geometry_sink_Release(ID2D1GeometrySink *iface)
{
struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface);
TRACE("iface %p.\n", iface);
return ID2D1Geometry_Release(&geometry->ID2D1Geometry_iface);
}
static void STDMETHODCALLTYPE d2d_geometry_sink_SetFillMode(ID2D1GeometrySink *iface, D2D1_FILL_MODE mode)
{
struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface);
TRACE("iface %p, mode %#x.\n", iface, mode);
if (geometry->u.path.state == D2D_GEOMETRY_STATE_CLOSED)
return;
geometry->u.path.fill_mode = mode;
}
static void STDMETHODCALLTYPE d2d_geometry_sink_SetSegmentFlags(ID2D1GeometrySink *iface, D2D1_PATH_SEGMENT flags)
{
FIXME("iface %p, flags %#x stub!\n", iface, flags);
}
static void STDMETHODCALLTYPE d2d_geometry_sink_BeginFigure(ID2D1GeometrySink *iface,
D2D1_POINT_2F start_point, D2D1_FIGURE_BEGIN figure_begin)
{
struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface);
struct d2d_figure *figure;
TRACE("iface %p, start_point {%.8e, %.8e}, figure_begin %#x.\n",
iface, start_point.x, start_point.y, figure_begin);
if (geometry->u.path.state != D2D_GEOMETRY_STATE_OPEN)
{
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
return;
}
if (figure_begin != D2D1_FIGURE_BEGIN_FILLED)
FIXME("Ignoring figure_begin %#x.\n", figure_begin);
if (!d2d_path_geometry_add_figure(geometry))
{
ERR("Failed to add figure.\n");
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
return;
}
figure = &geometry->u.path.figures[geometry->u.path.figure_count - 1];
if (figure_begin == D2D1_FIGURE_BEGIN_HOLLOW)
figure->flags |= D2D_FIGURE_FLAG_HOLLOW;
if (!d2d_figure_add_vertex(figure, start_point))
{
ERR("Failed to add vertex.\n");
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
return;
}
geometry->u.path.state = D2D_GEOMETRY_STATE_FIGURE;
}
static void STDMETHODCALLTYPE d2d_geometry_sink_AddLines(ID2D1GeometrySink *iface,
const D2D1_POINT_2F *points, UINT32 count)
{
struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface);
struct d2d_figure *figure = &geometry->u.path.figures[geometry->u.path.figure_count - 1];
unsigned int i;
TRACE("iface %p, points %p, count %u.\n", iface, points, count);
if (geometry->u.path.state != D2D_GEOMETRY_STATE_FIGURE)
{
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
return;
}
for (i = 0; i < count; ++i)
{
figure->vertex_types[figure->vertex_count - 1] = D2D_VERTEX_TYPE_LINE;
if (!d2d_figure_add_vertex(figure, points[i]))
{
ERR("Failed to add vertex.\n");
return;
}
}
geometry->u.path.segment_count += count;
}
static void STDMETHODCALLTYPE d2d_geometry_sink_AddBeziers(ID2D1GeometrySink *iface,
const D2D1_BEZIER_SEGMENT *beziers, UINT32 count)
{
struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface);
struct d2d_figure *figure = &geometry->u.path.figures[geometry->u.path.figure_count - 1];
D2D1_POINT_2F p;
unsigned int i;
TRACE("iface %p, beziers %p, count %u.\n", iface, beziers, count);
if (geometry->u.path.state != D2D_GEOMETRY_STATE_FIGURE)
{
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
return;
}
for (i = 0; i < count; ++i)
{
/* FIXME: This tries to approximate a cubic bezier with a quadratic one. */
p.x = (beziers[i].point1.x + beziers[i].point2.x) * 0.75f;
p.y = (beziers[i].point1.y + beziers[i].point2.y) * 0.75f;
p.x -= (figure->vertices[figure->vertex_count - 1].x + beziers[i].point3.x) * 0.25f;
p.y -= (figure->vertices[figure->vertex_count - 1].y + beziers[i].point3.y) * 0.25f;
figure->vertex_types[figure->vertex_count - 1] = D2D_VERTEX_TYPE_BEZIER;
if (!d2d_figure_add_bezier_control(figure, &p))
{
ERR("Failed to add bezier control.\n");
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
return;
}
if (!d2d_figure_add_vertex(figure, beziers[i].point3))
{
ERR("Failed to add bezier vertex.\n");
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
return;
}
}
geometry->u.path.segment_count += count;
}
static void STDMETHODCALLTYPE d2d_geometry_sink_EndFigure(ID2D1GeometrySink *iface, D2D1_FIGURE_END figure_end)
{
struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface);
struct d2d_figure *figure;
TRACE("iface %p, figure_end %#x.\n", iface, figure_end);
if (geometry->u.path.state != D2D_GEOMETRY_STATE_FIGURE)
{
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
return;
}
figure = &geometry->u.path.figures[geometry->u.path.figure_count - 1];
figure->vertex_types[figure->vertex_count - 1] = D2D_VERTEX_TYPE_LINE;
if (figure_end == D2D1_FIGURE_END_CLOSED)
{
++geometry->u.path.segment_count;
figure->flags |= D2D_FIGURE_FLAG_CLOSED;
if (!memcmp(&figure->vertices[0], &figure->vertices[figure->vertex_count - 1], sizeof(*figure->vertices)))
--figure->vertex_count;
}
if (!d2d_geometry_add_figure_outline(geometry, figure, figure_end))
{
ERR("Failed to add figure outline.\n");
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
return;
}
geometry->u.path.state = D2D_GEOMETRY_STATE_OPEN;
}
static void d2d_path_geometry_free_figures(struct d2d_geometry *geometry)
{
size_t i;
