Sweden-Number/tools/winebuild/relay.c

1014 lines
41 KiB
C

/*
* Relay calls helper routines
*
* Copyright 1993 Robert J. Amstadt
* Copyright 1995 Martin von Loewis
* Copyright 1995, 1996, 1997 Alexandre Julliard
* Copyright 1997 Eric Youngdale
* Copyright 1999 Ulrich Weigand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include "wine/port.h"
#include <ctype.h>
#include "thread.h"
#include "wine/winbase16.h"
#include "build.h"
static void function_header( FILE *outfile, const char *name )
{
fprintf( outfile, "\n\t.align %d\n", get_alignment(4) );
fprintf( outfile, "\t%s\n", func_declaration(name) );
fprintf( outfile, "\t.globl %s\n", asm_name(name) );
fprintf( outfile, "%s:\n", asm_name(name) );
}
static void function_footer( FILE *outfile, const char *name )
{
const char *size = func_size( name );
if (size[0]) fprintf( outfile, "\t%s\n", size );
}
static inline const char *data16_prefix(void)
{
return (target_platform == PLATFORM_SVR4) ? "\tdata16\n" : "";
}
/*******************************************************************
* BuildCallFrom16Core
*
* This routine builds the core routines used in 16->32 thunks:
* CallFrom16Word, CallFrom16Long, CallFrom16Register, and CallFrom16Thunk.
*
* These routines are intended to be called via a far call (with 32-bit
* operand size) from 16-bit code. The 16-bit code stub must push %bp,
* the 32-bit entry point to be called, and the argument conversion
* routine to be used (see stack layout below).
*
* The core routine completes the STACK16FRAME on the 16-bit stack and
* switches to the 32-bit stack. Then, the argument conversion routine
* is called; it gets passed the 32-bit entry point and a pointer to the
* 16-bit arguments (on the 16-bit stack) as parameters. (You can either
* use conversion routines automatically generated by BuildCallFrom16,
* or write your own for special purposes.)
*
* The conversion routine must call the 32-bit entry point, passing it
* the converted arguments, and return its return value to the core.
* After the conversion routine has returned, the core switches back
* to the 16-bit stack, converts the return value to the DX:AX format
* (CallFrom16Long), and returns to the 16-bit call stub. All parameters,
* including %bp, are popped off the stack.
*
* The 16-bit call stub now returns to the caller, popping the 16-bit
* arguments if necessary (pascal calling convention).
*
* In the case of a 'register' function, CallFrom16Register fills a
* CONTEXT86 structure with the values all registers had at the point
* the first instruction of the 16-bit call stub was about to be
* executed. A pointer to this CONTEXT86 is passed as third parameter
* to the argument conversion routine, which typically passes it on
* to the called 32-bit entry point.
*
* CallFrom16Thunk is a special variant used by the implementation of
* the Win95 16->32 thunk functions C16ThkSL and C16ThkSL01 and is
* implemented as follows:
* On entry, the EBX register is set up to contain a flat pointer to the
* 16-bit stack such that EBX+22 points to the first argument.
* Then, the entry point is called, while EBP is set up to point
* to the return address (on the 32-bit stack).
* The called function returns with CX set to the number of bytes
* to be popped of the caller's stack.
*
* Stack layout upon entry to the core routine (STACK16FRAME):
* ... ...
* (sp+24) word first 16-bit arg
* (sp+22) word cs
* (sp+20) word ip
* (sp+18) word bp
* (sp+14) long 32-bit entry point (reused for Win16 mutex recursion count)
* (sp+12) word ip of actual entry point (necessary for relay debugging)
* (sp+8) long relay (argument conversion) function entry point
* (sp+4) long cs of 16-bit entry point
* (sp) long ip of 16-bit entry point
*
* Added on the stack:
* (sp-2) word saved gs
* (sp-4) word saved fs
* (sp-6) word saved es
* (sp-8) word saved ds
* (sp-12) long saved ebp
* (sp-16) long saved ecx
* (sp-20) long saved edx
* (sp-24) long saved previous stack
*/
static void BuildCallFrom16Core( FILE *outfile, int reg_func, int thunk, int short_ret )
{
const char *name = thunk? "thunk" : reg_func? "regs" : short_ret? "word" : "long";
/* Function header */
if (thunk) function_header( outfile, "__wine_call_from_16_thunk" );
else if (reg_func) function_header( outfile, "__wine_call_from_16_regs" );
else if (short_ret) function_header( outfile, "__wine_call_from_16_word" );
else function_header( outfile, "__wine_call_from_16_long" );
/* Create STACK16FRAME (except STACK32FRAME link) */
fprintf( outfile, "\tpushw %%gs\n" );
fprintf( outfile, "\tpushw %%fs\n" );
fprintf( outfile, "\tpushw %%es\n" );
fprintf( outfile, "\tpushw %%ds\n" );
fprintf( outfile, "\tpushl %%ebp\n" );
fprintf( outfile, "\tpushl %%ecx\n" );
fprintf( outfile, "\tpushl %%edx\n" );
/* Save original EFlags register */
fprintf( outfile, "\tpushfl\n" );
