Sweden-Number/dlls/ole32/storage32.c

9444 lines
251 KiB
C

/*
* Compound Storage (32 bit version)
* Storage implementation
*
* This file contains the compound file implementation
* of the storage interface.
*
* Copyright 1999 Francis Beaudet
* Copyright 1999 Sylvain St-Germain
* Copyright 1999 Thuy Nguyen
* Copyright 2005 Mike McCormack
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*
* NOTES
* The compound file implementation of IStorage used for create
* and manage substorages and streams within a storage object
* residing in a compound file object.
*/
#include <assert.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define COBJMACROS
#define NONAMELESSUNION
#define NONAMELESSSTRUCT
#include "windef.h"
#include "winbase.h"
#include "winnls.h"
#include "winuser.h"
#include "wine/unicode.h"
#include "wine/debug.h"
#include "storage32.h"
#include "ole2.h" /* For Write/ReadClassStm */
#include "winreg.h"
#include "wine/wingdi16.h"
WINE_DEFAULT_DEBUG_CHANNEL(storage);
/* Used for OleConvertIStorageToOLESTREAM and OleConvertOLESTREAMToIStorage */
#define OLESTREAM_ID 0x501
#define OLESTREAM_MAX_STR_LEN 255
/*
* These are signatures to detect the type of Document file.
*/
static const BYTE STORAGE_magic[8] ={0xd0,0xcf,0x11,0xe0,0xa1,0xb1,0x1a,0xe1};
static const BYTE STORAGE_oldmagic[8] ={0xd0,0xcf,0x11,0xe0,0x0e,0x11,0xfc,0x0d};
static const char rootEntryName[] = "Root Entry";
/****************************************************************************
* Storage32InternalImpl definitions.
*
* Definition of the implementation structure for the IStorage32 interface.
* This one implements the IStorage32 interface for storage that are
* inside another storage.
*/
struct StorageInternalImpl
{
struct StorageBaseImpl base;
/*
* Entry in the parent's stream tracking list
*/
struct list ParentListEntry;
StorageBaseImpl *parentStorage;
};
typedef struct StorageInternalImpl StorageInternalImpl;
/* Method definitions for the Storage32InternalImpl class. */
static StorageInternalImpl* StorageInternalImpl_Construct(StorageBaseImpl* parentStorage,
DWORD openFlags, DirRef storageDirEntry);
static void StorageImpl_Destroy(StorageBaseImpl* iface);
static void StorageImpl_Invalidate(StorageBaseImpl* iface);
static HRESULT StorageImpl_Flush(StorageBaseImpl* iface);
static BOOL StorageImpl_ReadBigBlock(StorageImpl* This, ULONG blockIndex, void* buffer);
static BOOL StorageImpl_WriteBigBlock(StorageImpl* This, ULONG blockIndex, const void* buffer);
static void StorageImpl_SetNextBlockInChain(StorageImpl* This, ULONG blockIndex, ULONG nextBlock);
static HRESULT StorageImpl_LoadFileHeader(StorageImpl* This);
static void StorageImpl_SaveFileHeader(StorageImpl* This);
static void Storage32Impl_AddBlockDepot(StorageImpl* This, ULONG blockIndex);
static ULONG Storage32Impl_AddExtBlockDepot(StorageImpl* This);
static ULONG Storage32Impl_GetNextExtendedBlock(StorageImpl* This, ULONG blockIndex);
static ULONG Storage32Impl_GetExtDepotBlock(StorageImpl* This, ULONG depotIndex);
static void Storage32Impl_SetExtDepotBlock(StorageImpl* This, ULONG depotIndex, ULONG blockIndex);
static ULONG BlockChainStream_GetHeadOfChain(BlockChainStream* This);
static ULARGE_INTEGER BlockChainStream_GetSize(BlockChainStream* This);
static ULONG BlockChainStream_GetCount(BlockChainStream* This);
static ULARGE_INTEGER SmallBlockChainStream_GetSize(SmallBlockChainStream* This);
static ULONG SmallBlockChainStream_GetHeadOfChain(SmallBlockChainStream* This);
static BOOL StorageImpl_WriteDWordToBigBlock( StorageImpl* This,
ULONG blockIndex, ULONG offset, DWORD value);
static BOOL StorageImpl_ReadDWordFromBigBlock( StorageImpl* This,
ULONG blockIndex, ULONG offset, DWORD* value);
static BOOL StorageBaseImpl_IsStreamOpen(StorageBaseImpl * stg, DirRef streamEntry);
static BOOL StorageBaseImpl_IsStorageOpen(StorageBaseImpl * stg, DirRef storageEntry);
typedef struct TransactedDirEntry
{
/* If applicable, a reference to the original DirEntry in the transacted
* parent. If this is a newly-created entry, DIRENTRY_NULL. */
DirRef transactedParentEntry;
/* True if this entry is being used. */
int inuse;
/* True if data is up to date. */
int read;
/* True if this entry has been modified. */
int dirty;
/* True if this entry's stream has been modified. */
int stream_dirty;
/* True if this entry has been deleted in the transacted storage, but the
* delete has not yet been committed. */
int deleted;
/* If this entry's stream has been modified, a reference to where the stream
* is stored in the snapshot file. */
DirRef stream_entry;
/* This directory entry's data, including any changes that have been made. */
DirEntry data;
/* A reference to the parent of this node. This is only valid while we are
* committing changes. */
DirRef parent;
/* A reference to a newly-created entry in the transacted parent. This is
* always equal to transactedParentEntry except when committing changes. */
DirRef newTransactedParentEntry;
} TransactedDirEntry;
/****************************************************************************
* Transacted storage object.
*/
typedef struct TransactedSnapshotImpl
{
struct StorageBaseImpl base;
/*
* Modified streams are temporarily saved to the scratch file.
*/
StorageBaseImpl *scratch;
/* The directory structure is kept here, so that we can track how these
* entries relate to those in the parent storage. */
TransactedDirEntry *entries;
ULONG entries_size;
ULONG firstFreeEntry;
/*
* Changes are committed to the transacted parent.
*/
StorageBaseImpl *transactedParent;
} TransactedSnapshotImpl;
/* Generic function to create a transacted wrapper for a direct storage object. */
static HRESULT Storage_ConstructTransacted(StorageBaseImpl* parent, StorageBaseImpl** result);
/* OLESTREAM memory structure to use for Get and Put Routines */
/* Used for OleConvertIStorageToOLESTREAM and OleConvertOLESTREAMToIStorage */
typedef struct
{
DWORD dwOleID;
DWORD dwTypeID;
DWORD dwOleTypeNameLength;
CHAR strOleTypeName[OLESTREAM_MAX_STR_LEN];
CHAR *pstrOleObjFileName;
DWORD dwOleObjFileNameLength;
DWORD dwMetaFileWidth;
DWORD dwMetaFileHeight;
CHAR strUnknown[8]; /* don't know what this 8 byte information in OLE stream is. */
DWORD dwDataLength;
BYTE *pData;
}OLECONVERT_OLESTREAM_DATA;
/* CompObj Stream structure */
/* Used for OleConvertIStorageToOLESTREAM and OleConvertOLESTREAMToIStorage */
typedef struct
{
BYTE byUnknown1[12];
CLSID clsid;
DWORD dwCLSIDNameLength;
CHAR strCLSIDName[OLESTREAM_MAX_STR_LEN];
DWORD dwOleTypeNameLength;
CHAR strOleTypeName[OLESTREAM_MAX_STR_LEN];
DWORD dwProgIDNameLength;
CHAR strProgIDName[OLESTREAM_MAX_STR_LEN];
BYTE byUnknown2[16];
}OLECONVERT_ISTORAGE_COMPOBJ;
/* Ole Presentation Stream structure */
/* Used for OleConvertIStorageToOLESTREAM and OleConvertOLESTREAMToIStorage */
typedef struct
{
BYTE byUnknown1[28];
DWORD dwExtentX;
DWORD dwExtentY;
DWORD dwSize;
BYTE *pData;
}OLECONVERT_ISTORAGE_OLEPRES;
/***********************************************************************
* Forward declaration of internal functions used by the method DestroyElement
*/
static HRESULT deleteStorageContents(
StorageBaseImpl *parentStorage,
DirRef indexToDelete,
DirEntry entryDataToDelete);
static HRESULT deleteStreamContents(
StorageBaseImpl *parentStorage,
DirRef indexToDelete,
DirEntry entryDataToDelete);
static HRESULT removeFromTree(
StorageBaseImpl *This,
DirRef parentStorageIndex,
DirRef deletedIndex);
/***********************************************************************
* Declaration of the functions used to manipulate DirEntry
*/
static HRESULT insertIntoTree(
StorageBaseImpl *This,
DirRef parentStorageIndex,
DirRef newEntryIndex);
static LONG entryNameCmp(
const OLECHAR *name1,
const OLECHAR *name2);
static DirRef findElement(
StorageBaseImpl *storage,
DirRef storageEntry,
const OLECHAR *name,
DirEntry *data);
static HRESULT findTreeParent(
StorageBaseImpl *storage,
DirRef storageEntry,
const OLECHAR *childName,
DirEntry *parentData,
DirRef *parentEntry,
ULONG *relation);
/***********************************************************************
* Declaration of miscellaneous functions...
*/
static HRESULT validateSTGM(DWORD stgmValue);
static DWORD GetShareModeFromSTGM(DWORD stgm);
static DWORD GetAccessModeFromSTGM(DWORD stgm);
static DWORD GetCreationModeFromSTGM(DWORD stgm);
extern const IPropertySetStorageVtbl IPropertySetStorage_Vtbl;
/****************************************************************************
* IEnumSTATSTGImpl definitions.
*
* Definition of the implementation structure for the IEnumSTATSTGImpl interface.
* This class allows iterating through the content of a storage and to find
* specific items inside it.
*/
struct IEnumSTATSTGImpl
{
const IEnumSTATSTGVtbl *lpVtbl; /* Needs to be the first item in the struct
* since we want to cast this in an IEnumSTATSTG pointer */
LONG ref; /* Reference count */
StorageBaseImpl* parentStorage; /* Reference to the parent storage */
DirRef storageDirEntry; /* Directory entry of the storage to enumerate */
WCHAR name[DIRENTRY_NAME_MAX_LEN]; /* The most recent name visited */
};
static IEnumSTATSTGImpl* IEnumSTATSTGImpl_Construct(StorageBaseImpl* This, DirRef storageDirEntry);
static void IEnumSTATSTGImpl_Destroy(IEnumSTATSTGImpl* This);
/************************************************************************
** Block Functions
*/
static ULONG StorageImpl_GetBigBlockOffset(StorageImpl* This, ULONG index)
{
return (index+1) * This->bigBlockSize;
}
/************************************************************************
** Storage32BaseImpl implementation
*/
static HRESULT StorageImpl_ReadAt(StorageImpl* This,
ULARGE_INTEGER offset,
void* buffer,
ULONG size,
ULONG* bytesRead)
{
return ILockBytes_ReadAt(This->lockBytes,offset,buffer,size,bytesRead);
}
static HRESULT StorageImpl_WriteAt(StorageImpl* This,
ULARGE_INTEGER offset,
const void* buffer,
const ULONG size,
ULONG* bytesWritten)
{
return ILockBytes_WriteAt(This->lockBytes,offset,buffer,size,bytesWritten);
}
/************************************************************************
* Storage32BaseImpl_QueryInterface (IUnknown)
*
* This method implements the common QueryInterface for all IStorage32
* implementations contained in this file.
*
* See Windows documentation for more details on IUnknown methods.
*/
static HRESULT WINAPI StorageBaseImpl_QueryInterface(
IStorage* iface,
REFIID riid,
void** ppvObject)
{
StorageBaseImpl *This = (StorageBaseImpl *)iface;
if ( (This==0) || (ppvObject==0) )
return E_INVALIDARG;
*ppvObject = 0;
if (IsEqualGUID(&IID_IUnknown, riid) ||
IsEqualGUID(&IID_IStorage, riid))
{
*ppvObject = This;
}
else if (IsEqualGUID(&IID_IPropertySetStorage, riid))
{
*ppvObject = &This->pssVtbl;
}
if ((*ppvObject)==0)
return E_NOINTERFACE;
IStorage_AddRef(iface);
return S_OK;
}
/************************************************************************
* Storage32BaseImpl_AddRef (IUnknown)
*
* This method implements the common AddRef for all IStorage32
* implementations contained in this file.
*
* See Windows documentation for more details on IUnknown methods.
*/
static ULONG WINAPI StorageBaseImpl_AddRef(
IStorage* iface)
{
StorageBaseImpl *This = (StorageBaseImpl *)iface;
ULONG ref = InterlockedIncrement(&This->ref);
TRACE("(%p) AddRef to %d\n", This, ref);
return ref;
}
/************************************************************************
* Storage32BaseImpl_Release (IUnknown)
*
* This method implements the common Release for all IStorage32
* implementations contained in this file.
*
* See Windows documentation for more details on IUnknown methods.
*/
static ULONG WINAPI StorageBaseImpl_Release(
IStorage* iface)
{
StorageBaseImpl *This = (StorageBaseImpl *)iface;
ULONG ref = InterlockedDecrement(&This->ref);
TRACE("(%p) ReleaseRef to %d\n", This, ref);
if (ref == 0)
{
/*
* Since we are using a system of base-classes, we want to call the
* destructor of the appropriate derived class. To do this, we are
* using virtual functions to implement the destructor.
*/
StorageBaseImpl_Destroy(This);
}
return ref;
}
/************************************************************************
* Storage32BaseImpl_OpenStream (IStorage)
*
* This method will open the specified stream object from the current storage.
*
* See Windows documentation for more details on IStorage methods.
*/
static HRESULT WINAPI StorageBaseImpl_OpenStream(
IStorage* iface,
const OLECHAR* pwcsName, /* [string][in] */
void* reserved1, /* [unique][in] */
DWORD grfMode, /* [in] */
DWORD reserved2, /* [in] */
IStream** ppstm) /* [out] */
{
StorageBaseImpl *This = (StorageBaseImpl *)iface;
StgStreamImpl* newStream;
DirEntry currentEntry;
DirRef streamEntryRef;
HRESULT res = STG_E_UNKNOWN;
TRACE("(%p, %s, %p, %x, %d, %p)\n",
iface, debugstr_w(pwcsName), reserved1, grfMode, reserved2, ppstm);
if ( (pwcsName==NULL) || (ppstm==0) )
{
res = E_INVALIDARG;
goto end;
}
*ppstm = NULL;
if ( FAILED( validateSTGM(grfMode) ) ||
STGM_SHARE_MODE(grfMode) != STGM_SHARE_EXCLUSIVE)
{
res = STG_E_INVALIDFLAG;
goto end;
}
/*
* As documented.
*/
if ( (grfMode & STGM_DELETEONRELEASE) || (grfMode & STGM_TRANSACTED) )
{
res = STG_E_INVALIDFUNCTION;
goto end;
}
if (This->reverted)
{
res = STG_E_REVERTED;
goto end;
}
/*
* Check that we're compatible with the parent's storage mode, but
* only if we are not in transacted mode
*/
if(!(This->openFlags & STGM_TRANSACTED)) {
if ( STGM_ACCESS_MODE( grfMode ) > STGM_ACCESS_MODE( This->openFlags ) )
{
res = STG_E_INVALIDFLAG;
goto end;
}
}
/*
* Search for the element with the given name
*/
streamEntryRef = findElement(
This,
This->storageDirEntry,
pwcsName,
&currentEntry);
/*
* If it was found, construct the stream object and return a pointer to it.
*/
if ( (streamEntryRef!=DIRENTRY_NULL) &&
(currentEntry.stgType==STGTY_STREAM) )
{
if (StorageBaseImpl_IsStreamOpen(This, streamEntryRef))
{
/* A single stream cannot be opened a second time. */
res = STG_E_ACCESSDENIED;
goto end;
}
newStream = StgStreamImpl_Construct(This, grfMode, streamEntryRef);
if (newStream!=0)
{
newStream->grfMode = grfMode;
*ppstm = (IStream*)newStream;
IStream_AddRef(*ppstm);
res = S_OK;
goto end;
}
res = E_OUTOFMEMORY;
goto end;
}
res = STG_E_FILENOTFOUND;
end:
if (res == S_OK)
TRACE("<-- IStream %p\n", *ppstm);
TRACE("<-- %08x\n", res);
return res;
}
/************************************************************************
* Storage32BaseImpl_OpenStorage (IStorage)
*
* This method will open a new storage object from the current storage.
*
* See Windows documentation for more details on IStorage methods.
*/
static HRESULT WINAPI StorageBaseImpl_OpenStorage(
IStorage* iface,
const OLECHAR* pwcsName, /* [string][unique][in] */
IStorage* pstgPriority, /* [unique][in] */
DWORD grfMode, /* [in] */
SNB snbExclude, /* [unique][in] */
DWORD reserved, /* [in] */
IStorage** ppstg) /* [out] */
{
StorageBaseImpl *This = (StorageBaseImpl *)iface;
StorageInternalImpl* newStorage;
StorageBaseImpl* newTransactedStorage;
DirEntry currentEntry;
DirRef storageEntryRef;
HRESULT res = STG_E_UNKNOWN;
TRACE("(%p, %s, %p, %x, %p, %d, %p)\n",
iface, debugstr_w(pwcsName), pstgPriority,
grfMode, snbExclude, reserved, ppstg);
if ( (This==0) || (pwcsName==NULL) || (ppstg==0) )
{
res = E_INVALIDARG;
goto end;
}
if (This->openFlags & STGM_SIMPLE)
{
res = STG_E_INVALIDFUNCTION;
goto end;
}
/* as documented */
if (snbExclude != NULL)
{
res = STG_E_INVALIDPARAMETER;
goto end;
}
if ( FAILED( validateSTGM(grfMode) ))
{
res = STG_E_INVALIDFLAG;
goto end;
}
/*
* As documented.
*/
if ( STGM_SHARE_MODE(grfMode) != STGM_SHARE_EXCLUSIVE ||
(grfMode & STGM_DELETEONRELEASE) ||
(grfMode & STGM_PRIORITY) )
{
res = STG_E_INVALIDFUNCTION;
goto end;
}
if (This->reverted)
return STG_E_REVERTED;
/*
* Check that we're compatible with the parent's storage mode,
* but only if we are not transacted
*/
if(!(This->openFlags & STGM_TRANSACTED)) {
if ( STGM_ACCESS_MODE( grfMode ) > STGM_ACCESS_MODE( This->openFlags ) )
{
res = STG_E_ACCESSDENIED;
goto end;
}
}
*ppstg = NULL;
storageEntryRef = findElement(
This,
This->storageDirEntry,
pwcsName,
&currentEntry);
if ( (storageEntryRef!=DIRENTRY_NULL) &&
(currentEntry.stgType==STGTY_STORAGE) )
{
if (StorageBaseImpl_IsStorageOpen(This, storageEntryRef))
{
/* A single storage cannot be opened a second time. */
res = STG_E_ACCESSDENIED;
goto end;
}
newStorage = StorageInternalImpl_Construct(
This,
grfMode,
storageEntryRef);
if (newStorage != 0)
{
if (grfMode & STGM_TRANSACTED)
{
res = Storage_ConstructTransacted(&newStorage->base, &newTransactedStorage);
if (FAILED(res))
{
HeapFree(GetProcessHeap(), 0, newStorage);
goto end;
}
*ppstg = (IStorage*)newTransactedStorage;
}
else
{
*ppstg = (IStorage*)newStorage;
}
list_add_tail(&This->storageHead, &newStorage->ParentListEntry);
res = S_OK;
goto end;
}
res = STG_E_INSUFFICIENTMEMORY;
goto end;
}
res = STG_E_FILENOTFOUND;
end:
TRACE("<-- %08x\n", res);
return res;
}
/************************************************************************
* Storage32BaseImpl_EnumElements (IStorage)
*
* This method will create an enumerator object that can be used to
* retrieve information about all the elements in the storage object.
*
* See Windows documentation for more details on IStorage methods.
*/
static HRESULT WINAPI StorageBaseImpl_EnumElements(
IStorage* iface,
DWORD reserved1, /* [in] */
void* reserved2, /* [size_is][unique][in] */
DWORD reserved3, /* [in] */
IEnumSTATSTG** ppenum) /* [out] */
{
StorageBaseImpl *This = (StorageBaseImpl *)iface;
IEnumSTATSTGImpl* newEnum;
TRACE("(%p, %d, %p, %d, %p)\n",
iface, reserved1, reserved2, reserved3, ppenum);
if ( (This==0) || (ppenum==0))
return E_INVALIDARG;
if (This->reverted)
return STG_E_REVERTED;
newEnum = IEnumSTATSTGImpl_Construct(
This,
This->storageDirEntry);
if (newEnum!=0)
{
*ppenum = (IEnumSTATSTG*)newEnum;
IEnumSTATSTG_AddRef(*ppenum);
return S_OK;
}
return E_OUTOFMEMORY;
}
/************************************************************************
* Storage32BaseImpl_Stat (IStorage)
*
* This method will retrieve information about this storage object.
*
* See Windows documentation for more details on IStorage methods.
*/
static HRESULT WINAPI StorageBaseImpl_Stat(
IStorage* iface,
STATSTG* pstatstg, /* [out] */
DWORD grfStatFlag) /* [in] */
{
StorageBaseImpl *This = (StorageBaseImpl *)iface;
DirEntry currentEntry;
HRESULT res = STG_E_UNKNOWN;
TRACE("(%p, %p, %x)\n",
iface, pstatstg, grfStatFlag);
if ( (This==0) || (pstatstg==0))
{
res = E_INVALIDARG;
goto end;
}
if (This->reverted)
{
res = STG_E_REVERTED;
goto end;
}
res = StorageBaseImpl_ReadDirEntry(
This,
This->storageDirEntry,
&currentEntry);
if (SUCCEEDED(res))
{
StorageUtl_CopyDirEntryToSTATSTG(
This,
pstatstg,
&currentEntry,
grfStatFlag);
pstatstg->grfMode = This->openFlags;
pstatstg->grfStateBits = This->stateBits;
}
end:
if (res == S_OK)
{
TRACE("<-- STATSTG: pwcsName: %s, type: %d, cbSize.Low/High: %d/%d, grfMode: %08x, grfLocksSupported: %d, grfStateBits: %08x\n", debugstr_w(pstatstg->pwcsName), pstatstg->type, pstatstg->cbSize.u.LowPart, pstatstg->cbSize.u.HighPart, pstatstg->grfMode, pstatstg->grfLocksSupported, pstatstg->grfStateBits);
}
TRACE("<-- %08x\n", res);
return res;
}
/************************************************************************
* Storage32BaseImpl_RenameElement (IStorage)
*
* This method will rename the specified element.
*
* See Windows documentation for more details on IStorage methods.
*/
static HRESULT WINAPI StorageBaseImpl_RenameElement(
IStorage* iface,
const OLECHAR* pwcsOldName, /* [in] */
const OLECHAR* pwcsNewName) /* [in] */
{
StorageBaseImpl *This = (StorageBaseImpl *)iface;
DirEntry currentEntry;
DirRef currentEntryRef;
TRACE("(%p, %s, %s)\n",
iface, debugstr_w(pwcsOldName), debugstr_w(pwcsNewName));
if (This->reverted)
return STG_E_REVERTED;
currentEntryRef = findElement(This,
This->storageDirEntry,
pwcsNewName,
&currentEntry);
if (currentEntryRef != DIRENTRY_NULL)
{
/*
* There is already an element with the new name
*/
return STG_E_FILEALREADYEXISTS;
}
/*
* Search for the old element name
*/
currentEntryRef = findElement(This,
This->storageDirEntry,
pwcsOldName,
&currentEntry);
if (currentEntryRef != DIRENTRY_NULL)
{
if (StorageBaseImpl_IsStreamOpen(This, currentEntryRef) ||
StorageBaseImpl_IsStorageOpen(This, currentEntryRef))
{
WARN("Element is already open; cannot rename.\n");
return STG_E_ACCESSDENIED;
}
/* Remove the element from its current position in the tree */
removeFromTree(This, This->storageDirEntry,
currentEntryRef);
/* Change the name of the element */
strcpyW(currentEntry.name, pwcsNewName);
/* Delete any sibling links */
currentEntry.leftChild = DIRENTRY_NULL;
currentEntry.rightChild = DIRENTRY_NULL;
StorageBaseImpl_WriteDirEntry(This, currentEntryRef,
&currentEntry);
/* Insert the element in a new position in the tree */
insertIntoTree(This, This->storageDirEntry,
currentEntryRef);
}
else
{
/*
* There is no element with the old name
*/
return STG_E_FILENOTFOUND;
}
return StorageBaseImpl_Flush(This);
}
/************************************************************************
* Storage32BaseImpl_CreateStream (IStorage)
*
* This method will create a stream object within this storage
*
* See Windows documentation for more details on IStorage methods.
*/
static HRESULT WINAPI StorageBaseImpl_CreateStream(
IStorage* iface,
const OLECHAR* pwcsName, /* [string][in] */
DWORD grfMode, /* [in] */
DWORD reserved1, /* [in] */
DWORD reserved2, /* [in] */
IStream** ppstm) /* [out] */
{
StorageBaseImpl *This = (StorageBaseImpl *)iface;
StgStreamImpl* newStream;
DirEntry currentEntry, newStreamEntry;
DirRef currentEntryRef, newStreamEntryRef;
HRESULT hr;
TRACE("(%p, %s, %x, %d, %d, %p)\n",
iface, debugstr_w(pwcsName), grfMode,
reserved1, reserved2, ppstm);
if (ppstm == 0)
return STG_E_INVALIDPOINTER;
if (pwcsName == 0)
return STG_E_INVALIDNAME;
if (reserved1 || reserved2)
return STG_E_INVALIDPARAMETER;
if ( FAILED( validateSTGM(grfMode) ))
return STG_E_INVALIDFLAG;
if (STGM_SHARE_MODE(grfMode) != STGM_SHARE_EXCLUSIVE)
return STG_E_INVALIDFLAG;
if (This->reverted)
return STG_E_REVERTED;
/*
* As documented.
*/
if ((grfMode & STGM_DELETEONRELEASE) ||
(grfMode & STGM_TRANSACTED))
return STG_E_INVALIDFUNCTION;
/*
* Don't worry about permissions in transacted mode, as we can always write
* changes; we just can't always commit them.
*/
if(!(This->openFlags & STGM_TRANSACTED)) {
/* Can't create a stream on read-only storage */
if ( STGM_ACCESS_MODE( This->openFlags ) == STGM_READ )
return STG_E_ACCESSDENIED;
/* Can't create a stream with greater access than the parent. */
if ( STGM_ACCESS_MODE( grfMode ) > STGM_ACCESS_MODE( This->openFlags ) )
return STG_E_ACCESSDENIED;
}
if(This->openFlags & STGM_SIMPLE)
if(grfMode & STGM_CREATE) return STG_E_INVALIDFLAG;
*ppstm = 0;
currentEntryRef = findElement(This,
This->storageDirEntry,
pwcsName,
&currentEntry);
if (currentEntryRef != DIRENTRY_NULL)
{
/*
* An element with this name already exists
*/
if (STGM_CREATE_MODE(grfMode) == STGM_CREATE)
{
IStorage_DestroyElement(iface, pwcsName);
}
else
return STG_E_FILEALREADYEXISTS;
}
/*
* memset the empty entry
*/
memset(&newStreamEntry, 0, sizeof(DirEntry));
newStreamEntry.sizeOfNameString =
( lstrlenW(pwcsName)+1 ) * sizeof(WCHAR);
if (newStreamEntry.sizeOfNameString > DIRENTRY_NAME_BUFFER_LEN)
return STG_E_INVALIDNAME;
strcpyW(newStreamEntry.name, pwcsName);
newStreamEntry.stgType = STGTY_STREAM;
newStreamEntry.startingBlock = BLOCK_END_OF_CHAIN;
newStreamEntry.size.u.LowPart = 0;
newStreamEntry.size.u.HighPart = 0;
newStreamEntry.leftChild = DIRENTRY_NULL;
newStreamEntry.rightChild = DIRENTRY_NULL;
newStreamEntry.dirRootEntry = DIRENTRY_NULL;
/* call CoFileTime to get the current time
newStreamEntry.ctime
newStreamEntry.mtime
*/
/* newStreamEntry.clsid */
/*
* Create an entry with the new data
*/
hr = StorageBaseImpl_CreateDirEntry(This, &newStreamEntry, &newStreamEntryRef);
if (FAILED(hr))
return hr;
/*
* Insert the new entry in the parent storage's tree.
*/
hr = insertIntoTree(
This,
This->storageDirEntry,
newStreamEntryRef);
if (FAILED(hr))
{
StorageBaseImpl_DestroyDirEntry(This, newStreamEntryRef);
return hr;
}
/*
* Open the stream to return it.
*/
newStream = StgStreamImpl_Construct(This, grfMode, newStreamEntryRef);
if (newStream != 0)
{
*ppstm = (IStream*)newStream;
IStream_AddRef(*ppstm);
}
else
{
return STG_E_INSUFFICIENTMEMORY;
}
return StorageBaseImpl_Flush(This);
}
/************************************************************************
* Storage32BaseImpl_SetClass (IStorage)
*
* This method will write the specified CLSID in the directory entry of this
* storage.
*
* See Windows documentation for more details on IStorage methods.
*/
static HRESULT WINAPI StorageBaseImpl_SetClass(
IStorage* iface,
REFCLSID clsid) /* [in] */
{
StorageBaseImpl *This = (StorageBaseImpl *)iface;
HRESULT hRes;
DirEntry currentEntry;
TRACE("(%p, %p)\n", iface, clsid);
if (This->reverted)
return STG_E_REVERTED;
hRes = StorageBaseImpl_ReadDirEntry(This,
This->storageDirEntry,
&currentEntry);
if (SUCCEEDED(hRes))
{
currentEntry.clsid = *clsid;
hRes = StorageBaseImpl_WriteDirEntry(This,
This->storageDirEntry,
&currentEntry);
}
if (SUCCEEDED(hRes))
hRes = StorageBaseImpl_Flush(This);
return hRes;
}
/************************************************************************
** Storage32Impl implementation
*/
/************************************************************************
* Storage32BaseImpl_CreateStorage (IStorage)
*
* This method will create the storage object within the provided storage.
*
* See Windows documentation for more details on IStorage methods.
*/
static HRESULT WINAPI StorageBaseImpl_CreateStorage(
IStorage* iface,
const OLECHAR *pwcsName, /* [string][in] */
DWORD grfMode, /* [in] */
DWORD reserved1, /* [in] */
DWORD reserved2, /* [in] */
IStorage **ppstg) /* [out] */
{
StorageBaseImpl* const This=(StorageBaseImpl*)iface;
DirEntry currentEntry;
DirEntry newEntry;
DirRef currentEntryRef;
DirRef newEntryRef;
HRESULT hr;
TRACE("(%p, %s, %x, %d, %d, %p)\n",
iface, debugstr_w(pwcsName), grfMode,
reserved1, reserved2, ppstg);
if (ppstg == 0)
return STG_E_INVALIDPOINTER;
if (This->openFlags & STGM_SIMPLE)
{
return STG_E_INVALIDFUNCTION;
}
if (pwcsName == 0)
return STG_E_INVALIDNAME;
*ppstg = NULL;
if ( FAILED( validateSTGM(grfMode) ) ||
(grfMode & STGM_DELETEONRELEASE) )
{
WARN("bad grfMode: 0x%x\n", grfMode);
return STG_E_INVALIDFLAG;
}
if (This->reverted)
return STG_E_REVERTED;
/*
* Check that we're compatible with the parent's storage mode
*/
if ( !(This->openFlags & STGM_TRANSACTED) &&
STGM_ACCESS_MODE( grfMode ) > STGM_ACCESS_MODE( This->openFlags ) )
{
WARN("access denied\n");
return STG_E_ACCESSDENIED;
}
currentEntryRef = findElement(This,
This->storageDirEntry,
pwcsName,
&currentEntry);
if (currentEntryRef != DIRENTRY_NULL)
{
/*
* An element with this name already exists
*/
if (STGM_CREATE_MODE(grfMode) == STGM_CREATE &&
((This->openFlags & STGM_TRANSACTED) ||
STGM_ACCESS_MODE(This->openFlags) != STGM_READ))
{
hr = IStorage_DestroyElement(iface, pwcsName);
if (FAILED(hr))
return hr;
}
else
{
WARN("file already exists\n");
return STG_E_FILEALREADYEXISTS;
}
}
else if (!(This->openFlags & STGM_TRANSACTED) &&
STGM_ACCESS_MODE(This->openFlags) == STGM_READ)
{
WARN("read-only storage\n");
return STG_E_ACCESSDENIED;
}
memset(&newEntry, 0, sizeof(DirEntry));
newEntry.sizeOfNameString = (lstrlenW(pwcsName)+1)*sizeof(WCHAR);
if (newEntry.sizeOfNameString > DIRENTRY_NAME_BUFFER_LEN)
{
FIXME("name too long\n");
return STG_E_INVALIDNAME;
}
strcpyW(newEntry.name, pwcsName);
newEntry.stgType = STGTY_STORAGE;
newEntry.startingBlock = BLOCK_END_OF_CHAIN;
newEntry.size.u.LowPart = 0;
newEntry.size.u.HighPart = 0;
newEntry.leftChild = DIRENTRY_NULL;
newEntry.rightChild = DIRENTRY_NULL;
newEntry.dirRootEntry = DIRENTRY_NULL;
/* call CoFileTime to get the current time
newEntry.ctime
newEntry.mtime
*/
/* newEntry.clsid */
/*
* Create a new directory entry for the storage
*/
hr = StorageBaseImpl_CreateDirEntry(This, &newEntry, &newEntryRef);
if (FAILED(hr))
return hr;
/*
* Insert the new directory entry into the parent storage's tree
*/
hr = insertIntoTree(
This,
This->storageDirEntry,
newEntryRef);
if (FAILED(hr))
{
StorageBaseImpl_DestroyDirEntry(This, newEntryRef);
return hr;
}
/*
* Open it to get a pointer to return.
*/
hr = IStorage_OpenStorage(iface, pwcsName, 0, grfMode, 0, 0, ppstg);
if( (hr != S_OK) || (*ppstg == NULL))
{
return hr;
}
if (SUCCEEDED(hr))
hr = StorageBaseImpl_Flush(This);
return S_OK;
}
/***************************************************************************
*
* Internal Method
*
* Reserve a directory entry in the file and initialize it.
*/
static HRESULT StorageImpl_CreateDirEntry(
StorageBaseImpl *base,
const DirEntry *newData,
DirRef *index)
{
StorageImpl *storage = (StorageImpl*)base;
ULONG currentEntryIndex = 0;
ULONG newEntryIndex = DIRENTRY_NULL;
HRESULT hr = S_OK;
BYTE currentData[RAW_DIRENTRY_SIZE];
WORD sizeOfNameString;
do
{
hr = StorageImpl_ReadRawDirEntry(storage,
currentEntryIndex,
currentData);
if (SUCCEEDED(hr))
{
StorageUtl_ReadWord(
currentData,
OFFSET_PS_NAMELENGTH,
&sizeOfNameString);
if (sizeOfNameString == 0)
{
/*
* The entry exists and is available, we found it.