if (!geometry->u.path.figures)
return;
for (i = 0; i < geometry->u.path.figure_count; ++i)
{
HeapFree(GetProcessHeap(), 0, geometry->u.path.figures[i].bezier_controls);
HeapFree(GetProcessHeap(), 0, geometry->u.path.figures[i].vertices);
}
HeapFree(GetProcessHeap(), 0, geometry->u.path.figures);
geometry->u.path.figures = NULL;
geometry->u.path.figures_size = 0;
}
static HRESULT d2d_geometry_resolve_beziers(struct d2d_geometry *geometry)
{
size_t bezier_idx, control_idx, i, j;
for (i = 0; i < geometry->u.path.figure_count; ++i)
{
geometry->fill.bezier_vertex_count += 3 * geometry->u.path.figures[i].bezier_control_count;
}
if (!(geometry->fill.bezier_vertices = HeapAlloc(GetProcessHeap(), 0,
geometry->fill.bezier_vertex_count * sizeof(*geometry->fill.bezier_vertices))))
{
ERR("Failed to allocate bezier vertices array.\n");
geometry->fill.bezier_vertex_count = 0;
return E_OUTOFMEMORY;
}
for (i = 0, bezier_idx = 0; i < geometry->u.path.figure_count; ++i)
{
struct d2d_figure *figure = &geometry->u.path.figures[i];
if (figure->bezier_control_count)
{
for (j = 0, control_idx = 0; j < figure->vertex_count; ++j)
{
const D2D1_POINT_2F *p0, *p1, *p2;
struct d2d_bezier_vertex *b;
float sign = -1.0f;
if (figure->vertex_types[j] != D2D_VERTEX_TYPE_BEZIER)
continue;
b = &geometry->fill.bezier_vertices[bezier_idx * 3];
p0 = &figure->vertices[j];
p1 = &figure->bezier_controls[control_idx++];
if (d2d_path_geometry_point_inside(geometry, p1, FALSE))
{
sign = 1.0f;
d2d_figure_insert_vertex(figure, j + 1, *p1);
/* Inserting a vertex potentially invalidates p0. */
p0 = &figure->vertices[j];
++j;
}
if (j == figure->vertex_count - 1)
p2 = &figure->vertices[0];
else
p2 = &figure->vertices[j + 1];
d2d_bezier_vertex_set(&b[0], p0, 0.0f, 0.0f, sign);
d2d_bezier_vertex_set(&b[1], p1, 0.5f, 0.0f, sign);
d2d_bezier_vertex_set(&b[2], p2, 1.0f, 1.0f, sign);
++bezier_idx;
}
}
}
return TRUE;
}
static HRESULT STDMETHODCALLTYPE d2d_geometry_sink_Close(ID2D1GeometrySink *iface)
{
struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface);
HRESULT hr = E_FAIL;
TRACE("iface %p.\n", iface);
if (geometry->u.path.state != D2D_GEOMETRY_STATE_OPEN)
{
if (geometry->u.path.state != D2D_GEOMETRY_STATE_CLOSED)
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
return D2DERR_WRONG_STATE;
}
geometry->u.path.state = D2D_GEOMETRY_STATE_CLOSED;
if (!d2d_geometry_intersect_self(geometry))
goto done;
if (FAILED(hr = d2d_geometry_resolve_beziers(geometry)))
goto done;
if (FAILED(hr = d2d_path_geometry_triangulate(geometry)))
goto done;
done:
if (FAILED(hr))
{
HeapFree(GetProcessHeap(), 0, geometry->fill.bezier_vertices);
geometry->fill.bezier_vertex_count = 0;
d2d_path_geometry_free_figures(geometry);
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
}
return hr;
}
static void STDMETHODCALLTYPE d2d_geometry_sink_AddLine(ID2D1GeometrySink *iface, D2D1_POINT_2F point)
{
TRACE("iface %p, point {%.8e, %.8e}.\n", iface, point.x, point.y);
d2d_geometry_sink_AddLines(iface, &point, 1);
}
static void STDMETHODCALLTYPE d2d_geometry_sink_AddBezier(ID2D1GeometrySink *iface, const D2D1_BEZIER_SEGMENT *bezier)
{
TRACE("iface %p, bezier %p.\n", iface, bezier);
d2d_geometry_sink_AddBeziers(iface, bezier, 1);
}
static void STDMETHODCALLTYPE d2d_geometry_sink_AddQuadraticBezier(ID2D1GeometrySink *iface,
const D2D1_QUADRATIC_BEZIER_SEGMENT *bezier)
{
TRACE("iface %p, bezier %p.\n", iface, bezier);
ID2D1GeometrySink_AddQuadraticBeziers(iface, bezier, 1);
}
static void STDMETHODCALLTYPE d2d_geometry_sink_AddQuadraticBeziers(ID2D1GeometrySink *iface,
const D2D1_QUADRATIC_BEZIER_SEGMENT *beziers, UINT32 bezier_count)
{
struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface);
struct d2d_figure *figure = &geometry->u.path.figures[geometry->u.path.figure_count - 1];
unsigned int i;
TRACE("iface %p, beziers %p, bezier_count %u.\n", iface, beziers, bezier_count);
if (geometry->u.path.state != D2D_GEOMETRY_STATE_FIGURE)
{
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
return;
}
for (i = 0; i < bezier_count; ++i)
{
figure->vertex_types[figure->vertex_count - 1] = D2D_VERTEX_TYPE_BEZIER;
if (!d2d_figure_add_bezier_control(figure, &beziers[i].point1))
{
ERR("Failed to add bezier.\n");
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
return;
}
if (!d2d_figure_add_vertex(figure, beziers[i].point2))
{
ERR("Failed to add bezier vertex.\n");
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
return;
}
}
geometry->u.path.segment_count += bezier_count;
}
static void STDMETHODCALLTYPE d2d_geometry_sink_AddArc(ID2D1GeometrySink *iface, const D2D1_ARC_SEGMENT *arc)
{
struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface);
FIXME("iface %p, arc %p stub!\n", iface, arc);
if (geometry->u.path.state != D2D_GEOMETRY_STATE_FIGURE)
{
geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR;
return;
}
if (!d2d_figure_add_vertex(&geometry->u.path.figures[geometry->u.path.figure_count - 1], arc->point))
{