if ( UsePIC )
{
/* Get Global Offset Table into %ecx */
fprintf( outfile, "\tcall .L__wine_call_from_16_%s.getgot1\n", name );
fprintf( outfile, ".L__wine_call_from_16_%s.getgot1:\n", name );
fprintf( outfile, "\tpopl %%ecx\n" );
fprintf( outfile, "\taddl $_GLOBAL_OFFSET_TABLE_+[.-.L__wine_call_from_16_%s.getgot1], %%ecx\n", name );
}
if (UsePIC)
{
fprintf( outfile, "\t.byte 0x2e\n\tmovl %s(%%ecx), %%edx\n", asm_name("CallTo16_DataSelector@GOT") );
fprintf( outfile, "\t.byte 0x2e\n\tmovl (%%edx), %%edx\n" );
}
else
fprintf( outfile, "\t.byte 0x2e\n\tmovl %s,%%edx\n", asm_name("CallTo16_DataSelector") );
/* Load 32-bit segment registers */
fprintf( outfile, "%s\tmovw %%dx, %%ds\n", data16_prefix() );
fprintf( outfile, "%s\tmovw %%dx, %%es\n", data16_prefix() );
if ( UsePIC )
{
fprintf( outfile, "\tmovl %s(%%ecx), %%edx\n", asm_name("CallTo16_TebSelector@GOT") );
fprintf( outfile, "\tmovw (%%edx), %%fs\n" );
}
else
fprintf( outfile, "\tmovw %s, %%fs\n", asm_name("CallTo16_TebSelector") );
fprintf( outfile, "\t.byte 0x64\n\tmov (%d),%%gs\n", STRUCTOFFSET(TEB,gs_sel) );
/* Get address of wine_ldt_copy array into %ecx */
if ( UsePIC )
fprintf( outfile, "\tmovl %s(%%ecx), %%ecx\n", asm_name("wine_ldt_copy@GOT") );
else
fprintf( outfile, "\tmovl $%s, %%ecx\n", asm_name("wine_ldt_copy") );
/* Translate STACK16FRAME base to flat offset in %edx */
fprintf( outfile, "\tmovw %%ss, %%dx\n" );
fprintf( outfile, "\tandl $0xfff8, %%edx\n" );
fprintf( outfile, "\tshrl $1, %%edx\n" );
fprintf( outfile, "\tmovl (%%ecx,%%edx), %%edx\n" );
fprintf( outfile, "\tmovzwl %%sp, %%ebp\n" );
fprintf( outfile, "\tleal (%%ebp,%%edx), %%edx\n" );
/* Get saved flags into %ecx */
fprintf( outfile, "\tpopl %%ecx\n" );
/* Get the 32-bit stack pointer from the TEB and complete STACK16FRAME */
fprintf( outfile, "\t.byte 0x64\n\tmovl (%d), %%ebp\n", STACKOFFSET );
fprintf( outfile, "\tpushl %%ebp\n" );
/* Switch stacks */
fprintf( outfile, "%s\t.byte 0x64\n\tmovw %%ss, (%d)\n", data16_prefix(), STACKOFFSET + 2 );
fprintf( outfile, "\t.byte 0x64\n\tmovw %%sp, (%d)\n", STACKOFFSET );
fprintf( outfile, "\tpushl %%ds\n" );
fprintf( outfile, "\tpopl %%ss\n" );
fprintf( outfile, "\tmovl %%ebp, %%esp\n" );
fprintf( outfile, "\taddl $%d, %%ebp\n", STRUCTOFFSET(STACK32FRAME, ebp) );
/* At this point:
STACK16FRAME is completely set up
DS, ES, SS: flat data segment
FS: current TEB
ESP: points to last STACK32FRAME
EBP: points to ebp member of last STACK32FRAME
EDX: points to current STACK16FRAME
ECX: contains saved flags
all other registers: unchanged */
/* Special case: C16ThkSL stub */
if ( thunk )
{
/* Set up registers as expected and call thunk */
fprintf( outfile, "\tleal %d(%%edx), %%ebx\n", sizeof(STACK16FRAME)-22 );
fprintf( outfile, "\tleal -4(%%esp), %%ebp\n" );
fprintf( outfile, "\tcall *%d(%%edx)\n", STACK16OFFSET(entry_point) );
/* Switch stack back */
fprintf( outfile, "\t.byte 0x64\n\tmovw (%d), %%ss\n", STACKOFFSET+2 );
fprintf( outfile, "\t.byte 0x64\n\tmovzwl (%d), %%esp\n", STACKOFFSET );
fprintf( outfile, "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET );
/* Restore registers and return directly to caller */
fprintf( outfile, "\taddl $8, %%esp\n" );
fprintf( outfile, "\tpopl %%ebp\n" );
fprintf( outfile, "\tpopw %%ds\n" );
fprintf( outfile, "\tpopw %%es\n" );
fprintf( outfile, "\tpopw %%fs\n" );
fprintf( outfile, "\tpopw %%gs\n" );
fprintf( outfile, "\taddl $20, %%esp\n" );
fprintf( outfile, "\txorb %%ch, %%ch\n" );
fprintf( outfile, "\tpopl %%ebx\n" );
fprintf( outfile, "\taddw %%cx, %%sp\n" );
fprintf( outfile, "\tpush %%ebx\n" );
fprintf( outfile, "\t.byte 0x66\n" );
fprintf( outfile, "\tlret\n" );
return;
}
/* Build register CONTEXT */
if ( reg_func )
{
fprintf( outfile, "\tsubl $%d, %%esp\n", sizeof(CONTEXT86) );
fprintf( outfile, "\tmovl %%ecx, %d(%%esp)\n", CONTEXTOFFSET(EFlags) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Eax) );
fprintf( outfile, "\tmovl %%ebx, %d(%%esp)\n", CONTEXTOFFSET(Ebx) );
fprintf( outfile, "\tmovl %%esi, %d(%%esp)\n", CONTEXTOFFSET(Esi) );
fprintf( outfile, "\tmovl %%edi, %d(%%esp)\n", CONTEXTOFFSET(Edi) );
fprintf( outfile, "\tmovl %d(%%edx), %%eax\n", STACK16OFFSET(ebp) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Ebp) );
fprintf( outfile, "\tmovl %d(%%edx), %%eax\n", STACK16OFFSET(ecx) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Ecx) );
fprintf( outfile, "\tmovl %d(%%edx), %%eax\n", STACK16OFFSET(edx) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Edx) );
fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(ds) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegDs) );
fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(es) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegEs) );
fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(fs) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegFs) );
fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(gs) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegGs) );
fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(cs) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegCs) );
fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(ip) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Eip) );
fprintf( outfile, "\t.byte 0x64\n\tmovzwl (%d), %%eax\n", STACKOFFSET+2 );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegSs) );
fprintf( outfile, "\t.byte 0x64\n\tmovzwl (%d), %%eax\n", STACKOFFSET );
fprintf( outfile, "\taddl $%d, %%eax\n", STACK16OFFSET(ip) );
fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Esp) );
#if 0
fprintf( outfile, "\tfsave %d(%%esp)\n", CONTEXTOFFSET(FloatSave) );
#endif
/* Push address of CONTEXT86 structure -- popped by the relay routine */
fprintf( outfile, "\tpushl %%esp\n" );
}
/* Call relay routine (which will call the API entry point) */
fprintf( outfile, "\tleal %d(%%edx), %%eax\n", sizeof(STACK16FRAME) );
fprintf( outfile, "\tpushl %%eax\n" );
fprintf( outfile, "\tpushl %d(%%edx)\n", STACK16OFFSET(entry_point) );
fprintf( outfile, "\tcall *%d(%%edx)\n", STACK16OFFSET(relay) );
if ( reg_func )
{
fprintf( outfile, "\tleal -%d(%%ebp), %%ebx\n",
sizeof(CONTEXT) + STRUCTOFFSET(STACK32FRAME, ebp) );
/* Switch stack back */
fprintf( outfile, "\t.byte 0x64\n\tmovw (%d), %%ss\n", STACKOFFSET+2 );
fprintf( outfile, "\t.byte 0x64\n\tmovzwl (%d), %%esp\n", STACKOFFSET );
fprintf( outfile, "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET );
/* Get return address to CallFrom16 stub */
fprintf( outfile, "\taddw $%d, %%sp\n", STACK16OFFSET(callfrom_ip)-4 );
fprintf( outfile, "\tpopl %%eax\n" );
fprintf( outfile, "\tpopl %%edx\n" );
/* Restore all registers from CONTEXT */
fprintf( outfile, "\tmovw %d(%%ebx), %%ss\n", CONTEXTOFFSET(SegSs) );
fprintf( outfile, "\tmovl %d(%%ebx), %%esp\n", CONTEXTOFFSET(Esp) );
fprintf( outfile, "\taddl $4, %%esp\n" ); /* room for final return address */
fprintf( outfile, "\tpushw %d(%%ebx)\n", CONTEXTOFFSET(SegCs) );
fprintf( outfile, "\tpushw %d(%%ebx)\n", CONTEXTOFFSET(Eip) );
fprintf( outfile, "\tpushl %%edx\n" );
fprintf( outfile, "\tpushl %%eax\n" );
fprintf( outfile, "\tpushl %d(%%ebx)\n", CONTEXTOFFSET(EFlags) );
fprintf( outfile, "\tpushl %d(%%ebx)\n", CONTEXTOFFSET(SegDs) );
fprintf( outfile, "\tpushl %d(%%ebx)\n", CONTEXTOFFSET(SegEs) );
fprintf( outfile, "\tpopl %%es\n" );
fprintf( outfile, "\tpushl %d(%%ebx)\n", CONTEXTOFFSET(SegFs) );
fprintf( outfile, "\tpopl %%fs\n" );
fprintf( outfile, "\tpushl %d(%%ebx)\n", CONTEXTOFFSET(SegGs) );
fprintf( outfile, "\tpopl %%gs\n" );
fprintf( outfile, "\tmovl %d(%%ebx), %%ebp\n", CONTEXTOFFSET(Ebp) );
fprintf( outfile, "\tmovl %d(%%ebx), %%esi\n", CONTEXTOFFSET(Esi) );
fprintf( outfile, "\tmovl %d(%%ebx), %%edi\n", CONTEXTOFFSET(Edi) );
fprintf( outfile, "\tmovl %d(%%ebx), %%eax\n", CONTEXTOFFSET(Eax) );
fprintf( outfile, "\tmovl %d(%%ebx), %%edx\n", CONTEXTOFFSET(Edx) );
fprintf( outfile, "\tmovl %d(%%ebx), %%ecx\n", CONTEXTOFFSET(Ecx) );
fprintf( outfile, "\tmovl %d(%%ebx), %%ebx\n", CONTEXTOFFSET(Ebx) );
fprintf( outfile, "\tpopl %%ds\n" );
fprintf( outfile, "\tpopfl\n" );
fprintf( outfile, "\tlret\n" );
}
else
{
/* Switch stack back */
fprintf( outfile, "\t.byte 0x64\n\tmovw (%d), %%ss\n", STACKOFFSET+2 );
fprintf( outfile, "\t.byte 0x64\n\tmovzwl (%d), %%esp\n", STACKOFFSET );
fprintf( outfile, "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET );
/* Restore registers */
fprintf( outfile, "\tpopl %%edx\n" );
fprintf( outfile, "\tpopl %%ecx\n" );
fprintf( outfile, "\tpopl %%ebp\n" );
fprintf( outfile, "\tpopw %%ds\n" );
fprintf( outfile, "\tpopw %%es\n" );
fprintf( outfile, "\tpopw %%fs\n" );
fprintf( outfile, "\tpopw %%gs\n" );
/* Prepare return value and set flags accordingly */
if ( !short_ret )
fprintf( outfile, "\tshldl $16, %%eax, %%edx\n" );
fprintf( outfile, "\torl %%eax, %%eax\n" );
/* Return to return stub which will return to caller */
fprintf( outfile, "\tlret $12\n" );
}
if (thunk) function_footer( outfile, "__wine_call_from_16_thunk" );
else if (reg_func) function_footer( outfile, "__wine_call_from_16_regs" );
else if (short_ret) function_footer( outfile, "__wine_call_from_16_word" );
else function_footer( outfile, "__wine_call_from_16_long" );
}
/*******************************************************************
* BuildCallTo16Core
*
* This routine builds the core routines used in 32->16 thunks:
*
* extern DWORD WINAPI wine_call_to_16( FARPROC16 target, DWORD cbArgs, PEXCEPTION_HANDLER handler );
* extern void WINAPI wine_call_to_16_regs( CONTEXT86 *context, DWORD cbArgs, PEXCEPTION_HANDLER handler );
*
* These routines can be called directly from 32-bit code.