*/
newEntryIndex = currentEntryIndex;
}
}
else
{
/*
* We exhausted the directory entries, we will create more space below
*/
newEntryIndex = currentEntryIndex;
}
currentEntryIndex++;
} while (newEntryIndex == DIRENTRY_NULL);
/*
* grow the directory stream
*/
if (FAILED(hr))
{
BYTE emptyData[RAW_DIRENTRY_SIZE];
ULARGE_INTEGER newSize;
ULONG entryIndex;
ULONG lastEntry = 0;
ULONG blockCount = 0;
/*
* obtain the new count of blocks in the directory stream
*/
blockCount = BlockChainStream_GetCount(
storage->rootBlockChain)+1;
/*
* initialize the size used by the directory stream
*/
newSize.u.HighPart = 0;
newSize.u.LowPart = storage->bigBlockSize * blockCount;
/*
* add a block to the directory stream
*/
BlockChainStream_SetSize(storage->rootBlockChain, newSize);
/*
* memset the empty entry in order to initialize the unused newly
* created entries
*/
memset(&emptyData, 0, RAW_DIRENTRY_SIZE);
/*
* initialize them
*/
lastEntry = storage->bigBlockSize / RAW_DIRENTRY_SIZE * blockCount;
for(
entryIndex = newEntryIndex + 1;
entryIndex < lastEntry;
entryIndex++)
{
StorageImpl_WriteRawDirEntry(
storage,
entryIndex,
emptyData);
}
StorageImpl_SaveFileHeader(storage);
}
UpdateRawDirEntry(currentData, newData);
hr = StorageImpl_WriteRawDirEntry(storage, newEntryIndex, currentData);
if (SUCCEEDED(hr))
*index = newEntryIndex;
return hr;
}
/***************************************************************************
*
* Internal Method
*
* Mark a directory entry in the file as free.
*/
static HRESULT StorageImpl_DestroyDirEntry(
StorageBaseImpl *base,
DirRef index)
{
HRESULT hr;
BYTE emptyData[RAW_DIRENTRY_SIZE];
StorageImpl *storage = (StorageImpl*)base;
memset(&emptyData, 0, RAW_DIRENTRY_SIZE);
hr = StorageImpl_WriteRawDirEntry(storage, index, emptyData);
return hr;
}
/****************************************************************************
*
* Internal Method
*
* Case insensitive comparison of DirEntry.name by first considering
* their size.
*
* Returns <0 when name1 < name2
* >0 when name1 > name2
* 0 when name1 == name2
*/
static LONG entryNameCmp(
const OLECHAR *name1,
const OLECHAR *name2)
{
LONG diff = lstrlenW(name1) - lstrlenW(name2);
while (diff == 0 && *name1 != 0)
{
/*
* We compare the string themselves only when they are of the same length
*/
diff = toupperW(*name1++) - toupperW(*name2++);
}
return diff;
}
/****************************************************************************
*
* Internal Method
*
* Add a directory entry to a storage
*/
static HRESULT insertIntoTree(
StorageBaseImpl *This,
DirRef parentStorageIndex,
DirRef newEntryIndex)
{
DirEntry currentEntry;
DirEntry newEntry;
/*
* Read the inserted entry
*/
StorageBaseImpl_ReadDirEntry(This,
newEntryIndex,
&newEntry);
/*
* Read the storage entry
*/
StorageBaseImpl_ReadDirEntry(This,
parentStorageIndex,
&currentEntry);
if (currentEntry.dirRootEntry != DIRENTRY_NULL)
{
/*
* The root storage contains some element, therefore, start the research
* for the appropriate location.
*/
BOOL found = 0;
DirRef current, next, previous, currentEntryId;
/*
* Keep a reference to the root of the storage's element tree
*/
currentEntryId = currentEntry.dirRootEntry;
/*
* Read
*/
StorageBaseImpl_ReadDirEntry(This,
currentEntry.dirRootEntry,
&currentEntry);
previous = currentEntry.leftChild;
next = currentEntry.rightChild;
current = currentEntryId;
while (found == 0)
{
LONG diff = entryNameCmp( newEntry.name, currentEntry.name);
if (diff < 0)
{
if (previous != DIRENTRY_NULL)
{
StorageBaseImpl_ReadDirEntry(This,
previous,
&currentEntry);
current = previous;
}
else
{
currentEntry.leftChild = newEntryIndex;
StorageBaseImpl_WriteDirEntry(This,
current,
&currentEntry);
found = 1;
}
}
else if (diff > 0)
{
if (next != DIRENTRY_NULL)
{
StorageBaseImpl_ReadDirEntry(This,
next,
&currentEntry);
current = next;
}
else
{
currentEntry.rightChild = newEntryIndex;
StorageBaseImpl_WriteDirEntry(This,
current,
&currentEntry);
found = 1;
}
}
else
{
/*
* Trying to insert an item with the same name in the
* subtree structure.
*/
return STG_E_FILEALREADYEXISTS;
}
previous = currentEntry.leftChild;
next = currentEntry.rightChild;
}
}
else
{
/*
* The storage is empty, make the new entry the root of its element tree
*/
currentEntry.dirRootEntry = newEntryIndex;
StorageBaseImpl_WriteDirEntry(This,
parentStorageIndex,
&currentEntry);
}
return S_OK;
}
/****************************************************************************
*
* Internal Method
*
* Find and read the element of a storage with the given name.
*/
static DirRef findElement(StorageBaseImpl *storage, DirRef storageEntry,
const OLECHAR *name, DirEntry *data)
{
DirRef currentEntry;
/* Read the storage entry to find the root of the tree. */
StorageBaseImpl_ReadDirEntry(storage, storageEntry, data);
currentEntry = data->dirRootEntry;
while (currentEntry != DIRENTRY_NULL)
{
LONG cmp;
StorageBaseImpl_ReadDirEntry(storage, currentEntry, data);
cmp = entryNameCmp(name, data->name);
if (cmp == 0)
/* found it */
break;
else if (cmp < 0)
currentEntry = data->leftChild;
else if (cmp > 0)
currentEntry = data->rightChild;
}
return currentEntry;
}
/****************************************************************************
*
* Internal Method
*
* Find and read the binary tree parent of the element with the given name.
*
* If there is no such element, find a place where it could be inserted and
* return STG_E_FILENOTFOUND.
*/
static HRESULT findTreeParent(StorageBaseImpl *storage, DirRef storageEntry,
const OLECHAR *childName, DirEntry *parentData, DirRef *parentEntry,
ULONG *relation)
{
DirRef childEntry;
DirEntry childData;
/* Read the storage entry to find the root of the tree. */
StorageBaseImpl_ReadDirEntry(storage, storageEntry, parentData);
*parentEntry = storageEntry;
*relation = DIRENTRY_RELATION_DIR;
childEntry = parentData->dirRootEntry;
while (childEntry != DIRENTRY_NULL)
{
LONG cmp;
StorageBaseImpl_ReadDirEntry(storage, childEntry, &childData);
cmp = entryNameCmp(childName, childData.name);
if (cmp == 0)
/* found it */
break;
else if (cmp < 0)
{
*parentData = childData;
*parentEntry = childEntry;
*relation = DIRENTRY_RELATION_PREVIOUS;
childEntry = parentData->leftChild;
}
else if (cmp > 0)
{
*parentData = childData;
*parentEntry = childEntry;
*relation = DIRENTRY_RELATION_NEXT;
childEntry = parentData->rightChild;
}
}
if (childEntry == DIRENTRY_NULL)
return STG_E_FILENOTFOUND;
else
return S_OK;
}
/*************************************************************************
* CopyTo (IStorage)
*/
static HRESULT WINAPI StorageBaseImpl_CopyTo(
IStorage* iface,
DWORD ciidExclude, /* [in] */
const IID* rgiidExclude, /* [size_is][unique][in] */
SNB snbExclude, /* [unique][in] */
IStorage* pstgDest) /* [unique][in] */
{
StorageBaseImpl* const This=(StorageBaseImpl*)iface;
IEnumSTATSTG *elements = 0;
STATSTG curElement, strStat;
HRESULT hr;
IStorage *pstgTmp, *pstgChild;
IStream *pstrTmp, *pstrChild;
DirRef srcEntryRef;
DirEntry srcEntry;
BOOL skip = FALSE, skip_storage = FALSE, skip_stream = FALSE;
int i;
TRACE("(%p, %d, %p, %p, %p)\n",
iface, ciidExclude, rgiidExclude,
snbExclude, pstgDest);
if ( pstgDest == 0 )
return STG_E_INVALIDPOINTER;
/*
* Enumerate the elements
*/
hr = IStorage_EnumElements( iface, 0, 0, 0, &elements );
if ( hr != S_OK )
return hr;
/*
* set the class ID
*/
IStorage_Stat( iface, &curElement, STATFLAG_NONAME);
IStorage_SetClass( pstgDest, &curElement.clsid );
for(i = 0; i < ciidExclude; ++i)
{
if(IsEqualGUID(&IID_IStorage, &rgiidExclude[i]))
skip_storage = TRUE;
else if(IsEqualGUID(&IID_IStream, &rgiidExclude[i]))
skip_stream = TRUE;
else
WARN("Unknown excluded GUID: %s\n", debugstr_guid(&rgiidExclude[i]));
}
do
{
/*
* Obtain the next element
*/
hr = IEnumSTATSTG_Next( elements, 1, &curElement, NULL );
if ( hr == S_FALSE )
{
hr = S_OK; /* done, every element has been copied */
break;
}
if ( snbExclude )
{
WCHAR **snb = snbExclude;
skip = FALSE;
while ( *snb != NULL && !skip )
{
if ( lstrcmpW(curElement.pwcsName, *snb) == 0 )
skip = TRUE;
++snb;
}
}
if ( skip )
goto cleanup;
if (curElement.type == STGTY_STORAGE)
{
if(skip_storage)
goto cleanup;
/*
* open child source storage
*/
hr = IStorage_OpenStorage( iface, curElement.pwcsName, NULL,
STGM_READ|STGM_SHARE_EXCLUSIVE,
NULL, 0, &pstgChild );
if (hr != S_OK)
goto cleanup;
/*
* create a new storage in destination storage
*/
hr = IStorage_CreateStorage( pstgDest, curElement.pwcsName,
STGM_FAILIFTHERE|STGM_WRITE|STGM_SHARE_EXCLUSIVE,
0, 0,
&pstgTmp );
/*
* if it already exist, don't create a new one use this one
*/
if (hr == STG_E_FILEALREADYEXISTS)
{
hr = IStorage_OpenStorage( pstgDest, curElement.pwcsName, NULL,
STGM_WRITE|STGM_SHARE_EXCLUSIVE,
NULL, 0, &pstgTmp );
}
if (hr == S_OK)
{
/*
* do the copy recursively
*/
hr = IStorage_CopyTo( pstgChild, ciidExclude, rgiidExclude,
NULL, pstgTmp );
IStorage_Release( pstgTmp );
}
IStorage_Release( pstgChild );
}
else if (curElement.type == STGTY_STREAM)
{
if(skip_stream)
goto cleanup;
/*
* create a new stream in destination storage. If the stream already
* exist, it will be deleted and a new one will be created.
*/
hr = IStorage_CreateStream( pstgDest, curElement.pwcsName,
STGM_CREATE|STGM_WRITE|STGM_SHARE_EXCLUSIVE,
0, 0, &pstrTmp );
if (hr != S_OK)
goto cleanup;
/*
* open child stream storage. This operation must succeed even if the
* stream is already open, so we use internal functions to do it.
*/
srcEntryRef = findElement( This, This->storageDirEntry, curElement.pwcsName,
&srcEntry);
if (!srcEntryRef)
{
ERR("source stream not found\n");
hr = STG_E_DOCFILECORRUPT;
}
if (hr == S_OK)
{
pstrChild = (IStream*)StgStreamImpl_Construct(This, STGM_READ|STGM_SHARE_EXCLUSIVE, srcEntryRef);
if (pstrChild)
IStream_AddRef(pstrChild);
else
hr = E_OUTOFMEMORY;
}
if (hr == S_OK)
{
/*
* Get the size of the source stream
*/
IStream_Stat( pstrChild, &strStat, STATFLAG_NONAME );
/*
* Set the size of the destination stream.
*/
IStream_SetSize(pstrTmp, strStat.cbSize);
/*
* do the copy
*/
hr = IStream_CopyTo( pstrChild, pstrTmp, strStat.cbSize,
NULL, NULL );
IStream_Release( pstrChild );
}
IStream_Release( pstrTmp );
}
else
{
WARN("unknown element type: %d\n", curElement.type);
}
cleanup:
CoTaskMemFree(curElement.pwcsName);
} while (hr == S_OK);
/*
* Clean-up
*/
IEnumSTATSTG_Release(elements);
return hr;
}
/*************************************************************************
* MoveElementTo (IStorage)
*/
static HRESULT WINAPI StorageBaseImpl_MoveElementTo(
IStorage* iface,
const OLECHAR *pwcsName, /* [string][in] */
IStorage *pstgDest, /* [unique][in] */
const OLECHAR *pwcsNewName,/* [string][in] */
DWORD grfFlags) /* [in] */
{
FIXME("(%p %s %p %s %u): stub\n", iface,
debugstr_w(pwcsName), pstgDest,
debugstr_w(pwcsNewName), grfFlags);
return E_NOTIMPL;
}
/*************************************************************************
* Commit (IStorage)
*
* Ensures that any changes made to a storage object open in transacted mode
* are reflected in the parent storage
*
* In a non-transacted mode, this ensures all cached writes are completed.
*/
static HRESULT WINAPI StorageImpl_Commit(
IStorage* iface,
DWORD grfCommitFlags)/* [in] */
{
StorageBaseImpl* const base=(StorageBaseImpl*)iface;
TRACE("(%p %d)\n", iface, grfCommitFlags);
return StorageBaseImpl_Flush(base);
}
/*************************************************************************
* Revert (IStorage)
*
* Discard all changes that have been made since the last commit operation
*/
static HRESULT WINAPI StorageImpl_Revert(
IStorage* iface)
{
TRACE("(%p)\n", iface);
return S_OK;
}
/*************************************************************************
* DestroyElement (IStorage)
*
* Strategy: This implementation is built this way for simplicity not for speed.
* I always delete the topmost element of the enumeration and adjust
* the deleted element pointer all the time. This takes longer to
* do but allow to reinvoke DestroyElement whenever we encounter a
* storage object. The optimisation resides in the usage of another
* enumeration strategy that would give all the leaves of a storage
* first. (postfix order)
*/
static HRESULT WINAPI StorageBaseImpl_DestroyElement(
IStorage* iface,
const OLECHAR *pwcsName)/* [string][in] */
{
StorageBaseImpl* const This=(StorageBaseImpl*)iface;
HRESULT hr = S_OK;
DirEntry entryToDelete;
DirRef entryToDeleteRef;
TRACE("(%p, %s)\n",
iface, debugstr_w(pwcsName));
if (pwcsName==NULL)
return STG_E_INVALIDPOINTER;
if (This->reverted)
return STG_E_REVERTED;
if ( !(This->openFlags & STGM_TRANSACTED) &&
STGM_ACCESS_MODE( This->openFlags ) == STGM_READ )
return STG_E_ACCESSDENIED;
entryToDeleteRef = findElement(
This,
This->storageDirEntry,
pwcsName,
&entryToDelete);
if ( entryToDeleteRef == DIRENTRY_NULL )
{
return STG_E_FILENOTFOUND;
}
if ( entryToDelete.stgType == STGTY_STORAGE )
{
hr = deleteStorageContents(
This,
entryToDeleteRef,
entryToDelete);
}
else if ( entryToDelete.stgType == STGTY_STREAM )
{
hr = deleteStreamContents(
This,
entryToDeleteRef,
entryToDelete);
}
if (hr!=S_OK)
return hr;
/*
* Remove the entry from its parent storage
*/
hr = removeFromTree(
This,
This->storageDirEntry,
entryToDeleteRef);
/*
* Invalidate the entry
*/
if (SUCCEEDED(hr))
StorageBaseImpl_DestroyDirEntry(This, entryToDeleteRef);
if (SUCCEEDED(hr))
hr = StorageBaseImpl_Flush(This);
return hr;
}
/******************************************************************************
* Internal stream list handlers
*/
void StorageBaseImpl_AddStream(StorageBaseImpl * stg, StgStreamImpl * strm)
{
TRACE("Stream added (stg=%p strm=%p)\n", stg, strm);
list_add_tail(&stg->strmHead,&strm->StrmListEntry);
}
void StorageBaseImpl_RemoveStream(StorageBaseImpl * stg, StgStreamImpl * strm)
{
TRACE("Stream removed (stg=%p strm=%p)\n", stg,strm);
list_remove(&(strm->StrmListEntry));
}
static BOOL StorageBaseImpl_IsStreamOpen(StorageBaseImpl * stg, DirRef streamEntry)
{
StgStreamImpl *strm;
LIST_FOR_EACH_ENTRY(strm, &stg->strmHead, StgStreamImpl, StrmListEntry)
{
if (strm->dirEntry == streamEntry)
{
return TRUE;
}
}
return FALSE;
}
static BOOL StorageBaseImpl_IsStorageOpen(StorageBaseImpl * stg, DirRef storageEntry)
{
StorageInternalImpl *childstg;
LIST_FOR_EACH_ENTRY(childstg, &stg->storageHead, StorageInternalImpl, ParentListEntry)
{
if (childstg->base.storageDirEntry == storageEntry)
{
return TRUE;
}
}
return FALSE;
}
static void StorageBaseImpl_DeleteAll(StorageBaseImpl * stg)
{
struct list *cur, *cur2;
StgStreamImpl *strm=NULL;
StorageInternalImpl *childstg=NULL;
LIST_FOR_EACH_SAFE(cur, cur2, &stg->strmHead) {
strm = LIST_ENTRY(cur,StgStreamImpl,StrmListEntry);
TRACE("Streams invalidated (stg=%p strm=%p next=%p prev=%p)\n", stg,strm,cur->next,cur->prev);
strm->parentStorage = NULL;
list_remove(cur);
}
LIST_FOR_EACH_SAFE(cur, cur2, &stg->storageHead) {
childstg = LIST_ENTRY(cur,StorageInternalImpl,ParentListEntry);
StorageBaseImpl_Invalidate( &childstg->base );
}
if (stg->transactedChild)
{
StorageBaseImpl_Invalidate(stg->transactedChild);
stg->transactedChild = NULL;
}
}
/*********************************************************************
*
* Internal Method
*
* Delete the contents of a storage entry.
*
*/
static HRESULT deleteStorageContents(
StorageBaseImpl *parentStorage,
DirRef indexToDelete,
DirEntry entryDataToDelete)
{
IEnumSTATSTG *elements = 0;
IStorage *childStorage = 0;
STATSTG currentElement;
HRESULT hr;
HRESULT destroyHr = S_OK;
StorageInternalImpl *stg, *stg2;
/* Invalidate any open storage objects. */
LIST_FOR_EACH_ENTRY_SAFE(stg, stg2, &parentStorage->storageHead, StorageInternalImpl, ParentListEntry)
{
if (stg->base.storageDirEntry == indexToDelete)
{
StorageBaseImpl_Invalidate(&stg->base);
}
}
/*
* Open the storage and enumerate it
*/
hr = StorageBaseImpl_OpenStorage(
(IStorage*)parentStorage,
entryDataToDelete.name,
0,
STGM_WRITE | STGM_SHARE_EXCLUSIVE,
0,
0,
&childStorage);
if (hr != S_OK)
{
return hr;
}
/*
* Enumerate the elements
*/
IStorage_EnumElements( childStorage, 0, 0, 0, &elements);
do
{
/*
* Obtain the next element
*/
hr = IEnumSTATSTG_Next(elements, 1, &currentElement, NULL);
if (hr==S_OK)
{
destroyHr = IStorage_DestroyElement(childStorage, currentElement.pwcsName);
CoTaskMemFree(currentElement.pwcsName);
}
/*
* We need to Reset the enumeration every time because we delete elements
* and the enumeration could be invalid
*/
IEnumSTATSTG_Reset(elements);
} while ((hr == S_OK) && (destroyHr == S_OK));
IStorage_Release(childStorage);
IEnumSTATSTG_Release(elements);
return destroyHr;
}
/*********************************************************************
*
* Internal Method
*
* Perform the deletion of a stream's data
*
*/
static HRESULT deleteStreamContents(
StorageBaseImpl *parentStorage,
DirRef indexToDelete,
DirEntry entryDataToDelete)
{
IStream *pis;
HRESULT hr;
ULARGE_INTEGER size;
StgStreamImpl *strm, *strm2;
/* Invalidate any open stream objects. */
LIST_FOR_EACH_ENTRY_SAFE(strm, strm2, &parentStorage->strmHead, StgStreamImpl, StrmListEntry)
{
if (strm->dirEntry == indexToDelete)
{
TRACE("Stream deleted %p\n", strm);
strm->parentStorage = NULL;
list_remove(&strm->StrmListEntry);
}
}
size.u.HighPart = 0;
size.u.LowPart = 0;
hr = StorageBaseImpl_OpenStream((IStorage*)parentStorage,
entryDataToDelete.name, NULL, STGM_WRITE | STGM_SHARE_EXCLUSIVE, 0, &pis);
if (hr!=S_OK)
{
return(hr);
}
/*
* Zap the stream
*/
hr = IStream_SetSize(pis, size);
if(hr != S_OK)
{
return hr;
}
/*
* Release the stream object.
*/
IStream_Release(pis);
return S_OK;
}
static void setEntryLink(DirEntry *entry, ULONG relation, DirRef new_target)
{
switch (relation)
{
case DIRENTRY_RELATION_PREVIOUS:
entry->leftChild = new_target;
break;
case DIRENTRY_RELATION_NEXT:
entry->rightChild = new_target;
break;
case DIRENTRY_RELATION_DIR:
entry->dirRootEntry = new_target;
break;
default:
assert(0);
}
}
/*************************************************************************
*
* Internal Method
*
* This method removes a directory entry from its parent storage tree without
* freeing any resources attached to it.
*/
static HRESULT removeFromTree(
StorageBaseImpl *This,
DirRef parentStorageIndex,
DirRef deletedIndex)
{
HRESULT hr = S_OK;
DirEntry entryToDelete;
DirEntry parentEntry;
DirRef parentEntryRef;
ULONG typeOfRelation;
hr = StorageBaseImpl_ReadDirEntry(This, deletedIndex, &entryToDelete);
if (hr != S_OK)
return hr;
/*
* Find the element that links to the one we want to delete.
*/
hr = findTreeParent(This, parentStorageIndex, entryToDelete.name,
&parentEntry, &parentEntryRef, &typeOfRelation);
if (hr != S_OK)
return hr;
if (entryToDelete.leftChild != DIRENTRY_NULL)
{
/*
* Replace the deleted entry with its left child
*/
setEntryLink(&parentEntry, typeOfRelation, entryToDelete.leftChild);
hr = StorageBaseImpl_WriteDirEntry(
This,
parentEntryRef,
&parentEntry);
if(FAILED(hr))
{
return hr;
}
if (entryToDelete.rightChild != DIRENTRY_NULL)
{
/*
* We need to reinsert the right child somewhere. We already know it and
* its children are greater than everything in the left tree, so we
* insert it at the rightmost point in the left tree.
*/
DirRef newRightChildParent = entryToDelete.leftChild;
DirEntry newRightChildParentEntry;
do
{
hr = StorageBaseImpl_ReadDirEntry(
This,
newRightChildParent,
&newRightChildParentEntry);
if (FAILED(hr))
{
return hr;
}
if (newRightChildParentEntry.rightChild != DIRENTRY_NULL)
newRightChildParent = newRightChildParentEntry.rightChild;
} while (newRightChildParentEntry.rightChild != DIRENTRY_NULL);
newRightChildParentEntry.rightChild = entryToDelete.rightChild;
hr = StorageBaseImpl_WriteDirEntry(
This,
newRightChildParent,
&newRightChildParentEntry);
if (FAILED(hr))
{
return hr;
}
}
}
else
{
/*
* Replace the deleted entry with its right child
*/
setEntryLink(&parentEntry, typeOfRelation, entryToDelete.rightChild);
hr = StorageBaseImpl_WriteDirEntry(
This,
parentEntryRef,
&parentEntry);
if(FAILED(hr))
{
return hr;
}
}
return hr;
}
/******************************************************************************
* SetElementTimes (IStorage)
*/
static HRESULT WINAPI StorageBaseImpl_SetElementTimes(
IStorage* iface,
const OLECHAR *pwcsName,/* [string][in] */
const FILETIME *pctime, /* [in] */
const FILETIME *patime, /* [in] */
const FILETIME *pmtime) /* [in] */
{
FIXME("(%s,...), stub!\n",debugstr_w(pwcsName));
return S_OK;
}
/******************************************************************************
* SetStateBits (IStorage)
*/
static HRESULT WINAPI StorageBaseImpl_SetStateBits(
IStorage* iface,
DWORD grfStateBits,/* [in] */
DWORD grfMask) /* [in] */
{
StorageBaseImpl* const This = (StorageBaseImpl*)iface;
if (This->reverted)
return STG_E_REVERTED;
This->stateBits = (This->stateBits & ~grfMask) | (grfStateBits & grfMask);
return S_OK;
}
static HRESULT StorageImpl_BaseWriteDirEntry(StorageBaseImpl *base,
DirRef index, const DirEntry *data)
{
StorageImpl *This = (StorageImpl*)base;
return StorageImpl_WriteDirEntry(This, index, data);
}
static HRESULT StorageImpl_BaseReadDirEntry(StorageBaseImpl *base,
DirRef index, DirEntry *data)
{
StorageImpl *This = (StorageImpl*)base;
return StorageImpl_ReadDirEntry(This, index, data);
}
static BlockChainStream **StorageImpl_GetFreeBlockChainCacheEntry(StorageImpl* This)
{
int i;
for (i=0; i<BLOCKCHAIN_CACHE_SIZE; i++)
{
if (!This->blockChainCache[i])
{
return &This->blockChainCache[i];
}
}
i = This->blockChainToEvict;
BlockChainStream_Destroy(This->blockChainCache[i]);
This->blockChainCache[i] = NULL;
This->blockChainToEvict++;
if (This->blockChainToEvict == BLOCKCHAIN_CACHE_SIZE)
This->blockChainToEvict = 0;
return &This->blockChainCache[i];
}
static BlockChainStream **StorageImpl_GetCachedBlockChainStream(StorageImpl *This,
DirRef index)
{
int i, free_index=-1;
for (i=0; i<BLOCKCHAIN_CACHE_SIZE; i++)
{
if (!This->blockChainCache[i])
{
if (free_index == -1) free_index = i;
}
else if (This->blockChainCache[i]->ownerDirEntry == index)
{
return &This->blockChainCache[i];
}
}
if (free_index == -1)
{
free_index = This->blockChainToEvict;
BlockChainStream_Destroy(This->blockChainCache[free_index]);
This->blockChainCache[free_index] = NULL;
This->blockChainToEvict++;
if (This->blockChainToEvict == BLOCKCHAIN_CACHE_SIZE)
This->blockChainToEvict = 0;
}
This->blockChainCache[free_index] = BlockChainStream_Construct(This, NULL, index);
return &This->blockChainCache[free_index];
}
static void StorageImpl_DeleteCachedBlockChainStream(StorageImpl *This, DirRef index)
{
int i;
for (i=0; i<BLOCKCHAIN_CACHE_SIZE; i++)
{
if (This->blockChainCache[i] && This->blockChainCache[i]->ownerDirEntry == index)
{
BlockChainStream_Destroy(This->blockChainCache[i]);
This->blockChainCache[i] = NULL;
return;
}
}
}
static HRESULT StorageImpl_StreamReadAt(StorageBaseImpl *base, DirRef index,
ULARGE_INTEGER offset, ULONG size, void *buffer, ULONG *bytesRead)
{
StorageImpl *This = (StorageImpl*)base;
DirEntry data;
HRESULT hr;
ULONG bytesToRead;
hr = StorageImpl_ReadDirEntry(This, index, &data);
if (FAILED(hr)) return hr;
if (data.size.QuadPart == 0)
{
*bytesRead = 0;
return S_OK;
}
if (offset.QuadPart + size > data.size.QuadPart)
{
bytesToRead = data.size.QuadPart - offset.QuadPart;
}
else
{
bytesToRead = size;
}
if (data.size.QuadPart < LIMIT_TO_USE_SMALL_BLOCK)
{
SmallBlockChainStream *stream;
stream = SmallBlockChainStream_Construct(This, NULL, index);
if (!stream) return E_OUTOFMEMORY;
hr = SmallBlockChainStream_ReadAt(stream, offset, bytesToRead, buffer, bytesRead);
SmallBlockChainStream_Destroy(stream);
return hr;
}
else
{
BlockChainStream *stream = NULL;
stream = *StorageImpl_GetCachedBlockChainStream(This, index);
if (!stream) return E_OUTOFMEMORY;
hr = BlockChainStream_ReadAt(stream, offset, bytesToRead, buffer, bytesRead);
return hr;
}
}
static HRESULT StorageImpl_StreamSetSize(StorageBaseImpl *base, DirRef index,
ULARGE_INTEGER newsize)
{
StorageImpl *This = (StorageImpl*)base;
DirEntry data;
HRESULT hr;
SmallBlockChainStream *smallblock=NULL;
BlockChainStream **pbigblock=NULL, *bigblock=NULL;
hr = StorageImpl_ReadDirEntry(This, index, &data);
if (FAILED(hr)) return hr;
/* In simple mode keep the stream size above the small block limit */
if (This->base.openFlags & STGM_SIMPLE)
newsize.QuadPart = max(newsize.QuadPart, LIMIT_TO_USE_SMALL_BLOCK);
if (data.size.QuadPart == newsize.QuadPart)
return S_OK;
/* Create a block chain object of the appropriate type */
if (data.size.QuadPart == 0)
{
if (newsize.QuadPart < LIMIT_TO_USE_SMALL_BLOCK)
{
smallblock = SmallBlockChainStream_Construct(This, NULL, index);
if (!smallblock) return E_OUTOFMEMORY;
}
else
{
pbigblock = StorageImpl_GetCachedBlockChainStream(This, index);
bigblock = *pbigblock;
if (!bigblock) return E_OUTOFMEMORY;
}
}
else if (data.size.QuadPart < LIMIT_TO_USE_SMALL_BLOCK)
{
smallblock = SmallBlockChainStream_Construct(This, NULL, index);
if (!smallblock) return E_OUTOFMEMORY;
}
else
{
pbigblock = StorageImpl_GetCachedBlockChainStream(This, index);
bigblock = *pbigblock;
if (!bigblock) return E_OUTOFMEMORY;
}
/* Change the block chain type if necessary. */
if (smallblock && newsize.QuadPart >= LIMIT_TO_USE_SMALL_BLOCK)
{
bigblock = Storage32Impl_SmallBlocksToBigBlocks(This, &smallblock);
if (!bigblock)
{
SmallBlockChainStream_Destroy(smallblock);
return E_FAIL;
}
pbigblock = StorageImpl_GetFreeBlockChainCacheEntry(This);
*pbigblock = bigblock;
}
else if (bigblock && newsize.QuadPart < LIMIT_TO_USE_SMALL_BLOCK)
{
smallblock = Storage32Impl_BigBlocksToSmallBlocks(This, pbigblock);
if (!smallblock)
return E_FAIL;
}
/* Set the size of the block chain. */
if (smallblock)
{
SmallBlockChainStream_SetSize(smallblock, newsize);
SmallBlockChainStream_Destroy(smallblock);
}
else
{
BlockChainStream_SetSize(bigblock, newsize);
}
/* Set the size in the directory entry. */
hr = StorageImpl_ReadDirEntry(This, index, &data);
if (SUCCEEDED(hr))
{
data.size = newsize;
hr = StorageImpl_WriteDirEntry(This, index, &data);
}
return hr;
}
static HRESULT StorageImpl_StreamWriteAt(StorageBaseImpl *base, DirRef index,
ULARGE_INTEGER offset, ULONG size, const void *buffer, ULONG *bytesWritten)
{
StorageImpl *This = (StorageImpl*)base;
DirEntry data;
HRESULT hr;
ULARGE_INTEGER newSize;
hr = StorageImpl_ReadDirEntry(This, index, &data);
if (FAILED(hr)) return hr;
/* Grow the stream if necessary */
newSize.QuadPart = 0;
newSize.QuadPart = offset.QuadPart + size;
if (newSize.QuadPart > data.size.QuadPart)
{
hr = StorageImpl_StreamSetSize(base, index, newSize);
if (FAILED(hr))
return hr;
hr = StorageImpl_ReadDirEntry(This, index, &data);
if (FAILED(hr)) return hr;
}
if (data.size.QuadPart < LIMIT_TO_USE_SMALL_BLOCK)
{
SmallBlockChainStream *stream;
stream = SmallBlockChainStream_Construct(This, NULL, index);
if (!stream) return E_OUTOFMEMORY;
hr = SmallBlockChainStream_WriteAt(stream, offset, size, buffer, bytesWritten);
SmallBlockChainStream_Destroy(stream);
return hr;
}
else
{
BlockChainStream *stream;
stream = *StorageImpl_GetCachedBlockChainStream(This, index);
if (!stream) return E_OUTOFMEMORY;
hr = BlockChainStream_WriteAt(stream, offset, size, buffer, bytesWritten);
return hr;
}
}
static HRESULT StorageImpl_StreamLink(StorageBaseImpl *base, DirRef dst,
DirRef src)
{
StorageImpl *This = (StorageImpl*)base;
DirEntry dst_data, src_data;
HRESULT hr;
hr = StorageImpl_ReadDirEntry(This, dst, &dst_data);
if (SUCCEEDED(hr))
hr = StorageImpl_ReadDirEntry(This, src, &src_data);
if (SUCCEEDED(hr))
{
StorageImpl_DeleteCachedBlockChainStream(This, src);
dst_data.startingBlock = src_data.startingBlock;
dst_data.size = src_data.size;
hr = StorageImpl_WriteDirEntry(This, dst, &dst_data);
}
return hr;
}
static HRESULT StorageImpl_GetFilename(StorageBaseImpl* iface, LPWSTR *result)
{
StorageImpl *This = (StorageImpl*) iface;
STATSTG statstg;
HRESULT hr;
hr = ILockBytes_Stat(This->lockBytes, &statstg, 0);
*result = statstg.pwcsName;
return hr;
}
/*
* Virtual function table for the IStorage32Impl class.