ERR("Failed to add vertex.\n");
return;
}
++geometry->u.path.segment_count;
}
static const struct ID2D1GeometrySinkVtbl d2d_geometry_sink_vtbl =
{
d2d_geometry_sink_QueryInterface,
d2d_geometry_sink_AddRef,
d2d_geometry_sink_Release,
d2d_geometry_sink_SetFillMode,
d2d_geometry_sink_SetSegmentFlags,
d2d_geometry_sink_BeginFigure,
d2d_geometry_sink_AddLines,
d2d_geometry_sink_AddBeziers,
d2d_geometry_sink_EndFigure,
d2d_geometry_sink_Close,
d2d_geometry_sink_AddLine,
d2d_geometry_sink_AddBezier,
d2d_geometry_sink_AddQuadraticBezier,
d2d_geometry_sink_AddQuadraticBeziers,
d2d_geometry_sink_AddArc,
};
static inline struct d2d_geometry *impl_from_ID2D1PathGeometry(ID2D1PathGeometry *iface)
{
return CONTAINING_RECORD(iface, struct d2d_geometry, ID2D1Geometry_iface);
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_QueryInterface(ID2D1PathGeometry *iface, REFIID iid, void **out)
{
TRACE("iface %p, iid %s, out %p.\n", iface, debugstr_guid(iid), out);
if (IsEqualGUID(iid, &IID_ID2D1PathGeometry)
|| IsEqualGUID(iid, &IID_ID2D1Geometry)
|| IsEqualGUID(iid, &IID_ID2D1Resource)
|| IsEqualGUID(iid, &IID_IUnknown))
{
ID2D1PathGeometry_AddRef(iface);
*out = iface;
return S_OK;
}
WARN("%s not implemented, returning E_NOINTERFACE.\n", debugstr_guid(iid));
*out = NULL;
return E_NOINTERFACE;
}
static ULONG STDMETHODCALLTYPE d2d_path_geometry_AddRef(ID2D1PathGeometry *iface)
{
struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface);
ULONG refcount = InterlockedIncrement(&geometry->refcount);
TRACE("%p increasing refcount to %u.\n", iface, refcount);
return refcount;
}
static ULONG STDMETHODCALLTYPE d2d_path_geometry_Release(ID2D1PathGeometry *iface)
{
struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface);
ULONG refcount = InterlockedDecrement(&geometry->refcount);
TRACE("%p decreasing refcount to %u.\n", iface, refcount);
if (!refcount)
{
d2d_path_geometry_free_figures(geometry);
d2d_geometry_cleanup(geometry);
HeapFree(GetProcessHeap(), 0, geometry);
}
return refcount;
}
static void STDMETHODCALLTYPE d2d_path_geometry_GetFactory(ID2D1PathGeometry *iface, ID2D1Factory **factory)
{
struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface);
TRACE("iface %p, factory %p.\n", iface, factory);
ID2D1Factory_AddRef(*factory = geometry->factory);
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_GetBounds(ID2D1PathGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, D2D1_RECT_F *bounds)
{
FIXME("iface %p, transform %p, bounds %p stub!\n", iface, transform, bounds);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_GetWidenedBounds(ID2D1PathGeometry *iface, float stroke_width,
ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_RECT_F *bounds)
{
FIXME("iface %p, stroke_width %.8e, stroke_style %p, transform %p, tolerance %.8e, bounds %p stub!\n",
iface, stroke_width, stroke_style, transform, tolerance, bounds);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_StrokeContainsPoint(ID2D1PathGeometry *iface,
D2D1_POINT_2F point, float stroke_width, ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform,
float tolerance, BOOL *contains)
{
FIXME("iface %p, point {%.8e, %.8e}, stroke_width %.8e, stroke_style %p, "
"transform %p, tolerance %.8e, contains %p stub!\n",
iface, point.x, point.y, stroke_width, stroke_style, transform, tolerance, contains);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_FillContainsPoint(ID2D1PathGeometry *iface,
D2D1_POINT_2F point, const D2D1_MATRIX_3X2_F *transform, float tolerance, BOOL *contains)
{
struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface);
D2D1_MATRIX_3X2_F g_i;
TRACE("iface %p, point {%.8e, %.8e}, transform %p, tolerance %.8e, contains %p.\n",
iface, point.x, point.y, transform, tolerance, contains);
if (transform)
{
if (!d2d_matrix_invert(&g_i, transform))
return D2DERR_UNSUPPORTED_OPERATION;
d2d_point_transform(&point, &g_i, point.x, point.y);
}
*contains = !!d2d_path_geometry_point_inside(geometry, &point, FALSE);
TRACE("-> %#x.\n", *contains);
return S_OK;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_CompareWithGeometry(ID2D1PathGeometry *iface,
ID2D1Geometry *geometry, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_GEOMETRY_RELATION *relation)
{
FIXME("iface %p, geometry %p, transform %p, tolerance %.8e, relation %p stub!\n",
iface, geometry, transform, tolerance, relation);
return E_NOTIMPL;
}
static void d2d_geometry_flatten_cubic(ID2D1SimplifiedGeometrySink *sink, const D2D1_POINT_2F *p0,
const D2D1_BEZIER_SEGMENT *b, float tolerance)
{
D2D1_BEZIER_SEGMENT b0, b1;
D2D1_POINT_2F q;
float d;
/* It's certainly possible to calculate the maximum deviation of the
* approximation from the curve, but it's a little involved. Instead, note
* that if the control points were evenly spaced and collinear, p1 would
* be exactly between p0 and p2, and p2 would be exactly between p1 and
* p3. The deviation is a decent enough approximation, and much easier to
* calculate.
