Sweden-Number/dlls/msvcrt/math.c

4140 lines
108 KiB
C

/*
* msvcrt.dll math functions
*
* Copyright 2000 Jon Griffiths
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*
*
* For functions copied from musl libc (http://musl.libc.org/):
* ====================================================
* Copyright 2005-2020 Rich Felker, et al.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
* ====================================================
*/
#include <complex.h>
#include <stdio.h>
#include <fenv.h>
#include <fpieee.h>
#include <limits.h>
#include <locale.h>
#include <math.h>
#include "msvcrt.h"
#include "winternl.h"
#include "unixlib.h"
#include "wine/asm.h"
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(msvcrt);
#undef div
#undef ldiv
#define _DOMAIN 1 /* domain error in argument */
#define _SING 2 /* singularity */
#define _OVERFLOW 3 /* range overflow */
#define _UNDERFLOW 4 /* range underflow */
typedef int (CDECL *MSVCRT_matherr_func)(struct _exception *);
static MSVCRT_matherr_func MSVCRT_default_matherr_func = NULL;
BOOL sse2_supported;
static BOOL sse2_enabled;
static const struct unix_funcs *unix_funcs;
void msvcrt_init_math( void *module )
{
sse2_supported = sse2_enabled = IsProcessorFeaturePresent( PF_XMMI64_INSTRUCTIONS_AVAILABLE );
__wine_init_unix_lib( module, DLL_PROCESS_ATTACH, NULL, &unix_funcs );
}
/* Copied from musl: src/internal/libm.h */
static inline float fp_barrierf(float x)
{
volatile float y = x;
return y;
}
/*********************************************************************
* _matherr (CRTDLL.@)
*/
int CDECL _matherr(struct _exception *e)
{
return 0;
}
static double math_error(int type, const char *name, double arg1, double arg2, double retval)
{
struct _exception exception = {type, (char *)name, arg1, arg2, retval};
TRACE("(%d, %s, %g, %g, %g)\n", type, debugstr_a(name), arg1, arg2, retval);
if (MSVCRT_default_matherr_func && MSVCRT_default_matherr_func(&exception))
return exception.retval;
switch (type)
{
case _DOMAIN:
*_errno() = EDOM;
break;
case _SING:
case _OVERFLOW:
*_errno() = ERANGE;
break;
case _UNDERFLOW:
/* don't set errno */
break;
default:
ERR("Unhandled math error!\n");
}
return exception.retval;
}
/*********************************************************************
* __setusermatherr (MSVCRT.@)
*/
void CDECL __setusermatherr(MSVCRT_matherr_func func)
{
MSVCRT_default_matherr_func = func;
TRACE("new matherr handler %p\n", func);
}
/*********************************************************************
* _set_SSE2_enable (MSVCRT.@)
*/
int CDECL _set_SSE2_enable(int flag)
{
sse2_enabled = flag && sse2_supported;
return sse2_enabled;
}
#if defined(_WIN64)
# if _MSVCR_VER>=140
/*********************************************************************
* _get_FMA3_enable (UCRTBASE.@)
*/
int CDECL _get_FMA3_enable(void)
{
FIXME("() stub\n");
return 0;
}
# endif
# if _MSVCR_VER>=120
/*********************************************************************
* _set_FMA3_enable (MSVCR120.@)
*/
int CDECL _set_FMA3_enable(int flag)
{
FIXME("(%x) stub\n", flag);
return 0;
}
# endif
#endif
#if !defined(__i386__) || _MSVCR_VER>=120
/*********************************************************************
* _chgsignf (MSVCRT.@)
*/
float CDECL _chgsignf( float num )
{
union { float f; UINT32 i; } u = { num };
u.i ^= 0x80000000;
return u.f;
}
/*********************************************************************