*/
static const IStorageVtbl Storage32Impl_Vtbl =
{
StorageBaseImpl_QueryInterface,
StorageBaseImpl_AddRef,
StorageBaseImpl_Release,
StorageBaseImpl_CreateStream,
StorageBaseImpl_OpenStream,
StorageBaseImpl_CreateStorage,
StorageBaseImpl_OpenStorage,
StorageBaseImpl_CopyTo,
StorageBaseImpl_MoveElementTo,
StorageImpl_Commit,
StorageImpl_Revert,
StorageBaseImpl_EnumElements,
StorageBaseImpl_DestroyElement,
StorageBaseImpl_RenameElement,
StorageBaseImpl_SetElementTimes,
StorageBaseImpl_SetClass,
StorageBaseImpl_SetStateBits,
StorageBaseImpl_Stat
};
static const StorageBaseImplVtbl StorageImpl_BaseVtbl =
{
StorageImpl_Destroy,
StorageImpl_Invalidate,
StorageImpl_Flush,
StorageImpl_GetFilename,
StorageImpl_CreateDirEntry,
StorageImpl_BaseWriteDirEntry,
StorageImpl_BaseReadDirEntry,
StorageImpl_DestroyDirEntry,
StorageImpl_StreamReadAt,
StorageImpl_StreamWriteAt,
StorageImpl_StreamSetSize,
StorageImpl_StreamLink
};
static HRESULT StorageImpl_Construct(
HANDLE hFile,
LPCOLESTR pwcsName,
ILockBytes* pLkbyt,
DWORD openFlags,
BOOL fileBased,
BOOL create,
ULONG sector_size,
StorageImpl** result)
{
StorageImpl* This;
HRESULT hr = S_OK;
DirEntry currentEntry;
DirRef currentEntryRef;
if ( FAILED( validateSTGM(openFlags) ))
return STG_E_INVALIDFLAG;
This = HeapAlloc(GetProcessHeap(), 0, sizeof(StorageImpl));
if (!This)
return E_OUTOFMEMORY;
memset(This, 0, sizeof(StorageImpl));
list_init(&This->base.strmHead);
list_init(&This->base.storageHead);
This->base.lpVtbl = &Storage32Impl_Vtbl;
This->base.pssVtbl = &IPropertySetStorage_Vtbl;
This->base.baseVtbl = &StorageImpl_BaseVtbl;
This->base.openFlags = (openFlags & ~STGM_CREATE);
This->base.ref = 1;
This->base.create = create;
This->base.reverted = 0;
/*
* Initialize the big block cache.
*/
This->bigBlockSize = sector_size;
This->smallBlockSize = DEF_SMALL_BLOCK_SIZE;
if (hFile)
hr = FileLockBytesImpl_Construct(hFile, openFlags, pwcsName, &This->lockBytes);
else
{
This->lockBytes = pLkbyt;
ILockBytes_AddRef(pLkbyt);
}
if (FAILED(hr))
goto end;
if (create)
{
ULARGE_INTEGER size;
BYTE bigBlockBuffer[MAX_BIG_BLOCK_SIZE];
/*
* Initialize all header variables:
* - The big block depot consists of one block and it is at block 0
* - The directory table starts at block 1
* - There is no small block depot
*/
memset( This->bigBlockDepotStart,
BLOCK_UNUSED,
sizeof(This->bigBlockDepotStart));
This->bigBlockDepotCount = 1;
This->bigBlockDepotStart[0] = 0;
This->rootStartBlock = 1;
This->smallBlockLimit = LIMIT_TO_USE_SMALL_BLOCK;
This->smallBlockDepotStart = BLOCK_END_OF_CHAIN;
if (sector_size == 4096)
This->bigBlockSizeBits = MAX_BIG_BLOCK_SIZE_BITS;
else
This->bigBlockSizeBits = MIN_BIG_BLOCK_SIZE_BITS;
This->smallBlockSizeBits = DEF_SMALL_BLOCK_SIZE_BITS;
This->extBigBlockDepotStart = BLOCK_END_OF_CHAIN;
This->extBigBlockDepotCount = 0;
StorageImpl_SaveFileHeader(This);
/*
* Add one block for the big block depot and one block for the directory table
*/
size.u.HighPart = 0;
size.u.LowPart = This->bigBlockSize * 3;
ILockBytes_SetSize(This->lockBytes, size);
/*
* Initialize the big block depot
*/
memset(bigBlockBuffer, BLOCK_UNUSED, This->bigBlockSize);
StorageUtl_WriteDWord(bigBlockBuffer, 0, BLOCK_SPECIAL);
StorageUtl_WriteDWord(bigBlockBuffer, sizeof(ULONG), BLOCK_END_OF_CHAIN);
StorageImpl_WriteBigBlock(This, 0, bigBlockBuffer);
}
else
{
/*
* Load the header for the file.
*/
hr = StorageImpl_LoadFileHeader(This);
if (FAILED(hr))
{
goto end;
}
}
/*
* There is no block depot cached yet.
*/
This->indexBlockDepotCached = 0xFFFFFFFF;
/*
* Start searching for free blocks with block 0.
*/
This->prevFreeBlock = 0;
This->firstFreeSmallBlock = 0;
/* Read the extended big block depot locations. */
if (This->extBigBlockDepotCount != 0)
{
ULONG current_block = This->extBigBlockDepotStart;
ULONG cache_size = This->extBigBlockDepotCount * 2;
int i;
This->extBigBlockDepotLocations = HeapAlloc(GetProcessHeap(), 0, sizeof(ULONG) * cache_size);
if (!This->extBigBlockDepotLocations)
{
hr = E_OUTOFMEMORY;
goto end;
}
This->extBigBlockDepotLocationsSize = cache_size;
for (i=0; i<This->extBigBlockDepotCount; i++)
{
if (current_block == BLOCK_END_OF_CHAIN)
{
WARN("File has too few extended big block depot blocks.\n");
hr = STG_E_DOCFILECORRUPT;
goto end;
}
This->extBigBlockDepotLocations[i] = current_block;
current_block = Storage32Impl_GetNextExtendedBlock(This, current_block);
}
}
else
{
This->extBigBlockDepotLocations = NULL;
This->extBigBlockDepotLocationsSize = 0;
}
/*
* Create the block chain abstractions.
*/
if(!(This->rootBlockChain =
BlockChainStream_Construct(This, &This->rootStartBlock, DIRENTRY_NULL)))
{
hr = STG_E_READFAULT;
goto end;
}
if(!(This->smallBlockDepotChain =
BlockChainStream_Construct(This, &This->smallBlockDepotStart,
DIRENTRY_NULL)))
{
hr = STG_E_READFAULT;
goto end;
}
/*
* Write the root storage entry (memory only)
*/
if (create)
{
DirEntry rootEntry;
/*
* Initialize the directory table
*/
memset(&rootEntry, 0, sizeof(rootEntry));
MultiByteToWideChar( CP_ACP, 0, rootEntryName, -1, rootEntry.name,
sizeof(rootEntry.name)/sizeof(WCHAR) );
rootEntry.sizeOfNameString = (strlenW(rootEntry.name)+1) * sizeof(WCHAR);
rootEntry.stgType = STGTY_ROOT;
rootEntry.leftChild = DIRENTRY_NULL;
rootEntry.rightChild = DIRENTRY_NULL;
rootEntry.dirRootEntry = DIRENTRY_NULL;
rootEntry.startingBlock = BLOCK_END_OF_CHAIN;
rootEntry.size.u.HighPart = 0;
rootEntry.size.u.LowPart = 0;
StorageImpl_WriteDirEntry(This, 0, &rootEntry);
}
/*
* Find the ID of the root storage.
*/
currentEntryRef = 0;
do
{
hr = StorageImpl_ReadDirEntry(
This,
currentEntryRef,
&currentEntry);
if (SUCCEEDED(hr))
{
if ( (currentEntry.sizeOfNameString != 0 ) &&
(currentEntry.stgType == STGTY_ROOT) )
{
This->base.storageDirEntry = currentEntryRef;
}
}
currentEntryRef++;
} while (SUCCEEDED(hr) && (This->base.storageDirEntry == DIRENTRY_NULL) );
if (FAILED(hr))
{
hr = STG_E_READFAULT;
goto end;
}
/*
* Create the block chain abstraction for the small block root chain.
*/
if(!(This->smallBlockRootChain =
BlockChainStream_Construct(This, NULL, This->base.storageDirEntry)))
{
hr = STG_E_READFAULT;
}
end:
if (FAILED(hr))
{
IStorage_Release((IStorage*)This);
*result = NULL;
}
else
{
StorageImpl_Flush((StorageBaseImpl*)This);
*result = This;
}
return hr;
}
static void StorageImpl_Invalidate(StorageBaseImpl* iface)
{
StorageImpl *This = (StorageImpl*) iface;
StorageBaseImpl_DeleteAll(&This->base);
This->base.reverted = 1;
}
static void StorageImpl_Destroy(StorageBaseImpl* iface)
{
StorageImpl *This = (StorageImpl*) iface;
int i;
TRACE("(%p)\n", This);
StorageImpl_Flush(iface);
StorageImpl_Invalidate(iface);
HeapFree(GetProcessHeap(), 0, This->extBigBlockDepotLocations);
BlockChainStream_Destroy(This->smallBlockRootChain);
BlockChainStream_Destroy(This->rootBlockChain);
BlockChainStream_Destroy(This->smallBlockDepotChain);
for (i=0; i<BLOCKCHAIN_CACHE_SIZE; i++)
BlockChainStream_Destroy(This->blockChainCache[i]);
if (This->lockBytes)
ILockBytes_Release(This->lockBytes);
HeapFree(GetProcessHeap(), 0, This);
}
static HRESULT StorageImpl_Flush(StorageBaseImpl* iface)
{
StorageImpl *This = (StorageImpl*) iface;
int i;
HRESULT hr;
TRACE("(%p)\n", This);
hr = BlockChainStream_Flush(This->smallBlockRootChain);
if (SUCCEEDED(hr))
hr = BlockChainStream_Flush(This->rootBlockChain);
if (SUCCEEDED(hr))
hr = BlockChainStream_Flush(This->smallBlockDepotChain);
for (i=0; SUCCEEDED(hr) && i<BLOCKCHAIN_CACHE_SIZE; i++)
if (This->blockChainCache[i])
hr = BlockChainStream_Flush(This->blockChainCache[i]);
if (SUCCEEDED(hr))
hr = ILockBytes_Flush(This->lockBytes);
return hr;
}
/******************************************************************************
* Storage32Impl_GetNextFreeBigBlock
*
* Returns the index of the next free big block.
* If the big block depot is filled, this method will enlarge it.
*
*/
static ULONG StorageImpl_GetNextFreeBigBlock(
StorageImpl* This)
{
ULONG depotBlockIndexPos;
BYTE depotBuffer[MAX_BIG_BLOCK_SIZE];
BOOL success;
ULONG depotBlockOffset;
ULONG blocksPerDepot = This->bigBlockSize / sizeof(ULONG);
ULONG nextBlockIndex = BLOCK_SPECIAL;
int depotIndex = 0;
ULONG freeBlock = BLOCK_UNUSED;
ULARGE_INTEGER neededSize;
STATSTG statstg;
depotIndex = This->prevFreeBlock / blocksPerDepot;
depotBlockOffset = (This->prevFreeBlock % blocksPerDepot) * sizeof(ULONG);
/*
* Scan the entire big block depot until we find a block marked free
*/
while (nextBlockIndex != BLOCK_UNUSED)
{
if (depotIndex < COUNT_BBDEPOTINHEADER)
{
depotBlockIndexPos = This->bigBlockDepotStart[depotIndex];
/*
* Grow the primary depot.
*/
if (depotBlockIndexPos == BLOCK_UNUSED)
{
depotBlockIndexPos = depotIndex*blocksPerDepot;
/*
* Add a block depot.
*/
Storage32Impl_AddBlockDepot(This, depotBlockIndexPos);
This->bigBlockDepotCount++;
This->bigBlockDepotStart[depotIndex] = depotBlockIndexPos;
/*
* Flag it as a block depot.
*/
StorageImpl_SetNextBlockInChain(This,
depotBlockIndexPos,
BLOCK_SPECIAL);
/* Save new header information.
*/
StorageImpl_SaveFileHeader(This);
}
}
else
{
depotBlockIndexPos = Storage32Impl_GetExtDepotBlock(This, depotIndex);
if (depotBlockIndexPos == BLOCK_UNUSED)
{
/*
* Grow the extended depot.
*/
ULONG extIndex = BLOCK_UNUSED;
ULONG numExtBlocks = depotIndex - COUNT_BBDEPOTINHEADER;
ULONG extBlockOffset = numExtBlocks % (blocksPerDepot - 1);
if (extBlockOffset == 0)
{
/* We need an extended block.
*/
extIndex = Storage32Impl_AddExtBlockDepot(This);
This->extBigBlockDepotCount++;
depotBlockIndexPos = extIndex + 1;
}
else
depotBlockIndexPos = depotIndex * blocksPerDepot;
/*
* Add a block depot and mark it in the extended block.
*/
Storage32Impl_AddBlockDepot(This, depotBlockIndexPos);
This->bigBlockDepotCount++;
Storage32Impl_SetExtDepotBlock(This, depotIndex, depotBlockIndexPos);
/* Flag the block depot.
*/
StorageImpl_SetNextBlockInChain(This,
depotBlockIndexPos,
BLOCK_SPECIAL);
/* If necessary, flag the extended depot block.
*/
if (extIndex != BLOCK_UNUSED)
StorageImpl_SetNextBlockInChain(This, extIndex, BLOCK_EXTBBDEPOT);
/* Save header information.
*/
StorageImpl_SaveFileHeader(This);
}
}
success = StorageImpl_ReadBigBlock(This, depotBlockIndexPos, depotBuffer);
if (success)
{
while ( ( (depotBlockOffset/sizeof(ULONG) ) < blocksPerDepot) &&
( nextBlockIndex != BLOCK_UNUSED))
{
StorageUtl_ReadDWord(depotBuffer, depotBlockOffset, &nextBlockIndex);
if (nextBlockIndex == BLOCK_UNUSED)
{
freeBlock = (depotIndex * blocksPerDepot) +
(depotBlockOffset/sizeof(ULONG));
}
depotBlockOffset += sizeof(ULONG);
}
}
depotIndex++;
depotBlockOffset = 0;
}
/*
* make sure that the block physically exists before using it
*/
neededSize.QuadPart = StorageImpl_GetBigBlockOffset(This, freeBlock)+This->bigBlockSize;
ILockBytes_Stat(This->lockBytes, &statstg, STATFLAG_NONAME);
if (neededSize.QuadPart > statstg.cbSize.QuadPart)
ILockBytes_SetSize(This->lockBytes, neededSize);
This->prevFreeBlock = freeBlock;
return freeBlock;
}
/******************************************************************************
* Storage32Impl_AddBlockDepot
*
* This will create a depot block, essentially it is a block initialized
* to BLOCK_UNUSEDs.
*/
static void Storage32Impl_AddBlockDepot(StorageImpl* This, ULONG blockIndex)
{
BYTE blockBuffer[MAX_BIG_BLOCK_SIZE];
/*
* Initialize blocks as free
*/
memset(blockBuffer, BLOCK_UNUSED, This->bigBlockSize);
StorageImpl_WriteBigBlock(This, blockIndex, blockBuffer);
}
/******************************************************************************
* Storage32Impl_GetExtDepotBlock
*
* Returns the index of the block that corresponds to the specified depot
* index. This method is only for depot indexes equal or greater than
* COUNT_BBDEPOTINHEADER.
*/
static ULONG Storage32Impl_GetExtDepotBlock(StorageImpl* This, ULONG depotIndex)
{
ULONG depotBlocksPerExtBlock = (This->bigBlockSize / sizeof(ULONG)) - 1;
ULONG numExtBlocks = depotIndex - COUNT_BBDEPOTINHEADER;
ULONG extBlockCount = numExtBlocks / depotBlocksPerExtBlock;
ULONG extBlockOffset = numExtBlocks % depotBlocksPerExtBlock;
ULONG blockIndex = BLOCK_UNUSED;
ULONG extBlockIndex;
assert(depotIndex >= COUNT_BBDEPOTINHEADER);
if (extBlockCount >= This->extBigBlockDepotCount)
return BLOCK_UNUSED;
extBlockIndex = This->extBigBlockDepotLocations[extBlockCount];
if (extBlockIndex != BLOCK_UNUSED)
StorageImpl_ReadDWordFromBigBlock(This, extBlockIndex,
extBlockOffset * sizeof(ULONG), &blockIndex);
return blockIndex;
}
/******************************************************************************
* Storage32Impl_SetExtDepotBlock
*
* Associates the specified block index to the specified depot index.
* This method is only for depot indexes equal or greater than
* COUNT_BBDEPOTINHEADER.
*/
static void Storage32Impl_SetExtDepotBlock(StorageImpl* This, ULONG depotIndex, ULONG blockIndex)
{
ULONG depotBlocksPerExtBlock = (This->bigBlockSize / sizeof(ULONG)) - 1;
ULONG numExtBlocks = depotIndex - COUNT_BBDEPOTINHEADER;
ULONG extBlockCount = numExtBlocks / depotBlocksPerExtBlock;
ULONG extBlockOffset = numExtBlocks % depotBlocksPerExtBlock;
ULONG extBlockIndex;
assert(depotIndex >= COUNT_BBDEPOTINHEADER);
assert(extBlockCount < This->extBigBlockDepotCount);
extBlockIndex = This->extBigBlockDepotLocations[extBlockCount];
if (extBlockIndex != BLOCK_UNUSED)
{
StorageImpl_WriteDWordToBigBlock(This, extBlockIndex,
extBlockOffset * sizeof(ULONG),
blockIndex);
}
}
/******************************************************************************
* Storage32Impl_AddExtBlockDepot
*
* Creates an extended depot block.
*/
static ULONG Storage32Impl_AddExtBlockDepot(StorageImpl* This)
{
ULONG numExtBlocks = This->extBigBlockDepotCount;
ULONG nextExtBlock = This->extBigBlockDepotStart;
BYTE depotBuffer[MAX_BIG_BLOCK_SIZE];
ULONG index = BLOCK_UNUSED;
ULONG nextBlockOffset = This->bigBlockSize - sizeof(ULONG);
ULONG blocksPerDepotBlock = This->bigBlockSize / sizeof(ULONG);
ULONG depotBlocksPerExtBlock = blocksPerDepotBlock - 1;
index = (COUNT_BBDEPOTINHEADER + (numExtBlocks * depotBlocksPerExtBlock)) *
blocksPerDepotBlock;
if ((numExtBlocks == 0) && (nextExtBlock == BLOCK_END_OF_CHAIN))
{
/*
* The first extended block.
*/
This->extBigBlockDepotStart = index;
}
else
{
/*
* Find the last existing extended block.
*/
nextExtBlock = This->extBigBlockDepotLocations[This->extBigBlockDepotCount-1];
/*
* Add the new extended block to the chain.
*/
StorageImpl_WriteDWordToBigBlock(This, nextExtBlock, nextBlockOffset,
index);
}
/*
* Initialize this block.
*/
memset(depotBuffer, BLOCK_UNUSED, This->bigBlockSize);
StorageImpl_WriteBigBlock(This, index, depotBuffer);
/* Add the block to our cache. */
if (This->extBigBlockDepotLocationsSize == numExtBlocks)
{
ULONG new_cache_size = (This->extBigBlockDepotLocationsSize+1)*2;
ULONG *new_cache = HeapAlloc(GetProcessHeap(), 0, sizeof(ULONG) * new_cache_size);
memcpy(new_cache, This->extBigBlockDepotLocations, sizeof(ULONG) * This->extBigBlockDepotLocationsSize);
HeapFree(GetProcessHeap(), 0, This->extBigBlockDepotLocations);
This->extBigBlockDepotLocations = new_cache;
This->extBigBlockDepotLocationsSize = new_cache_size;
}
This->extBigBlockDepotLocations[numExtBlocks] = index;
return index;
}
/******************************************************************************
* Storage32Impl_FreeBigBlock
*
* This method will flag the specified block as free in the big block depot.
*/
static void StorageImpl_FreeBigBlock(
StorageImpl* This,
ULONG blockIndex)
{
StorageImpl_SetNextBlockInChain(This, blockIndex, BLOCK_UNUSED);
if (blockIndex < This->prevFreeBlock)
This->prevFreeBlock = blockIndex;
}
/************************************************************************
* Storage32Impl_GetNextBlockInChain
*
* This method will retrieve the block index of the next big block in
* in the chain.
*
* Params: This - Pointer to the Storage object.
* blockIndex - Index of the block to retrieve the chain
* for.
* nextBlockIndex - receives the return value.
*
* Returns: This method returns the index of the next block in the chain.
* It will return the constants:
* BLOCK_SPECIAL - If the block given was not part of a
* chain.
* BLOCK_END_OF_CHAIN - If the block given was the last in
* a chain.
* BLOCK_UNUSED - If the block given was not past of a chain
* and is available.
* BLOCK_EXTBBDEPOT - This block is part of the extended
* big block depot.
*
* See Windows documentation for more details on IStorage methods.
*/
static HRESULT StorageImpl_GetNextBlockInChain(
StorageImpl* This,
ULONG blockIndex,
ULONG* nextBlockIndex)
{
ULONG offsetInDepot = blockIndex * sizeof (ULONG);
ULONG depotBlockCount = offsetInDepot / This->bigBlockSize;
ULONG depotBlockOffset = offsetInDepot % This->bigBlockSize;
BYTE depotBuffer[MAX_BIG_BLOCK_SIZE];
BOOL success;
ULONG depotBlockIndexPos;
int index, num_blocks;
*nextBlockIndex = BLOCK_SPECIAL;
if(depotBlockCount >= This->bigBlockDepotCount)
{
WARN("depotBlockCount %d, bigBlockDepotCount %d\n", depotBlockCount,
This->bigBlockDepotCount);
return STG_E_READFAULT;
}
/*
* Cache the currently accessed depot block.
*/
if (depotBlockCount != This->indexBlockDepotCached)
{
This->indexBlockDepotCached = depotBlockCount;
if (depotBlockCount < COUNT_BBDEPOTINHEADER)
{
depotBlockIndexPos = This->bigBlockDepotStart[depotBlockCount];
}
else
{
/*
* We have to look in the extended depot.
*/
depotBlockIndexPos = Storage32Impl_GetExtDepotBlock(This, depotBlockCount);
}
success = StorageImpl_ReadBigBlock(This, depotBlockIndexPos, depotBuffer);
if (!success)
return STG_E_READFAULT;
num_blocks = This->bigBlockSize / 4;
for (index = 0; index < num_blocks; index++)
{
StorageUtl_ReadDWord(depotBuffer, index*sizeof(ULONG), nextBlockIndex);
This->blockDepotCached[index] = *nextBlockIndex;
}
}
*nextBlockIndex = This->blockDepotCached[depotBlockOffset/sizeof(ULONG)];
return S_OK;
}
/******************************************************************************
* Storage32Impl_GetNextExtendedBlock
*
* Given an extended block this method will return the next extended block.
*
* NOTES:
* The last ULONG of an extended block is the block index of the next
* extended block. Extended blocks are marked as BLOCK_EXTBBDEPOT in the
* depot.
*
* Return values:
* - The index of the next extended block
* - BLOCK_UNUSED: there is no next extended block.
* - Any other return values denotes failure.
*/
static ULONG Storage32Impl_GetNextExtendedBlock(StorageImpl* This, ULONG blockIndex)
{
ULONG nextBlockIndex = BLOCK_SPECIAL;
ULONG depotBlockOffset = This->bigBlockSize - sizeof(ULONG);
StorageImpl_ReadDWordFromBigBlock(This, blockIndex, depotBlockOffset,
&nextBlockIndex);
return nextBlockIndex;
}
/******************************************************************************
* Storage32Impl_SetNextBlockInChain
*
* This method will write the index of the specified block's next block
* in the big block depot.
*
* For example: to create the chain 3 -> 1 -> 7 -> End of Chain
* do the following
*
* Storage32Impl_SetNextBlockInChain(This, 3, 1);
* Storage32Impl_SetNextBlockInChain(This, 1, 7);
* Storage32Impl_SetNextBlockInChain(This, 7, BLOCK_END_OF_CHAIN);
*
*/
static void StorageImpl_SetNextBlockInChain(
StorageImpl* This,
ULONG blockIndex,
ULONG nextBlock)
{
ULONG offsetInDepot = blockIndex * sizeof (ULONG);
ULONG depotBlockCount = offsetInDepot / This->bigBlockSize;
ULONG depotBlockOffset = offsetInDepot % This->bigBlockSize;
ULONG depotBlockIndexPos;
assert(depotBlockCount < This->bigBlockDepotCount);
assert(blockIndex != nextBlock);
if (depotBlockCount < COUNT_BBDEPOTINHEADER)
{
depotBlockIndexPos = This->bigBlockDepotStart[depotBlockCount];
}
else
{
/*
* We have to look in the extended depot.
*/
depotBlockIndexPos = Storage32Impl_GetExtDepotBlock(This, depotBlockCount);
}
StorageImpl_WriteDWordToBigBlock(This, depotBlockIndexPos, depotBlockOffset,
nextBlock);
/*
* Update the cached block depot, if necessary.
*/
if (depotBlockCount == This->indexBlockDepotCached)
{
This->blockDepotCached[depotBlockOffset/sizeof(ULONG)] = nextBlock;
}
}
/******************************************************************************
* Storage32Impl_LoadFileHeader
*
* This method will read in the file header
*/
static HRESULT StorageImpl_LoadFileHeader(
StorageImpl* This)
{
HRESULT hr;
BYTE headerBigBlock[HEADER_SIZE];
int index;
ULARGE_INTEGER offset;
DWORD bytes_read;
TRACE("\n");
/*
* Get a pointer to the big block of data containing the header.
*/
offset.u.HighPart = 0;
offset.u.LowPart = 0;
hr = StorageImpl_ReadAt(This, offset, headerBigBlock, HEADER_SIZE, &bytes_read);
if (SUCCEEDED(hr) && bytes_read != HEADER_SIZE)
hr = STG_E_FILENOTFOUND;
/*
* Extract the information from the header.
*/
if (SUCCEEDED(hr))
{
/*
* Check for the "magic number" signature and return an error if it is not
* found.
*/
if (memcmp(headerBigBlock, STORAGE_oldmagic, sizeof(STORAGE_oldmagic))==0)
{
return STG_E_OLDFORMAT;
}
if (memcmp(headerBigBlock, STORAGE_magic, sizeof(STORAGE_magic))!=0)
{
return STG_E_INVALIDHEADER;
}
StorageUtl_ReadWord(
headerBigBlock,
OFFSET_BIGBLOCKSIZEBITS,
&This->bigBlockSizeBits);
StorageUtl_ReadWord(
headerBigBlock,
OFFSET_SMALLBLOCKSIZEBITS,
&This->smallBlockSizeBits);
StorageUtl_ReadDWord(
headerBigBlock,
OFFSET_BBDEPOTCOUNT,
&This->bigBlockDepotCount);
StorageUtl_ReadDWord(
headerBigBlock,
OFFSET_ROOTSTARTBLOCK,
&This->rootStartBlock);
StorageUtl_ReadDWord(
headerBigBlock,
OFFSET_SMALLBLOCKLIMIT,
&This->smallBlockLimit);
StorageUtl_ReadDWord(
headerBigBlock,
OFFSET_SBDEPOTSTART,
&This->smallBlockDepotStart);
StorageUtl_ReadDWord(
headerBigBlock,
OFFSET_EXTBBDEPOTSTART,
&This->extBigBlockDepotStart);
StorageUtl_ReadDWord(
headerBigBlock,
OFFSET_EXTBBDEPOTCOUNT,
&This->extBigBlockDepotCount);
for (index = 0; index < COUNT_BBDEPOTINHEADER; index ++)
{
StorageUtl_ReadDWord(
headerBigBlock,
OFFSET_BBDEPOTSTART + (sizeof(ULONG)*index),
&(This->bigBlockDepotStart[index]));
}
/*
* Make the bitwise arithmetic to get the size of the blocks in bytes.
*/
This->bigBlockSize = 0x000000001 << (DWORD)This->bigBlockSizeBits;
This->smallBlockSize = 0x000000001 << (DWORD)This->smallBlockSizeBits;
/*
* Right now, the code is making some assumptions about the size of the
* blocks, just make sure they are what we're expecting.
*/
if ((This->bigBlockSize != MIN_BIG_BLOCK_SIZE && This->bigBlockSize != MAX_BIG_BLOCK_SIZE) ||
This->smallBlockSize != DEF_SMALL_BLOCK_SIZE ||
This->smallBlockLimit != LIMIT_TO_USE_SMALL_BLOCK)
{
FIXME("Broken OLE storage file? bigblock=0x%x, smallblock=0x%x, sblimit=0x%x\n",
This->bigBlockSize, This->smallBlockSize, This->smallBlockLimit);
hr = STG_E_INVALIDHEADER;
}
else
hr = S_OK;
}
return hr;
}
/******************************************************************************
* Storage32Impl_SaveFileHeader
*
* This method will save to the file the header
*/
static void StorageImpl_SaveFileHeader(
StorageImpl* This)
{
BYTE headerBigBlock[HEADER_SIZE];
int index;
HRESULT hr;
ULARGE_INTEGER offset;
DWORD bytes_read, bytes_written;
DWORD major_version, dirsectorcount;
/*
* Get a pointer to the big block of data containing the header.
*/
offset.u.HighPart = 0;
offset.u.LowPart = 0;
hr = StorageImpl_ReadAt(This, offset, headerBigBlock, HEADER_SIZE, &bytes_read);
if (SUCCEEDED(hr) && bytes_read != HEADER_SIZE)
hr = STG_E_FILENOTFOUND;
if (This->bigBlockSizeBits == 0x9)
major_version = 3;
else if (This->bigBlockSizeBits == 0xc)
major_version = 4;
else
{
ERR("invalid big block shift 0x%x\n", This->bigBlockSizeBits);
major_version = 4;
}
/*
* If the block read failed, the file is probably new.
*/
if (FAILED(hr))
{
/*
* Initialize for all unknown fields.
*/
memset(headerBigBlock, 0, HEADER_SIZE);
/*
* Initialize the magic number.
*/
memcpy(headerBigBlock, STORAGE_magic, sizeof(STORAGE_magic));
}
/*
* Write the information to the header.
*/
StorageUtl_WriteWord(
headerBigBlock,
OFFSET_MINORVERSION,
0x3e);
StorageUtl_WriteWord(
headerBigBlock,
OFFSET_MAJORVERSION,
major_version);
StorageUtl_WriteWord(
headerBigBlock,
OFFSET_BYTEORDERMARKER,
(WORD)-2);
StorageUtl_WriteWord(
headerBigBlock,
OFFSET_BIGBLOCKSIZEBITS,
This->bigBlockSizeBits);
StorageUtl_WriteWord(
headerBigBlock,
OFFSET_SMALLBLOCKSIZEBITS,
This->smallBlockSizeBits);
if (major_version >= 4)
{
if (This->rootBlockChain)
dirsectorcount = BlockChainStream_GetCount(This->rootBlockChain);
else
/* This file is being created, and it will start out with one block. */
dirsectorcount = 1;
}
else
/* This field must be 0 in versions older than 4 */
dirsectorcount = 0;
StorageUtl_WriteDWord(
headerBigBlock,
OFFSET_DIRSECTORCOUNT,
dirsectorcount);
StorageUtl_WriteDWord(
headerBigBlock,
OFFSET_BBDEPOTCOUNT,
This->bigBlockDepotCount);
StorageUtl_WriteDWord(
headerBigBlock,
OFFSET_ROOTSTARTBLOCK,
This->rootStartBlock);
StorageUtl_WriteDWord(
headerBigBlock,
OFFSET_SMALLBLOCKLIMIT,
This->smallBlockLimit);
StorageUtl_WriteDWord(
headerBigBlock,
OFFSET_SBDEPOTSTART,
This->smallBlockDepotStart);
StorageUtl_WriteDWord(
headerBigBlock,
OFFSET_SBDEPOTCOUNT,
This->smallBlockDepotChain ?
BlockChainStream_GetCount(This->smallBlockDepotChain) : 0);
StorageUtl_WriteDWord(
headerBigBlock,
OFFSET_EXTBBDEPOTSTART,
This->extBigBlockDepotStart);
StorageUtl_WriteDWord(
headerBigBlock,
OFFSET_EXTBBDEPOTCOUNT,
This->extBigBlockDepotCount);
for (index = 0; index < COUNT_BBDEPOTINHEADER; index ++)
{
StorageUtl_WriteDWord(
headerBigBlock,
OFFSET_BBDEPOTSTART + (sizeof(ULONG)*index),
(This->bigBlockDepotStart[index]));
}
/*
* Write the big block back to the file.
*/
StorageImpl_WriteAt(This, offset, headerBigBlock, HEADER_SIZE, &bytes_written);
}
/******************************************************************************
* StorageImpl_ReadRawDirEntry
*
* This method will read the raw data from a directory entry in the file.
*
* buffer must be RAW_DIRENTRY_SIZE bytes long.
*/
HRESULT StorageImpl_ReadRawDirEntry(StorageImpl *This, ULONG index, BYTE *buffer)
{
ULARGE_INTEGER offset;
HRESULT hr;
ULONG bytesRead;
offset.u.HighPart = 0;
offset.u.LowPart = index * RAW_DIRENTRY_SIZE;
hr = BlockChainStream_ReadAt(
This->rootBlockChain,
offset,
RAW_DIRENTRY_SIZE,
buffer,
&bytesRead);
if (bytesRead != RAW_DIRENTRY_SIZE)
return STG_E_READFAULT;
return hr;
}
/******************************************************************************
* StorageImpl_WriteRawDirEntry
*
* This method will write the raw data from a directory entry in the file.
*
* buffer must be RAW_DIRENTRY_SIZE bytes long.
*/
HRESULT StorageImpl_WriteRawDirEntry(StorageImpl *This, ULONG index, const BYTE *buffer)
{
ULARGE_INTEGER offset;
HRESULT hr;
ULONG bytesRead;
offset.u.HighPart = 0;
offset.u.LowPart = index * RAW_DIRENTRY_SIZE;
hr = BlockChainStream_WriteAt(
This->rootBlockChain,
offset,
RAW_DIRENTRY_SIZE,
buffer,
&bytesRead);
return hr;
}
/******************************************************************************
* UpdateRawDirEntry
*
* Update raw directory entry data from the fields in newData.
*
* buffer must be RAW_DIRENTRY_SIZE bytes long.