*
* p1' = (p0 + p2) / 2
* p2' = (p1 + p3) / 2
* d = ‖p1 - p1'‖₁ + ‖p2 - p2'‖₁ */
d2d_point_lerp(&q, p0, &b->point2, 0.5f);
d2d_point_subtract(&q, &b->point1, &q);
d = fabsf(q.x) + fabsf(q.y);
d2d_point_lerp(&q, &b->point1, &b->point3, 0.5f);
d2d_point_subtract(&q, &b->point2, &q);
d += fabsf(q.x) + fabsf(q.y);
if (d < tolerance)
{
ID2D1SimplifiedGeometrySink_AddLines(sink, &b->point3, 1);
return;
}
d2d_point_lerp(&q, &b->point1, &b->point2, 0.5f);
b1.point3 = b->point3;
d2d_point_lerp(&b1.point2, &b1.point3, &b->point2, 0.5f);
d2d_point_lerp(&b1.point1, &b1.point2, &q, 0.5f);
d2d_point_lerp(&b0.point1, p0, &b->point1, 0.5f);
d2d_point_lerp(&b0.point2, &b0.point1, &q, 0.5f);
d2d_point_lerp(&b0.point3, &b0.point2, &b1.point1, 0.5f);
d2d_geometry_flatten_cubic(sink, p0, &b0, tolerance);
ID2D1SimplifiedGeometrySink_SetSegmentFlags(sink, D2D1_PATH_SEGMENT_FORCE_ROUND_LINE_JOIN);
d2d_geometry_flatten_cubic(sink, &b0.point3, &b1, tolerance);
ID2D1SimplifiedGeometrySink_SetSegmentFlags(sink, D2D1_PATH_SEGMENT_NONE);
}
static void d2d_geometry_simplify_quadratic(ID2D1SimplifiedGeometrySink *sink,
D2D1_GEOMETRY_SIMPLIFICATION_OPTION option, const D2D1_POINT_2F *p0,
const D2D1_POINT_2F *p1, const D2D1_POINT_2F *p2, float tolerance)
{
D2D1_BEZIER_SEGMENT b;
d2d_point_lerp(&b.point1, p0, p1, 2.0f / 3.0f);
d2d_point_lerp(&b.point2, p2, p1, 2.0f / 3.0f);
b.point3 = *p2;
if (option == D2D1_GEOMETRY_SIMPLIFICATION_OPTION_LINES)
d2d_geometry_flatten_cubic(sink, p0, &b, tolerance);
else
ID2D1SimplifiedGeometrySink_AddBeziers(sink, &b, 1);
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_Simplify(ID2D1PathGeometry *iface,
D2D1_GEOMETRY_SIMPLIFICATION_OPTION option, const D2D1_MATRIX_3X2_F *transform, float tolerance,
ID2D1SimplifiedGeometrySink *sink)
{
struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface);
enum d2d_vertex_type type = D2D_VERTEX_TYPE_NONE;
unsigned int i, j, bezier_idx;
D2D1_FIGURE_BEGIN begin;
D2D1_POINT_2F p, p1, p2;
D2D1_FIGURE_END end;
TRACE("iface %p, option %#x, transform %p, tolerance %.8e, sink %p.\n",
iface, option, transform, tolerance, sink);
ID2D1SimplifiedGeometrySink_SetFillMode(sink, geometry->u.path.fill_mode);
for (i = 0; i < geometry->u.path.figure_count; ++i)
{
const struct d2d_figure *figure = &geometry->u.path.figures[i];
for (j = 0; j < figure->vertex_count; ++j)
{
if (figure->vertex_types[j] == D2D_VERTEX_TYPE_NONE)
continue;
p = figure->vertices[j];
if (transform)
d2d_point_transform(&p, transform, p.x, p.y);
begin = figure->flags & D2D_FIGURE_FLAG_HOLLOW ? D2D1_FIGURE_BEGIN_HOLLOW : D2D1_FIGURE_BEGIN_FILLED;
ID2D1SimplifiedGeometrySink_BeginFigure(sink, p, begin);
type = figure->vertex_types[j];
break;
}
for (bezier_idx = 0, ++j; j < figure->vertex_count; ++j)
{
if (figure->vertex_types[j] == D2D_VERTEX_TYPE_NONE)
continue;
switch (type)
{
case D2D_VERTEX_TYPE_LINE:
p = figure->vertices[j];
if (transform)
d2d_point_transform(&p, transform, p.x, p.y);
ID2D1SimplifiedGeometrySink_AddLines(sink, &p, 1);
break;
case D2D_VERTEX_TYPE_BEZIER:
p1 = figure->bezier_controls[bezier_idx++];
if (transform)
d2d_point_transform(&p1, transform, p1.x, p1.y);
p2 = figure->vertices[j];
if (transform)
d2d_point_transform(&p2, transform, p2.x, p2.y);
d2d_geometry_simplify_quadratic(sink, option, &p, &p1, &p2, tolerance);
p = p2;
break;
default:
FIXME("Unhandled vertex type %#x.\n", type);
p = figure->vertices[j];
if (transform)
d2d_point_transform(&p, transform, p.x, p.y);
ID2D1SimplifiedGeometrySink_AddLines(sink, &p, 1);
break;
}
type = figure->vertex_types[j];
}
if (type == D2D_VERTEX_TYPE_BEZIER)
{
p1 = figure->bezier_controls[bezier_idx++];
if (transform)
d2d_point_transform(&p1, transform, p1.x, p1.y);
p2 = figure->vertices[0];
if (transform)
d2d_point_transform(&p2, transform, p2.x, p2.y);
d2d_geometry_simplify_quadratic(sink, option, &p, &p1, &p2, tolerance);
}
end = figure->flags & D2D_FIGURE_FLAG_CLOSED ? D2D1_FIGURE_END_CLOSED : D2D1_FIGURE_END_OPEN;
ID2D1SimplifiedGeometrySink_EndFigure(sink, end);
}
return S_OK;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_Tessellate(ID2D1PathGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1TessellationSink *sink)
{
FIXME("iface %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, transform, tolerance, sink);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_CombineWithGeometry(ID2D1PathGeometry *iface,
ID2D1Geometry *geometry, D2D1_COMBINE_MODE combine_mode, const D2D1_MATRIX_3X2_F *transform,
float tolerance, ID2D1SimplifiedGeometrySink *sink)
{
FIXME("iface %p, geometry %p, combine_mode %#x, transform %p, tolerance %.8e, sink %p stub!\n",
iface, geometry, combine_mode, transform, tolerance, sink);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_Outline(ID2D1PathGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink)
{
FIXME("iface %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, transform, tolerance, sink);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_ComputeArea(ID2D1PathGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, float tolerance, float *area)
{
FIXME("iface %p, transform %p, tolerance %.8e, area %p stub!\n", iface, transform, tolerance, area);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_ComputeLength(ID2D1PathGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, float tolerance, float *length)
{
FIXME("iface %p, transform %p, tolerance %.8e, length %p stub!\n", iface, transform, tolerance, length);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_ComputePointAtLength(ID2D1PathGeometry *iface, float length,
const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_POINT_2F *point, D2D1_POINT_2F *tangent)
{
FIXME("iface %p, length %.8e, transform %p, tolerance %.8e, point %p, tangent %p stub!\n",
iface, length, transform, tolerance, point, tangent);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_Widen(ID2D1PathGeometry *iface, float stroke_width,
ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform, float tolerance,
ID2D1SimplifiedGeometrySink *sink)
{
FIXME("iface %p, stroke_width %.8e, stroke_style %p, transform %p, tolerance %.8e, sink %p stub!\n",
iface, stroke_width, stroke_style, transform, tolerance, sink);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_Open(ID2D1PathGeometry *iface, ID2D1GeometrySink **sink)
{
struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface);
TRACE("iface %p, sink %p.\n", iface, sink);
if (geometry->u.path.state != D2D_GEOMETRY_STATE_INITIAL)
return D2DERR_WRONG_STATE;
*sink = &geometry->u.path.ID2D1GeometrySink_iface;
ID2D1GeometrySink_AddRef(*sink);
geometry->u.path.state = D2D_GEOMETRY_STATE_OPEN;
return S_OK;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_Stream(ID2D1PathGeometry *iface, ID2D1GeometrySink *sink)
{
FIXME("iface %p, sink %p stub!\n", iface, sink);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_GetSegmentCount(ID2D1PathGeometry *iface, UINT32 *count)
{
struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface);
TRACE("iface %p, count %p.\n", iface, count);
if (geometry->u.path.state != D2D_GEOMETRY_STATE_CLOSED)
return D2DERR_WRONG_STATE;
*count = geometry->u.path.segment_count;
return S_OK;
}
static HRESULT STDMETHODCALLTYPE d2d_path_geometry_GetFigureCount(ID2D1PathGeometry *iface, UINT32 *count)
{
struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface);
TRACE("iface %p, count %p.\n", iface, count);
if (geometry->u.path.state != D2D_GEOMETRY_STATE_CLOSED)
return D2DERR_WRONG_STATE;
*count = geometry->u.path.figure_count;
return S_OK;
}
static const struct ID2D1PathGeometryVtbl d2d_path_geometry_vtbl =
{
d2d_path_geometry_QueryInterface,
d2d_path_geometry_AddRef,
d2d_path_geometry_Release,
d2d_path_geometry_GetFactory,
d2d_path_geometry_GetBounds,
d2d_path_geometry_GetWidenedBounds,
d2d_path_geometry_StrokeContainsPoint,
d2d_path_geometry_FillContainsPoint,
d2d_path_geometry_CompareWithGeometry,
d2d_path_geometry_Simplify,
d2d_path_geometry_Tessellate,
d2d_path_geometry_CombineWithGeometry,
d2d_path_geometry_Outline,
d2d_path_geometry_ComputeArea,
d2d_path_geometry_ComputeLength,
d2d_path_geometry_ComputePointAtLength,
d2d_path_geometry_Widen,
d2d_path_geometry_Open,
d2d_path_geometry_Stream,
d2d_path_geometry_GetSegmentCount,
d2d_path_geometry_GetFigureCount,
};
void d2d_path_geometry_init(struct d2d_geometry *geometry, ID2D1Factory *factory)
{
d2d_geometry_init(geometry, factory, &identity, (ID2D1GeometryVtbl *)&d2d_path_geometry_vtbl);
geometry->u.path.ID2D1GeometrySink_iface.lpVtbl = &d2d_geometry_sink_vtbl;
}
static inline struct d2d_geometry *impl_from_ID2D1RectangleGeometry(ID2D1RectangleGeometry *iface)
{
return CONTAINING_RECORD(iface, struct d2d_geometry, ID2D1Geometry_iface);
}
static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_QueryInterface(ID2D1RectangleGeometry *iface,
REFIID iid, void **out)
{
TRACE("iface %p, iid %s, out %p.\n", iface, debugstr_guid(iid), out);
if (IsEqualGUID(iid, &IID_ID2D1RectangleGeometry)
|| IsEqualGUID(iid, &IID_ID2D1Geometry)
|| IsEqualGUID(iid, &IID_ID2D1Resource)
|| IsEqualGUID(iid, &IID_IUnknown))
{
ID2D1RectangleGeometry_AddRef(iface);
*out = iface;
return S_OK;
}
WARN("%s not implemented, returning E_NOINTERFACE.\n", debugstr_guid(iid));
*out = NULL;
return E_NOINTERFACE;
}
static ULONG STDMETHODCALLTYPE d2d_rectangle_geometry_AddRef(ID2D1RectangleGeometry *iface)
{
struct d2d_geometry *geometry = impl_from_ID2D1RectangleGeometry(iface);
ULONG refcount = InterlockedIncrement(&geometry->refcount);
TRACE("%p increasing refcount to %u.\n", iface, refcount);
return refcount;
}
static ULONG STDMETHODCALLTYPE d2d_rectangle_geometry_Release(ID2D1RectangleGeometry *iface)
{
struct d2d_geometry *geometry = impl_from_ID2D1RectangleGeometry(iface);
ULONG refcount = InterlockedDecrement(&geometry->refcount);
TRACE("%p decreasing refcount to %u.\n", iface, refcount);
if (!refcount)
{
d2d_geometry_cleanup(geometry);
HeapFree(GetProcessHeap(), 0, geometry);
}
return refcount;
}
static void STDMETHODCALLTYPE d2d_rectangle_geometry_GetFactory(ID2D1RectangleGeometry *iface, ID2D1Factory **factory)
{
struct d2d_geometry *geometry = impl_from_ID2D1RectangleGeometry(iface);
TRACE("iface %p, factory %p.\n", iface, factory);
ID2D1Factory_AddRef(*factory = geometry->factory);
}
static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_GetBounds(ID2D1RectangleGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, D2D1_RECT_F *bounds)
{
struct d2d_geometry *geometry = impl_from_ID2D1RectangleGeometry(iface);
D2D1_RECT_F *rect;
D2D1_POINT_2F p;
TRACE("iface %p, transform %p, bounds %p.\n", iface, transform, bounds);
rect = &geometry->u.rectangle.rect;
if (!transform)
{
*bounds = *rect;
return S_OK;
}
bounds->left = FLT_MAX;
bounds->top = FLT_MAX;
bounds->right = -FLT_MAX;
bounds->bottom = -FLT_MAX;
d2d_point_transform(&p, transform, rect->left, rect->top);
d2d_rect_expand(bounds, &p);
d2d_point_transform(&p, transform, rect->left, rect->bottom);
d2d_rect_expand(bounds, &p);
d2d_point_transform(&p, transform, rect->right, rect->bottom);
d2d_rect_expand(bounds, &p);
d2d_point_transform(&p, transform, rect->right, rect->top);
d2d_rect_expand(bounds, &p);
return S_OK;
}
static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_GetWidenedBounds(ID2D1RectangleGeometry *iface,
float stroke_width, ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform,
float tolerance, D2D1_RECT_F *bounds)
{
FIXME("iface %p, stroke_width %.8e, stroke_style %p, transform %p, tolerance %.8e, bounds %p stub!\n",
iface, stroke_width, stroke_style, transform, tolerance, bounds);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_StrokeContainsPoint(ID2D1RectangleGeometry *iface,
D2D1_POINT_2F point, float stroke_width, ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform,