*
* All routines expect that the 16-bit stack contents (arguments) and the
* return address (segptr to CallTo16_Ret) were already set up by the
* caller; nb_args must contain the number of bytes to be conserved. The
* 16-bit SS:SP will be set accordinly.
*
* All other registers are either taken from the CONTEXT86 structure
* or else set to default values. The target routine address is either
* given directly or taken from the CONTEXT86.
*/
static void BuildCallTo16Core( FILE *outfile, int reg_func )
{
const char *name = reg_func ? "wine_call_to_16_regs" : "wine_call_to_16";
/* Function header */
function_header( outfile, name );
/* Function entry sequence */
fprintf( outfile, "\tpushl %%ebp\n" );
fprintf( outfile, "\tmovl %%esp, %%ebp\n" );
/* Save the 32-bit registers */
fprintf( outfile, "\tpushl %%ebx\n" );
fprintf( outfile, "\tpushl %%esi\n" );
fprintf( outfile, "\tpushl %%edi\n" );
fprintf( outfile, "\t.byte 0x64\n\tmov %%gs,(%d)\n", STRUCTOFFSET(TEB,gs_sel) );
/* Setup exception frame */
fprintf( outfile, "\t.byte 0x64\n\tpushl (%d)\n", STACKOFFSET );
fprintf( outfile, "\tpushl 16(%%ebp)\n" ); /* handler */
fprintf( outfile, "\t.byte 0x64\n\tpushl (%d)\n", STRUCTOFFSET(TEB,Tib.ExceptionList) );
fprintf( outfile, "\t.byte 0x64\n\tmovl %%esp,(%d)\n", STRUCTOFFSET(TEB,Tib.ExceptionList) );
/* Call the actual CallTo16 routine (simulate a lcall) */
fprintf( outfile, "\tpushl %%cs\n" );
fprintf( outfile, "\tcall .L%s\n", name );
/* Remove exception frame */
fprintf( outfile, "\t.byte 0x64\n\tpopl (%d)\n", STRUCTOFFSET(TEB,Tib.ExceptionList) );
fprintf( outfile, "\taddl $4, %%esp\n" );
fprintf( outfile, "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET );
if ( !reg_func )
{
/* Convert return value */
fprintf( outfile, "\tandl $0xffff,%%eax\n" );
fprintf( outfile, "\tshll $16,%%edx\n" );
fprintf( outfile, "\torl %%edx,%%eax\n" );
}
else
{
/*
* Modify CONTEXT86 structure to contain new values
*
* NOTE: We restore only EAX, EBX, EDX, EDX, EBP, and ESP.
* The segment registers as well as ESI and EDI should
* not be modified by a well-behaved 16-bit routine in
* any case. [If necessary, we could restore them as well,
* at the cost of a somewhat less efficient return path.]
*/
fprintf( outfile, "\tmovl %d(%%esp), %%edi\n", STACK32OFFSET(target) - STACK32OFFSET(edi));
/* everything above edi has been popped already */
fprintf( outfile, "\tmovl %%eax, %d(%%edi)\n", CONTEXTOFFSET(Eax) );
fprintf( outfile, "\tmovl %%ebx, %d(%%edi)\n", CONTEXTOFFSET(Ebx) );
fprintf( outfile, "\tmovl %%ecx, %d(%%edi)\n", CONTEXTOFFSET(Ecx) );
fprintf( outfile, "\tmovl %%edx, %d(%%edi)\n", CONTEXTOFFSET(Edx) );
fprintf( outfile, "\tmovl %%ebp, %d(%%edi)\n", CONTEXTOFFSET(Ebp) );
fprintf( outfile, "\tmovl %%esi, %d(%%edi)\n", CONTEXTOFFSET(Esp) );
/* The return glue code saved %esp into %esi */
}
/* Restore the 32-bit registers */
fprintf( outfile, "\tpopl %%edi\n" );
fprintf( outfile, "\tpopl %%esi\n" );
fprintf( outfile, "\tpopl %%ebx\n" );
/* Function exit sequence */
fprintf( outfile, "\tpopl %%ebp\n" );
fprintf( outfile, "\tret $12\n" );
/* Start of the actual CallTo16 routine */
fprintf( outfile, ".L%s:\n", name );
/* Switch to the 16-bit stack */
fprintf( outfile, "\tmovl %%esp,%%edx\n" );
fprintf( outfile, "%s\t.byte 0x64\n\tmovw (%d),%%ss\n", data16_prefix(), STACKOFFSET + 2);
fprintf( outfile, "\t.byte 0x64\n\tmovw (%d),%%sp\n", STACKOFFSET );
fprintf( outfile, "\t.byte 0x64\n\tmovl %%edx,(%d)\n", STACKOFFSET );
/* Make %bp point to the previous stackframe (built by CallFrom16) */
fprintf( outfile, "\tmovzwl %%sp,%%ebp\n" );
fprintf( outfile, "\tleal %d(%%ebp),%%ebp\n", STACK16OFFSET(bp) );
/* Add the specified offset to the new sp */
fprintf( outfile, "\tsubw %d(%%edx), %%sp\n", STACK32OFFSET(nb_args) );
if (reg_func)
{
/* Push the called routine address */
fprintf( outfile, "\tmovl %d(%%edx),%%edx\n", STACK32OFFSET(target) );
fprintf( outfile, "\tpushw %d(%%edx)\n", CONTEXTOFFSET(SegCs) );
fprintf( outfile, "\tpushw %d(%%edx)\n", CONTEXTOFFSET(Eip) );
/* Get the registers */
fprintf( outfile, "\tpushw %d(%%edx)\n", CONTEXTOFFSET(SegDs) );
fprintf( outfile, "\tpushl %d(%%edx)\n", CONTEXTOFFSET(SegEs) );
fprintf( outfile, "\tpopl %%es\n" );
fprintf( outfile, "\tpushl %d(%%edx)\n", CONTEXTOFFSET(SegFs) );