*/
void UpdateRawDirEntry(BYTE *buffer, const DirEntry *newData)
{
memset(buffer, 0, RAW_DIRENTRY_SIZE);
memcpy(
buffer + OFFSET_PS_NAME,
newData->name,
DIRENTRY_NAME_BUFFER_LEN );
memcpy(buffer + OFFSET_PS_STGTYPE, &newData->stgType, 1);
StorageUtl_WriteWord(
buffer,
OFFSET_PS_NAMELENGTH,
newData->sizeOfNameString);
StorageUtl_WriteDWord(
buffer,
OFFSET_PS_LEFTCHILD,
newData->leftChild);
StorageUtl_WriteDWord(
buffer,
OFFSET_PS_RIGHTCHILD,
newData->rightChild);
StorageUtl_WriteDWord(
buffer,
OFFSET_PS_DIRROOT,
newData->dirRootEntry);
StorageUtl_WriteGUID(
buffer,
OFFSET_PS_GUID,
&newData->clsid);
StorageUtl_WriteDWord(
buffer,
OFFSET_PS_CTIMELOW,
newData->ctime.dwLowDateTime);
StorageUtl_WriteDWord(
buffer,
OFFSET_PS_CTIMEHIGH,
newData->ctime.dwHighDateTime);
StorageUtl_WriteDWord(
buffer,
OFFSET_PS_MTIMELOW,
newData->mtime.dwLowDateTime);
StorageUtl_WriteDWord(
buffer,
OFFSET_PS_MTIMEHIGH,
newData->ctime.dwHighDateTime);
StorageUtl_WriteDWord(
buffer,
OFFSET_PS_STARTBLOCK,
newData->startingBlock);
StorageUtl_WriteDWord(
buffer,
OFFSET_PS_SIZE,
newData->size.u.LowPart);
}
/******************************************************************************
* Storage32Impl_ReadDirEntry
*
* This method will read the specified directory entry.
*/
HRESULT StorageImpl_ReadDirEntry(
StorageImpl* This,
DirRef index,
DirEntry* buffer)
{
BYTE currentEntry[RAW_DIRENTRY_SIZE];
HRESULT readRes;
readRes = StorageImpl_ReadRawDirEntry(This, index, currentEntry);
if (SUCCEEDED(readRes))
{
memset(buffer->name, 0, sizeof(buffer->name));
memcpy(
buffer->name,
(WCHAR *)currentEntry+OFFSET_PS_NAME,
DIRENTRY_NAME_BUFFER_LEN );
TRACE("storage name: %s\n", debugstr_w(buffer->name));
memcpy(&buffer->stgType, currentEntry + OFFSET_PS_STGTYPE, 1);
StorageUtl_ReadWord(
currentEntry,
OFFSET_PS_NAMELENGTH,
&buffer->sizeOfNameString);
StorageUtl_ReadDWord(
currentEntry,
OFFSET_PS_LEFTCHILD,
&buffer->leftChild);
StorageUtl_ReadDWord(
currentEntry,
OFFSET_PS_RIGHTCHILD,
&buffer->rightChild);
StorageUtl_ReadDWord(
currentEntry,
OFFSET_PS_DIRROOT,
&buffer->dirRootEntry);
StorageUtl_ReadGUID(
currentEntry,
OFFSET_PS_GUID,
&buffer->clsid);
StorageUtl_ReadDWord(
currentEntry,
OFFSET_PS_CTIMELOW,
&buffer->ctime.dwLowDateTime);
StorageUtl_ReadDWord(
currentEntry,
OFFSET_PS_CTIMEHIGH,
&buffer->ctime.dwHighDateTime);
StorageUtl_ReadDWord(
currentEntry,
OFFSET_PS_MTIMELOW,
&buffer->mtime.dwLowDateTime);
StorageUtl_ReadDWord(
currentEntry,
OFFSET_PS_MTIMEHIGH,
&buffer->mtime.dwHighDateTime);
StorageUtl_ReadDWord(
currentEntry,
OFFSET_PS_STARTBLOCK,
&buffer->startingBlock);
StorageUtl_ReadDWord(
currentEntry,
OFFSET_PS_SIZE,
&buffer->size.u.LowPart);
buffer->size.u.HighPart = 0;
}
return readRes;
}
/*********************************************************************
* Write the specified directory entry to the file
*/
HRESULT StorageImpl_WriteDirEntry(
StorageImpl* This,
DirRef index,
const DirEntry* buffer)
{
BYTE currentEntry[RAW_DIRENTRY_SIZE];
HRESULT writeRes;
UpdateRawDirEntry(currentEntry, buffer);
writeRes = StorageImpl_WriteRawDirEntry(This, index, currentEntry);
return writeRes;
}
static BOOL StorageImpl_ReadBigBlock(
StorageImpl* This,
ULONG blockIndex,
void* buffer)
{
ULARGE_INTEGER ulOffset;
DWORD read=0;
ulOffset.u.HighPart = 0;
ulOffset.u.LowPart = StorageImpl_GetBigBlockOffset(This, blockIndex);
StorageImpl_ReadAt(This, ulOffset, buffer, This->bigBlockSize, &read);
if (read && read < This->bigBlockSize)
{
/* File ends during this block; fill the rest with 0's. */
memset((LPBYTE)buffer+read, 0, This->bigBlockSize-read);
}
return (read != 0);
}
static BOOL StorageImpl_ReadDWordFromBigBlock(
StorageImpl* This,
ULONG blockIndex,
ULONG offset,
DWORD* value)
{
ULARGE_INTEGER ulOffset;
DWORD read;
DWORD tmp;
ulOffset.u.HighPart = 0;
ulOffset.u.LowPart = StorageImpl_GetBigBlockOffset(This, blockIndex);
ulOffset.u.LowPart += offset;
StorageImpl_ReadAt(This, ulOffset, &tmp, sizeof(DWORD), &read);
*value = lendian32toh(tmp);
return (read == sizeof(DWORD));
}
static BOOL StorageImpl_WriteBigBlock(
StorageImpl* This,
ULONG blockIndex,
const void* buffer)
{
ULARGE_INTEGER ulOffset;
DWORD wrote;
ulOffset.u.HighPart = 0;
ulOffset.u.LowPart = StorageImpl_GetBigBlockOffset(This, blockIndex);
StorageImpl_WriteAt(This, ulOffset, buffer, This->bigBlockSize, &wrote);
return (wrote == This->bigBlockSize);
}
static BOOL StorageImpl_WriteDWordToBigBlock(
StorageImpl* This,
ULONG blockIndex,
ULONG offset,
DWORD value)
{
ULARGE_INTEGER ulOffset;
DWORD wrote;
ulOffset.u.HighPart = 0;
ulOffset.u.LowPart = StorageImpl_GetBigBlockOffset(This, blockIndex);
ulOffset.u.LowPart += offset;
value = htole32(value);
StorageImpl_WriteAt(This, ulOffset, &value, sizeof(DWORD), &wrote);
return (wrote == sizeof(DWORD));
}
/******************************************************************************
* Storage32Impl_SmallBlocksToBigBlocks
*
* This method will convert a small block chain to a big block chain.
* The small block chain will be destroyed.
*/
BlockChainStream* Storage32Impl_SmallBlocksToBigBlocks(
StorageImpl* This,
SmallBlockChainStream** ppsbChain)
{
ULONG bbHeadOfChain = BLOCK_END_OF_CHAIN;
ULARGE_INTEGER size, offset;
ULONG cbRead, cbWritten;
ULARGE_INTEGER cbTotalRead;
DirRef streamEntryRef;
HRESULT resWrite = S_OK;
HRESULT resRead;
DirEntry streamEntry;
BYTE *buffer;
BlockChainStream *bbTempChain = NULL;
BlockChainStream *bigBlockChain = NULL;
/*
* Create a temporary big block chain that doesn't have
* an associated directory entry. This temporary chain will be
* used to copy data from small blocks to big blocks.
*/
bbTempChain = BlockChainStream_Construct(This,
&bbHeadOfChain,
DIRENTRY_NULL);
if(!bbTempChain) return NULL;
/*
* Grow the big block chain.
*/
size = SmallBlockChainStream_GetSize(*ppsbChain);
BlockChainStream_SetSize(bbTempChain, size);
/*
* Copy the contents of the small block chain to the big block chain
* by small block size increments.
*/
offset.u.LowPart = 0;
offset.u.HighPart = 0;
cbTotalRead.QuadPart = 0;
buffer = HeapAlloc(GetProcessHeap(),0,DEF_SMALL_BLOCK_SIZE);
do
{
resRead = SmallBlockChainStream_ReadAt(*ppsbChain,
offset,
min(This->smallBlockSize, size.u.LowPart - offset.u.LowPart),
buffer,
&cbRead);
if (FAILED(resRead))
break;
if (cbRead > 0)
{
cbTotalRead.QuadPart += cbRead;
resWrite = BlockChainStream_WriteAt(bbTempChain,
offset,
cbRead,
buffer,
&cbWritten);
if (FAILED(resWrite))
break;
offset.u.LowPart += cbRead;
}
else
{
resRead = STG_E_READFAULT;
break;
}
} while (cbTotalRead.QuadPart < size.QuadPart);
HeapFree(GetProcessHeap(),0,buffer);
size.u.HighPart = 0;
size.u.LowPart = 0;
if (FAILED(resRead) || FAILED(resWrite))
{
ERR("conversion failed: resRead = 0x%08x, resWrite = 0x%08x\n", resRead, resWrite);
BlockChainStream_SetSize(bbTempChain, size);
BlockChainStream_Destroy(bbTempChain);
return NULL;
}
/*
* Destroy the small block chain.
*/
streamEntryRef = (*ppsbChain)->ownerDirEntry;
SmallBlockChainStream_SetSize(*ppsbChain, size);
SmallBlockChainStream_Destroy(*ppsbChain);
*ppsbChain = 0;
/*
* Change the directory entry. This chain is now a big block chain
* and it doesn't reside in the small blocks chain anymore.
*/
StorageImpl_ReadDirEntry(This, streamEntryRef, &streamEntry);
streamEntry.startingBlock = bbHeadOfChain;
StorageImpl_WriteDirEntry(This, streamEntryRef, &streamEntry);
/*
* Destroy the temporary entryless big block chain.
* Create a new big block chain associated with this entry.
*/
BlockChainStream_Destroy(bbTempChain);
bigBlockChain = BlockChainStream_Construct(This,
NULL,
streamEntryRef);
return bigBlockChain;
}
/******************************************************************************
* Storage32Impl_BigBlocksToSmallBlocks
*
* This method will convert a big block chain to a small block chain.
* The big block chain will be destroyed on success.
*/
SmallBlockChainStream* Storage32Impl_BigBlocksToSmallBlocks(
StorageImpl* This,
BlockChainStream** ppbbChain)
{
ULARGE_INTEGER size, offset, cbTotalRead;
ULONG cbRead, cbWritten, sbHeadOfChain = BLOCK_END_OF_CHAIN;
DirRef streamEntryRef;
HRESULT resWrite = S_OK, resRead;
DirEntry streamEntry;
BYTE* buffer;
SmallBlockChainStream* sbTempChain;
TRACE("%p %p\n", This, ppbbChain);
sbTempChain = SmallBlockChainStream_Construct(This, &sbHeadOfChain,
DIRENTRY_NULL);
if(!sbTempChain)
return NULL;
size = BlockChainStream_GetSize(*ppbbChain);
SmallBlockChainStream_SetSize(sbTempChain, size);
offset.u.HighPart = 0;
offset.u.LowPart = 0;
cbTotalRead.QuadPart = 0;
buffer = HeapAlloc(GetProcessHeap(), 0, This->bigBlockSize);
do
{
resRead = BlockChainStream_ReadAt(*ppbbChain, offset,
min(This->bigBlockSize, size.u.LowPart - offset.u.LowPart),
buffer, &cbRead);
if(FAILED(resRead))
break;
if(cbRead > 0)
{
cbTotalRead.QuadPart += cbRead;
resWrite = SmallBlockChainStream_WriteAt(sbTempChain, offset,
cbRead, buffer, &cbWritten);
if(FAILED(resWrite))
break;
offset.u.LowPart += cbRead;
}
else
{
resRead = STG_E_READFAULT;
break;
}
}while(cbTotalRead.QuadPart < size.QuadPart);
HeapFree(GetProcessHeap(), 0, buffer);
size.u.HighPart = 0;
size.u.LowPart = 0;
if(FAILED(resRead) || FAILED(resWrite))
{
ERR("conversion failed: resRead = 0x%08x, resWrite = 0x%08x\n", resRead, resWrite);
SmallBlockChainStream_SetSize(sbTempChain, size);
SmallBlockChainStream_Destroy(sbTempChain);
return NULL;
}
/* destroy the original big block chain */
streamEntryRef = (*ppbbChain)->ownerDirEntry;
BlockChainStream_SetSize(*ppbbChain, size);
BlockChainStream_Destroy(*ppbbChain);
*ppbbChain = NULL;
StorageImpl_ReadDirEntry(This, streamEntryRef, &streamEntry);
streamEntry.startingBlock = sbHeadOfChain;
StorageImpl_WriteDirEntry(This, streamEntryRef, &streamEntry);
SmallBlockChainStream_Destroy(sbTempChain);
return SmallBlockChainStream_Construct(This, NULL, streamEntryRef);
}
static HRESULT StorageBaseImpl_CopyStream(
StorageBaseImpl *dst, DirRef dst_entry,
StorageBaseImpl *src, DirRef src_entry)
{
HRESULT hr;
BYTE data[4096];
DirEntry srcdata;
ULARGE_INTEGER bytes_copied;
ULONG bytestocopy, bytesread, byteswritten;
hr = StorageBaseImpl_ReadDirEntry(src, src_entry, &srcdata);
if (SUCCEEDED(hr))
{
hr = StorageBaseImpl_StreamSetSize(dst, dst_entry, srcdata.size);
bytes_copied.QuadPart = 0;
while (bytes_copied.QuadPart < srcdata.size.QuadPart && SUCCEEDED(hr))
{
bytestocopy = min(4096, srcdata.size.QuadPart - bytes_copied.QuadPart);
hr = StorageBaseImpl_StreamReadAt(src, src_entry, bytes_copied, bytestocopy,
data, &bytesread);
if (SUCCEEDED(hr) && bytesread != bytestocopy) hr = STG_E_READFAULT;
if (SUCCEEDED(hr))
hr = StorageBaseImpl_StreamWriteAt(dst, dst_entry, bytes_copied, bytestocopy,
data, &byteswritten);
if (SUCCEEDED(hr))
{
if (byteswritten != bytestocopy) hr = STG_E_WRITEFAULT;
bytes_copied.QuadPart += byteswritten;
}
}
}
return hr;
}
static DirRef TransactedSnapshotImpl_FindFreeEntry(TransactedSnapshotImpl *This)
{
DirRef result=This->firstFreeEntry;
while (result < This->entries_size && This->entries[result].inuse)
result++;
if (result == This->entries_size)
{
ULONG new_size = This->entries_size * 2;
TransactedDirEntry *new_entries;
new_entries = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(TransactedDirEntry) * new_size);
if (!new_entries) return DIRENTRY_NULL;
memcpy(new_entries, This->entries, sizeof(TransactedDirEntry) * This->entries_size);
HeapFree(GetProcessHeap(), 0, This->entries);
This->entries = new_entries;
This->entries_size = new_size;
}
This->entries[result].inuse = 1;
This->firstFreeEntry = result+1;
return result;
}
static DirRef TransactedSnapshotImpl_CreateStubEntry(
TransactedSnapshotImpl *This, DirRef parentEntryRef)
{
DirRef stubEntryRef;
TransactedDirEntry *entry;
stubEntryRef = TransactedSnapshotImpl_FindFreeEntry(This);
if (stubEntryRef != DIRENTRY_NULL)
{
entry = &This->entries[stubEntryRef];
entry->newTransactedParentEntry = entry->transactedParentEntry = parentEntryRef;
entry->read = 0;
}
return stubEntryRef;
}
static HRESULT TransactedSnapshotImpl_EnsureReadEntry(
TransactedSnapshotImpl *This, DirRef entry)
{
HRESULT hr=S_OK;
DirEntry data;
if (!This->entries[entry].read)
{
hr = StorageBaseImpl_ReadDirEntry(This->transactedParent,
This->entries[entry].transactedParentEntry,
&data);
if (SUCCEEDED(hr) && data.leftChild != DIRENTRY_NULL)
{
data.leftChild = TransactedSnapshotImpl_CreateStubEntry(This, data.leftChild);
if (data.leftChild == DIRENTRY_NULL)
hr = E_OUTOFMEMORY;
}
if (SUCCEEDED(hr) && data.rightChild != DIRENTRY_NULL)
{
data.rightChild = TransactedSnapshotImpl_CreateStubEntry(This, data.rightChild);
if (data.rightChild == DIRENTRY_NULL)
hr = E_OUTOFMEMORY;
}
if (SUCCEEDED(hr) && data.dirRootEntry != DIRENTRY_NULL)
{
data.dirRootEntry = TransactedSnapshotImpl_CreateStubEntry(This, data.dirRootEntry);
if (data.dirRootEntry == DIRENTRY_NULL)
hr = E_OUTOFMEMORY;
}
if (SUCCEEDED(hr))
{
memcpy(&This->entries[entry].data, &data, sizeof(DirEntry));
This->entries[entry].read = 1;
}
}
return hr;
}
static HRESULT TransactedSnapshotImpl_MakeStreamDirty(
TransactedSnapshotImpl *This, DirRef entry)
{
HRESULT hr = S_OK;
if (!This->entries[entry].stream_dirty)
{
DirEntry new_entrydata;
memset(&new_entrydata, 0, sizeof(DirEntry));
new_entrydata.name[0] = 'S';
new_entrydata.sizeOfNameString = 1;
new_entrydata.stgType = STGTY_STREAM;
new_entrydata.startingBlock = BLOCK_END_OF_CHAIN;
new_entrydata.leftChild = DIRENTRY_NULL;
new_entrydata.rightChild = DIRENTRY_NULL;
new_entrydata.dirRootEntry = DIRENTRY_NULL;
hr = StorageBaseImpl_CreateDirEntry(This->scratch, &new_entrydata,
&This->entries[entry].stream_entry);
if (SUCCEEDED(hr) && This->entries[entry].transactedParentEntry != DIRENTRY_NULL)
{
hr = StorageBaseImpl_CopyStream(
This->scratch, This->entries[entry].stream_entry,
This->transactedParent, This->entries[entry].transactedParentEntry);
if (FAILED(hr))
StorageBaseImpl_DestroyDirEntry(This->scratch, This->entries[entry].stream_entry);
}
if (SUCCEEDED(hr))
This->entries[entry].stream_dirty = 1;
if (This->entries[entry].transactedParentEntry != DIRENTRY_NULL)
{
/* Since this entry is modified, and we aren't using its stream data, we
* no longer care about the original entry. */
DirRef delete_ref;
delete_ref = TransactedSnapshotImpl_CreateStubEntry(This, This->entries[entry].transactedParentEntry);
if (delete_ref != DIRENTRY_NULL)
This->entries[delete_ref].deleted = 1;
This->entries[entry].transactedParentEntry = This->entries[entry].newTransactedParentEntry = DIRENTRY_NULL;
}
}
return hr;
}
/* Find the first entry in a depth-first traversal. */
static DirRef TransactedSnapshotImpl_FindFirstChild(
TransactedSnapshotImpl* This, DirRef parent)
{
DirRef cursor, prev;
TransactedDirEntry *entry;
cursor = parent;
entry = &This->entries[cursor];
while (entry->read)
{
if (entry->data.leftChild != DIRENTRY_NULL)
{
prev = cursor;
cursor = entry->data.leftChild;
entry = &This->entries[cursor];
entry->parent = prev;
}
else if (entry->data.rightChild != DIRENTRY_NULL)
{
prev = cursor;
cursor = entry->data.rightChild;
entry = &This->entries[cursor];
entry->parent = prev;
}
else if (entry->data.dirRootEntry != DIRENTRY_NULL)
{
prev = cursor;
cursor = entry->data.dirRootEntry;
entry = &This->entries[cursor];
entry->parent = prev;
}
else
break;
}
return cursor;
}
/* Find the next entry in a depth-first traversal. */
static DirRef TransactedSnapshotImpl_FindNextChild(
TransactedSnapshotImpl* This, DirRef current)
{
DirRef parent;
TransactedDirEntry *parent_entry;
parent = This->entries[current].parent;
parent_entry = &This->entries[parent];
if (parent != DIRENTRY_NULL && parent_entry->data.dirRootEntry != current)
{
if (parent_entry->data.rightChild != current && parent_entry->data.rightChild != DIRENTRY_NULL)
{
This->entries[parent_entry->data.rightChild].parent = parent;
return TransactedSnapshotImpl_FindFirstChild(This, parent_entry->data.rightChild);
}
if (parent_entry->data.dirRootEntry != DIRENTRY_NULL)
{
This->entries[parent_entry->data.dirRootEntry].parent = parent;
return TransactedSnapshotImpl_FindFirstChild(This, parent_entry->data.dirRootEntry);
}
}
return parent;
}
/* Return TRUE if we've made a copy of this entry for committing to the parent. */
static inline BOOL TransactedSnapshotImpl_MadeCopy(
TransactedSnapshotImpl* This, DirRef entry)
{
return entry != DIRENTRY_NULL &&
This->entries[entry].newTransactedParentEntry != This->entries[entry].transactedParentEntry;
}
/* Destroy the entries created by CopyTree. */
static void TransactedSnapshotImpl_DestroyTemporaryCopy(
TransactedSnapshotImpl* This, DirRef stop)
{
DirRef cursor;
TransactedDirEntry *entry;
ULARGE_INTEGER zero;
zero.QuadPart = 0;
if (!This->entries[This->base.storageDirEntry].read)
return;
cursor = This->entries[This->base.storageDirEntry].data.dirRootEntry;
if (cursor == DIRENTRY_NULL)
return;
cursor = TransactedSnapshotImpl_FindFirstChild(This, cursor);
while (cursor != DIRENTRY_NULL && cursor != stop)
{
if (TransactedSnapshotImpl_MadeCopy(This, cursor))
{
entry = &This->entries[cursor];
if (entry->stream_dirty)
StorageBaseImpl_StreamSetSize(This->transactedParent,
entry->newTransactedParentEntry, zero);
StorageBaseImpl_DestroyDirEntry(This->transactedParent,
entry->newTransactedParentEntry);
entry->newTransactedParentEntry = entry->transactedParentEntry;
}
cursor = TransactedSnapshotImpl_FindNextChild(This, cursor);
}
}
/* Make a copy of our edited tree that we can use in the parent. */
static HRESULT TransactedSnapshotImpl_CopyTree(TransactedSnapshotImpl* This)
{
DirRef cursor;
TransactedDirEntry *entry;
HRESULT hr = S_OK;
cursor = This->base.storageDirEntry;
entry = &This->entries[cursor];
entry->parent = DIRENTRY_NULL;
entry->newTransactedParentEntry = entry->transactedParentEntry;
if (entry->data.dirRootEntry == DIRENTRY_NULL)
return S_OK;
This->entries[entry->data.dirRootEntry].parent = DIRENTRY_NULL;
cursor = TransactedSnapshotImpl_FindFirstChild(This, entry->data.dirRootEntry);
entry = &This->entries[cursor];
while (cursor != DIRENTRY_NULL)
{
/* Make a copy of this entry in the transacted parent. */
if (!entry->read ||
(!entry->dirty && !entry->stream_dirty &&
!TransactedSnapshotImpl_MadeCopy(This, entry->data.leftChild) &&
!TransactedSnapshotImpl_MadeCopy(This, entry->data.rightChild) &&
!TransactedSnapshotImpl_MadeCopy(This, entry->data.dirRootEntry)))
entry->newTransactedParentEntry = entry->transactedParentEntry;
else
{
DirEntry newData;
memcpy(&newData, &entry->data, sizeof(DirEntry));
newData.size.QuadPart = 0;
newData.startingBlock = BLOCK_END_OF_CHAIN;
if (newData.leftChild != DIRENTRY_NULL)
newData.leftChild = This->entries[newData.leftChild].newTransactedParentEntry;
if (newData.rightChild != DIRENTRY_NULL)
newData.rightChild = This->entries[newData.rightChild].newTransactedParentEntry;
if (newData.dirRootEntry != DIRENTRY_NULL)
newData.dirRootEntry = This->entries[newData.dirRootEntry].newTransactedParentEntry;
hr = StorageBaseImpl_CreateDirEntry(This->transactedParent, &newData,
&entry->newTransactedParentEntry);
if (FAILED(hr))
{
TransactedSnapshotImpl_DestroyTemporaryCopy(This, cursor);
return hr;
}
if (entry->stream_dirty)
{
hr = StorageBaseImpl_CopyStream(
This->transactedParent, entry->newTransactedParentEntry,
This->scratch, entry->stream_entry);
}
else if (entry->data.size.QuadPart)
{
hr = StorageBaseImpl_StreamLink(
This->transactedParent, entry->newTransactedParentEntry,
entry->transactedParentEntry);
}
if (FAILED(hr))
{
cursor = TransactedSnapshotImpl_FindNextChild(This, cursor);
TransactedSnapshotImpl_DestroyTemporaryCopy(This, cursor);
return hr;
}
}
cursor = TransactedSnapshotImpl_FindNextChild(This, cursor);
entry = &This->entries[cursor];
}
return hr;
}
static HRESULT WINAPI TransactedSnapshotImpl_Commit(
IStorage* iface,
DWORD grfCommitFlags) /* [in] */
{
TransactedSnapshotImpl* This = (TransactedSnapshotImpl*) iface;
TransactedDirEntry *root_entry;
DirRef i, dir_root_ref;
DirEntry data;
ULARGE_INTEGER zero;
HRESULT hr;
zero.QuadPart = 0;
TRACE("(%p,%x)\n", iface, grfCommitFlags);
/* Cannot commit a read-only transacted storage */
if ( STGM_ACCESS_MODE( This->base.openFlags ) == STGM_READ )
return STG_E_ACCESSDENIED;
/* To prevent data loss, we create the new structure in the file before we
* delete the old one, so that in case of errors the old data is intact. We
* shouldn't do this if STGC_OVERWRITE is set, but that flag should only be
* needed in the rare situation where we have just enough free disk space to
* overwrite the existing data. */
root_entry = &This->entries[This->base.storageDirEntry];
if (!root_entry->read)
return S_OK;
hr = TransactedSnapshotImpl_CopyTree(This);
if (FAILED(hr)) return hr;
if (root_entry->data.dirRootEntry == DIRENTRY_NULL)
dir_root_ref = DIRENTRY_NULL;
else
dir_root_ref = This->entries[root_entry->data.dirRootEntry].newTransactedParentEntry;
hr = StorageBaseImpl_Flush(This->transactedParent);
/* Update the storage to use the new data in one step. */
if (SUCCEEDED(hr))
hr = StorageBaseImpl_ReadDirEntry(This->transactedParent,
root_entry->transactedParentEntry, &data);
if (SUCCEEDED(hr))
{
data.dirRootEntry = dir_root_ref;
data.clsid = root_entry->data.clsid;
data.ctime = root_entry->data.ctime;
data.mtime = root_entry->data.mtime;
hr = StorageBaseImpl_WriteDirEntry(This->transactedParent,
root_entry->transactedParentEntry, &data);
}
/* Try to flush after updating the root storage, but if the flush fails, keep
* going, on the theory that it'll either succeed later or the subsequent
* writes will fail. */
StorageBaseImpl_Flush(This->transactedParent);
if (SUCCEEDED(hr))
{
/* Destroy the old now-orphaned data. */
for (i=0; i<This->entries_size; i++)
{
TransactedDirEntry *entry = &This->entries[i];
if (entry->inuse)
{
if (entry->deleted)
{
StorageBaseImpl_StreamSetSize(This->transactedParent,
entry->transactedParentEntry, zero);
StorageBaseImpl_DestroyDirEntry(This->transactedParent,
entry->transactedParentEntry);
memset(entry, 0, sizeof(TransactedDirEntry));
This->firstFreeEntry = min(i, This->firstFreeEntry);
}
else if (entry->read && entry->transactedParentEntry != entry->newTransactedParentEntry)
{
if (entry->transactedParentEntry != DIRENTRY_NULL)
StorageBaseImpl_DestroyDirEntry(This->transactedParent,
entry->transactedParentEntry);
if (entry->stream_dirty)
{
StorageBaseImpl_StreamSetSize(This->scratch, entry->stream_entry, zero);
StorageBaseImpl_DestroyDirEntry(This->scratch, entry->stream_entry);
entry->stream_dirty = 0;
}
entry->dirty = 0;
entry->transactedParentEntry = entry->newTransactedParentEntry;
}
}
}
}
else
{
TransactedSnapshotImpl_DestroyTemporaryCopy(This, DIRENTRY_NULL);
}
if (SUCCEEDED(hr))
hr = StorageBaseImpl_Flush(This->transactedParent);
return hr;
}
static HRESULT WINAPI TransactedSnapshotImpl_Revert(
IStorage* iface)
{
TransactedSnapshotImpl* This = (TransactedSnapshotImpl*) iface;
ULARGE_INTEGER zero;
ULONG i;
TRACE("(%p)\n", iface);
/* Destroy the open objects. */
StorageBaseImpl_DeleteAll(&This->base);
/* Clear out the scratch file. */
zero.QuadPart = 0;
for (i=0; i<This->entries_size; i++)
{
if (This->entries[i].stream_dirty)
{
StorageBaseImpl_StreamSetSize(This->scratch, This->entries[i].stream_entry,
zero);
StorageBaseImpl_DestroyDirEntry(This->scratch, This->entries[i].stream_entry);
}
}
memset(This->entries, 0, sizeof(TransactedDirEntry) * This->entries_size);
This->firstFreeEntry = 0;
This->base.storageDirEntry = TransactedSnapshotImpl_CreateStubEntry(This, This->transactedParent->storageDirEntry);
return S_OK;
}
static void TransactedSnapshotImpl_Invalidate(StorageBaseImpl* This)
{
if (!This->reverted)
{
TRACE("Storage invalidated (stg=%p)\n", This);
This->reverted = 1;
StorageBaseImpl_DeleteAll(This);
}
}
static void TransactedSnapshotImpl_Destroy( StorageBaseImpl *iface)
{
TransactedSnapshotImpl* This = (TransactedSnapshotImpl*) iface;
TransactedSnapshotImpl_Revert((IStorage*)iface);
IStorage_Release((IStorage*)This->transactedParent);
IStorage_Release((IStorage*)This->scratch);
HeapFree(GetProcessHeap(), 0, This->entries);
HeapFree(GetProcessHeap(), 0, This);
}
static HRESULT TransactedSnapshotImpl_Flush(StorageBaseImpl* iface)
{
/* We only need to flush when committing. */
return S_OK;
}
static HRESULT TransactedSnapshotImpl_GetFilename(StorageBaseImpl* iface, LPWSTR *result)
{
TransactedSnapshotImpl* This = (TransactedSnapshotImpl*) iface;
return StorageBaseImpl_GetFilename(This->transactedParent, result);
}
static HRESULT TransactedSnapshotImpl_CreateDirEntry(StorageBaseImpl *base,
const DirEntry *newData, DirRef *index)
{
TransactedSnapshotImpl* This = (TransactedSnapshotImpl*) base;
DirRef new_ref;
TransactedDirEntry *new_entry;
new_ref = TransactedSnapshotImpl_FindFreeEntry(This);
if (new_ref == DIRENTRY_NULL)
return E_OUTOFMEMORY;
new_entry = &This->entries[new_ref];
new_entry->newTransactedParentEntry = new_entry->transactedParentEntry = DIRENTRY_NULL;
new_entry->read = 1;
new_entry->dirty = 1;
memcpy(&new_entry->data, newData, sizeof(DirEntry));
*index = new_ref;
TRACE("%s l=%x r=%x d=%x <-- %x\n", debugstr_w(newData->name), newData->leftChild, newData->rightChild, newData->dirRootEntry, *index);
return S_OK;
}
static HRESULT TransactedSnapshotImpl_WriteDirEntry(StorageBaseImpl *base,
DirRef index, const DirEntry *data)
{
TransactedSnapshotImpl* This = (TransactedSnapshotImpl*) base;
HRESULT hr;
TRACE("%x %s l=%x r=%x d=%x\n", index, debugstr_w(data->name), data->leftChild, data->rightChild, data->dirRootEntry);
hr = TransactedSnapshotImpl_EnsureReadEntry(This, index);
if (FAILED(hr)) return hr;
memcpy(&This->entries[index].data, data, sizeof(DirEntry));
if (index != This->base.storageDirEntry)
{
This->entries[index].dirty = 1;
if (data->size.QuadPart == 0 &&
This->entries[index].transactedParentEntry != DIRENTRY_NULL)
{
/* Since this entry is modified, and we aren't using its stream data, we
* no longer care about the original entry. */
DirRef delete_ref;
delete_ref = TransactedSnapshotImpl_CreateStubEntry(This, This->entries[index].transactedParentEntry);
if (delete_ref != DIRENTRY_NULL)
This->entries[delete_ref].deleted = 1;
This->entries[index].transactedParentEntry = This->entries[index].newTransactedParentEntry = DIRENTRY_NULL;
}
}
return S_OK;
}
static HRESULT TransactedSnapshotImpl_ReadDirEntry(StorageBaseImpl *base,
DirRef index, DirEntry *data)
{
TransactedSnapshotImpl* This = (TransactedSnapshotImpl*) base;
HRESULT hr;
hr = TransactedSnapshotImpl_EnsureReadEntry(This, index);
if (FAILED(hr)) return hr;
memcpy(data, &This->entries[index].data, sizeof(DirEntry));
TRACE("%x %s l=%x r=%x d=%x\n", index, debugstr_w(data->name), data->leftChild, data->rightChild, data->dirRootEntry);
return S_OK;
}
static HRESULT TransactedSnapshotImpl_DestroyDirEntry(StorageBaseImpl *base,
DirRef index)
{
TransactedSnapshotImpl* This = (TransactedSnapshotImpl*) base;
if (This->entries[index].transactedParentEntry == DIRENTRY_NULL ||
This->entries[index].data.size.QuadPart != 0)
{
/* If we deleted this entry while it has stream data. We must have left the
* data because some other entry is using it, and we need to leave the
* original entry alone. */
memset(&This->entries[index], 0, sizeof(TransactedDirEntry));
This->firstFreeEntry = min(index, This->firstFreeEntry);
}
else
{
This->entries[index].deleted = 1;
}
return S_OK;
}
static HRESULT TransactedSnapshotImpl_StreamReadAt(StorageBaseImpl *base,
DirRef index, ULARGE_INTEGER offset, ULONG size, void *buffer, ULONG *bytesRead)
{
TransactedSnapshotImpl* This = (TransactedSnapshotImpl*) base;
if (This->entries[index].stream_dirty)
{
return StorageBaseImpl_StreamReadAt(This->scratch,
This->entries[index].stream_entry, offset, size, buffer, bytesRead);
}
else if (This->entries[index].transactedParentEntry == DIRENTRY_NULL)
{
/* This stream doesn't live in the parent, and we haven't allocated storage
* for it yet */
*bytesRead = 0;
return S_OK;
}
else
{
return StorageBaseImpl_StreamReadAt(This->transactedParent,
This->entries[index].transactedParentEntry, offset, size, buffer, bytesRead);