float tolerance, BOOL *contains)
{
FIXME("iface %p, point {%.8e, %.8e}, stroke_width %.8e, stroke_style %p, "
"transform %p, tolerance %.8e, contains %p stub!\n",
iface, point.x, point.y, stroke_width, stroke_style, transform, tolerance, contains);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_FillContainsPoint(ID2D1RectangleGeometry *iface,
D2D1_POINT_2F point, const D2D1_MATRIX_3X2_F *transform, float tolerance, BOOL *contains)
{
struct d2d_geometry *geometry = impl_from_ID2D1RectangleGeometry(iface);
D2D1_RECT_F *rect = &geometry->u.rectangle.rect;
float dx, dy;
TRACE("iface %p, point {%.8e, %.8e}, transform %p, tolerance %.8e, contains %p.\n",
iface, point.x, point.y, transform, tolerance, contains);
if (transform)
{
D2D1_MATRIX_3X2_F g_i;
if (!d2d_matrix_invert(&g_i, transform))
return D2DERR_UNSUPPORTED_OPERATION;
d2d_point_transform(&point, &g_i, point.x, point.y);
}
if (tolerance == 0.0f)
tolerance = D2D1_DEFAULT_FLATTENING_TOLERANCE;
dx = max(fabsf((rect->right + rect->left) / 2.0f - point.x) - (rect->right - rect->left) / 2.0f, 0.0f);
dy = max(fabsf((rect->bottom + rect->top) / 2.0f - point.y) - (rect->bottom - rect->top) / 2.0f, 0.0f);
*contains = tolerance * tolerance > (dx * dx + dy * dy);
return S_OK;
}
static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_CompareWithGeometry(ID2D1RectangleGeometry *iface,
ID2D1Geometry *geometry, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_GEOMETRY_RELATION *relation)
{
FIXME("iface %p, geometry %p, transform %p, tolerance %.8e, relation %p stub!\n",
iface, geometry, transform, tolerance, relation);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_Simplify(ID2D1RectangleGeometry *iface,
D2D1_GEOMETRY_SIMPLIFICATION_OPTION option, const D2D1_MATRIX_3X2_F *transform, float tolerance,
ID2D1SimplifiedGeometrySink *sink)
{
struct d2d_geometry *geometry = impl_from_ID2D1RectangleGeometry(iface);
D2D1_RECT_F *rect = &geometry->u.rectangle.rect;
D2D1_POINT_2F p[4];
unsigned int i;
TRACE("iface %p, option %#x, transform %p, tolerance %.8e, sink %p.\n",
iface, option, transform, tolerance, sink);
d2d_point_set(&p[0], rect->left, rect->top);
d2d_point_set(&p[1], rect->right, rect->top);
d2d_point_set(&p[2], rect->right, rect->bottom);
d2d_point_set(&p[3], rect->left, rect->bottom);
if (transform)
{
for (i = 0; i < ARRAY_SIZE(p); ++i)
{
d2d_point_transform(&p[i], transform, p[i].x, p[i].y);
}
}
ID2D1SimplifiedGeometrySink_SetFillMode(sink, D2D1_FILL_MODE_ALTERNATE);
ID2D1SimplifiedGeometrySink_BeginFigure(sink, p[0], D2D1_FIGURE_BEGIN_FILLED);
ID2D1SimplifiedGeometrySink_AddLines(sink, &p[1], 3);
ID2D1SimplifiedGeometrySink_EndFigure(sink, D2D1_FIGURE_END_CLOSED);
return S_OK;
}
static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_Tessellate(ID2D1RectangleGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1TessellationSink *sink)
{
FIXME("iface %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, transform, tolerance, sink);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_CombineWithGeometry(ID2D1RectangleGeometry *iface,
ID2D1Geometry *geometry, D2D1_COMBINE_MODE combine_mode, const D2D1_MATRIX_3X2_F *transform,
float tolerance, ID2D1SimplifiedGeometrySink *sink)
{
FIXME("iface %p, geometry %p, combine_mode %#x, transform %p, tolerance %.8e, sink %p stub!\n",
iface, geometry, combine_mode, transform, tolerance, sink);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_Outline(ID2D1RectangleGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink)
{
FIXME("iface %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, transform, tolerance, sink);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_ComputeArea(ID2D1RectangleGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, float tolerance, float *area)
{
FIXME("iface %p, transform %p, tolerance %.8e, area %p stub!\n", iface, transform, tolerance, area);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_ComputeLength(ID2D1RectangleGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, float tolerance, float *length)
{
FIXME("iface %p, transform %p, tolerance %.8e, length %p stub!\n", iface, transform, tolerance, length);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_ComputePointAtLength(ID2D1RectangleGeometry *iface,
float length, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_POINT_2F *point,
D2D1_POINT_2F *tangent)
{
FIXME("iface %p, length %.8e, transform %p, tolerance %.8e, point %p, tangent %p stub!\n",
iface, length, transform, tolerance, point, tangent);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_Widen(ID2D1RectangleGeometry *iface, float stroke_width,
ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform, float tolerance,
ID2D1SimplifiedGeometrySink *sink)
{
FIXME("iface %p, stroke_width %.8e, stroke_style %p, transform %p, tolerance %.8e, sink %p stub!\n",
iface, stroke_width, stroke_style, transform, tolerance, sink);
return E_NOTIMPL;
}
static void STDMETHODCALLTYPE d2d_rectangle_geometry_GetRect(ID2D1RectangleGeometry *iface, D2D1_RECT_F *rect)
{
struct d2d_geometry *geometry = impl_from_ID2D1RectangleGeometry(iface);
TRACE("iface %p, rect %p.\n", iface, rect);
*rect = geometry->u.rectangle.rect;
}
static const struct ID2D1RectangleGeometryVtbl d2d_rectangle_geometry_vtbl =
{
d2d_rectangle_geometry_QueryInterface,
d2d_rectangle_geometry_AddRef,
d2d_rectangle_geometry_Release,
d2d_rectangle_geometry_GetFactory,
d2d_rectangle_geometry_GetBounds,
d2d_rectangle_geometry_GetWidenedBounds,
d2d_rectangle_geometry_StrokeContainsPoint,
d2d_rectangle_geometry_FillContainsPoint,
d2d_rectangle_geometry_CompareWithGeometry,
d2d_rectangle_geometry_Simplify,
d2d_rectangle_geometry_Tessellate,
d2d_rectangle_geometry_CombineWithGeometry,
d2d_rectangle_geometry_Outline,
d2d_rectangle_geometry_ComputeArea,
d2d_rectangle_geometry_ComputeLength,
d2d_rectangle_geometry_ComputePointAtLength,