fprintf( outfile, "\tpopl %%fs\n" );
fprintf( outfile, "\tpushl %d(%%edx)\n", CONTEXTOFFSET(SegGs) );
fprintf( outfile, "\tpopl %%gs\n" );
fprintf( outfile, "\tmovl %d(%%edx),%%ebp\n", CONTEXTOFFSET(Ebp) );
fprintf( outfile, "\tmovl %d(%%edx),%%esi\n", CONTEXTOFFSET(Esi) );
fprintf( outfile, "\tmovl %d(%%edx),%%edi\n", CONTEXTOFFSET(Edi) );
fprintf( outfile, "\tmovl %d(%%edx),%%eax\n", CONTEXTOFFSET(Eax) );
fprintf( outfile, "\tmovl %d(%%edx),%%ebx\n", CONTEXTOFFSET(Ebx) );
fprintf( outfile, "\tmovl %d(%%edx),%%ecx\n", CONTEXTOFFSET(Ecx) );
fprintf( outfile, "\tmovl %d(%%edx),%%edx\n", CONTEXTOFFSET(Edx) );
/* Get the 16-bit ds */
fprintf( outfile, "\tpopw %%ds\n" );
}
else /* not a register function */
{
/* Push the called routine address */
fprintf( outfile, "\tpushl %d(%%edx)\n", STACK32OFFSET(target) );
/* Set %fs and %gs to the value saved by the last CallFrom16 */
fprintf( outfile, "\tpushw %d(%%ebp)\n", STACK16OFFSET(fs)-STACK16OFFSET(bp) );
fprintf( outfile, "\tpopw %%fs\n" );
fprintf( outfile, "\tpushw %d(%%ebp)\n", STACK16OFFSET(gs)-STACK16OFFSET(bp) );
fprintf( outfile, "\tpopw %%gs\n" );
/* Set %ds and %es (and %ax just in case) equal to %ss */
fprintf( outfile, "\tmovw %%ss,%%ax\n" );
fprintf( outfile, "\tmovw %%ax,%%ds\n" );
fprintf( outfile, "\tmovw %%ax,%%es\n" );
}
/* Jump to the called routine */
fprintf( outfile, "\t.byte 0x66\n" );
fprintf( outfile, "\tlret\n" );
/* Function footer */
function_footer( outfile, name );
}
/*******************************************************************
* BuildRet16Func
*
* Build the return code for 16-bit callbacks
*/
static void BuildRet16Func( FILE *outfile )
{
function_header( outfile, "__wine_call_to_16_ret" );
/* Save %esp into %esi */
fprintf( outfile, "\tmovl %%esp,%%esi\n" );
/* Restore 32-bit segment registers */
fprintf( outfile, "\t.byte 0x2e\n\tmovl %s", asm_name("CallTo16_DataSelector") );
fprintf( outfile, "-%s,%%edi\n", asm_name("__wine_call16_start") );
fprintf( outfile, "%s\tmovw %%di,%%ds\n", data16_prefix() );
fprintf( outfile, "%s\tmovw %%di,%%es\n", data16_prefix() );
fprintf( outfile, "\t.byte 0x2e\n\tmov %s", asm_name("CallTo16_TebSelector") );
fprintf( outfile, "-%s,%%fs\n", asm_name("__wine_call16_start") );
fprintf( outfile, "\t.byte 0x64\n\tmov (%d),%%gs\n", STRUCTOFFSET(TEB,gs_sel) );
/* Restore the 32-bit stack */
fprintf( outfile, "%s\tmovw %%di,%%ss\n", data16_prefix() );
fprintf( outfile, "\t.byte 0x64\n\tmovl (%d),%%esp\n", STACKOFFSET );
/* Return to caller */
fprintf( outfile, "\tlret\n" );
function_footer( outfile, "__wine_call_to_16_ret" );
}
/*******************************************************************
* BuildCallTo32CBClient
*
* Call a CBClient relay stub from 32-bit code (KERNEL.620).
*
* Since the relay stub is itself 32-bit, this should not be a problem;
* unfortunately, the relay stubs are expected to switch back to a
* 16-bit stack (and 16-bit code) after completion :-(
*
* This would conflict with our 16- vs. 32-bit stack handling, so
* we simply switch *back* to our 32-bit stack before returning to
* the caller ...
*
* The CBClient relay stub expects to be called with the following
* 16-bit stack layout, and with ebp and ebx pointing into the 16-bit
* stack at the designated places:
*
* ...
* (ebp+14) original arguments to the callback routine
* (ebp+10) far return address to original caller
* (ebp+6) Thunklet target address
* (ebp+2) Thunklet relay ID code
* (ebp) BP (saved by CBClientGlueSL)
* (ebp-2) SI (saved by CBClientGlueSL)
* (ebp-4) DI (saved by CBClientGlueSL)
* (ebp-6) DS (saved by CBClientGlueSL)
*
* ... buffer space used by the 16-bit side glue for temp copies
*
* (ebx+4) far return address to 16-bit side glue code
* (ebx) saved 16-bit ss:sp (pointing to ebx+4)
*
* The 32-bit side glue code accesses both the original arguments (via ebp)
* and the temporary copies prepared by the 16-bit side glue (via ebx).
* After completion, the stub will load ss:sp from the buffer at ebx
* and perform a far return to 16-bit code.
*
* To trick the relay stub into returning to us, we replace the 16-bit
* return address to the glue code by a cs:ip pair pointing to our
* return entry point (the original return address is saved first).