}
}
static HRESULT TransactedSnapshotImpl_StreamWriteAt(StorageBaseImpl *base,
DirRef index, ULARGE_INTEGER offset, ULONG size, const void *buffer, ULONG *bytesWritten)
{
TransactedSnapshotImpl* This = (TransactedSnapshotImpl*) base;
HRESULT hr;
hr = TransactedSnapshotImpl_EnsureReadEntry(This, index);
if (FAILED(hr)) return hr;
hr = TransactedSnapshotImpl_MakeStreamDirty(This, index);
if (FAILED(hr)) return hr;
hr = StorageBaseImpl_StreamWriteAt(This->scratch,
This->entries[index].stream_entry, offset, size, buffer, bytesWritten);
if (SUCCEEDED(hr) && size != 0)
This->entries[index].data.size.QuadPart = max(
This->entries[index].data.size.QuadPart,
offset.QuadPart + size);
return hr;
}
static HRESULT TransactedSnapshotImpl_StreamSetSize(StorageBaseImpl *base,
DirRef index, ULARGE_INTEGER newsize)
{
TransactedSnapshotImpl* This = (TransactedSnapshotImpl*) base;
HRESULT hr;
hr = TransactedSnapshotImpl_EnsureReadEntry(This, index);
if (FAILED(hr)) return hr;
if (This->entries[index].data.size.QuadPart == newsize.QuadPart)
return S_OK;
if (newsize.QuadPart == 0)
{
/* Destroy any parent references or entries in the scratch file. */
if (This->entries[index].stream_dirty)
{
ULARGE_INTEGER zero;
zero.QuadPart = 0;
StorageBaseImpl_StreamSetSize(This->scratch,
This->entries[index].stream_entry, zero);
StorageBaseImpl_DestroyDirEntry(This->scratch,
This->entries[index].stream_entry);
This->entries[index].stream_dirty = 0;
}
else if (This->entries[index].transactedParentEntry != DIRENTRY_NULL)
{
DirRef delete_ref;
delete_ref = TransactedSnapshotImpl_CreateStubEntry(This, This->entries[index].transactedParentEntry);
if (delete_ref != DIRENTRY_NULL)
This->entries[delete_ref].deleted = 1;
This->entries[index].transactedParentEntry = This->entries[index].newTransactedParentEntry = DIRENTRY_NULL;
}
}
else
{
hr = TransactedSnapshotImpl_MakeStreamDirty(This, index);
if (FAILED(hr)) return hr;
hr = StorageBaseImpl_StreamSetSize(This->scratch,
This->entries[index].stream_entry, newsize);
}
if (SUCCEEDED(hr))
This->entries[index].data.size = newsize;
return hr;
}
static HRESULT TransactedSnapshotImpl_StreamLink(StorageBaseImpl *base,
DirRef dst, DirRef src)
{
TransactedSnapshotImpl* This = (TransactedSnapshotImpl*) base;
HRESULT hr;
TransactedDirEntry *dst_entry, *src_entry;
hr = TransactedSnapshotImpl_EnsureReadEntry(This, src);
if (FAILED(hr)) return hr;
hr = TransactedSnapshotImpl_EnsureReadEntry(This, dst);
if (FAILED(hr)) return hr;
dst_entry = &This->entries[dst];
src_entry = &This->entries[src];
dst_entry->stream_dirty = src_entry->stream_dirty;
dst_entry->stream_entry = src_entry->stream_entry;
dst_entry->transactedParentEntry = src_entry->transactedParentEntry;
dst_entry->newTransactedParentEntry = src_entry->newTransactedParentEntry;
dst_entry->data.size = src_entry->data.size;
return S_OK;
}
static const IStorageVtbl TransactedSnapshotImpl_Vtbl =
{
StorageBaseImpl_QueryInterface,
StorageBaseImpl_AddRef,
StorageBaseImpl_Release,
StorageBaseImpl_CreateStream,
StorageBaseImpl_OpenStream,
StorageBaseImpl_CreateStorage,
StorageBaseImpl_OpenStorage,
StorageBaseImpl_CopyTo,
StorageBaseImpl_MoveElementTo,
TransactedSnapshotImpl_Commit,
TransactedSnapshotImpl_Revert,
StorageBaseImpl_EnumElements,
StorageBaseImpl_DestroyElement,
StorageBaseImpl_RenameElement,
StorageBaseImpl_SetElementTimes,
StorageBaseImpl_SetClass,
StorageBaseImpl_SetStateBits,
StorageBaseImpl_Stat
};
static const StorageBaseImplVtbl TransactedSnapshotImpl_BaseVtbl =
{
TransactedSnapshotImpl_Destroy,
TransactedSnapshotImpl_Invalidate,
TransactedSnapshotImpl_Flush,
TransactedSnapshotImpl_GetFilename,
TransactedSnapshotImpl_CreateDirEntry,
TransactedSnapshotImpl_WriteDirEntry,
TransactedSnapshotImpl_ReadDirEntry,
TransactedSnapshotImpl_DestroyDirEntry,
TransactedSnapshotImpl_StreamReadAt,
TransactedSnapshotImpl_StreamWriteAt,
TransactedSnapshotImpl_StreamSetSize,
TransactedSnapshotImpl_StreamLink
};
static HRESULT TransactedSnapshotImpl_Construct(StorageBaseImpl *parentStorage,
TransactedSnapshotImpl** result)
{
HRESULT hr;
*result = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(TransactedSnapshotImpl));
if (*result)
{
(*result)->base.lpVtbl = &TransactedSnapshotImpl_Vtbl;
/* This is OK because the property set storage functions use the IStorage functions. */
(*result)->base.pssVtbl = parentStorage->pssVtbl;
(*result)->base.baseVtbl = &TransactedSnapshotImpl_BaseVtbl;
list_init(&(*result)->base.strmHead);
list_init(&(*result)->base.storageHead);
(*result)->base.ref = 1;
(*result)->base.openFlags = parentStorage->openFlags;
/* Create a new temporary storage to act as the scratch file. */
hr = StgCreateDocfile(NULL, STGM_READWRITE|STGM_SHARE_EXCLUSIVE|STGM_CREATE,
0, (IStorage**)&(*result)->scratch);
if (SUCCEEDED(hr))
{
ULONG num_entries = 20;
(*result)->entries = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(TransactedDirEntry) * num_entries);
(*result)->entries_size = num_entries;
(*result)->firstFreeEntry = 0;
if ((*result)->entries)
{
/* parentStorage already has 1 reference, which we take over here. */
(*result)->transactedParent = parentStorage;
parentStorage->transactedChild = (StorageBaseImpl*)*result;
(*result)->base.storageDirEntry = TransactedSnapshotImpl_CreateStubEntry(*result, parentStorage->storageDirEntry);
}
else
{
IStorage_Release((IStorage*)(*result)->scratch);
hr = E_OUTOFMEMORY;
}
}
if (FAILED(hr)) HeapFree(GetProcessHeap(), 0, (*result));
return hr;
}
else
return E_OUTOFMEMORY;
}
static HRESULT Storage_ConstructTransacted(StorageBaseImpl *parentStorage,
StorageBaseImpl** result)
{
static int fixme=0;
if (parentStorage->openFlags & (STGM_NOSCRATCH|STGM_NOSNAPSHOT) && !fixme++)
{
FIXME("Unimplemented flags %x\n", parentStorage->openFlags);
}
return TransactedSnapshotImpl_Construct(parentStorage,
(TransactedSnapshotImpl**)result);
}
static HRESULT Storage_Construct(
HANDLE hFile,
LPCOLESTR pwcsName,
ILockBytes* pLkbyt,
DWORD openFlags,
BOOL fileBased,
BOOL create,
ULONG sector_size,
StorageBaseImpl** result)
{
StorageImpl *newStorage;
StorageBaseImpl *newTransactedStorage;
HRESULT hr;
hr = StorageImpl_Construct(hFile, pwcsName, pLkbyt, openFlags, fileBased, create, sector_size, &newStorage);
if (FAILED(hr)) goto end;
if (openFlags & STGM_TRANSACTED)
{
hr = Storage_ConstructTransacted(&newStorage->base, &newTransactedStorage);
if (FAILED(hr))
IStorage_Release((IStorage*)newStorage);
else
*result = newTransactedStorage;
}
else
*result = &newStorage->base;
end:
return hr;
}
static void StorageInternalImpl_Invalidate( StorageBaseImpl *base )
{
StorageInternalImpl* This = (StorageInternalImpl*) base;
if (!This->base.reverted)
{
TRACE("Storage invalidated (stg=%p)\n", This);
This->base.reverted = 1;
This->parentStorage = NULL;
StorageBaseImpl_DeleteAll(&This->base);
list_remove(&This->ParentListEntry);
}
}
static void StorageInternalImpl_Destroy( StorageBaseImpl *iface)
{
StorageInternalImpl* This = (StorageInternalImpl*) iface;
StorageInternalImpl_Invalidate(&This->base);
HeapFree(GetProcessHeap(), 0, This);
}
static HRESULT StorageInternalImpl_Flush(StorageBaseImpl* iface)
{
StorageInternalImpl* This = (StorageInternalImpl*) iface;
return StorageBaseImpl_Flush(This->parentStorage);
}
static HRESULT StorageInternalImpl_GetFilename(StorageBaseImpl* iface, LPWSTR *result)
{
StorageInternalImpl* This = (StorageInternalImpl*) iface;
return StorageBaseImpl_GetFilename(This->parentStorage, result);
}
static HRESULT StorageInternalImpl_CreateDirEntry(StorageBaseImpl *base,
const DirEntry *newData, DirRef *index)
{
StorageInternalImpl* This = (StorageInternalImpl*) base;
return StorageBaseImpl_CreateDirEntry(This->parentStorage,
newData, index);
}
static HRESULT StorageInternalImpl_WriteDirEntry(StorageBaseImpl *base,
DirRef index, const DirEntry *data)
{
StorageInternalImpl* This = (StorageInternalImpl*) base;
return StorageBaseImpl_WriteDirEntry(This->parentStorage,
index, data);
}
static HRESULT StorageInternalImpl_ReadDirEntry(StorageBaseImpl *base,
DirRef index, DirEntry *data)
{
StorageInternalImpl* This = (StorageInternalImpl*) base;
return StorageBaseImpl_ReadDirEntry(This->parentStorage,
index, data);
}
static HRESULT StorageInternalImpl_DestroyDirEntry(StorageBaseImpl *base,
DirRef index)
{
StorageInternalImpl* This = (StorageInternalImpl*) base;
return StorageBaseImpl_DestroyDirEntry(This->parentStorage,
index);
}
static HRESULT StorageInternalImpl_StreamReadAt(StorageBaseImpl *base,
DirRef index, ULARGE_INTEGER offset, ULONG size, void *buffer, ULONG *bytesRead)
{
StorageInternalImpl* This = (StorageInternalImpl*) base;
return StorageBaseImpl_StreamReadAt(This->parentStorage,
index, offset, size, buffer, bytesRead);
}
static HRESULT StorageInternalImpl_StreamWriteAt(StorageBaseImpl *base,
DirRef index, ULARGE_INTEGER offset, ULONG size, const void *buffer, ULONG *bytesWritten)
{
StorageInternalImpl* This = (StorageInternalImpl*) base;
return StorageBaseImpl_StreamWriteAt(This->parentStorage,
index, offset, size, buffer, bytesWritten);
}
static HRESULT StorageInternalImpl_StreamSetSize(StorageBaseImpl *base,
DirRef index, ULARGE_INTEGER newsize)
{
StorageInternalImpl* This = (StorageInternalImpl*) base;
return StorageBaseImpl_StreamSetSize(This->parentStorage,
index, newsize);
}
static HRESULT StorageInternalImpl_StreamLink(StorageBaseImpl *base,
DirRef dst, DirRef src)
{
StorageInternalImpl* This = (StorageInternalImpl*) base;
return StorageBaseImpl_StreamLink(This->parentStorage,
dst, src);
}
/******************************************************************************
**
** Storage32InternalImpl_Commit
**
*/
static HRESULT WINAPI StorageInternalImpl_Commit(
IStorage* iface,
DWORD grfCommitFlags) /* [in] */
{
StorageBaseImpl* base = (StorageBaseImpl*) iface;
TRACE("(%p,%x)\n", iface, grfCommitFlags);
return StorageBaseImpl_Flush(base);
}
/******************************************************************************
**
** Storage32InternalImpl_Revert
**
*/
static HRESULT WINAPI StorageInternalImpl_Revert(
IStorage* iface)
{
FIXME("(%p): stub\n", iface);
return S_OK;
}
static void IEnumSTATSTGImpl_Destroy(IEnumSTATSTGImpl* This)
{
IStorage_Release((IStorage*)This->parentStorage);
HeapFree(GetProcessHeap(), 0, This);
}
static HRESULT WINAPI IEnumSTATSTGImpl_QueryInterface(
IEnumSTATSTG* iface,
REFIID riid,
void** ppvObject)
{
IEnumSTATSTGImpl* const This=(IEnumSTATSTGImpl*)iface;
if (ppvObject==0)
return E_INVALIDARG;
*ppvObject = 0;
if (IsEqualGUID(&IID_IUnknown, riid) ||
IsEqualGUID(&IID_IEnumSTATSTG, riid))
{
*ppvObject = This;
IEnumSTATSTG_AddRef((IEnumSTATSTG*)This);
return S_OK;
}
return E_NOINTERFACE;
}
static ULONG WINAPI IEnumSTATSTGImpl_AddRef(
IEnumSTATSTG* iface)
{
IEnumSTATSTGImpl* const This=(IEnumSTATSTGImpl*)iface;
return InterlockedIncrement(&This->ref);
}
static ULONG WINAPI IEnumSTATSTGImpl_Release(
IEnumSTATSTG* iface)
{
IEnumSTATSTGImpl* const This=(IEnumSTATSTGImpl*)iface;
ULONG newRef;
newRef = InterlockedDecrement(&This->ref);
if (newRef==0)
{
IEnumSTATSTGImpl_Destroy(This);
}
return newRef;
}
static HRESULT IEnumSTATSTGImpl_GetNextRef(
IEnumSTATSTGImpl* This,
DirRef *ref)
{
DirRef result = DIRENTRY_NULL;
DirRef searchNode;
DirEntry entry;
HRESULT hr;
WCHAR result_name[DIRENTRY_NAME_MAX_LEN];
hr = StorageBaseImpl_ReadDirEntry(This->parentStorage,
This->parentStorage->storageDirEntry, &entry);
searchNode = entry.dirRootEntry;
while (SUCCEEDED(hr) && searchNode != DIRENTRY_NULL)
{
hr = StorageBaseImpl_ReadDirEntry(This->parentStorage, searchNode, &entry);
if (SUCCEEDED(hr))
{
LONG diff = entryNameCmp( entry.name, This->name);
if (diff <= 0)
{
searchNode = entry.rightChild;
}
else
{
result = searchNode;
memcpy(result_name, entry.name, sizeof(result_name));
searchNode = entry.leftChild;
}
}
}
if (SUCCEEDED(hr))
{
*ref = result;
if (result != DIRENTRY_NULL)
memcpy(This->name, result_name, sizeof(result_name));
}
return hr;
}
static HRESULT WINAPI IEnumSTATSTGImpl_Next(
IEnumSTATSTG* iface,
ULONG celt,
STATSTG* rgelt,
ULONG* pceltFetched)
{
IEnumSTATSTGImpl* const This=(IEnumSTATSTGImpl*)iface;
DirEntry currentEntry;
STATSTG* currentReturnStruct = rgelt;
ULONG objectFetched = 0;
DirRef currentSearchNode;
HRESULT hr=S_OK;
if ( (rgelt==0) || ( (celt!=1) && (pceltFetched==0) ) )
return E_INVALIDARG;
if (This->parentStorage->reverted)
return STG_E_REVERTED;
/*
* To avoid the special case, get another pointer to a ULONG value if
* the caller didn't supply one.
*/
if (pceltFetched==0)
pceltFetched = &objectFetched;
/*
* Start the iteration, we will iterate until we hit the end of the
* linked list or until we hit the number of items to iterate through
*/
*pceltFetched = 0;
while ( *pceltFetched < celt )
{
hr = IEnumSTATSTGImpl_GetNextRef(This, &currentSearchNode);
if (FAILED(hr) || currentSearchNode == DIRENTRY_NULL)
break;
/*
* Read the entry from the storage.
*/
StorageBaseImpl_ReadDirEntry(This->parentStorage,
currentSearchNode,
&currentEntry);
/*
* Copy the information to the return buffer.
*/
StorageUtl_CopyDirEntryToSTATSTG(This->parentStorage,
currentReturnStruct,
&currentEntry,
STATFLAG_DEFAULT);
/*
* Step to the next item in the iteration
*/
(*pceltFetched)++;
currentReturnStruct++;
}
if (SUCCEEDED(hr) && *pceltFetched != celt)
hr = S_FALSE;
return hr;
}
static HRESULT WINAPI IEnumSTATSTGImpl_Skip(
IEnumSTATSTG* iface,
ULONG celt)
{
IEnumSTATSTGImpl* const This=(IEnumSTATSTGImpl*)iface;
ULONG objectFetched = 0;
DirRef currentSearchNode;
HRESULT hr=S_OK;
if (This->parentStorage->reverted)
return STG_E_REVERTED;
while ( (objectFetched < celt) )
{
hr = IEnumSTATSTGImpl_GetNextRef(This, &currentSearchNode);
if (FAILED(hr) || currentSearchNode == DIRENTRY_NULL)
break;
objectFetched++;
}
if (SUCCEEDED(hr) && objectFetched != celt)
return S_FALSE;
return hr;
}
static HRESULT WINAPI IEnumSTATSTGImpl_Reset(
IEnumSTATSTG* iface)
{
IEnumSTATSTGImpl* const This=(IEnumSTATSTGImpl*)iface;
if (This->parentStorage->reverted)
return STG_E_REVERTED;
This->name[0] = 0;
return S_OK;
}
static HRESULT WINAPI IEnumSTATSTGImpl_Clone(
IEnumSTATSTG* iface,
IEnumSTATSTG** ppenum)
{
IEnumSTATSTGImpl* const This=(IEnumSTATSTGImpl*)iface;
IEnumSTATSTGImpl* newClone;
if (This->parentStorage->reverted)
return STG_E_REVERTED;
/*
* Perform a sanity check on the parameters.
*/
if (ppenum==0)
return E_INVALIDARG;
newClone = IEnumSTATSTGImpl_Construct(This->parentStorage,
This->storageDirEntry);
/*
* The new clone enumeration must point to the same current node as
* the ole one.
*/
memcpy(newClone->name, This->name, sizeof(newClone->name));
*ppenum = (IEnumSTATSTG*)newClone;
/*
* Don't forget to nail down a reference to the clone before
* returning it.
*/
IEnumSTATSTGImpl_AddRef(*ppenum);
return S_OK;
}
/*
* Virtual function table for the IEnumSTATSTGImpl class.
*/
static const IEnumSTATSTGVtbl IEnumSTATSTGImpl_Vtbl =
{
IEnumSTATSTGImpl_QueryInterface,
IEnumSTATSTGImpl_AddRef,
IEnumSTATSTGImpl_Release,
IEnumSTATSTGImpl_Next,
IEnumSTATSTGImpl_Skip,
IEnumSTATSTGImpl_Reset,
IEnumSTATSTGImpl_Clone
};
/******************************************************************************
** IEnumSTATSTGImpl implementation
*/
static IEnumSTATSTGImpl* IEnumSTATSTGImpl_Construct(
StorageBaseImpl* parentStorage,
DirRef storageDirEntry)
{
IEnumSTATSTGImpl* newEnumeration;
newEnumeration = HeapAlloc(GetProcessHeap(), 0, sizeof(IEnumSTATSTGImpl));
if (newEnumeration!=0)
{
/*
* Set-up the virtual function table and reference count.
*/
newEnumeration->lpVtbl = &IEnumSTATSTGImpl_Vtbl;
newEnumeration->ref = 0;
/*
* We want to nail-down the reference to the storage in case the
* enumeration out-lives the storage in the client application.
*/
newEnumeration->parentStorage = parentStorage;
IStorage_AddRef((IStorage*)newEnumeration->parentStorage);
newEnumeration->storageDirEntry = storageDirEntry;
/*
* Make sure the current node of the iterator is the first one.
*/
IEnumSTATSTGImpl_Reset((IEnumSTATSTG*)newEnumeration);
}
return newEnumeration;
}
/*
* Virtual function table for the Storage32InternalImpl class.
*/
static const IStorageVtbl Storage32InternalImpl_Vtbl =
{
StorageBaseImpl_QueryInterface,
StorageBaseImpl_AddRef,
StorageBaseImpl_Release,
StorageBaseImpl_CreateStream,
StorageBaseImpl_OpenStream,
StorageBaseImpl_CreateStorage,
StorageBaseImpl_OpenStorage,
StorageBaseImpl_CopyTo,
StorageBaseImpl_MoveElementTo,
StorageInternalImpl_Commit,
StorageInternalImpl_Revert,
StorageBaseImpl_EnumElements,
StorageBaseImpl_DestroyElement,
StorageBaseImpl_RenameElement,
StorageBaseImpl_SetElementTimes,
StorageBaseImpl_SetClass,
StorageBaseImpl_SetStateBits,
StorageBaseImpl_Stat
};
static const StorageBaseImplVtbl StorageInternalImpl_BaseVtbl =
{
StorageInternalImpl_Destroy,
StorageInternalImpl_Invalidate,
StorageInternalImpl_Flush,
StorageInternalImpl_GetFilename,
StorageInternalImpl_CreateDirEntry,
StorageInternalImpl_WriteDirEntry,
StorageInternalImpl_ReadDirEntry,
StorageInternalImpl_DestroyDirEntry,
StorageInternalImpl_StreamReadAt,
StorageInternalImpl_StreamWriteAt,
StorageInternalImpl_StreamSetSize,
StorageInternalImpl_StreamLink
};
/******************************************************************************
** Storage32InternalImpl implementation
*/
static StorageInternalImpl* StorageInternalImpl_Construct(
StorageBaseImpl* parentStorage,
DWORD openFlags,
DirRef storageDirEntry)
{
StorageInternalImpl* newStorage;
newStorage = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(StorageInternalImpl));
if (newStorage!=0)
{
list_init(&newStorage->base.strmHead);
list_init(&newStorage->base.storageHead);
/*
* Initialize the virtual function table.
*/
newStorage->base.lpVtbl = &Storage32InternalImpl_Vtbl;
newStorage->base.pssVtbl = &IPropertySetStorage_Vtbl;
newStorage->base.baseVtbl = &StorageInternalImpl_BaseVtbl;
newStorage->base.openFlags = (openFlags & ~STGM_CREATE);
newStorage->base.reverted = 0;
newStorage->base.ref = 1;
newStorage->parentStorage = parentStorage;
/*
* Keep a reference to the directory entry of this storage
*/
newStorage->base.storageDirEntry = storageDirEntry;
newStorage->base.create = 0;
return newStorage;
}
return 0;
}
/******************************************************************************
** StorageUtl implementation
*/
void StorageUtl_ReadWord(const BYTE* buffer, ULONG offset, WORD* value)
{
WORD tmp;
memcpy(&tmp, buffer+offset, sizeof(WORD));
*value = lendian16toh(tmp);
}
void StorageUtl_WriteWord(BYTE* buffer, ULONG offset, WORD value)
{
value = htole16(value);
memcpy(buffer+offset, &value, sizeof(WORD));
}
void StorageUtl_ReadDWord(const BYTE* buffer, ULONG offset, DWORD* value)
{
DWORD tmp;
memcpy(&tmp, buffer+offset, sizeof(DWORD));
*value = lendian32toh(tmp);
}
void StorageUtl_WriteDWord(BYTE* buffer, ULONG offset, DWORD value)
{
value = htole32(value);
memcpy(buffer+offset, &value, sizeof(DWORD));
}
void StorageUtl_ReadULargeInteger(const BYTE* buffer, ULONG offset,
ULARGE_INTEGER* value)
{
#ifdef WORDS_BIGENDIAN
ULARGE_INTEGER tmp;
memcpy(&tmp, buffer + offset, sizeof(ULARGE_INTEGER));
value->u.LowPart = htole32(tmp.u.HighPart);
value->u.HighPart = htole32(tmp.u.LowPart);
#else
memcpy(value, buffer + offset, sizeof(ULARGE_INTEGER));
#endif
}
void StorageUtl_WriteULargeInteger(BYTE* buffer, ULONG offset,
const ULARGE_INTEGER *value)
{
#ifdef WORDS_BIGENDIAN
ULARGE_INTEGER tmp;
tmp.u.LowPart = htole32(value->u.HighPart);
tmp.u.HighPart = htole32(value->u.LowPart);
memcpy(buffer + offset, &tmp, sizeof(ULARGE_INTEGER));
#else
memcpy(buffer + offset, value, sizeof(ULARGE_INTEGER));
#endif
}
void StorageUtl_ReadGUID(const BYTE* buffer, ULONG offset, GUID* value)
{
StorageUtl_ReadDWord(buffer, offset, &(value->Data1));
StorageUtl_ReadWord(buffer, offset+4, &(value->Data2));
StorageUtl_ReadWord(buffer, offset+6, &(value->Data3));
memcpy(value->Data4, buffer+offset+8, sizeof(value->Data4));
}
void StorageUtl_WriteGUID(BYTE* buffer, ULONG offset, const GUID* value)
{
StorageUtl_WriteDWord(buffer, offset, value->Data1);
StorageUtl_WriteWord(buffer, offset+4, value->Data2);
StorageUtl_WriteWord(buffer, offset+6, value->Data3);
memcpy(buffer+offset+8, value->Data4, sizeof(value->Data4));
}
void StorageUtl_CopyDirEntryToSTATSTG(
StorageBaseImpl* storage,
STATSTG* destination,
const DirEntry* source,
int statFlags)
{
/*
* The copy of the string occurs only when the flag is not set
*/
if (!(statFlags & STATFLAG_NONAME) && source->stgType == STGTY_ROOT)
{
/* Use the filename for the root storage. */
destination->pwcsName = 0;
StorageBaseImpl_GetFilename(storage, &destination->pwcsName);
}
else if( ((statFlags & STATFLAG_NONAME) != 0) ||
(source->name[0] == 0) )
{
destination->pwcsName = 0;
}
else
{
destination->pwcsName =
CoTaskMemAlloc((lstrlenW(source->name)+1)*sizeof(WCHAR));
strcpyW(destination->pwcsName, source->name);
}
switch (source->stgType)
{
case STGTY_STORAGE:
case STGTY_ROOT:
destination->type = STGTY_STORAGE;
break;
case STGTY_STREAM:
destination->type = STGTY_STREAM;
break;
default:
destination->type = STGTY_STREAM;
break;
}
destination->cbSize = source->size;
/*
currentReturnStruct->mtime = {0}; TODO
currentReturnStruct->ctime = {0};
currentReturnStruct->atime = {0};
*/
destination->grfMode = 0;
destination->grfLocksSupported = 0;
destination->clsid = source->clsid;
destination->grfStateBits = 0;
destination->reserved = 0;
}
/******************************************************************************
** BlockChainStream implementation
*/
/* Read and save the index of all blocks in this stream. */
HRESULT BlockChainStream_UpdateIndexCache(BlockChainStream* This)
{
ULONG next_sector, next_offset;
HRESULT hr;
struct BlockChainRun *last_run;
if (This->indexCacheLen == 0)
{
last_run = NULL;
next_offset = 0;
next_sector = BlockChainStream_GetHeadOfChain(This);
}
else
{
last_run = &This->indexCache[This->indexCacheLen-1];
next_offset = last_run->lastOffset+1;
hr = StorageImpl_GetNextBlockInChain(This->parentStorage,
last_run->firstSector + last_run->lastOffset - last_run->firstOffset,
&next_sector);
if (FAILED(hr)) return hr;
}
while (next_sector != BLOCK_END_OF_CHAIN)
{
if (!last_run || next_sector != last_run->firstSector + next_offset - last_run->firstOffset)
{
/* Add the current block to the cache. */
if (This->indexCacheSize == 0)
{
This->indexCache = HeapAlloc(GetProcessHeap(), 0, sizeof(struct BlockChainRun)*16);
if (!This->indexCache) return E_OUTOFMEMORY;
This->indexCacheSize = 16;
}
else if (This->indexCacheSize == This->indexCacheLen)
{
struct BlockChainRun *new_cache;
ULONG new_size;
new_size = This->indexCacheSize * 2;
new_cache = HeapAlloc(GetProcessHeap(), 0, sizeof(struct BlockChainRun)*new_size);
if (!new_cache) return E_OUTOFMEMORY;
memcpy(new_cache, This->indexCache, sizeof(struct BlockChainRun)*This->indexCacheLen);
HeapFree(GetProcessHeap(), 0, This->indexCache);
This->indexCache = new_cache;
This->indexCacheSize = new_size;
}
This->indexCacheLen++;
last_run = &This->indexCache[This->indexCacheLen-1];
last_run->firstSector = next_sector;
last_run->firstOffset = next_offset;
}
last_run->lastOffset = next_offset;
/* Find the next block. */
next_offset++;
hr = StorageImpl_GetNextBlockInChain(This->parentStorage, next_sector, &next_sector);
if (FAILED(hr)) return hr;
}
if (This->indexCacheLen)
{
This->tailIndex = last_run->firstSector + last_run->lastOffset - last_run->firstOffset;
This->numBlocks = last_run->lastOffset+1;
}
else
{
This->tailIndex = BLOCK_END_OF_CHAIN;
This->numBlocks = 0;
}
return S_OK;
}
/* Locate the nth block in this stream. */
ULONG BlockChainStream_GetSectorOfOffset(BlockChainStream *This, ULONG offset)
{
ULONG min_offset = 0, max_offset = This->numBlocks-1;
ULONG min_run = 0, max_run = This->indexCacheLen-1;
if (offset >= This->numBlocks)
return BLOCK_END_OF_CHAIN;
while (min_run < max_run)
{
ULONG run_to_check = min_run + (offset - min_offset) * (max_run - min_run) / (max_offset - min_offset);
if (offset < This->indexCache[run_to_check].firstOffset)
{
max_offset = This->indexCache[run_to_check].firstOffset-1;
max_run = run_to_check-1;
}
else if (offset > This->indexCache[run_to_check].lastOffset)
{
min_offset = This->indexCache[run_to_check].lastOffset+1;
min_run = run_to_check+1;
}
else
/* Block is in this run. */
min_run = max_run = run_to_check;
}
return This->indexCache[min_run].firstSector + offset - This->indexCache[min_run].firstOffset;
}
HRESULT BlockChainStream_GetBlockAtOffset(BlockChainStream *This,
ULONG index, BlockChainBlock **block, ULONG *sector, BOOL create)
{
BlockChainBlock *result=NULL;
int i;
for (i=0; i<2; i++)
if (This->cachedBlocks[i].index == index)
{
*sector = This->cachedBlocks[i].sector;
*block = &This->cachedBlocks[i];
return S_OK;
}
*sector = BlockChainStream_GetSectorOfOffset(This, index);
if (*sector == BLOCK_END_OF_CHAIN)
return STG_E_DOCFILECORRUPT;
if (create)
{
if (This->cachedBlocks[0].index == 0xffffffff)
result = &This->cachedBlocks[0];
else if (This->cachedBlocks[1].index == 0xffffffff)
result = &This->cachedBlocks[1];
else
{
result = &This->cachedBlocks[This->blockToEvict++];
if (This->blockToEvict == 2)
This->blockToEvict = 0;
}
if (result->dirty)
{
if (!StorageImpl_WriteBigBlock(This->parentStorage, result->sector, result->data))
return STG_E_WRITEFAULT;
result->dirty = 0;
}
result->read = 0;
result->index = index;
result->sector = *sector;
}
*block = result;
return S_OK;
}
BlockChainStream* BlockChainStream_Construct(
StorageImpl* parentStorage,
ULONG* headOfStreamPlaceHolder,
DirRef dirEntry)
{
BlockChainStream* newStream;
newStream = HeapAlloc(GetProcessHeap(), 0, sizeof(BlockChainStream));
newStream->parentStorage = parentStorage;
newStream->headOfStreamPlaceHolder = headOfStreamPlaceHolder;
newStream->ownerDirEntry = dirEntry;
newStream->indexCache = NULL;
newStream->indexCacheLen = 0;
newStream->indexCacheSize = 0;
newStream->cachedBlocks[0].index = 0xffffffff;
newStream->cachedBlocks[0].dirty = 0;
newStream->cachedBlocks[1].index = 0xffffffff;
newStream->cachedBlocks[1].dirty = 0;
newStream->blockToEvict = 0;
if (FAILED(BlockChainStream_UpdateIndexCache(newStream)))
{
HeapFree(GetProcessHeap(), 0, newStream->indexCache);
HeapFree(GetProcessHeap(), 0, newStream);
return NULL;
}
return newStream;
}
HRESULT BlockChainStream_Flush(BlockChainStream* This)
{
int i;
if (!This) return S_OK;
for (i=0; i<2; i++)
{
if (This->cachedBlocks[i].dirty)
{
if (StorageImpl_WriteBigBlock(This->parentStorage, This->cachedBlocks[i].sector, This->cachedBlocks[i].data))
This->cachedBlocks[i].dirty = 0;
else
return STG_E_WRITEFAULT;
}
}
return S_OK;
}
void BlockChainStream_Destroy(BlockChainStream* This)
{
if (This)
{
BlockChainStream_Flush(This);
HeapFree(GetProcessHeap(), 0, This->indexCache);
}
HeapFree(GetProcessHeap(), 0, This);
}
/******************************************************************************
* BlockChainStream_GetHeadOfChain
*
* Returns the head of this stream chain.
* Some special chains don't have directory entries, their heads are kept in
* This->headOfStreamPlaceHolder.
*
*/
static ULONG BlockChainStream_GetHeadOfChain(BlockChainStream* This)
{
DirEntry chainEntry;
HRESULT hr;
if (This->headOfStreamPlaceHolder != 0)
return *(This->headOfStreamPlaceHolder);
if (This->ownerDirEntry != DIRENTRY_NULL)
{
hr = StorageImpl_ReadDirEntry(
This->parentStorage,
This->ownerDirEntry,
&chainEntry);
if (SUCCEEDED(hr))
{
return chainEntry.startingBlock;
}
}
return BLOCK_END_OF_CHAIN;
}
/******************************************************************************
* BlockChainStream_GetCount
*
* Returns the number of blocks that comprises this chain.
* This is not the size of the stream as the last block may not be full!
*/
static ULONG BlockChainStream_GetCount(BlockChainStream* This)
{
return This->numBlocks;
}
/******************************************************************************
* BlockChainStream_ReadAt
*
* Reads a specified number of bytes from this chain at the specified offset.