d2d_rectangle_geometry_Widen,
d2d_rectangle_geometry_GetRect,
};
HRESULT d2d_rectangle_geometry_init(struct d2d_geometry *geometry, ID2D1Factory *factory, const D2D1_RECT_F *rect)
{
struct d2d_face *f;
D2D1_POINT_2F *v;
float l, r, t, b;
d2d_geometry_init(geometry, factory, &identity, (ID2D1GeometryVtbl *)&d2d_rectangle_geometry_vtbl);
geometry->u.rectangle.rect = *rect;
if (!(geometry->fill.vertices = HeapAlloc(GetProcessHeap(), 0, 4 * sizeof(*geometry->fill.vertices))))
goto fail;
if (!d2d_array_reserve((void **)&geometry->fill.faces,
&geometry->fill.faces_size, 2, sizeof(*geometry->fill.faces)))
goto fail;
l = min(rect->left, rect->right);
r = max(rect->left, rect->right);
t = min(rect->top, rect->bottom);
b = max(rect->top, rect->bottom);
v = geometry->fill.vertices;
d2d_point_set(&v[0], l, t);
d2d_point_set(&v[1], l, b);
d2d_point_set(&v[2], r, b);
d2d_point_set(&v[3], r, t);
geometry->fill.vertex_count = 4;
f = geometry->fill.faces;
d2d_face_set(&f[0], 1, 2, 0);
d2d_face_set(&f[1], 0, 2, 3);
geometry->fill.face_count = 2;
if (!d2d_geometry_outline_add_line_segment(geometry, &v[0], &v[1]))
goto fail;
if (!d2d_geometry_outline_add_line_segment(geometry, &v[1], &v[2]))
goto fail;
if (!d2d_geometry_outline_add_line_segment(geometry, &v[2], &v[3]))
goto fail;
if (!d2d_geometry_outline_add_line_segment(geometry, &v[3], &v[0]))
goto fail;
if (!d2d_geometry_outline_add_join(geometry, &v[3], &v[0], &v[1]))
goto fail;
if (!d2d_geometry_outline_add_join(geometry, &v[0], &v[1], &v[2]))
goto fail;
if (!d2d_geometry_outline_add_join(geometry, &v[1], &v[2], &v[3]))
goto fail;
if (!d2d_geometry_outline_add_join(geometry, &v[2], &v[3], &v[0]))
goto fail;
return S_OK;
fail:
d2d_geometry_cleanup(geometry);
return E_OUTOFMEMORY;
}
static inline struct d2d_geometry *impl_from_ID2D1TransformedGeometry(ID2D1TransformedGeometry *iface)
{
return CONTAINING_RECORD(iface, struct d2d_geometry, ID2D1Geometry_iface);
}
static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_QueryInterface(ID2D1TransformedGeometry *iface,
REFIID iid, void **out)
{
TRACE("iface %p, iid %s, out %p.\n", iface, debugstr_guid(iid), out);
if (IsEqualGUID(iid, &IID_ID2D1TransformedGeometry)
|| IsEqualGUID(iid, &IID_ID2D1Geometry)
|| IsEqualGUID(iid, &IID_ID2D1Resource)
|| IsEqualGUID(iid, &IID_IUnknown))
{
ID2D1TransformedGeometry_AddRef(iface);
*out = iface;
return S_OK;
}
WARN("%s not implemented, returning E_NOINTERFACE.\n", debugstr_guid(iid));
*out = NULL;
return E_NOINTERFACE;
}
static ULONG STDMETHODCALLTYPE d2d_transformed_geometry_AddRef(ID2D1TransformedGeometry *iface)
{
struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface);
ULONG refcount = InterlockedIncrement(&geometry->refcount);
TRACE("%p increasing refcount to %u.\n", iface, refcount);
return refcount;
}
static ULONG STDMETHODCALLTYPE d2d_transformed_geometry_Release(ID2D1TransformedGeometry *iface)
{
struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface);
ULONG refcount = InterlockedDecrement(&geometry->refcount);
TRACE("%p decreasing refcount to %u.\n", iface, refcount);
if (!refcount)
{
geometry->outline.bezier_faces = NULL;
geometry->outline.beziers = NULL;
geometry->outline.faces = NULL;
geometry->outline.vertices = NULL;
geometry->fill.bezier_vertices = NULL;
geometry->fill.faces = NULL;
geometry->fill.vertices = NULL;
ID2D1Geometry_Release(geometry->u.transformed.src_geometry);
d2d_geometry_cleanup(geometry);
HeapFree(GetProcessHeap(), 0, geometry);
}
return refcount;
}
static void STDMETHODCALLTYPE d2d_transformed_geometry_GetFactory(ID2D1TransformedGeometry *iface,
ID2D1Factory **factory)
{
struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface);
TRACE("iface %p, factory %p.\n", iface, factory);
ID2D1Factory_AddRef(*factory = geometry->factory);
}
static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_GetBounds(ID2D1TransformedGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, D2D1_RECT_F *bounds)
{
struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface);
D2D1_MATRIX_3X2_F g;
TRACE("iface %p, transform %p, bounds %p.\n", iface, transform, bounds);
g = geometry->transform;
if (transform)
d2d_matrix_multiply(&g, transform);
return ID2D1Geometry_GetBounds(geometry->u.transformed.src_geometry, &g, bounds);
}
static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_GetWidenedBounds(ID2D1TransformedGeometry *iface,
float stroke_width, ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform,
float tolerance, D2D1_RECT_F *bounds)
{
FIXME("iface %p, stroke_width %.8e, stroke_style %p, transform %p, tolerance %.8e, bounds %p stub!\n",
iface, stroke_width, stroke_style, transform, tolerance, bounds);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_StrokeContainsPoint(ID2D1TransformedGeometry *iface,
D2D1_POINT_2F point, float stroke_width, ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform,
float tolerance, BOOL *contains)
{
struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface);
D2D1_MATRIX_3X2_F g;
TRACE("iface %p, point {%.8e, %.8e}, stroke_width %.8e, stroke_style %p, "
"transform %p, tolerance %.8e, contains %p.\n",
iface, point.x, point.y, stroke_width, stroke_style, transform, tolerance, contains);
g = geometry->transform;
if (transform)
d2d_matrix_multiply(&g, transform);
return ID2D1Geometry_StrokeContainsPoint(geometry->u.transformed.src_geometry, point, stroke_width, stroke_style,
&g, tolerance, contains);
}
static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_FillContainsPoint(ID2D1TransformedGeometry *iface,
D2D1_POINT_2F point, const D2D1_MATRIX_3X2_F *transform, float tolerance, BOOL *contains)
{
struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface);
D2D1_MATRIX_3X2_F g;
TRACE("iface %p, point {%.8e, %.8e}, transform %p, tolerance %.8e, contains %p.\n",
iface, point.x, point.y, transform, tolerance, contains);
g = geometry->transform;
if (transform)