* Our return stub thus called will then reload the 32-bit ss:esp and
* return to 32-bit code (by using and ss:esp value that we have also
* pushed onto the 16-bit stack before and a cs:eip values found at
* that position on the 32-bit stack). The ss:esp to be restored is
* found relative to the 16-bit stack pointer at:
*
* (ebx-4) ss (flat)
* (ebx-8) sp (32-bit stack pointer)
*
* The second variant of this routine, CALL32_CBClientEx, which is used
* to implement KERNEL.621, has to cope with yet another problem: Here,
* the 32-bit side directly returns to the caller of the CBClient thunklet,
* restoring registers saved by CBClientGlueSL and cleaning up the stack.
* As we have to return to our 32-bit code first, we have to adapt the
* layout of our temporary area so as to include values for the registers
* that are to be restored, and later (in the implementation of KERNEL.621)
* we *really* restore them. The return stub restores DS, DI, SI, and BP
* from the stack, skips the next 8 bytes (CBClient relay code / target),
* and then performs a lret NN, where NN is the number of arguments to be
* removed. Thus, we prepare our temporary area as follows:
*
* (ebx+22) 16-bit cs (this segment)
* (ebx+20) 16-bit ip ('16-bit' return entry point)
* (ebx+16) 32-bit ss (flat)
* (ebx+12) 32-bit sp (32-bit stack pointer)
* (ebx+10) 16-bit bp (points to ebx+24)
* (ebx+8) 16-bit si (ignored)
* (ebx+6) 16-bit di (ignored)
* (ebx+4) 16-bit ds (we actually use the flat DS here)
* (ebx+2) 16-bit ss (16-bit stack segment)
* (ebx+0) 16-bit sp (points to ebx+4)
*
* Note that we ensure that DS is not changed and remains the flat segment,
* and the 32-bit stack pointer our own return stub needs fits just
* perfectly into the 8 bytes that are skipped by the Windows stub.
* One problem is that we have to determine the number of removed arguments,
* as these have to be really removed in KERNEL.621. Thus, the BP value
* that we place in the temporary area to be restored, contains the value
* that SP would have if no arguments were removed. By comparing the actual
* value of SP with this value in our return stub we can compute the number
* of removed arguments. This is then returned to KERNEL.621.
*
* The stack layout of this function:
* (ebp+20) nArgs pointer to variable receiving nr. of args (Ex only)
* (ebp+16) esi pointer to caller's esi value
* (ebp+12) arg ebp value to be set for relay stub
* (ebp+8) func CBClient relay stub address
* (ebp+4) ret addr
* (ebp) ebp
*/
static void BuildCallTo32CBClient( FILE *outfile, BOOL isEx )
{
function_header( outfile, isEx ? "CALL32_CBClientEx" : "CALL32_CBClient" );
/* Entry code */
fprintf( outfile, "\tpushl %%ebp\n" );
fprintf( outfile, "\tmovl %%esp,%%ebp\n" );
fprintf( outfile, "\tpushl %%edi\n" );
fprintf( outfile, "\tpushl %%esi\n" );
fprintf( outfile, "\tpushl %%ebx\n" );
/* Get pointer to temporary area and save the 32-bit stack pointer */
fprintf( outfile, "\tmovl 16(%%ebp), %%ebx\n" );
fprintf( outfile, "\tleal -8(%%esp), %%eax\n" );
if ( !isEx )
fprintf( outfile, "\tmovl %%eax, -8(%%ebx)\n" );
else
fprintf( outfile, "\tmovl %%eax, 12(%%ebx)\n" );
/* Set up registers and call CBClient relay stub (simulating a far call) */
fprintf( outfile, "\tmovl 20(%%ebp), %%esi\n" );
fprintf( outfile, "\tmovl (%%esi), %%esi\n" );
fprintf( outfile, "\tmovl 8(%%ebp), %%eax\n" );
fprintf( outfile, "\tmovl 12(%%ebp), %%ebp\n" );
fprintf( outfile, "\tpushl %%cs\n" );
fprintf( outfile, "\tcall *%%eax\n" );
/* Return new esi value to caller */
fprintf( outfile, "\tmovl 32(%%esp), %%edi\n" );
fprintf( outfile, "\tmovl %%esi, (%%edi)\n" );
/* Return argument size to caller */
if ( isEx )
{
fprintf( outfile, "\tmovl 36(%%esp), %%ebx\n" );
fprintf( outfile, "\tmovl %%ebp, (%%ebx)\n" );
}
/* Restore registers and return */
fprintf( outfile, "\tpopl %%ebx\n" );
fprintf( outfile, "\tpopl %%esi\n" );
fprintf( outfile, "\tpopl %%edi\n" );
fprintf( outfile, "\tpopl %%ebp\n" );
fprintf( outfile, "\tret\n" );
function_footer( outfile, isEx ? "CALL32_CBClientEx" : "CALL32_CBClient" );
/* '16-bit' return stub */
function_header( outfile, isEx ? "CALL32_CBClientEx_Ret" : "CALL32_CBClient_Ret" );
if ( !isEx )
{
fprintf( outfile, "\tmovzwl %%sp, %%ebx\n" );
fprintf( outfile, "\tlssl %%ss:-16(%%ebx), %%esp\n" );
}
else
{
fprintf( outfile, "\tmovzwl %%bp, %%ebx\n" );
fprintf( outfile, "\tsubw %%bp, %%sp\n" );
fprintf( outfile, "\tmovzwl %%sp, %%ebp\n" );
fprintf( outfile, "\tlssl %%ss:-12(%%ebx), %%esp\n" );
}
fprintf( outfile, "\tlret\n" );
function_footer( outfile, isEx ? "CALL32_CBClientEx_Ret" : "CALL32_CBClient_Ret" );
}
/*******************************************************************
* BuildCallFrom32Regs
*
* Build a 32-bit-to-Wine call-back function for a 'register' function.
* 'args' is the number of dword arguments.
*
* Stack layout:
* ...