* bytesRead may be NULL.
* Failure will be returned if the specified number of bytes has not been read.
*/
HRESULT BlockChainStream_ReadAt(BlockChainStream* This,
ULARGE_INTEGER offset,
ULONG size,
void* buffer,
ULONG* bytesRead)
{
ULONG blockNoInSequence = offset.u.LowPart / This->parentStorage->bigBlockSize;
ULONG offsetInBlock = offset.u.LowPart % This->parentStorage->bigBlockSize;
ULONG bytesToReadInBuffer;
ULONG blockIndex;
BYTE* bufferWalker;
ULARGE_INTEGER stream_size;
HRESULT hr;
BlockChainBlock *cachedBlock;
TRACE("(%p)-> %i %p %i %p\n",This, offset.u.LowPart, buffer, size, bytesRead);
/*
* Find the first block in the stream that contains part of the buffer.
*/
blockIndex = BlockChainStream_GetSectorOfOffset(This, blockNoInSequence);
*bytesRead = 0;
stream_size = BlockChainStream_GetSize(This);
if (stream_size.QuadPart > offset.QuadPart)
size = min(stream_size.QuadPart - offset.QuadPart, size);
else
return S_OK;
/*
* Start reading the buffer.
*/
bufferWalker = buffer;
while (size > 0)
{
ULARGE_INTEGER ulOffset;
DWORD bytesReadAt;
/*
* Calculate how many bytes we can copy from this big block.
*/
bytesToReadInBuffer =
min(This->parentStorage->bigBlockSize - offsetInBlock, size);
hr = BlockChainStream_GetBlockAtOffset(This, blockNoInSequence, &cachedBlock, &blockIndex, size == bytesToReadInBuffer);
if (FAILED(hr))
return hr;
if (!cachedBlock)
{
/* Not in cache, and we're going to read past the end of the block. */
ulOffset.u.HighPart = 0;
ulOffset.u.LowPart = StorageImpl_GetBigBlockOffset(This->parentStorage, blockIndex) +
offsetInBlock;
StorageImpl_ReadAt(This->parentStorage,
ulOffset,
bufferWalker,
bytesToReadInBuffer,
&bytesReadAt);
}
else
{
if (!cachedBlock->read)
{
if (!StorageImpl_ReadBigBlock(This->parentStorage, cachedBlock->sector, cachedBlock->data))
return STG_E_READFAULT;
cachedBlock->read = 1;
}
memcpy(bufferWalker, cachedBlock->data+offsetInBlock, bytesToReadInBuffer);
bytesReadAt = bytesToReadInBuffer;
}
blockNoInSequence++;
bufferWalker += bytesReadAt;
size -= bytesReadAt;
*bytesRead += bytesReadAt;
offsetInBlock = 0; /* There is no offset on the next block */
if (bytesToReadInBuffer != bytesReadAt)
break;
}
return S_OK;
}
/******************************************************************************
* BlockChainStream_WriteAt
*
* Writes the specified number of bytes to this chain at the specified offset.
* Will fail if not all specified number of bytes have been written.
*/
HRESULT BlockChainStream_WriteAt(BlockChainStream* This,
ULARGE_INTEGER offset,
ULONG size,
const void* buffer,
ULONG* bytesWritten)
{
ULONG blockNoInSequence = offset.u.LowPart / This->parentStorage->bigBlockSize;
ULONG offsetInBlock = offset.u.LowPart % This->parentStorage->bigBlockSize;
ULONG bytesToWrite;
ULONG blockIndex;
const BYTE* bufferWalker;
HRESULT hr;
BlockChainBlock *cachedBlock;
*bytesWritten = 0;
bufferWalker = buffer;
while (size > 0)
{
ULARGE_INTEGER ulOffset;
DWORD bytesWrittenAt;
/*
* Calculate how many bytes we can copy to this big block.
*/
bytesToWrite =
min(This->parentStorage->bigBlockSize - offsetInBlock, size);
hr = BlockChainStream_GetBlockAtOffset(This, blockNoInSequence, &cachedBlock, &blockIndex, size == bytesToWrite);
/* BlockChainStream_SetSize should have already been called to ensure we have
* enough blocks in the chain to write into */
if (FAILED(hr))
{
ERR("not enough blocks in chain to write data\n");
return hr;
}
if (!cachedBlock)
{
/* Not in cache, and we're going to write past the end of the block. */
ulOffset.u.HighPart = 0;
ulOffset.u.LowPart = StorageImpl_GetBigBlockOffset(This->parentStorage, blockIndex) +
offsetInBlock;
StorageImpl_WriteAt(This->parentStorage,
ulOffset,
bufferWalker,
bytesToWrite,
&bytesWrittenAt);
}
else
{
if (!cachedBlock->read && bytesToWrite != This->parentStorage->bigBlockSize)
{
if (!StorageImpl_ReadBigBlock(This->parentStorage, cachedBlock->sector, cachedBlock->data))
return STG_E_READFAULT;
}
memcpy(cachedBlock->data+offsetInBlock, bufferWalker, bytesToWrite);
bytesWrittenAt = bytesToWrite;
cachedBlock->read = 1;
cachedBlock->dirty = 1;
}
blockNoInSequence++;
bufferWalker += bytesWrittenAt;
size -= bytesWrittenAt;
*bytesWritten += bytesWrittenAt;
offsetInBlock = 0; /* There is no offset on the next block */
if (bytesWrittenAt != bytesToWrite)
break;
}
return (size == 0) ? S_OK : STG_E_WRITEFAULT;
}
/******************************************************************************
* BlockChainStream_Shrink
*
* Shrinks this chain in the big block depot.
*/
static BOOL BlockChainStream_Shrink(BlockChainStream* This,
ULARGE_INTEGER newSize)
{
ULONG blockIndex;
ULONG numBlocks;
int i;
/*
* Figure out how many blocks are needed to contain the new size
*/
numBlocks = newSize.u.LowPart / This->parentStorage->bigBlockSize;
if ((newSize.u.LowPart % This->parentStorage->bigBlockSize) != 0)
numBlocks++;
if (numBlocks)
{
/*
* Go to the new end of chain
*/
blockIndex = BlockChainStream_GetSectorOfOffset(This, numBlocks-1);
/* Mark the new end of chain */
StorageImpl_SetNextBlockInChain(
This->parentStorage,
blockIndex,
BLOCK_END_OF_CHAIN);
This->tailIndex = blockIndex;
}
else
{
if (This->headOfStreamPlaceHolder != 0)
{
*This->headOfStreamPlaceHolder = BLOCK_END_OF_CHAIN;
}
else
{
DirEntry chainEntry;
assert(This->ownerDirEntry != DIRENTRY_NULL);
StorageImpl_ReadDirEntry(
This->parentStorage,
This->ownerDirEntry,
&chainEntry);
chainEntry.startingBlock = BLOCK_END_OF_CHAIN;
StorageImpl_WriteDirEntry(
This->parentStorage,
This->ownerDirEntry,
&chainEntry);
}
This->tailIndex = BLOCK_END_OF_CHAIN;
}
This->numBlocks = numBlocks;
/*
* Mark the extra blocks as free
*/
while (This->indexCacheLen && This->indexCache[This->indexCacheLen-1].lastOffset >= numBlocks)
{
struct BlockChainRun *last_run = &This->indexCache[This->indexCacheLen-1];
StorageImpl_FreeBigBlock(This->parentStorage,
last_run->firstSector + last_run->lastOffset - last_run->firstOffset);
if (last_run->lastOffset == last_run->firstOffset)
This->indexCacheLen--;
else
last_run->lastOffset--;
}
/*
* Reset the last accessed block cache.
*/
for (i=0; i<2; i++)
{
if (This->cachedBlocks[i].index >= numBlocks)
{
This->cachedBlocks[i].index = 0xffffffff;
This->cachedBlocks[i].dirty = 0;
}
}
return TRUE;
}
/******************************************************************************
* BlockChainStream_Enlarge
*
* Grows this chain in the big block depot.
*/
static BOOL BlockChainStream_Enlarge(BlockChainStream* This,
ULARGE_INTEGER newSize)
{
ULONG blockIndex, currentBlock;
ULONG newNumBlocks;
ULONG oldNumBlocks = 0;
blockIndex = BlockChainStream_GetHeadOfChain(This);
/*
* Empty chain. Create the head.
*/
if (blockIndex == BLOCK_END_OF_CHAIN)
{
blockIndex = StorageImpl_GetNextFreeBigBlock(This->parentStorage);
StorageImpl_SetNextBlockInChain(This->parentStorage,
blockIndex,
BLOCK_END_OF_CHAIN);
if (This->headOfStreamPlaceHolder != 0)
{
*(This->headOfStreamPlaceHolder) = blockIndex;
}
else
{
DirEntry chainEntry;
assert(This->ownerDirEntry != DIRENTRY_NULL);
StorageImpl_ReadDirEntry(
This->parentStorage,
This->ownerDirEntry,
&chainEntry);
chainEntry.startingBlock = blockIndex;
StorageImpl_WriteDirEntry(
This->parentStorage,
This->ownerDirEntry,
&chainEntry);
}
This->tailIndex = blockIndex;
This->numBlocks = 1;
}
/*
* Figure out how many blocks are needed to contain this stream
*/
newNumBlocks = newSize.u.LowPart / This->parentStorage->bigBlockSize;
if ((newSize.u.LowPart % This->parentStorage->bigBlockSize) != 0)
newNumBlocks++;
/*
* Go to the current end of chain
*/
if (This->tailIndex == BLOCK_END_OF_CHAIN)
{
currentBlock = blockIndex;
while (blockIndex != BLOCK_END_OF_CHAIN)
{
This->numBlocks++;
currentBlock = blockIndex;
if(FAILED(StorageImpl_GetNextBlockInChain(This->parentStorage, currentBlock,
&blockIndex)))
return FALSE;
}
This->tailIndex = currentBlock;
}
currentBlock = This->tailIndex;
oldNumBlocks = This->numBlocks;
/*
* Add new blocks to the chain
*/
if (oldNumBlocks < newNumBlocks)
{
while (oldNumBlocks < newNumBlocks)
{
blockIndex = StorageImpl_GetNextFreeBigBlock(This->parentStorage);
StorageImpl_SetNextBlockInChain(
This->parentStorage,
currentBlock,
blockIndex);
StorageImpl_SetNextBlockInChain(
This->parentStorage,
blockIndex,
BLOCK_END_OF_CHAIN);
currentBlock = blockIndex;
oldNumBlocks++;
}
This->tailIndex = blockIndex;
This->numBlocks = newNumBlocks;
}
if (FAILED(BlockChainStream_UpdateIndexCache(This)))
return FALSE;
return TRUE;
}
/******************************************************************************
* BlockChainStream_SetSize
*
* Sets the size of this stream. The big block depot will be updated.
* The file will grow if we grow the chain.
*
* TODO: Free the actual blocks in the file when we shrink the chain.
* Currently, the blocks are still in the file. So the file size
* doesn't shrink even if we shrink streams.
*/
BOOL BlockChainStream_SetSize(
BlockChainStream* This,
ULARGE_INTEGER newSize)
{
ULARGE_INTEGER size = BlockChainStream_GetSize(This);
if (newSize.u.LowPart == size.u.LowPart)
return TRUE;
if (newSize.u.LowPart < size.u.LowPart)
{
BlockChainStream_Shrink(This, newSize);
}
else
{
BlockChainStream_Enlarge(This, newSize);
}
return TRUE;
}
/******************************************************************************
* BlockChainStream_GetSize
*
* Returns the size of this chain.
* Will return the block count if this chain doesn't have a directory entry.
*/
static ULARGE_INTEGER BlockChainStream_GetSize(BlockChainStream* This)
{
DirEntry chainEntry;
if(This->headOfStreamPlaceHolder == NULL)
{
/*
* This chain has a directory entry so use the size value from there.
*/
StorageImpl_ReadDirEntry(
This->parentStorage,
This->ownerDirEntry,
&chainEntry);
return chainEntry.size;
}
else
{
/*
* this chain is a chain that does not have a directory entry, figure out the
* size by making the product number of used blocks times the
* size of them
*/
ULARGE_INTEGER result;
result.u.HighPart = 0;
result.u.LowPart =
BlockChainStream_GetCount(This) *
This->parentStorage->bigBlockSize;
return result;
}
}
/******************************************************************************
** SmallBlockChainStream implementation
*/
SmallBlockChainStream* SmallBlockChainStream_Construct(
StorageImpl* parentStorage,
ULONG* headOfStreamPlaceHolder,
DirRef dirEntry)
{
SmallBlockChainStream* newStream;
newStream = HeapAlloc(GetProcessHeap(), 0, sizeof(SmallBlockChainStream));
newStream->parentStorage = parentStorage;
newStream->headOfStreamPlaceHolder = headOfStreamPlaceHolder;
newStream->ownerDirEntry = dirEntry;
return newStream;
}
void SmallBlockChainStream_Destroy(
SmallBlockChainStream* This)
{
HeapFree(GetProcessHeap(), 0, This);
}
/******************************************************************************
* SmallBlockChainStream_GetHeadOfChain
*
* Returns the head of this chain of small blocks.
*/
static ULONG SmallBlockChainStream_GetHeadOfChain(
SmallBlockChainStream* This)
{
DirEntry chainEntry;
HRESULT hr;
if (This->headOfStreamPlaceHolder != NULL)
return *(This->headOfStreamPlaceHolder);
if (This->ownerDirEntry)
{
hr = StorageImpl_ReadDirEntry(
This->parentStorage,
This->ownerDirEntry,
&chainEntry);
if (SUCCEEDED(hr))
{
return chainEntry.startingBlock;
}
}
return BLOCK_END_OF_CHAIN;
}
/******************************************************************************
* SmallBlockChainStream_GetNextBlockInChain
*
* Returns the index of the next small block in this chain.
*
* Return Values:
* - BLOCK_END_OF_CHAIN: end of this chain
* - BLOCK_UNUSED: small block 'blockIndex' is free
*/
static HRESULT SmallBlockChainStream_GetNextBlockInChain(
SmallBlockChainStream* This,
ULONG blockIndex,
ULONG* nextBlockInChain)
{
ULARGE_INTEGER offsetOfBlockInDepot;
DWORD buffer;
ULONG bytesRead;
HRESULT res;
*nextBlockInChain = BLOCK_END_OF_CHAIN;
offsetOfBlockInDepot.u.HighPart = 0;
offsetOfBlockInDepot.u.LowPart = blockIndex * sizeof(ULONG);
/*
* Read those bytes in the buffer from the small block file.
*/
res = BlockChainStream_ReadAt(
This->parentStorage->smallBlockDepotChain,
offsetOfBlockInDepot,
sizeof(DWORD),
&buffer,
&bytesRead);
if (SUCCEEDED(res) && bytesRead != sizeof(DWORD))
res = STG_E_READFAULT;
if (SUCCEEDED(res))
{
StorageUtl_ReadDWord((BYTE *)&buffer, 0, nextBlockInChain);
return S_OK;
}
return res;
}
/******************************************************************************
* SmallBlockChainStream_SetNextBlockInChain
*
* Writes the index of the next block of the specified block in the small
* block depot.
* To set the end of chain use BLOCK_END_OF_CHAIN as nextBlock.
* To flag a block as free use BLOCK_UNUSED as nextBlock.
*/
static void SmallBlockChainStream_SetNextBlockInChain(
SmallBlockChainStream* This,
ULONG blockIndex,
ULONG nextBlock)
{
ULARGE_INTEGER offsetOfBlockInDepot;
DWORD buffer;
ULONG bytesWritten;
offsetOfBlockInDepot.u.HighPart = 0;
offsetOfBlockInDepot.u.LowPart = blockIndex * sizeof(ULONG);
StorageUtl_WriteDWord((BYTE *)&buffer, 0, nextBlock);
/*
* Read those bytes in the buffer from the small block file.
*/
BlockChainStream_WriteAt(
This->parentStorage->smallBlockDepotChain,
offsetOfBlockInDepot,
sizeof(DWORD),
&buffer,
&bytesWritten);
}
/******************************************************************************
* SmallBlockChainStream_FreeBlock
*
* Flag small block 'blockIndex' as free in the small block depot.
*/
static void SmallBlockChainStream_FreeBlock(
SmallBlockChainStream* This,
ULONG blockIndex)
{
SmallBlockChainStream_SetNextBlockInChain(This, blockIndex, BLOCK_UNUSED);
}
/******************************************************************************
* SmallBlockChainStream_GetNextFreeBlock
*
* Returns the index of a free small block. The small block depot will be
* enlarged if necessary. The small block chain will also be enlarged if
* necessary.
*/
static ULONG SmallBlockChainStream_GetNextFreeBlock(
SmallBlockChainStream* This)
{
ULARGE_INTEGER offsetOfBlockInDepot;
DWORD buffer;
ULONG bytesRead;
ULONG blockIndex = This->parentStorage->firstFreeSmallBlock;
ULONG nextBlockIndex = BLOCK_END_OF_CHAIN;
HRESULT res = S_OK;
ULONG smallBlocksPerBigBlock;
DirEntry rootEntry;
ULONG blocksRequired;
ULARGE_INTEGER old_size, size_required;
offsetOfBlockInDepot.u.HighPart = 0;
/*
* Scan the small block depot for a free block
*/
while (nextBlockIndex != BLOCK_UNUSED)
{
offsetOfBlockInDepot.u.LowPart = blockIndex * sizeof(ULONG);
res = BlockChainStream_ReadAt(
This->parentStorage->smallBlockDepotChain,
offsetOfBlockInDepot,
sizeof(DWORD),
&buffer,
&bytesRead);
/*
* If we run out of space for the small block depot, enlarge it
*/
if (SUCCEEDED(res) && bytesRead == sizeof(DWORD))
{
StorageUtl_ReadDWord((BYTE *)&buffer, 0, &nextBlockIndex);
if (nextBlockIndex != BLOCK_UNUSED)
blockIndex++;
}
else
{
ULONG count =
BlockChainStream_GetCount(This->parentStorage->smallBlockDepotChain);
BYTE smallBlockDepot[MAX_BIG_BLOCK_SIZE];
ULARGE_INTEGER newSize, offset;
ULONG bytesWritten;
newSize.QuadPart = (count + 1) * This->parentStorage->bigBlockSize;
BlockChainStream_Enlarge(This->parentStorage->smallBlockDepotChain, newSize);
/*
* Initialize all the small blocks to free
*/
memset(smallBlockDepot, BLOCK_UNUSED, This->parentStorage->bigBlockSize);
offset.QuadPart = count * This->parentStorage->bigBlockSize;
BlockChainStream_WriteAt(This->parentStorage->smallBlockDepotChain,
offset, This->parentStorage->bigBlockSize, smallBlockDepot, &bytesWritten);
StorageImpl_SaveFileHeader(This->parentStorage);
}
}
This->parentStorage->firstFreeSmallBlock = blockIndex+1;
smallBlocksPerBigBlock =
This->parentStorage->bigBlockSize / This->parentStorage->smallBlockSize;
/*
* Verify if we have to allocate big blocks to contain small blocks
*/
blocksRequired = (blockIndex / smallBlocksPerBigBlock) + 1;
size_required.QuadPart = blocksRequired * This->parentStorage->bigBlockSize;
old_size = BlockChainStream_GetSize(This->parentStorage->smallBlockRootChain);
if (size_required.QuadPart > old_size.QuadPart)
{
BlockChainStream_SetSize(
This->parentStorage->smallBlockRootChain,
size_required);
StorageImpl_ReadDirEntry(
This->parentStorage,
This->parentStorage->base.storageDirEntry,
&rootEntry);
rootEntry.size = size_required;
StorageImpl_WriteDirEntry(
This->parentStorage,
This->parentStorage->base.storageDirEntry,
&rootEntry);
}
return blockIndex;
}
/******************************************************************************
* SmallBlockChainStream_ReadAt
*
* Reads a specified number of bytes from this chain at the specified offset.
* bytesRead may be NULL.
* Failure will be returned if the specified number of bytes has not been read.
*/
HRESULT SmallBlockChainStream_ReadAt(
SmallBlockChainStream* This,
ULARGE_INTEGER offset,
ULONG size,
void* buffer,
ULONG* bytesRead)
{
HRESULT rc = S_OK;
ULARGE_INTEGER offsetInBigBlockFile;
ULONG blockNoInSequence =
offset.u.LowPart / This->parentStorage->smallBlockSize;
ULONG offsetInBlock = offset.u.LowPart % This->parentStorage->smallBlockSize;
ULONG bytesToReadInBuffer;
ULONG blockIndex;
ULONG bytesReadFromBigBlockFile;
BYTE* bufferWalker;
ULARGE_INTEGER stream_size;
/*
* This should never happen on a small block file.
*/
assert(offset.u.HighPart==0);
*bytesRead = 0;
stream_size = SmallBlockChainStream_GetSize(This);
if (stream_size.QuadPart > offset.QuadPart)
size = min(stream_size.QuadPart - offset.QuadPart, size);
else
return S_OK;
/*
* Find the first block in the stream that contains part of the buffer.
*/
blockIndex = SmallBlockChainStream_GetHeadOfChain(This);
while ( (blockNoInSequence > 0) && (blockIndex != BLOCK_END_OF_CHAIN))
{
rc = SmallBlockChainStream_GetNextBlockInChain(This, blockIndex, &blockIndex);
if(FAILED(rc))
return rc;
blockNoInSequence--;
}
/*
* Start reading the buffer.
*/
bufferWalker = buffer;
while ( (size > 0) && (blockIndex != BLOCK_END_OF_CHAIN) )
{
/*
* Calculate how many bytes we can copy from this small block.
*/
bytesToReadInBuffer =
min(This->parentStorage->smallBlockSize - offsetInBlock, size);
/*
* Calculate the offset of the small block in the small block file.
*/
offsetInBigBlockFile.u.HighPart = 0;
offsetInBigBlockFile.u.LowPart =
blockIndex * This->parentStorage->smallBlockSize;
offsetInBigBlockFile.u.LowPart += offsetInBlock;
/*
* Read those bytes in the buffer from the small block file.
* The small block has already been identified so it shouldn't fail
* unless the file is corrupt.
*/
rc = BlockChainStream_ReadAt(This->parentStorage->smallBlockRootChain,
offsetInBigBlockFile,
bytesToReadInBuffer,
bufferWalker,
&bytesReadFromBigBlockFile);
if (FAILED(rc))
return rc;
if (!bytesReadFromBigBlockFile)
return STG_E_DOCFILECORRUPT;
/*
* Step to the next big block.
*/
rc = SmallBlockChainStream_GetNextBlockInChain(This, blockIndex, &blockIndex);
if(FAILED(rc))
return STG_E_DOCFILECORRUPT;
bufferWalker += bytesReadFromBigBlockFile;
size -= bytesReadFromBigBlockFile;
*bytesRead += bytesReadFromBigBlockFile;
offsetInBlock = (offsetInBlock + bytesReadFromBigBlockFile) % This->parentStorage->smallBlockSize;
}
return S_OK;
}
/******************************************************************************
* SmallBlockChainStream_WriteAt
*
* Writes the specified number of bytes to this chain at the specified offset.
* Will fail if not all specified number of bytes have been written.
*/
HRESULT SmallBlockChainStream_WriteAt(
SmallBlockChainStream* This,
ULARGE_INTEGER offset,
ULONG size,
const void* buffer,
ULONG* bytesWritten)
{
ULARGE_INTEGER offsetInBigBlockFile;
ULONG blockNoInSequence =
offset.u.LowPart / This->parentStorage->smallBlockSize;
ULONG offsetInBlock = offset.u.LowPart % This->parentStorage->smallBlockSize;
ULONG bytesToWriteInBuffer;
ULONG blockIndex;
ULONG bytesWrittenToBigBlockFile;
const BYTE* bufferWalker;
HRESULT res;
/*
* This should never happen on a small block file.
*/
assert(offset.u.HighPart==0);
/*
* Find the first block in the stream that contains part of the buffer.
*/
blockIndex = SmallBlockChainStream_GetHeadOfChain(This);
while ( (blockNoInSequence > 0) && (blockIndex != BLOCK_END_OF_CHAIN))
{
if(FAILED(SmallBlockChainStream_GetNextBlockInChain(This, blockIndex, &blockIndex)))
return STG_E_DOCFILECORRUPT;
blockNoInSequence--;
}
/*
* Start writing the buffer.
*/
*bytesWritten = 0;
bufferWalker = buffer;
while ( (size > 0) && (blockIndex != BLOCK_END_OF_CHAIN) )
{
/*
* Calculate how many bytes we can copy to this small block.
*/
bytesToWriteInBuffer =
min(This->parentStorage->smallBlockSize - offsetInBlock, size);
/*
* Calculate the offset of the small block in the small block file.
*/
offsetInBigBlockFile.u.HighPart = 0;
offsetInBigBlockFile.u.LowPart =
blockIndex * This->parentStorage->smallBlockSize;
offsetInBigBlockFile.u.LowPart += offsetInBlock;
/*
* Write those bytes in the buffer to the small block file.
*/
res = BlockChainStream_WriteAt(
This->parentStorage->smallBlockRootChain,
offsetInBigBlockFile,
bytesToWriteInBuffer,
bufferWalker,
&bytesWrittenToBigBlockFile);
if (FAILED(res))
return res;
/*
* Step to the next big block.
*/
if(FAILED(SmallBlockChainStream_GetNextBlockInChain(This, blockIndex,
&blockIndex)))
return FALSE;
bufferWalker += bytesWrittenToBigBlockFile;
size -= bytesWrittenToBigBlockFile;
*bytesWritten += bytesWrittenToBigBlockFile;
offsetInBlock = (offsetInBlock + bytesWrittenToBigBlockFile) % This->parentStorage->smallBlockSize;
}
return (size == 0) ? S_OK : STG_E_WRITEFAULT;
}
/******************************************************************************
* SmallBlockChainStream_Shrink
*
* Shrinks this chain in the small block depot.
*/
static BOOL SmallBlockChainStream_Shrink(
SmallBlockChainStream* This,
ULARGE_INTEGER newSize)
{
ULONG blockIndex, extraBlock;
ULONG numBlocks;
ULONG count = 0;
numBlocks = newSize.u.LowPart / This->parentStorage->smallBlockSize;
if ((newSize.u.LowPart % This->parentStorage->smallBlockSize) != 0)
numBlocks++;
blockIndex = SmallBlockChainStream_GetHeadOfChain(This);
/*
* Go to the new end of chain
*/
while (count < numBlocks)
{
if(FAILED(SmallBlockChainStream_GetNextBlockInChain(This, blockIndex,
&blockIndex)))
return FALSE;
count++;
}
/*
* If the count is 0, we have a special case, the head of the chain was
* just freed.
*/
if (count == 0)
{
DirEntry chainEntry;
StorageImpl_ReadDirEntry(This->parentStorage,
This->ownerDirEntry,
&chainEntry);
chainEntry.startingBlock = BLOCK_END_OF_CHAIN;
StorageImpl_WriteDirEntry(This->parentStorage,
This->ownerDirEntry,
&chainEntry);
/*
* We start freeing the chain at the head block.
*/
extraBlock = blockIndex;
}
else
{
/* Get the next block before marking the new end */
if(FAILED(SmallBlockChainStream_GetNextBlockInChain(This, blockIndex,
&extraBlock)))
return FALSE;
/* Mark the new end of chain */
SmallBlockChainStream_SetNextBlockInChain(
This,
blockIndex,
BLOCK_END_OF_CHAIN);
}
/*
* Mark the extra blocks as free
*/
while (extraBlock != BLOCK_END_OF_CHAIN)
{
if(FAILED(SmallBlockChainStream_GetNextBlockInChain(This, extraBlock,
&blockIndex)))
return FALSE;
SmallBlockChainStream_FreeBlock(This, extraBlock);
This->parentStorage->firstFreeSmallBlock = min(This->parentStorage->firstFreeSmallBlock, extraBlock);
extraBlock = blockIndex;
}
return TRUE;
}
/******************************************************************************
* SmallBlockChainStream_Enlarge
*
* Grows this chain in the small block depot.
*/
static BOOL SmallBlockChainStream_Enlarge(
SmallBlockChainStream* This,
ULARGE_INTEGER newSize)
{
ULONG blockIndex, currentBlock;
ULONG newNumBlocks;
ULONG oldNumBlocks = 0;
blockIndex = SmallBlockChainStream_GetHeadOfChain(This);
/*
* Empty chain. Create the head.
*/
if (blockIndex == BLOCK_END_OF_CHAIN)
{
blockIndex = SmallBlockChainStream_GetNextFreeBlock(This);
SmallBlockChainStream_SetNextBlockInChain(
This,
blockIndex,
BLOCK_END_OF_CHAIN);
if (This->headOfStreamPlaceHolder != NULL)
{
*(This->headOfStreamPlaceHolder) = blockIndex;
}
else
{
DirEntry chainEntry;
StorageImpl_ReadDirEntry(This->parentStorage, This->ownerDirEntry,
&chainEntry);
chainEntry.startingBlock = blockIndex;
StorageImpl_WriteDirEntry(This->parentStorage, This->ownerDirEntry,
&chainEntry);
}
}
currentBlock = blockIndex;
/*
* Figure out how many blocks are needed to contain this stream
*/
newNumBlocks = newSize.u.LowPart / This->parentStorage->smallBlockSize;
if ((newSize.u.LowPart % This->parentStorage->smallBlockSize) != 0)
newNumBlocks++;
/*
* Go to the current end of chain
*/
while (blockIndex != BLOCK_END_OF_CHAIN)
{
oldNumBlocks++;
currentBlock = blockIndex;
if(FAILED(SmallBlockChainStream_GetNextBlockInChain(This, currentBlock, &blockIndex)))
return FALSE;
}
/*
* Add new blocks to the chain
*/
while (oldNumBlocks < newNumBlocks)
{
blockIndex = SmallBlockChainStream_GetNextFreeBlock(This);
SmallBlockChainStream_SetNextBlockInChain(This, currentBlock, blockIndex);
SmallBlockChainStream_SetNextBlockInChain(
This,
blockIndex,
BLOCK_END_OF_CHAIN);
currentBlock = blockIndex;
oldNumBlocks++;
}
return TRUE;
}
/******************************************************************************
* SmallBlockChainStream_SetSize
*
* Sets the size of this stream.
* The file will grow if we grow the chain.
*
* TODO: Free the actual blocks in the file when we shrink the chain.
* Currently, the blocks are still in the file. So the file size
* doesn't shrink even if we shrink streams.
*/
BOOL SmallBlockChainStream_SetSize(
SmallBlockChainStream* This,
ULARGE_INTEGER newSize)
{
ULARGE_INTEGER size = SmallBlockChainStream_GetSize(This);
if (newSize.u.LowPart == size.u.LowPart)
return TRUE;
if (newSize.u.LowPart < size.u.LowPart)
{
SmallBlockChainStream_Shrink(This, newSize);
}
else
{
SmallBlockChainStream_Enlarge(This, newSize);
}
return TRUE;
}
/******************************************************************************
* SmallBlockChainStream_GetCount
*
* Returns the number of small blocks that comprises this chain.
* This is not the size of the stream as the last block may not be full!
*
*/
static ULONG SmallBlockChainStream_GetCount(SmallBlockChainStream* This)
{
ULONG blockIndex;
ULONG count = 0;
blockIndex = SmallBlockChainStream_GetHeadOfChain(This);
while(blockIndex != BLOCK_END_OF_CHAIN)
{
count++;
if(FAILED(SmallBlockChainStream_GetNextBlockInChain(This,
blockIndex, &blockIndex)))
return 0;
}
return count;
}
/******************************************************************************
* SmallBlockChainStream_GetSize
*
* Returns the size of this chain.
*/
static ULARGE_INTEGER SmallBlockChainStream_GetSize(SmallBlockChainStream* This)
{
DirEntry chainEntry;
if(This->headOfStreamPlaceHolder != NULL)
{
ULARGE_INTEGER result;
result.u.HighPart = 0;
result.u.LowPart = SmallBlockChainStream_GetCount(This) *
This->parentStorage->smallBlockSize;
return result;
}
StorageImpl_ReadDirEntry(
This->parentStorage,
This->ownerDirEntry,
&chainEntry);
return chainEntry.size;
}
static HRESULT create_storagefile(
LPCOLESTR pwcsName,
DWORD grfMode,
DWORD grfAttrs,
STGOPTIONS* pStgOptions,
REFIID riid,
void** ppstgOpen)
{
StorageBaseImpl* newStorage = 0;
HANDLE hFile = INVALID_HANDLE_VALUE;
HRESULT hr = STG_E_INVALIDFLAG;
DWORD shareMode;
DWORD accessMode;
DWORD creationMode;
DWORD fileAttributes;
WCHAR tempFileName[MAX_PATH];
if (ppstgOpen == 0)
return STG_E_INVALIDPOINTER;
if (pStgOptions->ulSectorSize != MIN_BIG_BLOCK_SIZE && pStgOptions->ulSectorSize != MAX_BIG_BLOCK_SIZE)
return STG_E_INVALIDPARAMETER;
/* if no share mode given then DENY_NONE is the default */
if (STGM_SHARE_MODE(grfMode) == 0)
grfMode |= STGM_SHARE_DENY_NONE;
if ( FAILED( validateSTGM(grfMode) ))
goto end;
/* StgCreateDocFile seems to refuse readonly access, despite MSDN */
switch(STGM_ACCESS_MODE(grfMode))
{
case STGM_WRITE:
case STGM_READWRITE:
break;
default:
goto end;
}
/* in direct mode, can only use SHARE_EXCLUSIVE */
if (!(grfMode & STGM_TRANSACTED) && (STGM_SHARE_MODE(grfMode) != STGM_SHARE_EXCLUSIVE))
goto end;
/* but in transacted mode, any share mode is valid */
/*
* Generate a unique name.
*/
if (pwcsName == 0)
{
WCHAR tempPath[MAX_PATH];
static const WCHAR prefix[] = { 'S', 'T', 'O', 0 };
memset(tempPath, 0, sizeof(tempPath));
memset(tempFileName, 0, sizeof(tempFileName));
if ((GetTempPathW(MAX_PATH, tempPath)) == 0 )
tempPath[0] = '.';
if (GetTempFileNameW(tempPath, prefix, 0, tempFileName) != 0)
pwcsName = tempFileName;
else
{
hr = STG_E_INSUFFICIENTMEMORY;
goto end;
}
creationMode = TRUNCATE_EXISTING;
}
else
{
creationMode = GetCreationModeFromSTGM(grfMode);
}
/*
* Interpret the STGM value grfMode
*/
shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
accessMode = GetAccessModeFromSTGM(grfMode);
if (grfMode & STGM_DELETEONRELEASE)
fileAttributes = FILE_FLAG_RANDOM_ACCESS | FILE_FLAG_DELETE_ON_CLOSE;
else
fileAttributes = FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS;
if (STGM_SHARE_MODE(grfMode) && !(grfMode & STGM_SHARE_DENY_NONE))
{
static int fixme;
if (!fixme++)
FIXME("Storage share mode not implemented.\n");
}
*ppstgOpen = 0;
hFile = CreateFileW(pwcsName,
accessMode,
shareMode,
NULL,
creationMode,
fileAttributes,
0);
if (hFile == INVALID_HANDLE_VALUE)
{
if(GetLastError() == ERROR_FILE_EXISTS)
hr = STG_E_FILEALREADYEXISTS;
else
hr = E_FAIL;
goto end;
}
/*
* Allocate and initialize the new IStorage32object.