* _copysignf (MSVCRT.@)
*
* Copied from musl: src/math/copysignf.c
*/
float CDECL _copysignf( float x, float y )
{
union { float f; UINT32 i; } ux = { x }, uy = { y };
ux.i &= 0x7fffffff;
ux.i |= uy.i & 0x80000000;
return ux.f;
}
/*********************************************************************
* _nextafterf (MSVCRT.@)
*/
float CDECL _nextafterf( float num, float next )
{
if (!isfinite(num) || !isfinite(next)) *_errno() = EDOM;
return unix_funcs->nextafterf( num, next );
}
/*********************************************************************
* _logbf (MSVCRT.@)
*/
float CDECL _logbf( float num )
{
float ret = unix_funcs->logbf(num);
if (isnan(num)) return math_error(_DOMAIN, "_logbf", num, 0, ret);
if (!num) return math_error(_SING, "_logbf", num, 0, ret);
return ret;
}
#endif
#ifndef __i386__
/*********************************************************************
* _fpclassf (MSVCRT.@)
*/
int CDECL _fpclassf( float num )
{
union { float f; UINT32 i; } u = { num };
int e = u.i >> 23 & 0xff;
int s = u.i >> 31;
switch (e)
{
case 0:
if (u.i << 1) return s ? _FPCLASS_ND : _FPCLASS_PD;
return s ? _FPCLASS_NZ : _FPCLASS_PZ;
case 0xff:
if (u.i << 9) return ((u.i >> 22) & 1) ? _FPCLASS_QNAN : _FPCLASS_SNAN;
return s ? _FPCLASS_NINF : _FPCLASS_PINF;
default:
return s ? _FPCLASS_NN : _FPCLASS_PN;
}
}
/*********************************************************************
* _finitef (MSVCRT.@)
*/
int CDECL _finitef( float num )
{
union { float f; UINT32 i; } u = { num };
return (u.i & 0x7fffffff) < 0x7f800000;
}
/*********************************************************************
* _isnanf (MSVCRT.@)
*/
int CDECL _isnanf( float num )
{
union { float f; UINT32 i; } u = { num };
return (u.i & 0x7fffffff) > 0x7f800000;
}
/*********************************************************************
* acosf (MSVCRT.@)
*
* Copied from musl: src/math/acosf.c
*/
static float acosf_R(float z)
{
static const float pS0 = 1.6666586697e-01,
pS1 = -4.2743422091e-02,
pS2 = -8.6563630030e-03,
qS1 = -7.0662963390e-01;
float p, q;
p = z * (pS0 + z * (pS1 + z * pS2));
q = 1.0f + z * qS1;
return p / q;
}
float CDECL acosf( float x )
{
static const float pio2_hi = 1.5707962513e+00,
pio2_lo = 7.5497894159e-08;
float z, w, s, c, df;
unsigned int hx, ix;
hx = *(unsigned int*)&x;
ix = hx & 0x7fffffff;
/* |x| >= 1 or nan */
if (ix >= 0x3f800000) {
if (ix == 0x3f800000) {
if (hx >> 31)
return 2 * pio2_lo + 2 * pio2_hi + 7.5231638453e-37;
return 0;
}
if (isnan(x)) return x;
return math_error(_DOMAIN, "acosf", x, 0, 0 / (x - x));
}
/* |x| < 0.5 */
if (ix < 0x3f000000) {
if (ix <= 0x32800000) /* |x| < 2**-26 */
return pio2_lo + pio2_hi + 7.5231638453e-37;
return pio2_hi - (x - (pio2_lo - x * acosf_R(x * x)));
}
/* x < -0.5 */
if (hx >> 31) {
z = (1 + x) * 0.5f;
s = sqrtf(z);
w = acosf_R(z) * s - pio2_lo;
return 2 * (pio2_hi - (s + w));
}
/* x > 0.5 */
z = (1 - x) * 0.5f;
s = sqrtf(z);
hx = *(unsigned int*)&s & 0xfffff000;
df = *(float*)&hx;
c = (z - df * df) / (s + df);
w = acosf_R(z) * s + c;
return 2 * (df + w);
}
/*********************************************************************
* asinf (MSVCRT.@)
*
* Copied from musl: src/math/asinf.c
*/
static float asinf_R(float z)
{
/* coefficients for R(x^2) */
static const float pS0 = 1.6666586697e-01,
pS1 = -4.2743422091e-02,
pS2 = -8.6563630030e-03,
qS1 = -7.0662963390e-01;
float p, q;
p = z * (pS0 + z * (pS1 + z * pS2));
q = 1.0f + z * qS1;