* (ebp+12) first arg
* (ebp+8) ret addr to user code
* (ebp+4) ret addr to relay code
* (ebp+0) saved ebp
* (ebp-128) buffer area to allow stack frame manipulation
* (ebp-332) CONTEXT86 struct
* (ebp-336) CONTEXT86 *argument
* .... other arguments copied from (ebp+12)
*
* The entry point routine is called with a CONTEXT* extra argument,
* following the normal args. In this context structure, EIP_reg
* contains the return address to user code, and ESP_reg the stack
* pointer on return (with the return address and arguments already
* removed).
*/
static void BuildCallFrom32Regs( FILE *outfile )
{
static const int STACK_SPACE = 128 + sizeof(CONTEXT86);
/* Function header */
function_header( outfile, "__wine_call_from_32_regs" );
/* Allocate some buffer space on the stack */
fprintf( outfile, "\tpushl %%ebp\n" );
fprintf( outfile, "\tmovl %%esp,%%ebp\n ");
fprintf( outfile, "\tleal -%d(%%esp), %%esp\n", STACK_SPACE );
/* Build the context structure */
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(Eax) - STACK_SPACE );
fprintf( outfile, "\tpushfl\n" );
fprintf( outfile, "\tpopl %%eax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(EFlags) - STACK_SPACE );
fprintf( outfile, "\tmovl 0(%%ebp),%%eax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(Ebp) - STACK_SPACE );
fprintf( outfile, "\tmovl %%ebx,%d(%%ebp)\n", CONTEXTOFFSET(Ebx) - STACK_SPACE );
fprintf( outfile, "\tmovl %%ecx,%d(%%ebp)\n", CONTEXTOFFSET(Ecx) - STACK_SPACE );
fprintf( outfile, "\tmovl %%edx,%d(%%ebp)\n", CONTEXTOFFSET(Edx) - STACK_SPACE );
fprintf( outfile, "\tmovl %%esi,%d(%%ebp)\n", CONTEXTOFFSET(Esi) - STACK_SPACE );
fprintf( outfile, "\tmovl %%edi,%d(%%ebp)\n", CONTEXTOFFSET(Edi) - STACK_SPACE );
fprintf( outfile, "\txorl %%eax,%%eax\n" );
fprintf( outfile, "\tmovw %%cs,%%ax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegCs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%es,%%ax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegEs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%fs,%%ax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegFs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%gs,%%ax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegGs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%ss,%%ax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegSs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%ds,%%ax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegDs) - STACK_SPACE );
fprintf( outfile, "\tmovw %%ax,%%es\n" ); /* set %es equal to %ds just in case */
fprintf( outfile, "\tmovl $0x%x,%%eax\n", CONTEXT86_FULL );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(ContextFlags) - STACK_SPACE );
fprintf( outfile, "\tmovl 8(%%ebp),%%eax\n" ); /* Get %eip at time of call */
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(Eip) - STACK_SPACE );
/* Transfer the arguments */
fprintf( outfile, "\tmovl 4(%%ebp),%%ebx\n" ); /* get relay code addr */
fprintf( outfile, "\tpushl %%esp\n" ); /* push ptr to context struct */
fprintf( outfile, "\tmovzbl 4(%%ebx),%%ecx\n" ); /* fetch number of args to copy */
fprintf( outfile, "\tjecxz 1f\n" );
fprintf( outfile, "\tsubl %%ecx,%%esp\n" );
fprintf( outfile, "\tleal 12(%%ebp),%%esi\n" ); /* get %esp at time of call */
fprintf( outfile, "\tmovl %%esp,%%edi\n" );
fprintf( outfile, "\tshrl $2,%%ecx\n" );
fprintf( outfile, "\tcld\n" );
fprintf( outfile, "\trep\n\tmovsl\n" ); /* copy args */
fprintf( outfile, "1:\tmovzbl 5(%%ebx),%%eax\n" ); /* fetch number of args to remove */
fprintf( outfile, "\tleal 12(%%ebp,%%eax),%%eax\n" );
fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(Esp) - STACK_SPACE );
/* Call the entry point */
fprintf( outfile, "\taddl (%%ebx),%%ebx\n" );
fprintf( outfile, "\tcall *%%ebx\n" );
fprintf( outfile, "\tleal -%d(%%ebp),%%ecx\n", STACK_SPACE );
/* Restore the context structure */
fprintf( outfile, "2:\tpushl %d(%%ecx)\n", CONTEXTOFFSET(SegEs) );
fprintf( outfile, "\tpopl %%es\n" );
fprintf( outfile, "\tpushl %d(%%ecx)\n", CONTEXTOFFSET(SegFs) );
fprintf( outfile, "\tpopl %%fs\n" );
fprintf( outfile, "\tpushl %d(%%ecx)\n", CONTEXTOFFSET(SegGs) );
fprintf( outfile, "\tpopl %%gs\n" );
fprintf( outfile, "\tmovl %d(%%ecx),%%edi\n", CONTEXTOFFSET(Edi) );
fprintf( outfile, "\tmovl %d(%%ecx),%%esi\n", CONTEXTOFFSET(Esi) );
fprintf( outfile, "\tmovl %d(%%ecx),%%edx\n", CONTEXTOFFSET(Edx) );
fprintf( outfile, "\tmovl %d(%%ecx),%%ebx\n", CONTEXTOFFSET(Ebx) );
fprintf( outfile, "\tmovl %d(%%ecx),%%eax\n", CONTEXTOFFSET(Eax) );
fprintf( outfile, "\tmovl %d(%%ecx),%%ebp\n", CONTEXTOFFSET(Ebp) );
fprintf( outfile, "\tpushl %d(%%ecx)\n", CONTEXTOFFSET(SegSs) );
fprintf( outfile, "\tpopl %%ss\n" );
fprintf( outfile, "\tmovl %d(%%ecx),%%esp\n", CONTEXTOFFSET(Esp) );
fprintf( outfile, "\tpushl %d(%%ecx)\n", CONTEXTOFFSET(EFlags) );
fprintf( outfile, "\tpushl %d(%%ecx)\n", CONTEXTOFFSET(SegCs) );
fprintf( outfile, "\tpushl %d(%%ecx)\n", CONTEXTOFFSET(Eip) );
fprintf( outfile, "\tpushl %d(%%ecx)\n", CONTEXTOFFSET(SegDs) );
fprintf( outfile, "\tmovl %d(%%ecx),%%ecx\n", CONTEXTOFFSET(Ecx) );
fprintf( outfile, "\tpopl %%ds\n" );
fprintf( outfile, "\tiret\n" );
function_footer( outfile, "__wine_call_from_32_regs" );
function_header( outfile, "__wine_call_from_32_restore_regs" );
fprintf( outfile, "\tleal 4(%%esp),%%ecx\n" );
fprintf( outfile, "\tjmp 2b\n" );
function_footer( outfile, "__wine_call_from_32_restore_regs" );
}
/*******************************************************************
* BuildPendingEventCheck
*
* Build a function that checks whether there are any
* pending DPMI events.