*/
hr = Storage_Construct(
hFile,
pwcsName,
NULL,
grfMode,
TRUE,
TRUE,
pStgOptions->ulSectorSize,
&newStorage);
if (FAILED(hr))
{
goto end;
}
hr = IStorage_QueryInterface((IStorage*)newStorage, riid, ppstgOpen);
IStorage_Release((IStorage*)newStorage);
end:
TRACE("<-- %p r = %08x\n", *ppstgOpen, hr);
return hr;
}
/******************************************************************************
* StgCreateDocfile [OLE32.@]
* Creates a new compound file storage object
*
* PARAMS
* pwcsName [ I] Unicode string with filename (can be relative or NULL)
* grfMode [ I] Access mode for opening the new storage object (see STGM_ constants)
* reserved [ ?] unused?, usually 0
* ppstgOpen [IO] A pointer to IStorage pointer to the new onject
*
* RETURNS
* S_OK if the file was successfully created
* some STG_E_ value if error
* NOTES
* if pwcsName is NULL, create file with new unique name
* the function can returns
* STG_S_CONVERTED if the specified file was successfully converted to storage format
* (unrealized now)
*/
HRESULT WINAPI StgCreateDocfile(
LPCOLESTR pwcsName,
DWORD grfMode,
DWORD reserved,
IStorage **ppstgOpen)
{
STGOPTIONS stgoptions = {1, 0, 512};
TRACE("(%s, %x, %d, %p)\n",
debugstr_w(pwcsName), grfMode,
reserved, ppstgOpen);
if (ppstgOpen == 0)
return STG_E_INVALIDPOINTER;
if (reserved != 0)
return STG_E_INVALIDPARAMETER;
return create_storagefile(pwcsName, grfMode, 0, &stgoptions, &IID_IStorage, (void**)ppstgOpen);
}
/******************************************************************************
* StgCreateStorageEx [OLE32.@]
*/
HRESULT WINAPI StgCreateStorageEx(const WCHAR* pwcsName, DWORD grfMode, DWORD stgfmt, DWORD grfAttrs, STGOPTIONS* pStgOptions, void* reserved, REFIID riid, void** ppObjectOpen)
{
TRACE("(%s, %x, %x, %x, %p, %p, %p, %p)\n", debugstr_w(pwcsName),
grfMode, stgfmt, grfAttrs, pStgOptions, reserved, riid, ppObjectOpen);
if (stgfmt != STGFMT_FILE && grfAttrs != 0)
{
ERR("grfAttrs must be 0 if stgfmt != STGFMT_FILE\n");
return STG_E_INVALIDPARAMETER;
}
if (stgfmt == STGFMT_FILE && grfAttrs != 0 && grfAttrs != FILE_FLAG_NO_BUFFERING)
{
ERR("grfAttrs must be 0 or FILE_FLAG_NO_BUFFERING if stgfmt == STGFMT_FILE\n");
return STG_E_INVALIDPARAMETER;
}
if (stgfmt == STGFMT_FILE)
{
ERR("Cannot use STGFMT_FILE - this is NTFS only\n");
return STG_E_INVALIDPARAMETER;
}
if (stgfmt == STGFMT_STORAGE || stgfmt == STGFMT_DOCFILE)
{
return create_storagefile(pwcsName, grfMode, grfAttrs, pStgOptions, riid, ppObjectOpen);
}
ERR("Invalid stgfmt argument\n");
return STG_E_INVALIDPARAMETER;
}
/******************************************************************************
* StgCreatePropSetStg [OLE32.@]
*/
HRESULT WINAPI StgCreatePropSetStg(IStorage *pstg, DWORD reserved,
IPropertySetStorage **ppPropSetStg)
{
HRESULT hr;
TRACE("(%p, 0x%x, %p)\n", pstg, reserved, ppPropSetStg);
if (reserved)
hr = STG_E_INVALIDPARAMETER;
else
hr = StorageBaseImpl_QueryInterface(pstg, &IID_IPropertySetStorage,
(void**)ppPropSetStg);
return hr;
}
/******************************************************************************
* StgOpenStorageEx [OLE32.@]
*/
HRESULT WINAPI StgOpenStorageEx(const WCHAR* pwcsName, DWORD grfMode, DWORD stgfmt, DWORD grfAttrs, STGOPTIONS* pStgOptions, void* reserved, REFIID riid, void** ppObjectOpen)
{
TRACE("(%s, %x, %x, %x, %p, %p, %p, %p)\n", debugstr_w(pwcsName),
grfMode, stgfmt, grfAttrs, pStgOptions, reserved, riid, ppObjectOpen);
if (stgfmt != STGFMT_DOCFILE && grfAttrs != 0)
{
ERR("grfAttrs must be 0 if stgfmt != STGFMT_DOCFILE\n");
return STG_E_INVALIDPARAMETER;
}
switch (stgfmt)
{
case STGFMT_FILE:
ERR("Cannot use STGFMT_FILE - this is NTFS only\n");
return STG_E_INVALIDPARAMETER;
case STGFMT_STORAGE:
break;
case STGFMT_DOCFILE:
if (grfAttrs && grfAttrs != FILE_FLAG_NO_BUFFERING)
{
ERR("grfAttrs must be 0 or FILE_FLAG_NO_BUFFERING if stgfmt == STGFMT_DOCFILE\n");
return STG_E_INVALIDPARAMETER;
}
FIXME("Stub: calling StgOpenStorage, but ignoring pStgOptions and grfAttrs\n");
break;
case STGFMT_ANY:
WARN("STGFMT_ANY assuming storage\n");
break;
default:
return STG_E_INVALIDPARAMETER;
}
return StgOpenStorage(pwcsName, NULL, grfMode, NULL, 0, (IStorage **)ppObjectOpen);
}
/******************************************************************************
* StgOpenStorage [OLE32.@]
*/
HRESULT WINAPI StgOpenStorage(
const OLECHAR *pwcsName,
IStorage *pstgPriority,
DWORD grfMode,
SNB snbExclude,
DWORD reserved,
IStorage **ppstgOpen)
{
StorageBaseImpl* newStorage = 0;
HRESULT hr = S_OK;
HANDLE hFile = 0;
DWORD shareMode;
DWORD accessMode;
TRACE("(%s, %p, %x, %p, %d, %p)\n",
debugstr_w(pwcsName), pstgPriority, grfMode,
snbExclude, reserved, ppstgOpen);
if (pwcsName == 0)
{
hr = STG_E_INVALIDNAME;
goto end;
}
if (ppstgOpen == 0)
{
hr = STG_E_INVALIDPOINTER;
goto end;
}
if (reserved)
{
hr = STG_E_INVALIDPARAMETER;
goto end;
}
if (grfMode & STGM_PRIORITY)
{
if (grfMode & (STGM_TRANSACTED|STGM_SIMPLE|STGM_NOSCRATCH|STGM_NOSNAPSHOT))
return STG_E_INVALIDFLAG;
if (grfMode & STGM_DELETEONRELEASE)
return STG_E_INVALIDFUNCTION;
if(STGM_ACCESS_MODE(grfMode) != STGM_READ)
return STG_E_INVALIDFLAG;
grfMode &= ~0xf0; /* remove the existing sharing mode */
grfMode |= STGM_SHARE_DENY_NONE;
/* STGM_PRIORITY stops other IStorage objects on the same file from
* committing until the STGM_PRIORITY IStorage is closed. it also
* stops non-transacted mode StgOpenStorage calls with write access from
* succeeding. obviously, both of these cannot be achieved through just
* file share flags */
FIXME("STGM_PRIORITY mode not implemented correctly\n");
}
/*
* Validate the sharing mode
*/
if (!(grfMode & (STGM_TRANSACTED|STGM_PRIORITY)))
switch(STGM_SHARE_MODE(grfMode))
{
case STGM_SHARE_EXCLUSIVE:
case STGM_SHARE_DENY_WRITE:
break;
default:
hr = STG_E_INVALIDFLAG;
goto end;
}
if ( FAILED( validateSTGM(grfMode) ) ||
(grfMode&STGM_CREATE))
{
hr = STG_E_INVALIDFLAG;
goto end;
}
/* shared reading requires transacted mode */
if( STGM_SHARE_MODE(grfMode) == STGM_SHARE_DENY_WRITE &&
STGM_ACCESS_MODE(grfMode) == STGM_READWRITE &&
!(grfMode&STGM_TRANSACTED) )
{
hr = STG_E_INVALIDFLAG;
goto end;
}
/*
* Interpret the STGM value grfMode
*/
shareMode = GetShareModeFromSTGM(grfMode);
accessMode = GetAccessModeFromSTGM(grfMode);
*ppstgOpen = 0;
hFile = CreateFileW( pwcsName,
accessMode,
shareMode,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
0);
if (hFile==INVALID_HANDLE_VALUE)
{
DWORD last_error = GetLastError();
hr = E_FAIL;
switch (last_error)
{
case ERROR_FILE_NOT_FOUND:
hr = STG_E_FILENOTFOUND;
break;
case ERROR_PATH_NOT_FOUND:
hr = STG_E_PATHNOTFOUND;
break;
case ERROR_ACCESS_DENIED:
case ERROR_WRITE_PROTECT:
hr = STG_E_ACCESSDENIED;
break;
case ERROR_SHARING_VIOLATION:
hr = STG_E_SHAREVIOLATION;
break;
default:
hr = E_FAIL;
}
goto end;
}
/*
* Refuse to open the file if it's too small to be a structured storage file
* FIXME: verify the file when reading instead of here
*/
if (GetFileSize(hFile, NULL) < 0x100)
{
CloseHandle(hFile);
hr = STG_E_FILEALREADYEXISTS;
goto end;
}
/*
* Allocate and initialize the new IStorage32object.
*/
hr = Storage_Construct(
hFile,
pwcsName,
NULL,
grfMode,
TRUE,
FALSE,
512,
&newStorage);
if (FAILED(hr))
{
/*
* According to the docs if the file is not a storage, return STG_E_FILEALREADYEXISTS
*/
if(hr == STG_E_INVALIDHEADER)
hr = STG_E_FILEALREADYEXISTS;
goto end;
}
/*
* Get an "out" pointer for the caller.
*/
*ppstgOpen = (IStorage*)newStorage;
end:
TRACE("<-- %08x, IStorage %p\n", hr, ppstgOpen ? *ppstgOpen : NULL);
return hr;
}
/******************************************************************************
* StgCreateDocfileOnILockBytes [OLE32.@]
*/
HRESULT WINAPI StgCreateDocfileOnILockBytes(
ILockBytes *plkbyt,
DWORD grfMode,
DWORD reserved,
IStorage** ppstgOpen)
{
StorageBaseImpl* newStorage = 0;
HRESULT hr = S_OK;
if ((ppstgOpen == 0) || (plkbyt == 0))
return STG_E_INVALIDPOINTER;
/*
* Allocate and initialize the new IStorage object.
*/
hr = Storage_Construct(
0,
0,
plkbyt,
grfMode,
FALSE,
TRUE,
512,
&newStorage);
if (FAILED(hr))
{
return hr;
}
/*
* Get an "out" pointer for the caller.
*/
*ppstgOpen = (IStorage*)newStorage;
return hr;
}
/******************************************************************************
* StgOpenStorageOnILockBytes [OLE32.@]
*/
HRESULT WINAPI StgOpenStorageOnILockBytes(
ILockBytes *plkbyt,
IStorage *pstgPriority,
DWORD grfMode,
SNB snbExclude,
DWORD reserved,
IStorage **ppstgOpen)
{
StorageBaseImpl* newStorage = 0;
HRESULT hr = S_OK;
if ((plkbyt == 0) || (ppstgOpen == 0))
return STG_E_INVALIDPOINTER;
if ( FAILED( validateSTGM(grfMode) ))
return STG_E_INVALIDFLAG;
*ppstgOpen = 0;
/*
* Allocate and initialize the new IStorage object.
*/
hr = Storage_Construct(
0,
0,
plkbyt,
grfMode,
FALSE,
FALSE,
512,
&newStorage);
if (FAILED(hr))
{
return hr;
}
/*
* Get an "out" pointer for the caller.
*/
*ppstgOpen = (IStorage*)newStorage;
return hr;
}
/******************************************************************************
* StgSetTimes [ole32.@]
* StgSetTimes [OLE32.@]
*
*
*/
HRESULT WINAPI StgSetTimes(OLECHAR const *str, FILETIME const *pctime,
FILETIME const *patime, FILETIME const *pmtime)
{
IStorage *stg = NULL;
HRESULT r;
TRACE("%s %p %p %p\n", debugstr_w(str), pctime, patime, pmtime);
r = StgOpenStorage(str, NULL, STGM_READWRITE | STGM_SHARE_DENY_WRITE,
0, 0, &stg);
if( SUCCEEDED(r) )
{
r = IStorage_SetElementTimes(stg, NULL, pctime, patime, pmtime);
IStorage_Release(stg);
}
return r;
}
/******************************************************************************
* StgIsStorageILockBytes [OLE32.@]
*
* Determines if the ILockBytes contains a storage object.
*/
HRESULT WINAPI StgIsStorageILockBytes(ILockBytes *plkbyt)
{
BYTE sig[8];
ULARGE_INTEGER offset;
offset.u.HighPart = 0;
offset.u.LowPart = 0;
ILockBytes_ReadAt(plkbyt, offset, sig, sizeof(sig), NULL);
if (memcmp(sig, STORAGE_magic, sizeof(STORAGE_magic)) == 0)
return S_OK;
return S_FALSE;
}
/******************************************************************************
* WriteClassStg [OLE32.@]
*
* This method will store the specified CLSID in the specified storage object
*/
HRESULT WINAPI WriteClassStg(IStorage* pStg, REFCLSID rclsid)
{
HRESULT hRes;
if(!pStg)
return E_INVALIDARG;
if(!rclsid)
return STG_E_INVALIDPOINTER;
hRes = IStorage_SetClass(pStg, rclsid);
return hRes;
}
/***********************************************************************
* ReadClassStg (OLE32.@)
*
* This method reads the CLSID previously written to a storage object with
* the WriteClassStg.
*
* PARAMS
* pstg [I] IStorage pointer
* pclsid [O] Pointer to where the CLSID is written
*
* RETURNS
* Success: S_OK.
* Failure: HRESULT code.
*/
HRESULT WINAPI ReadClassStg(IStorage *pstg,CLSID *pclsid){
STATSTG pstatstg;
HRESULT hRes;
TRACE("(%p, %p)\n", pstg, pclsid);
if(!pstg || !pclsid)
return E_INVALIDARG;
/*
* read a STATSTG structure (contains the clsid) from the storage
*/
hRes=IStorage_Stat(pstg,&pstatstg,STATFLAG_NONAME);
if(SUCCEEDED(hRes))
*pclsid=pstatstg.clsid;
return hRes;
}
/***********************************************************************
* OleLoadFromStream (OLE32.@)
*
* This function loads an object from stream
*/
HRESULT WINAPI OleLoadFromStream(IStream *pStm,REFIID iidInterface,void** ppvObj)
{
CLSID clsid;
HRESULT res;
LPPERSISTSTREAM xstm;
TRACE("(%p,%s,%p)\n",pStm,debugstr_guid(iidInterface),ppvObj);
res=ReadClassStm(pStm,&clsid);
if (FAILED(res))
return res;
res=CoCreateInstance(&clsid,NULL,CLSCTX_INPROC_SERVER,iidInterface,ppvObj);
if (FAILED(res))
return res;
res=IUnknown_QueryInterface((IUnknown*)*ppvObj,&IID_IPersistStream,(LPVOID*)&xstm);
if (FAILED(res)) {
IUnknown_Release((IUnknown*)*ppvObj);
return res;
}
res=IPersistStream_Load(xstm,pStm);
IPersistStream_Release(xstm);
/* FIXME: all refcounts ok at this point? I think they should be:
* pStm : unchanged
* ppvObj : 1
* xstm : 0 (released)
*/
return res;
}
/***********************************************************************
* OleSaveToStream (OLE32.@)
*
* This function saves an object with the IPersistStream interface on it
* to the specified stream.
*/
HRESULT WINAPI OleSaveToStream(IPersistStream *pPStm,IStream *pStm)
{
CLSID clsid;
HRESULT res;
TRACE("(%p,%p)\n",pPStm,pStm);
res=IPersistStream_GetClassID(pPStm,&clsid);
if (SUCCEEDED(res)){
res=WriteClassStm(pStm,&clsid);
if (SUCCEEDED(res))
res=IPersistStream_Save(pPStm,pStm,TRUE);
}
TRACE("Finished Save\n");
return res;
}
/****************************************************************************
* This method validate a STGM parameter that can contain the values below
*
* The stgm modes in 0x0000ffff are not bit masks, but distinct 4 bit values.
* The stgm values contained in 0xffff0000 are bitmasks.
*
* STGM_DIRECT 0x00000000
* STGM_TRANSACTED 0x00010000
* STGM_SIMPLE 0x08000000
*
* STGM_READ 0x00000000
* STGM_WRITE 0x00000001
* STGM_READWRITE 0x00000002
*
* STGM_SHARE_DENY_NONE 0x00000040
* STGM_SHARE_DENY_READ 0x00000030
* STGM_SHARE_DENY_WRITE 0x00000020
* STGM_SHARE_EXCLUSIVE 0x00000010
*
* STGM_PRIORITY 0x00040000
* STGM_DELETEONRELEASE 0x04000000
*
* STGM_CREATE 0x00001000
* STGM_CONVERT 0x00020000
* STGM_FAILIFTHERE 0x00000000
*
* STGM_NOSCRATCH 0x00100000
* STGM_NOSNAPSHOT 0x00200000
*/
static HRESULT validateSTGM(DWORD stgm)
{
DWORD access = STGM_ACCESS_MODE(stgm);
DWORD share = STGM_SHARE_MODE(stgm);
DWORD create = STGM_CREATE_MODE(stgm);
if (stgm&~STGM_KNOWN_FLAGS)
{
ERR("unknown flags %08x\n", stgm);
return E_FAIL;
}
switch (access)
{
case STGM_READ:
case STGM_WRITE:
case STGM_READWRITE:
break;
default:
return E_FAIL;
}
switch (share)
{
case STGM_SHARE_DENY_NONE:
case STGM_SHARE_DENY_READ:
case STGM_SHARE_DENY_WRITE:
case STGM_SHARE_EXCLUSIVE:
break;
default:
return E_FAIL;
}
switch (create)
{
case STGM_CREATE:
case STGM_FAILIFTHERE:
break;
default:
return E_FAIL;
}
/*
* STGM_DIRECT | STGM_TRANSACTED | STGM_SIMPLE
*/
if ( (stgm & STGM_TRANSACTED) && (stgm & STGM_SIMPLE) )
return E_FAIL;
/*
* STGM_CREATE | STGM_CONVERT
* if both are false, STGM_FAILIFTHERE is set to TRUE
*/
if ( create == STGM_CREATE && (stgm & STGM_CONVERT) )
return E_FAIL;
/*
* STGM_NOSCRATCH requires STGM_TRANSACTED
*/
if ( (stgm & STGM_NOSCRATCH) && !(stgm & STGM_TRANSACTED) )
return E_FAIL;
/*
* STGM_NOSNAPSHOT requires STGM_TRANSACTED and
* not STGM_SHARE_EXCLUSIVE or STGM_SHARE_DENY_WRITE`
*/
if ( (stgm & STGM_NOSNAPSHOT) &&
(!(stgm & STGM_TRANSACTED) ||
share == STGM_SHARE_EXCLUSIVE ||
share == STGM_SHARE_DENY_WRITE) )
return E_FAIL;
return S_OK;
}
/****************************************************************************
* GetShareModeFromSTGM
*
* This method will return a share mode flag from a STGM value.
* The STGM value is assumed valid.
*/
static DWORD GetShareModeFromSTGM(DWORD stgm)
{
switch (STGM_SHARE_MODE(stgm))
{
case STGM_SHARE_DENY_NONE:
return FILE_SHARE_READ | FILE_SHARE_WRITE;
case STGM_SHARE_DENY_READ:
return FILE_SHARE_WRITE;
case STGM_SHARE_DENY_WRITE:
return FILE_SHARE_READ;
case STGM_SHARE_EXCLUSIVE:
return 0;
}
ERR("Invalid share mode!\n");
assert(0);
return 0;
}
/****************************************************************************
* GetAccessModeFromSTGM
*
* This method will return an access mode flag from a STGM value.
* The STGM value is assumed valid.
*/
static DWORD GetAccessModeFromSTGM(DWORD stgm)
{
switch (STGM_ACCESS_MODE(stgm))
{
case STGM_READ:
return GENERIC_READ;
case STGM_WRITE:
case STGM_READWRITE:
return GENERIC_READ | GENERIC_WRITE;
}
ERR("Invalid access mode!\n");
assert(0);
return 0;
}
/****************************************************************************
* GetCreationModeFromSTGM
*
* This method will return a creation mode flag from a STGM value.
* The STGM value is assumed valid.
*/
static DWORD GetCreationModeFromSTGM(DWORD stgm)
{
switch(STGM_CREATE_MODE(stgm))
{
case STGM_CREATE:
return CREATE_ALWAYS;
case STGM_CONVERT:
FIXME("STGM_CONVERT not implemented!\n");
return CREATE_NEW;
case STGM_FAILIFTHERE:
return CREATE_NEW;
}
ERR("Invalid create mode!\n");
assert(0);
return 0;
}
/*************************************************************************
* OLECONVERT_LoadOLE10 [Internal]
*
* Loads the OLE10 STREAM to memory
*
* PARAMS
* pOleStream [I] The OLESTREAM
* pData [I] Data Structure for the OLESTREAM Data
*
* RETURNS
* Success: S_OK
* Failure: CONVERT10_E_OLESTREAM_GET for invalid Get
* CONVERT10_E_OLESTREAM_FMT if the OLEID is invalid
*
* NOTES
* This function is used by OleConvertOLESTREAMToIStorage only.
*
* Memory allocated for pData must be freed by the caller
*/
static HRESULT OLECONVERT_LoadOLE10(LPOLESTREAM pOleStream, OLECONVERT_OLESTREAM_DATA *pData, BOOL bStrem1)
{
DWORD dwSize;
HRESULT hRes = S_OK;
int nTryCnt=0;
int max_try = 6;
pData->pData = NULL;
pData->pstrOleObjFileName = NULL;
for( nTryCnt=0;nTryCnt < max_try; nTryCnt++)
{
/* Get the OleID */
dwSize = pOleStream->lpstbl->Get(pOleStream, (void *)&(pData->dwOleID), sizeof(pData->dwOleID));
if(dwSize != sizeof(pData->dwOleID))
{
hRes = CONVERT10_E_OLESTREAM_GET;
}
else if(pData->dwOleID != OLESTREAM_ID)
{
hRes = CONVERT10_E_OLESTREAM_FMT;
}
else
{
hRes = S_OK;
break;
}
}
if(hRes == S_OK)
{
/* Get the TypeID... more info needed for this field */
dwSize = pOleStream->lpstbl->Get(pOleStream, (void *)&(pData->dwTypeID), sizeof(pData->dwTypeID));
if(dwSize != sizeof(pData->dwTypeID))
{
hRes = CONVERT10_E_OLESTREAM_GET;
}
}
if(hRes == S_OK)
{
if(pData->dwTypeID != 0)
{
/* Get the length of the OleTypeName */
dwSize = pOleStream->lpstbl->Get(pOleStream, (void *) &(pData->dwOleTypeNameLength), sizeof(pData->dwOleTypeNameLength));
if(dwSize != sizeof(pData->dwOleTypeNameLength))
{
hRes = CONVERT10_E_OLESTREAM_GET;
}
if(hRes == S_OK)
{
if(pData->dwOleTypeNameLength > 0)
{
/* Get the OleTypeName */
dwSize = pOleStream->lpstbl->Get(pOleStream, pData->strOleTypeName, pData->dwOleTypeNameLength);
if(dwSize != pData->dwOleTypeNameLength)
{
hRes = CONVERT10_E_OLESTREAM_GET;
}
}
}
if(bStrem1)
{
dwSize = pOleStream->lpstbl->Get(pOleStream, (void *)&(pData->dwOleObjFileNameLength), sizeof(pData->dwOleObjFileNameLength));
if(dwSize != sizeof(pData->dwOleObjFileNameLength))
{
hRes = CONVERT10_E_OLESTREAM_GET;
}
if(hRes == S_OK)
{
if(pData->dwOleObjFileNameLength < 1) /* there is no file name exist */
pData->dwOleObjFileNameLength = sizeof(pData->dwOleObjFileNameLength);
pData->pstrOleObjFileName = HeapAlloc(GetProcessHeap(), 0, pData->dwOleObjFileNameLength);
if(pData->pstrOleObjFileName)
{
dwSize = pOleStream->lpstbl->Get(pOleStream, pData->pstrOleObjFileName, pData->dwOleObjFileNameLength);
if(dwSize != pData->dwOleObjFileNameLength)
{
hRes = CONVERT10_E_OLESTREAM_GET;
}
}
else
hRes = CONVERT10_E_OLESTREAM_GET;
}
}
else
{
/* Get the Width of the Metafile */
dwSize = pOleStream->lpstbl->Get(pOleStream, (void *)&(pData->dwMetaFileWidth), sizeof(pData->dwMetaFileWidth));
if(dwSize != sizeof(pData->dwMetaFileWidth))
{
hRes = CONVERT10_E_OLESTREAM_GET;
}
if(hRes == S_OK)
{
/* Get the Height of the Metafile */
dwSize = pOleStream->lpstbl->Get(pOleStream, (void *)&(pData->dwMetaFileHeight), sizeof(pData->dwMetaFileHeight));
if(dwSize != sizeof(pData->dwMetaFileHeight))
{
hRes = CONVERT10_E_OLESTREAM_GET;
}
}
}
if(hRes == S_OK)
{
/* Get the Length of the Data */
dwSize = pOleStream->lpstbl->Get(pOleStream, (void *)&(pData->dwDataLength), sizeof(pData->dwDataLength));
if(dwSize != sizeof(pData->dwDataLength))
{
hRes = CONVERT10_E_OLESTREAM_GET;
}
}
if(hRes == S_OK) /* I don't know what this 8 byte information is. We have to figure out */
{
if(!bStrem1) /* if it is a second OLE stream data */
{
pData->dwDataLength -= 8;
dwSize = pOleStream->lpstbl->Get(pOleStream, pData->strUnknown, sizeof(pData->strUnknown));
if(dwSize != sizeof(pData->strUnknown))
{
hRes = CONVERT10_E_OLESTREAM_GET;
}
}
}
if(hRes == S_OK)
{
if(pData->dwDataLength > 0)
{
pData->pData = HeapAlloc(GetProcessHeap(),0,pData->dwDataLength);
/* Get Data (ex. IStorage, Metafile, or BMP) */
if(pData->pData)
{
dwSize = pOleStream->lpstbl->Get(pOleStream, (void *)pData->pData, pData->dwDataLength);
if(dwSize != pData->dwDataLength)
{
hRes = CONVERT10_E_OLESTREAM_GET;
}
}
else
{
hRes = CONVERT10_E_OLESTREAM_GET;
}
}
}
}
}
return hRes;
}
/*************************************************************************
* OLECONVERT_SaveOLE10 [Internal]
*
* Saves the OLE10 STREAM From memory
*
* PARAMS
* pData [I] Data Structure for the OLESTREAM Data
* pOleStream [I] The OLESTREAM to save
*
* RETURNS
* Success: S_OK
* Failure: CONVERT10_E_OLESTREAM_PUT for invalid Put
*
* NOTES
* This function is used by OleConvertIStorageToOLESTREAM only.
*
*/
static HRESULT OLECONVERT_SaveOLE10(OLECONVERT_OLESTREAM_DATA *pData, LPOLESTREAM pOleStream)
{
DWORD dwSize;
HRESULT hRes = S_OK;
/* Set the OleID */
dwSize = pOleStream->lpstbl->Put(pOleStream, (void *)&(pData->dwOleID), sizeof(pData->dwOleID));
if(dwSize != sizeof(pData->dwOleID))
{
hRes = CONVERT10_E_OLESTREAM_PUT;
}
if(hRes == S_OK)
{
/* Set the TypeID */
dwSize = pOleStream->lpstbl->Put(pOleStream, (void *)&(pData->dwTypeID), sizeof(pData->dwTypeID));
if(dwSize != sizeof(pData->dwTypeID))
{
hRes = CONVERT10_E_OLESTREAM_PUT;
}
}
if(pData->dwOleID == OLESTREAM_ID && pData->dwTypeID != 0 && hRes == S_OK)
{
/* Set the Length of the OleTypeName */
dwSize = pOleStream->lpstbl->Put(pOleStream, (void *)&(pData->dwOleTypeNameLength), sizeof(pData->dwOleTypeNameLength));
if(dwSize != sizeof(pData->dwOleTypeNameLength))
{
hRes = CONVERT10_E_OLESTREAM_PUT;
}
if(hRes == S_OK)
{
if(pData->dwOleTypeNameLength > 0)
{
/* Set the OleTypeName */
dwSize = pOleStream->lpstbl->Put(pOleStream, pData->strOleTypeName, pData->dwOleTypeNameLength);
if(dwSize != pData->dwOleTypeNameLength)
{
hRes = CONVERT10_E_OLESTREAM_PUT;
}
}
}
if(hRes == S_OK)
{
/* Set the width of the Metafile */
dwSize = pOleStream->lpstbl->Put(pOleStream, (void *)&(pData->dwMetaFileWidth), sizeof(pData->dwMetaFileWidth));
if(dwSize != sizeof(pData->dwMetaFileWidth))
{
hRes = CONVERT10_E_OLESTREAM_PUT;
}
}
if(hRes == S_OK)
{
/* Set the height of the Metafile */
dwSize = pOleStream->lpstbl->Put(pOleStream, (void *)&(pData->dwMetaFileHeight), sizeof(pData->dwMetaFileHeight));
if(dwSize != sizeof(pData->dwMetaFileHeight))
{
hRes = CONVERT10_E_OLESTREAM_PUT;
}
}
if(hRes == S_OK)
{
/* Set the length of the Data */
dwSize = pOleStream->lpstbl->Put(pOleStream, (void *)&(pData->dwDataLength), sizeof(pData->dwDataLength));
if(dwSize != sizeof(pData->dwDataLength))
{
hRes = CONVERT10_E_OLESTREAM_PUT;
}
}
if(hRes == S_OK)
{
if(pData->dwDataLength > 0)
{
/* Set the Data (eg. IStorage, Metafile, Bitmap) */
dwSize = pOleStream->lpstbl->Put(pOleStream, (void *) pData->pData, pData->dwDataLength);
if(dwSize != pData->dwDataLength)
{
hRes = CONVERT10_E_OLESTREAM_PUT;
}
}
}
}
return hRes;
}
/*************************************************************************
* OLECONVERT_GetOLE20FromOLE10[Internal]
*
* This function copies OLE10 Data (the IStorage in the OLESTREAM) to disk,
* opens it, and copies the content to the dest IStorage for
* OleConvertOLESTREAMToIStorage
*
*
* PARAMS
* pDestStorage [I] The IStorage to copy the data to
* pBuffer [I] Buffer that contains the IStorage from the OLESTREAM
* nBufferLength [I] The size of the buffer
*
* RETURNS
* Nothing
*
* NOTES
*
*
*/
static void OLECONVERT_GetOLE20FromOLE10(LPSTORAGE pDestStorage, const BYTE *pBuffer, DWORD nBufferLength)
{
HRESULT hRes;
HANDLE hFile;
IStorage *pTempStorage;
DWORD dwNumOfBytesWritten;
WCHAR wstrTempDir[MAX_PATH], wstrTempFile[MAX_PATH];
static const WCHAR wstrPrefix[] = {'s', 'i', 's', 0};
/* Create a temp File */
GetTempPathW(MAX_PATH, wstrTempDir);
GetTempFileNameW(wstrTempDir, wstrPrefix, 0, wstrTempFile);
hFile = CreateFileW(wstrTempFile, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0);
if(hFile != INVALID_HANDLE_VALUE)
{
/* Write IStorage Data to File */
WriteFile(hFile, pBuffer, nBufferLength, &dwNumOfBytesWritten, NULL);
CloseHandle(hFile);
/* Open and copy temp storage to the Dest Storage */
hRes = StgOpenStorage(wstrTempFile, NULL, STGM_READ, NULL, 0, &pTempStorage);
if(hRes == S_OK)
{
hRes = IStorage_CopyTo(pTempStorage, 0, NULL, NULL, pDestStorage);
IStorage_Release(pTempStorage);
}
DeleteFileW(wstrTempFile);
}
}
/*************************************************************************
* OLECONVERT_WriteOLE20ToBuffer [Internal]
*
* Saves the OLE10 STREAM From memory
*
* PARAMS
* pStorage [I] The Src IStorage to copy
* pData [I] The Dest Memory to write to.
*
* RETURNS
* The size in bytes allocated for pData
*
* NOTES
* Memory allocated for pData must be freed by the caller
*
* Used by OleConvertIStorageToOLESTREAM only.
*
*/
static DWORD OLECONVERT_WriteOLE20ToBuffer(LPSTORAGE pStorage, BYTE **pData)
{
HANDLE hFile;
HRESULT hRes;
DWORD nDataLength = 0;
IStorage *pTempStorage;
WCHAR wstrTempDir[MAX_PATH], wstrTempFile[MAX_PATH];
static const WCHAR wstrPrefix[] = {'s', 'i', 's', 0};
*pData = NULL;
/* Create temp Storage */
GetTempPathW(MAX_PATH, wstrTempDir);
GetTempFileNameW(wstrTempDir, wstrPrefix, 0, wstrTempFile);
hRes = StgCreateDocfile(wstrTempFile, STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE, 0, &pTempStorage);
if(hRes == S_OK)
{
/* Copy Src Storage to the Temp Storage */
IStorage_CopyTo(pStorage, 0, NULL, NULL, pTempStorage);
IStorage_Release(pTempStorage);
/* Open Temp Storage as a file and copy to memory */
hFile = CreateFileW(wstrTempFile, GENERIC_READ, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);
if(hFile != INVALID_HANDLE_VALUE)
{
nDataLength = GetFileSize(hFile, NULL);
*pData = HeapAlloc(GetProcessHeap(),0,nDataLength);
ReadFile(hFile, *pData, nDataLength, &nDataLength, 0);
CloseHandle(hFile);
}
DeleteFileW(wstrTempFile);
}
return nDataLength;
}
/*************************************************************************
* OLECONVERT_CreateOleStream [Internal]
*
* Creates the "\001OLE" stream in the IStorage if necessary.