return p / q;
}
float CDECL asinf( float x )
{
static const double pio2 = 1.570796326794896558e+00;
double s;
float z;
unsigned int hx, ix;
hx = *(unsigned int*)&x;
ix = hx & 0x7fffffff;
if (ix >= 0x3f800000) { /* |x| >= 1 */
if (ix == 0x3f800000) /* |x| == 1 */
return x * pio2 + 7.5231638453e-37; /* asin(+-1) = +-pi/2 with inexact */
if (isnan(x)) return x;
return math_error(_DOMAIN, "asinf", x, 0, 0 / (x - x));
}
if (ix < 0x3f000000) { /* |x| < 0.5 */
/* if 0x1p-126 <= |x| < 0x1p-12, avoid raising underflow */
if (ix < 0x39800000 && ix >= 0x00800000)
return x;
return x + x * asinf_R(x * x);
}
/* 1 > |x| >= 0.5 */
z = (1 - fabsf(x)) * 0.5f;
s = sqrt(z);
x = pio2 - 2 * (s + s * asinf_R(z));
if (hx >> 31)
return -x;
return x;
}
/*********************************************************************
* atanf (MSVCRT.@)
*
* Copied from musl: src/math/atanf.c
*/
float CDECL atanf( float x )
{
static const float atanhi[] = {
4.6364760399e-01,
7.8539812565e-01,
9.8279368877e-01,
1.5707962513e+00,
};
static const float atanlo[] = {
5.0121582440e-09,
3.7748947079e-08,
3.4473217170e-08,
7.5497894159e-08,
};
static const float aT[] = {
3.3333328366e-01,
-1.9999158382e-01,
1.4253635705e-01,
-1.0648017377e-01,
6.1687607318e-02,
};
float w, s1, s2, z;
unsigned int ix, sign;
int id;
#if _MSVCR_VER == 0
if (isnan(x)) return math_error(_DOMAIN, "atanf", x, 0, x);
#endif
ix = *(unsigned int*)&x;
sign = ix >> 31;
ix &= 0x7fffffff;
if (ix >= 0x4c800000) { /* if |x| >= 2**26 */
if (isnan(x))
return x;
z = atanhi[3] + 7.5231638453e-37;
return sign ? -z : z;
}
if (ix < 0x3ee00000) { /* |x| < 0.4375 */
if (ix < 0x39800000) { /* |x| < 2**-12 */
if (ix < 0x00800000)
/* raise underflow for subnormal x */
fp_barrierf(x*x);
return x;
}
id = -1;
} else {
x = fabsf(x);
if (ix < 0x3f980000) { /* |x| < 1.1875 */
if (ix < 0x3f300000) { /* 7/16 <= |x| < 11/16 */
id = 0;
x = (2.0f * x - 1.0f) / (2.0f + x);
} else { /* 11/16 <= |x| < 19/16 */
id = 1;
x = (x - 1.0f) / (x + 1.0f);
}
} else {
if (ix < 0x401c0000) { /* |x| < 2.4375 */
id = 2;
x = (x - 1.5f) / (1.0f + 1.5f * x);
} else { /* 2.4375 <= |x| < 2**26 */
id = 3;
x = -1.0f / x;
}
}
}
/* end of argument reduction */
z = x * x;
w = z * z;
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
s1 = z * (aT[0] + w * (aT[2] + w * aT[4]));
s2 = w * (aT[1] + w * aT[3]);
if (id < 0)
return x - x * (s1 + s2);
z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x);
return sign ? -z : z;
}
/*********************************************************************
* atan2f (MSVCRT.@)
*
* Copied from musl: src/math/atan2f.c
*/
float CDECL atan2f( float y, float x )
{
static const float pi = 3.1415927410e+00,
pi_lo = -8.7422776573e-08;
float z;
unsigned int m, ix, iy;
if (isnan(x) || isnan(y))
return x + y;
ix = *(unsigned int*)&x;
iy = *(unsigned int*)&y;
if (ix == 0x3f800000) /* x=1.0 */
return atanf(y);
m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */
ix &= 0x7fffffff;
iy &= 0x7fffffff;
/* when y = 0 */
if (iy == 0) {
switch (m) {
case 0:
case 1: return y; /* atan(+-0,+anything)=+-0 */
case 2: return pi; /* atan(+0,-anything) = pi */
case 3: return -pi; /* atan(-0,-anything) =-pi */
}
}
/* when x = 0 */
if (ix == 0)
return m & 1 ? -pi / 2 : pi / 2;
/* when x is INF */
if (ix == 0x7f800000) {
if (iy == 0x7f800000) {
switch (m) {
case 0: return pi / 4; /* atan(+INF,+INF) */
case 1: return -pi / 4; /* atan(-INF,+INF) */