d2d_matrix_multiply(&g, transform);
return ID2D1Geometry_FillContainsPoint(geometry->u.transformed.src_geometry, point, &g, tolerance, contains);
}
static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_CompareWithGeometry(ID2D1TransformedGeometry *iface,
ID2D1Geometry *geometry, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_GEOMETRY_RELATION *relation)
{
FIXME("iface %p, geometry %p, transform %p, tolerance %.8e, relation %p stub!\n",
iface, geometry, transform, tolerance, relation);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_Simplify(ID2D1TransformedGeometry *iface,
D2D1_GEOMETRY_SIMPLIFICATION_OPTION option, const D2D1_MATRIX_3X2_F *transform, float tolerance,
ID2D1SimplifiedGeometrySink *sink)
{
struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface);
D2D1_MATRIX_3X2_F g;
TRACE("iface %p, option %#x, transform %p, tolerance %.8e, sink %p.\n",
iface, option, transform, tolerance, sink);
g = geometry->transform;
if (transform)
d2d_matrix_multiply(&g, transform);
return ID2D1Geometry_Simplify(geometry->u.transformed.src_geometry, option, &g, tolerance, sink);
}
static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_Tessellate(ID2D1TransformedGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1TessellationSink *sink)
{
FIXME("iface %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, transform, tolerance, sink);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_CombineWithGeometry(ID2D1TransformedGeometry *iface,
ID2D1Geometry *geometry, D2D1_COMBINE_MODE combine_mode, const D2D1_MATRIX_3X2_F *transform,
float tolerance, ID2D1SimplifiedGeometrySink *sink)
{
FIXME("iface %p, geometry %p, combine_mode %#x, transform %p, tolerance %.8e, sink %p stub!\n",
iface, geometry, combine_mode, transform, tolerance, sink);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_Outline(ID2D1TransformedGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink)
{
FIXME("iface %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, transform, tolerance, sink);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_ComputeArea(ID2D1TransformedGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, float tolerance, float *area)
{
FIXME("iface %p, transform %p, tolerance %.8e, area %p stub!\n", iface, transform, tolerance, area);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_ComputeLength(ID2D1TransformedGeometry *iface,
const D2D1_MATRIX_3X2_F *transform, float tolerance, float *length)
{
FIXME("iface %p, transform %p, tolerance %.8e, length %p stub!\n", iface, transform, tolerance, length);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_ComputePointAtLength(ID2D1TransformedGeometry *iface,
float length, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_POINT_2F *point,
D2D1_POINT_2F *tangent)
{
FIXME("iface %p, length %.8e, transform %p, tolerance %.8e, point %p, tangent %p stub!\n",
iface, length, transform, tolerance, point, tangent);
return E_NOTIMPL;
}
static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_Widen(ID2D1TransformedGeometry *iface, float stroke_width,
ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform, float tolerance,
ID2D1SimplifiedGeometrySink *sink)
{
FIXME("iface %p, stroke_width %.8e, stroke_style %p, transform %p, tolerance %.8e, sink %p stub!\n",
iface, stroke_width, stroke_style, transform, tolerance, sink);
return E_NOTIMPL;
}
static void STDMETHODCALLTYPE d2d_transformed_geometry_GetSourceGeometry(ID2D1TransformedGeometry *iface,
ID2D1Geometry **src_geometry)
{
struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface);
TRACE("iface %p, src_geometry %p.\n", iface, src_geometry);
ID2D1Geometry_AddRef(*src_geometry = geometry->u.transformed.src_geometry);
}
static void STDMETHODCALLTYPE d2d_transformed_geometry_GetTransform(ID2D1TransformedGeometry *iface,
D2D1_MATRIX_3X2_F *transform)
{
struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface);
TRACE("iface %p, transform %p.\n", iface, transform);
*transform = geometry->u.transformed.transform;
}
static const struct ID2D1TransformedGeometryVtbl d2d_transformed_geometry_vtbl =
{
d2d_transformed_geometry_QueryInterface,
d2d_transformed_geometry_AddRef,
d2d_transformed_geometry_Release,
d2d_transformed_geometry_GetFactory,
d2d_transformed_geometry_GetBounds,
d2d_transformed_geometry_GetWidenedBounds,
d2d_transformed_geometry_StrokeContainsPoint,
d2d_transformed_geometry_FillContainsPoint,
d2d_transformed_geometry_CompareWithGeometry,
d2d_transformed_geometry_Simplify,
d2d_transformed_geometry_Tessellate,
d2d_transformed_geometry_CombineWithGeometry,
d2d_transformed_geometry_Outline,
d2d_transformed_geometry_ComputeArea,
d2d_transformed_geometry_ComputeLength,
d2d_transformed_geometry_ComputePointAtLength,
d2d_transformed_geometry_Widen,
d2d_transformed_geometry_GetSourceGeometry,
d2d_transformed_geometry_GetTransform,
};
void d2d_transformed_geometry_init(struct d2d_geometry *geometry, ID2D1Factory *factory,
ID2D1Geometry *src_geometry, const D2D_MATRIX_3X2_F *transform)
{
struct d2d_geometry *src_impl;
D2D_MATRIX_3X2_F g;
src_impl = unsafe_impl_from_ID2D1Geometry(src_geometry);
g = src_impl->transform;
d2d_matrix_multiply(&g, transform);
d2d_geometry_init(geometry, factory, &g, (ID2D1GeometryVtbl *)&d2d_transformed_geometry_vtbl);
ID2D1Geometry_AddRef(geometry->u.transformed.src_geometry = src_geometry);
geometry->u.transformed.transform = *transform;
geometry->fill = src_impl->fill;
geometry->outline = src_impl->outline;
}
struct d2d_geometry *unsafe_impl_from_ID2D1Geometry(ID2D1Geometry *iface)
{
if (!iface)
return NULL;
assert(iface->lpVtbl == (const ID2D1GeometryVtbl *)&d2d_path_geometry_vtbl
|| iface->lpVtbl == (const ID2D1GeometryVtbl *)&d2d_rectangle_geometry_vtbl
|| iface->lpVtbl == (const ID2D1GeometryVtbl *)&d2d_transformed_geometry_vtbl);
return CONTAINING_RECORD(iface, struct d2d_geometry, ID2D1Geometry_iface);
}