*
* Stack layout:
*
* (sp+12) long eflags
* (sp+6) long cs
* (sp+2) long ip
* (sp) word fs
*
* On entry to function, fs register points to a valid TEB.
* On exit from function, stack will be popped.
*/
static void BuildPendingEventCheck( FILE *outfile )
{
/* Function header */
function_header( outfile, "DPMI_PendingEventCheck" );
/* Check for pending events. */
fprintf( outfile, "\t.byte 0x64\n\ttestl $0xffffffff,(%d)\n",
STRUCTOFFSET(TEB,vm86_pending) );
fprintf( outfile, "\tje %s\n", asm_name("DPMI_PendingEventCheck_Cleanup") );
fprintf( outfile, "\t.byte 0x64\n\ttestl $0xffffffff,(%d)\n",
STRUCTOFFSET(TEB,dpmi_vif) );
fprintf( outfile, "\tje %s\n", asm_name("DPMI_PendingEventCheck_Cleanup") );
/* Process pending events. */
fprintf( outfile, "\tsti\n" );
/* Start cleanup. Restore fs register. */
fprintf( outfile, ".globl %s\n", asm_name("DPMI_PendingEventCheck_Cleanup") );
fprintf( outfile, "%s:\n", asm_name("DPMI_PendingEventCheck_Cleanup") );
fprintf( outfile, "\tpopw %%fs\n" );
/* Return from function. */
fprintf( outfile, ".globl %s\n", asm_name("DPMI_PendingEventCheck_Return") );
fprintf( outfile, "%s:\n", asm_name("DPMI_PendingEventCheck_Return") );
fprintf( outfile, "\tiret\n" );
function_footer( outfile, "DPMI_PendingEventCheck" );
}
/*******************************************************************
* BuildRelays16
*
* Build all the 16-bit relay callbacks
*/
void BuildRelays16( FILE *outfile )
{
if (target_cpu != CPU_x86)
{
fprintf( outfile, "/* File not used with this architecture. Do not edit! */\n\n" );
return;
}
/* File header */
fprintf( outfile, "/* File generated automatically. Do not edit! */\n\n" );
fprintf( outfile, "\t.text\n" );
fprintf( outfile, "%s:\n\n", asm_name("__wine_spec_thunk_text_16") );
fprintf( outfile, "\t.globl %s\n", asm_name("__wine_call16_start") );
fprintf( outfile, "%s:\n", asm_name("__wine_call16_start") );
/* Standard CallFrom16 routine (WORD return) */
BuildCallFrom16Core( outfile, FALSE, FALSE, TRUE );
/* Standard CallFrom16 routine (DWORD return) */
BuildCallFrom16Core( outfile, FALSE, FALSE, FALSE );
/* Register CallFrom16 routine */
BuildCallFrom16Core( outfile, TRUE, FALSE, FALSE );
/* C16ThkSL CallFrom16 routine */
BuildCallFrom16Core( outfile, FALSE, TRUE, FALSE );
/* Standard CallTo16 routine */
BuildCallTo16Core( outfile, 0 );
/* Register CallTo16 routine */
BuildCallTo16Core( outfile, 1 );
/* Standard CallTo16 return stub */
BuildRet16Func( outfile );
/* CBClientThunkSL routine */
BuildCallTo32CBClient( outfile, FALSE );
/* CBClientThunkSLEx routine */
BuildCallTo32CBClient( outfile, TRUE );
/* Pending DPMI events check stub */
BuildPendingEventCheck( outfile );
fprintf( outfile, "\t.globl %s\n", asm_name("__wine_call16_end") );
fprintf( outfile, "%s:\n", asm_name("__wine_call16_end") );
function_footer( outfile, "__wine_spec_thunk_text_16" );
/* Declare the return address and data selector variables */
fprintf( outfile, "\n\t.data\n\t.align %d\n", get_alignment(4) );
fprintf( outfile, "\t.globl %s\n", asm_name("CallTo16_DataSelector") );
fprintf( outfile, "%s:\t.long 0\n", asm_name("CallTo16_DataSelector") );
fprintf( outfile, "\t.globl %s\n", asm_name("CallTo16_TebSelector") );
fprintf( outfile, "%s:\t.long 0\n", asm_name("CallTo16_TebSelector") );
}
/*******************************************************************
* BuildRelays32
*
* Build all the 32-bit relay callbacks
*/
void BuildRelays32( FILE *outfile )
{
if (target_cpu != CPU_x86)
{
fprintf( outfile, "/* File not used with this architecture. Do not edit! */\n\n" );
return;
}
/* File header */
fprintf( outfile, "/* File generated automatically. Do not edit! */\n\n" );
fprintf( outfile, "\t.text\n" );
fprintf( outfile, "%s:\n\n", asm_name("__wine_spec_thunk_text_32") );
/* 32-bit register entry point */
BuildCallFrom32Regs( outfile );
function_footer( outfile, "__wine_spec_thunk_text_32" );
}