*
* PARAMS
* pStorage [I] Dest storage to create the stream in
*
* RETURNS
* Nothing
*
* NOTES
* This function is used by OleConvertOLESTREAMToIStorage only.
*
* This stream is still unknown, MS Word seems to have extra data
* but since the data is stored in the OLESTREAM there should be
* no need to recreate the stream. If the stream is manually
* deleted it will create it with this default data.
*
*/
void OLECONVERT_CreateOleStream(LPSTORAGE pStorage)
{
HRESULT hRes;
IStream *pStream;
static const WCHAR wstrStreamName[] = {1,'O', 'l', 'e', 0};
BYTE pOleStreamHeader [] =
{
0x01, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
/* Create stream if not present */
hRes = IStorage_CreateStream(pStorage, wstrStreamName,
STGM_WRITE | STGM_SHARE_EXCLUSIVE, 0, 0, &pStream );
if(hRes == S_OK)
{
/* Write default Data */
hRes = IStream_Write(pStream, pOleStreamHeader, sizeof(pOleStreamHeader), NULL);
IStream_Release(pStream);
}
}
/* write a string to a stream, preceded by its length */
static HRESULT STREAM_WriteString( IStream *stm, LPCWSTR string )
{
HRESULT r;
LPSTR str;
DWORD len = 0;
if( string )
len = WideCharToMultiByte( CP_ACP, 0, string, -1, NULL, 0, NULL, NULL);
r = IStream_Write( stm, &len, sizeof(len), NULL);
if( FAILED( r ) )
return r;
if(len == 0)
return r;
str = CoTaskMemAlloc( len );
WideCharToMultiByte( CP_ACP, 0, string, -1, str, len, NULL, NULL);
r = IStream_Write( stm, str, len, NULL);
CoTaskMemFree( str );
return r;
}
/* read a string preceded by its length from a stream */
static HRESULT STREAM_ReadString( IStream *stm, LPWSTR *string )
{
HRESULT r;
DWORD len, count = 0;
LPSTR str;
LPWSTR wstr;
r = IStream_Read( stm, &len, sizeof(len), &count );
if( FAILED( r ) )
return r;
if( count != sizeof(len) )
return E_OUTOFMEMORY;
TRACE("%d bytes\n",len);
str = CoTaskMemAlloc( len );
if( !str )
return E_OUTOFMEMORY;
count = 0;
r = IStream_Read( stm, str, len, &count );
if( FAILED( r ) )
return r;
if( count != len )
{
CoTaskMemFree( str );
return E_OUTOFMEMORY;
}
TRACE("Read string %s\n",debugstr_an(str,len));
len = MultiByteToWideChar( CP_ACP, 0, str, count, NULL, 0 );
wstr = CoTaskMemAlloc( (len + 1)*sizeof (WCHAR) );
if( wstr )
MultiByteToWideChar( CP_ACP, 0, str, count, wstr, len );
CoTaskMemFree( str );
*string = wstr;
return r;
}
static HRESULT STORAGE_WriteCompObj( LPSTORAGE pstg, CLSID *clsid,
LPCWSTR lpszUserType, LPCWSTR szClipName, LPCWSTR szProgIDName )
{
IStream *pstm;
HRESULT r = S_OK;
static const WCHAR szwStreamName[] = {1, 'C', 'o', 'm', 'p', 'O', 'b', 'j', 0};
static const BYTE unknown1[12] =
{ 0x01, 0x00, 0xFE, 0xFF, 0x03, 0x0A, 0x00, 0x00,
0xFF, 0xFF, 0xFF, 0xFF};
static const BYTE unknown2[16] =
{ 0xF4, 0x39, 0xB2, 0x71, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
TRACE("%p %s %s %s %s\n", pstg, debugstr_guid(clsid),
debugstr_w(lpszUserType), debugstr_w(szClipName),
debugstr_w(szProgIDName));
/* Create a CompObj stream */
r = IStorage_CreateStream(pstg, szwStreamName,
STGM_CREATE | STGM_WRITE | STGM_SHARE_EXCLUSIVE, 0, 0, &pstm );
if( FAILED (r) )
return r;
/* Write CompObj Structure to stream */
r = IStream_Write(pstm, unknown1, sizeof(unknown1), NULL);
if( SUCCEEDED( r ) )
r = WriteClassStm( pstm, clsid );
if( SUCCEEDED( r ) )
r = STREAM_WriteString( pstm, lpszUserType );
if( SUCCEEDED( r ) )
r = STREAM_WriteString( pstm, szClipName );
if( SUCCEEDED( r ) )
r = STREAM_WriteString( pstm, szProgIDName );
if( SUCCEEDED( r ) )
r = IStream_Write(pstm, unknown2, sizeof(unknown2), NULL);
IStream_Release( pstm );
return r;
}
/***********************************************************************
* WriteFmtUserTypeStg (OLE32.@)
*/
HRESULT WINAPI WriteFmtUserTypeStg(
LPSTORAGE pstg, CLIPFORMAT cf, LPOLESTR lpszUserType)
{
HRESULT r;
WCHAR szwClipName[0x40];
CLSID clsid = CLSID_NULL;
LPWSTR wstrProgID = NULL;
DWORD n;
TRACE("(%p,%x,%s)\n",pstg,cf,debugstr_w(lpszUserType));
/* get the clipboard format name */
n = GetClipboardFormatNameW( cf, szwClipName, sizeof(szwClipName)/sizeof(szwClipName[0]) );
szwClipName[n]=0;
TRACE("Clipboard name is %s\n", debugstr_w(szwClipName));
/* FIXME: There's room to save a CLSID and its ProgID, but
the CLSID is not looked up in the registry and in all the
tests I wrote it was CLSID_NULL. Where does it come from?
*/
/* get the real program ID. This may fail, but that's fine */
ProgIDFromCLSID(&clsid, &wstrProgID);
TRACE("progid is %s\n",debugstr_w(wstrProgID));
r = STORAGE_WriteCompObj( pstg, &clsid,
lpszUserType, szwClipName, wstrProgID );
CoTaskMemFree(wstrProgID);
return r;
}
/******************************************************************************
* ReadFmtUserTypeStg [OLE32.@]
*/
HRESULT WINAPI ReadFmtUserTypeStg (LPSTORAGE pstg, CLIPFORMAT* pcf, LPOLESTR* lplpszUserType)
{
HRESULT r;
IStream *stm = 0;
static const WCHAR szCompObj[] = { 1, 'C','o','m','p','O','b','j', 0 };
unsigned char unknown1[12];
unsigned char unknown2[16];
DWORD count;
LPWSTR szProgIDName = NULL, szCLSIDName = NULL, szOleTypeName = NULL;
CLSID clsid;
TRACE("(%p,%p,%p)\n", pstg, pcf, lplpszUserType);
r = IStorage_OpenStream( pstg, szCompObj, NULL,
STGM_READ | STGM_SHARE_EXCLUSIVE, 0, &stm );
if( FAILED ( r ) )
{
WARN("Failed to open stream r = %08x\n", r);
return r;
}
/* read the various parts of the structure */
r = IStream_Read( stm, unknown1, sizeof(unknown1), &count );
if( FAILED( r ) || ( count != sizeof(unknown1) ) )
goto end;
r = ReadClassStm( stm, &clsid );
if( FAILED( r ) )
goto end;
r = STREAM_ReadString( stm, &szCLSIDName );
if( FAILED( r ) )
goto end;
r = STREAM_ReadString( stm, &szOleTypeName );
if( FAILED( r ) )
goto end;
r = STREAM_ReadString( stm, &szProgIDName );
if( FAILED( r ) )
goto end;
r = IStream_Read( stm, unknown2, sizeof(unknown2), &count );
if( FAILED( r ) || ( count != sizeof(unknown2) ) )
goto end;
/* ok, success... now we just need to store what we found */
if( pcf )
*pcf = RegisterClipboardFormatW( szOleTypeName );
CoTaskMemFree( szOleTypeName );
if( lplpszUserType )
*lplpszUserType = szCLSIDName;
CoTaskMemFree( szProgIDName );
end:
IStream_Release( stm );
return r;
}
/*************************************************************************
* OLECONVERT_CreateCompObjStream [Internal]
*
* Creates a "\001CompObj" is the destination IStorage if necessary.
*
* PARAMS
* pStorage [I] The dest IStorage to create the CompObj Stream
* if necessary.
* strOleTypeName [I] The ProgID
*
* RETURNS
* Success: S_OK
* Failure: REGDB_E_CLASSNOTREG if cannot reconstruct the stream
*
* NOTES
* This function is used by OleConvertOLESTREAMToIStorage only.
*
* The stream data is stored in the OLESTREAM and there should be
* no need to recreate the stream. If the stream is manually
* deleted it will attempt to create it by querying the registry.
*
*
*/
HRESULT OLECONVERT_CreateCompObjStream(LPSTORAGE pStorage, LPCSTR strOleTypeName)
{
IStream *pStream;
HRESULT hStorageRes, hRes = S_OK;
OLECONVERT_ISTORAGE_COMPOBJ IStorageCompObj;
static const WCHAR wstrStreamName[] = {1,'C', 'o', 'm', 'p', 'O', 'b', 'j', 0};
WCHAR bufferW[OLESTREAM_MAX_STR_LEN];
BYTE pCompObjUnknown1[] = {0x01, 0x00, 0xFE, 0xFF, 0x03, 0x0A, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF};
BYTE pCompObjUnknown2[] = {0xF4, 0x39, 0xB2, 0x71};
/* Initialize the CompObj structure */
memset(&IStorageCompObj, 0, sizeof(IStorageCompObj));
memcpy(IStorageCompObj.byUnknown1, pCompObjUnknown1, sizeof(pCompObjUnknown1));
memcpy(IStorageCompObj.byUnknown2, pCompObjUnknown2, sizeof(pCompObjUnknown2));
/* Create a CompObj stream if it doesn't exist */
hStorageRes = IStorage_CreateStream(pStorage, wstrStreamName,
STGM_WRITE | STGM_SHARE_EXCLUSIVE, 0, 0, &pStream );
if(hStorageRes == S_OK)
{
/* copy the OleTypeName to the compobj struct */
IStorageCompObj.dwOleTypeNameLength = strlen(strOleTypeName)+1;
strcpy(IStorageCompObj.strOleTypeName, strOleTypeName);
/* copy the OleTypeName to the compobj struct */
/* Note: in the test made, these were Identical */
IStorageCompObj.dwProgIDNameLength = strlen(strOleTypeName)+1;
strcpy(IStorageCompObj.strProgIDName, strOleTypeName);
/* Get the CLSID */
MultiByteToWideChar( CP_ACP, 0, IStorageCompObj.strProgIDName, -1,
bufferW, OLESTREAM_MAX_STR_LEN );
hRes = CLSIDFromProgID(bufferW, &(IStorageCompObj.clsid));
if(hRes == S_OK)
{
HKEY hKey;
LONG hErr;
/* Get the CLSID Default Name from the Registry */
hErr = RegOpenKeyA(HKEY_CLASSES_ROOT, IStorageCompObj.strProgIDName, &hKey);
if(hErr == ERROR_SUCCESS)
{
char strTemp[OLESTREAM_MAX_STR_LEN];
IStorageCompObj.dwCLSIDNameLength = OLESTREAM_MAX_STR_LEN;
hErr = RegQueryValueA(hKey, NULL, strTemp, (LONG*) &(IStorageCompObj.dwCLSIDNameLength));
if(hErr == ERROR_SUCCESS)
{
strcpy(IStorageCompObj.strCLSIDName, strTemp);
}
RegCloseKey(hKey);
}
}
/* Write CompObj Structure to stream */
hRes = IStream_Write(pStream, IStorageCompObj.byUnknown1, sizeof(IStorageCompObj.byUnknown1), NULL);
WriteClassStm(pStream,&(IStorageCompObj.clsid));
hRes = IStream_Write(pStream, &(IStorageCompObj.dwCLSIDNameLength), sizeof(IStorageCompObj.dwCLSIDNameLength), NULL);
if(IStorageCompObj.dwCLSIDNameLength > 0)
{
hRes = IStream_Write(pStream, IStorageCompObj.strCLSIDName, IStorageCompObj.dwCLSIDNameLength, NULL);
}
hRes = IStream_Write(pStream, &(IStorageCompObj.dwOleTypeNameLength) , sizeof(IStorageCompObj.dwOleTypeNameLength), NULL);
if(IStorageCompObj.dwOleTypeNameLength > 0)
{
hRes = IStream_Write(pStream, IStorageCompObj.strOleTypeName , IStorageCompObj.dwOleTypeNameLength, NULL);
}
hRes = IStream_Write(pStream, &(IStorageCompObj.dwProgIDNameLength) , sizeof(IStorageCompObj.dwProgIDNameLength), NULL);
if(IStorageCompObj.dwProgIDNameLength > 0)
{
hRes = IStream_Write(pStream, IStorageCompObj.strProgIDName , IStorageCompObj.dwProgIDNameLength, NULL);
}
hRes = IStream_Write(pStream, IStorageCompObj.byUnknown2 , sizeof(IStorageCompObj.byUnknown2), NULL);
IStream_Release(pStream);
}
return hRes;
}
/*************************************************************************
* OLECONVERT_CreateOlePresStream[Internal]
*
* Creates the "\002OlePres000" Stream with the Metafile data
*
* PARAMS
* pStorage [I] The dest IStorage to create \002OLEPres000 stream in.
* dwExtentX [I] Width of the Metafile
* dwExtentY [I] Height of the Metafile
* pData [I] Metafile data
* dwDataLength [I] Size of the Metafile data
*
* RETURNS
* Success: S_OK
* Failure: CONVERT10_E_OLESTREAM_PUT for invalid Put
*
* NOTES
* This function is used by OleConvertOLESTREAMToIStorage only.
*
*/
static void OLECONVERT_CreateOlePresStream(LPSTORAGE pStorage, DWORD dwExtentX, DWORD dwExtentY , BYTE *pData, DWORD dwDataLength)
{
HRESULT hRes;
IStream *pStream;
static const WCHAR wstrStreamName[] = {2, 'O', 'l', 'e', 'P', 'r', 'e', 's', '0', '0', '0', 0};
BYTE pOlePresStreamHeader [] =
{
0xFF, 0xFF, 0xFF, 0xFF, 0x03, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
BYTE pOlePresStreamHeaderEmpty [] =
{
0x00, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
/* Create the OlePres000 Stream */
hRes = IStorage_CreateStream(pStorage, wstrStreamName,
STGM_CREATE | STGM_WRITE | STGM_SHARE_EXCLUSIVE, 0, 0, &pStream );
if(hRes == S_OK)
{
DWORD nHeaderSize;
OLECONVERT_ISTORAGE_OLEPRES OlePres;
memset(&OlePres, 0, sizeof(OlePres));
/* Do we have any metafile data to save */
if(dwDataLength > 0)
{
memcpy(OlePres.byUnknown1, pOlePresStreamHeader, sizeof(pOlePresStreamHeader));
nHeaderSize = sizeof(pOlePresStreamHeader);
}
else
{
memcpy(OlePres.byUnknown1, pOlePresStreamHeaderEmpty, sizeof(pOlePresStreamHeaderEmpty));
nHeaderSize = sizeof(pOlePresStreamHeaderEmpty);
}
/* Set width and height of the metafile */
OlePres.dwExtentX = dwExtentX;
OlePres.dwExtentY = -dwExtentY;
/* Set Data and Length */
if(dwDataLength > sizeof(METAFILEPICT16))
{
OlePres.dwSize = dwDataLength - sizeof(METAFILEPICT16);
OlePres.pData = &(pData[8]);
}
/* Save OlePres000 Data to Stream */
hRes = IStream_Write(pStream, OlePres.byUnknown1, nHeaderSize, NULL);
hRes = IStream_Write(pStream, &(OlePres.dwExtentX), sizeof(OlePres.dwExtentX), NULL);
hRes = IStream_Write(pStream, &(OlePres.dwExtentY), sizeof(OlePres.dwExtentY), NULL);
hRes = IStream_Write(pStream, &(OlePres.dwSize), sizeof(OlePres.dwSize), NULL);
if(OlePres.dwSize > 0)
{
hRes = IStream_Write(pStream, OlePres.pData, OlePres.dwSize, NULL);
}
IStream_Release(pStream);
}
}
/*************************************************************************
* OLECONVERT_CreateOle10NativeStream [Internal]
*
* Creates the "\001Ole10Native" Stream (should contain a BMP)
*
* PARAMS
* pStorage [I] Dest storage to create the stream in
* pData [I] Ole10 Native Data (ex. bmp)
* dwDataLength [I] Size of the Ole10 Native Data
*
* RETURNS
* Nothing
*
* NOTES
* This function is used by OleConvertOLESTREAMToIStorage only.
*
* Might need to verify the data and return appropriate error message
*
*/
static void OLECONVERT_CreateOle10NativeStream(LPSTORAGE pStorage, const BYTE *pData, DWORD dwDataLength)
{
HRESULT hRes;
IStream *pStream;
static const WCHAR wstrStreamName[] = {1, 'O', 'l', 'e', '1', '0', 'N', 'a', 't', 'i', 'v', 'e', 0};
/* Create the Ole10Native Stream */
hRes = IStorage_CreateStream(pStorage, wstrStreamName,
STGM_CREATE | STGM_WRITE | STGM_SHARE_EXCLUSIVE, 0, 0, &pStream );
if(hRes == S_OK)
{
/* Write info to stream */
hRes = IStream_Write(pStream, &dwDataLength, sizeof(dwDataLength), NULL);
hRes = IStream_Write(pStream, pData, dwDataLength, NULL);
IStream_Release(pStream);
}
}
/*************************************************************************
* OLECONVERT_GetOLE10ProgID [Internal]
*
* Finds the ProgID (or OleTypeID) from the IStorage
*
* PARAMS
* pStorage [I] The Src IStorage to get the ProgID
* strProgID [I] the ProgID string to get
* dwSize [I] the size of the string
*
* RETURNS
* Success: S_OK
* Failure: REGDB_E_CLASSNOTREG if cannot reconstruct the stream
*
* NOTES
* This function is used by OleConvertIStorageToOLESTREAM only.
*
*
*/
static HRESULT OLECONVERT_GetOLE10ProgID(LPSTORAGE pStorage, char *strProgID, DWORD *dwSize)
{
HRESULT hRes;
IStream *pStream;
LARGE_INTEGER iSeekPos;
OLECONVERT_ISTORAGE_COMPOBJ CompObj;
static const WCHAR wstrStreamName[] = {1,'C', 'o', 'm', 'p', 'O', 'b', 'j', 0};
/* Open the CompObj Stream */
hRes = IStorage_OpenStream(pStorage, wstrStreamName, NULL,
STGM_READ | STGM_SHARE_EXCLUSIVE, 0, &pStream );
if(hRes == S_OK)
{
/*Get the OleType from the CompObj Stream */
iSeekPos.u.LowPart = sizeof(CompObj.byUnknown1) + sizeof(CompObj.clsid);
iSeekPos.u.HighPart = 0;
IStream_Seek(pStream, iSeekPos, STREAM_SEEK_SET, NULL);
IStream_Read(pStream, &CompObj.dwCLSIDNameLength, sizeof(CompObj.dwCLSIDNameLength), NULL);
iSeekPos.u.LowPart = CompObj.dwCLSIDNameLength;
IStream_Seek(pStream, iSeekPos, STREAM_SEEK_CUR , NULL);
IStream_Read(pStream, &CompObj.dwOleTypeNameLength, sizeof(CompObj.dwOleTypeNameLength), NULL);
iSeekPos.u.LowPart = CompObj.dwOleTypeNameLength;
IStream_Seek(pStream, iSeekPos, STREAM_SEEK_CUR , NULL);
IStream_Read(pStream, dwSize, sizeof(*dwSize), NULL);
if(*dwSize > 0)
{
IStream_Read(pStream, strProgID, *dwSize, NULL);
}
IStream_Release(pStream);
}
else
{
STATSTG stat;
LPOLESTR wstrProgID;
/* Get the OleType from the registry */
REFCLSID clsid = &(stat.clsid);
IStorage_Stat(pStorage, &stat, STATFLAG_NONAME);
hRes = ProgIDFromCLSID(clsid, &wstrProgID);
if(hRes == S_OK)
{
*dwSize = WideCharToMultiByte(CP_ACP, 0, wstrProgID, -1, strProgID, *dwSize, NULL, FALSE);
}
}
return hRes;
}
/*************************************************************************
* OLECONVERT_GetOle10PresData [Internal]
*
* Converts IStorage "/001Ole10Native" stream to a OLE10 Stream
*
* PARAMS
* pStorage [I] Src IStroage
* pOleStream [I] Dest OleStream Mem Struct
*
* RETURNS
* Nothing
*
* NOTES
* This function is used by OleConvertIStorageToOLESTREAM only.
*
* Memory allocated for pData must be freed by the caller
*
*
*/
static void OLECONVERT_GetOle10PresData(LPSTORAGE pStorage, OLECONVERT_OLESTREAM_DATA *pOleStreamData)
{
HRESULT hRes;
IStream *pStream;
static const WCHAR wstrStreamName[] = {1, 'O', 'l', 'e', '1', '0', 'N', 'a', 't', 'i', 'v', 'e', 0};
/* Initialize Default data for OLESTREAM */
pOleStreamData[0].dwOleID = OLESTREAM_ID;
pOleStreamData[0].dwTypeID = 2;
pOleStreamData[1].dwOleID = OLESTREAM_ID;
pOleStreamData[1].dwTypeID = 0;
pOleStreamData[0].dwMetaFileWidth = 0;
pOleStreamData[0].dwMetaFileHeight = 0;
pOleStreamData[0].pData = NULL;
pOleStreamData[1].pData = NULL;
/* Open Ole10Native Stream */
hRes = IStorage_OpenStream(pStorage, wstrStreamName, NULL,
STGM_READ | STGM_SHARE_EXCLUSIVE, 0, &pStream );
if(hRes == S_OK)
{
/* Read Size and Data */
IStream_Read(pStream, &(pOleStreamData->dwDataLength), sizeof(pOleStreamData->dwDataLength), NULL);
if(pOleStreamData->dwDataLength > 0)
{
pOleStreamData->pData = HeapAlloc(GetProcessHeap(),0,pOleStreamData->dwDataLength);
IStream_Read(pStream, pOleStreamData->pData, pOleStreamData->dwDataLength, NULL);
}
IStream_Release(pStream);
}
}
/*************************************************************************
* OLECONVERT_GetOle20PresData[Internal]
*
* Converts IStorage "/002OlePres000" stream to a OLE10 Stream
*
* PARAMS
* pStorage [I] Src IStroage
* pOleStreamData [I] Dest OleStream Mem Struct
*
* RETURNS
* Nothing
*
* NOTES
* This function is used by OleConvertIStorageToOLESTREAM only.
*
* Memory allocated for pData must be freed by the caller
*/
static void OLECONVERT_GetOle20PresData(LPSTORAGE pStorage, OLECONVERT_OLESTREAM_DATA *pOleStreamData)
{
HRESULT hRes;
IStream *pStream;
OLECONVERT_ISTORAGE_OLEPRES olePress;
static const WCHAR wstrStreamName[] = {2, 'O', 'l', 'e', 'P', 'r', 'e', 's', '0', '0', '0', 0};
/* Initialize Default data for OLESTREAM */
pOleStreamData[0].dwOleID = OLESTREAM_ID;
pOleStreamData[0].dwTypeID = 2;
pOleStreamData[0].dwMetaFileWidth = 0;
pOleStreamData[0].dwMetaFileHeight = 0;
pOleStreamData[0].dwDataLength = OLECONVERT_WriteOLE20ToBuffer(pStorage, &(pOleStreamData[0].pData));
pOleStreamData[1].dwOleID = OLESTREAM_ID;
pOleStreamData[1].dwTypeID = 0;
pOleStreamData[1].dwOleTypeNameLength = 0;
pOleStreamData[1].strOleTypeName[0] = 0;
pOleStreamData[1].dwMetaFileWidth = 0;
pOleStreamData[1].dwMetaFileHeight = 0;
pOleStreamData[1].pData = NULL;
pOleStreamData[1].dwDataLength = 0;
/* Open OlePress000 stream */
hRes = IStorage_OpenStream(pStorage, wstrStreamName, NULL,
STGM_READ | STGM_SHARE_EXCLUSIVE, 0, &pStream );
if(hRes == S_OK)
{
LARGE_INTEGER iSeekPos;
METAFILEPICT16 MetaFilePict;
static const char strMetafilePictName[] = "METAFILEPICT";
/* Set the TypeID for a Metafile */
pOleStreamData[1].dwTypeID = 5;
/* Set the OleTypeName to Metafile */
pOleStreamData[1].dwOleTypeNameLength = strlen(strMetafilePictName) +1;
strcpy(pOleStreamData[1].strOleTypeName, strMetafilePictName);
iSeekPos.u.HighPart = 0;
iSeekPos.u.LowPart = sizeof(olePress.byUnknown1);
/* Get Presentation Data */
IStream_Seek(pStream, iSeekPos, STREAM_SEEK_SET, NULL);
IStream_Read(pStream, &(olePress.dwExtentX), sizeof(olePress.dwExtentX), NULL);
IStream_Read(pStream, &(olePress.dwExtentY), sizeof(olePress.dwExtentY), NULL);
IStream_Read(pStream, &(olePress.dwSize), sizeof(olePress.dwSize), NULL);
/*Set width and Height */
pOleStreamData[1].dwMetaFileWidth = olePress.dwExtentX;
pOleStreamData[1].dwMetaFileHeight = -olePress.dwExtentY;
if(olePress.dwSize > 0)
{
/* Set Length */
pOleStreamData[1].dwDataLength = olePress.dwSize + sizeof(METAFILEPICT16);
/* Set MetaFilePict struct */
MetaFilePict.mm = 8;
MetaFilePict.xExt = olePress.dwExtentX;
MetaFilePict.yExt = olePress.dwExtentY;
MetaFilePict.hMF = 0;
/* Get Metafile Data */
pOleStreamData[1].pData = HeapAlloc(GetProcessHeap(),0,pOleStreamData[1].dwDataLength);
memcpy(pOleStreamData[1].pData, &MetaFilePict, sizeof(MetaFilePict));
IStream_Read(pStream, &(pOleStreamData[1].pData[sizeof(MetaFilePict)]), pOleStreamData[1].dwDataLength-sizeof(METAFILEPICT16), NULL);
}
IStream_Release(pStream);
}
}
/*************************************************************************
* OleConvertOLESTREAMToIStorage [OLE32.@]
*
* Read info on MSDN
*
* TODO
* DVTARGETDEVICE parameter is not handled
* Still unsure of some mem fields for OLE 10 Stream
* Still some unknowns for the IStorage: "\002OlePres000", "\001CompObj",
* and "\001OLE" streams
*
*/
HRESULT WINAPI OleConvertOLESTREAMToIStorage (
LPOLESTREAM pOleStream,
LPSTORAGE pstg,
const DVTARGETDEVICE* ptd)
{
int i;
HRESULT hRes=S_OK;
OLECONVERT_OLESTREAM_DATA pOleStreamData[2];
TRACE("%p %p %p\n", pOleStream, pstg, ptd);
memset(pOleStreamData, 0, sizeof(pOleStreamData));
if(ptd != NULL)
{
FIXME("DVTARGETDEVICE is not NULL, unhandled parameter\n");
}
if(pstg == NULL || pOleStream == NULL)
{
hRes = E_INVALIDARG;
}
if(hRes == S_OK)
{
/* Load the OLESTREAM to Memory */
hRes = OLECONVERT_LoadOLE10(pOleStream, &pOleStreamData[0], TRUE);
}
if(hRes == S_OK)
{
/* Load the OLESTREAM to Memory (part 2)*/
hRes = OLECONVERT_LoadOLE10(pOleStream, &pOleStreamData[1], FALSE);
}
if(hRes == S_OK)
{
if(pOleStreamData[0].dwDataLength > sizeof(STORAGE_magic))
{
/* Do we have the IStorage Data in the OLESTREAM */
if(memcmp(pOleStreamData[0].pData, STORAGE_magic, sizeof(STORAGE_magic)) ==0)
{
OLECONVERT_GetOLE20FromOLE10(pstg, pOleStreamData[0].pData, pOleStreamData[0].dwDataLength);
OLECONVERT_CreateOlePresStream(pstg, pOleStreamData[1].dwMetaFileWidth, pOleStreamData[1].dwMetaFileHeight, pOleStreamData[1].pData, pOleStreamData[1].dwDataLength);
}
else
{
/* It must be an original OLE 1.0 source */
OLECONVERT_CreateOle10NativeStream(pstg, pOleStreamData[0].pData, pOleStreamData[0].dwDataLength);
}
}
else
{
/* It must be an original OLE 1.0 source */
OLECONVERT_CreateOle10NativeStream(pstg, pOleStreamData[0].pData, pOleStreamData[0].dwDataLength);
}
/* Create CompObj Stream if necessary */
hRes = OLECONVERT_CreateCompObjStream(pstg, pOleStreamData[0].strOleTypeName);
if(hRes == S_OK)
{
/*Create the Ole Stream if necessary */
OLECONVERT_CreateOleStream(pstg);
}
}
/* Free allocated memory */
for(i=0; i < 2; i++)
{
HeapFree(GetProcessHeap(),0,pOleStreamData[i].pData);
HeapFree(GetProcessHeap(),0,pOleStreamData[i].pstrOleObjFileName);
pOleStreamData[i].pstrOleObjFileName = NULL;
}
return hRes;
}
/*************************************************************************
* OleConvertIStorageToOLESTREAM [OLE32.@]
*
* Read info on MSDN
*
* Read info on MSDN
*
* TODO
* Still unsure of some mem fields for OLE 10 Stream
* Still some unknowns for the IStorage: "\002OlePres000", "\001CompObj",
* and "\001OLE" streams.
*
*/
HRESULT WINAPI OleConvertIStorageToOLESTREAM (
LPSTORAGE pstg,
LPOLESTREAM pOleStream)
{
int i;
HRESULT hRes = S_OK;
IStream *pStream;
OLECONVERT_OLESTREAM_DATA pOleStreamData[2];
static const WCHAR wstrStreamName[] = {1, 'O', 'l', 'e', '1', '0', 'N', 'a', 't', 'i', 'v', 'e', 0};
TRACE("%p %p\n", pstg, pOleStream);
memset(pOleStreamData, 0, sizeof(pOleStreamData));
if(pstg == NULL || pOleStream == NULL)
{
hRes = E_INVALIDARG;
}
if(hRes == S_OK)
{
/* Get the ProgID */
pOleStreamData[0].dwOleTypeNameLength = OLESTREAM_MAX_STR_LEN;
hRes = OLECONVERT_GetOLE10ProgID(pstg, pOleStreamData[0].strOleTypeName, &(pOleStreamData[0].dwOleTypeNameLength));
}
if(hRes == S_OK)
{
/* Was it originally Ole10 */
hRes = IStorage_OpenStream(pstg, wstrStreamName, 0, STGM_READ | STGM_SHARE_EXCLUSIVE, 0, &pStream);
if(hRes == S_OK)
{
IStream_Release(pStream);
/* Get Presentation Data for Ole10Native */
OLECONVERT_GetOle10PresData(pstg, pOleStreamData);
}
else
{
/* Get Presentation Data (OLE20) */
OLECONVERT_GetOle20PresData(pstg, pOleStreamData);
}
/* Save OLESTREAM */
hRes = OLECONVERT_SaveOLE10(&(pOleStreamData[0]), pOleStream);
if(hRes == S_OK)
{
hRes = OLECONVERT_SaveOLE10(&(pOleStreamData[1]), pOleStream);
}
}
/* Free allocated memory */
for(i=0; i < 2; i++)
{
HeapFree(GetProcessHeap(),0,pOleStreamData[i].pData);
}
return hRes;
}
/***********************************************************************
* GetConvertStg (OLE32.@)
*/
HRESULT WINAPI GetConvertStg(IStorage *stg) {
FIXME("unimplemented stub!\n");
return E_FAIL;
}
/******************************************************************************
* StgIsStorageFile [OLE32.@]
* Verify if the file contains a storage object
*
* PARAMS
* fn [ I] Filename
*
* RETURNS
* S_OK if file has magic bytes as a storage object
* S_FALSE if file is not storage
*/
HRESULT WINAPI
StgIsStorageFile(LPCOLESTR fn)
{
HANDLE hf;
BYTE magic[8];
DWORD bytes_read;
TRACE("%s\n", debugstr_w(fn));
hf = CreateFileW(fn, GENERIC_READ,
FILE_SHARE_DELETE | FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);
if (hf == INVALID_HANDLE_VALUE)
return STG_E_FILENOTFOUND;
if (!ReadFile(hf, magic, 8, &bytes_read, NULL))
{
WARN(" unable to read file\n");
CloseHandle(hf);
return S_FALSE;
}
CloseHandle(hf);
if (bytes_read != 8) {
TRACE(" too short\n");
return S_FALSE;
}
if (!memcmp(magic,STORAGE_magic,8)) {
TRACE(" -> YES\n");
return S_OK;
}
TRACE(" -> Invalid header.\n");
return S_FALSE;
}
/***********************************************************************
* WriteClassStm (OLE32.@)
*
* Writes a CLSID to a stream.
*
* PARAMS
* pStm [I] Stream to write to.
* rclsid [I] CLSID to write.
*
* RETURNS
* Success: S_OK.
* Failure: HRESULT code.
*/
HRESULT WINAPI WriteClassStm(IStream *pStm,REFCLSID rclsid)
{
TRACE("(%p,%p)\n",pStm,rclsid);
if (!pStm || !rclsid)
return E_INVALIDARG;
return IStream_Write(pStm,rclsid,sizeof(CLSID),NULL);
}
/***********************************************************************
* ReadClassStm (OLE32.@)
*
* Reads a CLSID from a stream.
*
* PARAMS
* pStm [I] Stream to read from.
* rclsid [O] CLSID to read.
*
* RETURNS
* Success: S_OK.
* Failure: HRESULT code.
*/
HRESULT WINAPI ReadClassStm(IStream *pStm,CLSID *pclsid)
{
ULONG nbByte;
HRESULT res;
TRACE("(%p,%p)\n",pStm,pclsid);
if (!pStm || !pclsid)
return E_INVALIDARG;
/* clear the output args */
*pclsid = CLSID_NULL;
res = IStream_Read(pStm,(void*)pclsid,sizeof(CLSID),&nbByte);
if (FAILED(res))
return res;
if (nbByte != sizeof(CLSID))
return STG_E_READFAULT;
else
return S_OK;
}