case 2: return 3 * pi / 4; /*atan(+INF,-INF)*/
case 3: return -3 * pi / 4; /*atan(-INF,-INF)*/
}
} else {
switch (m) {
case 0: return 0.0f; /* atan(+...,+INF) */
case 1: return -0.0f; /* atan(-...,+INF) */
case 2: return pi; /* atan(+...,-INF) */
case 3: return -pi; /* atan(-...,-INF) */
}
}
}
/* |y/x| > 0x1p26 */
if (ix + (26 << 23) < iy || iy == 0x7f800000)
return m & 1 ? -pi / 2 : pi / 2;
/* z = atan(|y/x|) with correct underflow */
if ((m & 2) && iy + (26 << 23) < ix) /*|y/x| < 0x1p-26, x < 0 */
z = 0.0;
else
z = atanf(fabsf(y / x));
switch (m) {
case 0: return z; /* atan(+,+) */
case 1: return -z; /* atan(-,+) */
case 2: return pi - (z - pi_lo); /* atan(+,-) */
default: /* case 3 */
return (z - pi_lo) - pi; /* atan(-,-) */
}
}
/*********************************************************************
* cosf (MSVCRT.@)
*/
float CDECL cosf( float x )
{
float ret = unix_funcs->cosf( x );
if (!isfinite(x)) return math_error(_DOMAIN, "cosf", x, 0, ret);
return ret;
}
/*********************************************************************
* coshf (MSVCRT.@)
*/
float CDECL coshf( float x )
{
float ret = unix_funcs->coshf( x );
if (isnan(x)) return math_error(_DOMAIN, "coshf", x, 0, ret);
return ret;
}
/*********************************************************************
* expf (MSVCRT.@)
*/
float CDECL expf( float x )
{
float ret = unix_funcs->expf( x );
if (isnan(x)) return math_error(_DOMAIN, "expf", x, 0, ret);
if (isfinite(x) && !ret) return math_error(_UNDERFLOW, "expf", x, 0, ret);
if (isfinite(x) && !isfinite(ret)) return math_error(_OVERFLOW, "expf", x, 0, ret);
return ret;
}
/*********************************************************************
* fmodf (MSVCRT.@)
*/
float CDECL fmodf( float x, float y )
{
float ret = unix_funcs->fmodf( x, y );
if (!isfinite(x) || !isfinite(y)) return math_error(_DOMAIN, "fmodf", x, 0, ret);
return ret;
}
/*********************************************************************
* logf (MSVCRT.@)
*/
float CDECL logf( float x )
{
float ret = unix_funcs->logf( x );
if (x < 0.0) return math_error(_DOMAIN, "logf", x, 0, ret);
if (x == 0.0) return math_error(_SING, "logf", x, 0, ret);
return ret;
}
/*********************************************************************
* log10f (MSVCRT.@)
*/
float CDECL log10f( float x )
{
float ret = unix_funcs->log10f( x );
if (x < 0.0) return math_error(_DOMAIN, "log10f", x, 0, ret);
if (x == 0.0) return math_error(_SING, "log10f", x, 0, ret);
return ret;
}
/*********************************************************************
* powf (MSVCRT.@)
*/
float CDECL powf( float x, float y )
{
float z = unix_funcs->powf(x,y);
if (x < 0 && y != floorf(y)) return math_error(_DOMAIN, "powf", x, y, z);
if (!x && isfinite(y) && y < 0) return math_error(_SING, "powf", x, y, z);
if (isfinite(x) && isfinite(y) && !isfinite(z)) return math_error(_OVERFLOW, "powf", x, y, z);
if (x && isfinite(x) && isfinite(y) && !z) return math_error(_UNDERFLOW, "powf", x, y, z);
return z;
}
/*********************************************************************
* sinf (MSVCRT.@)
*/
float CDECL sinf( float x )
{
float ret = unix_funcs->sinf( x );
if (!isfinite(x)) return math_error(_DOMAIN, "sinf", x, 0, ret);
return ret;
}
/*********************************************************************
* sinhf (MSVCRT.@)
*/
float CDECL sinhf( float x )
{
float ret = unix_funcs->sinhf( x );
if (isnan(x)) return math_error(_DOMAIN, "sinhf", x, 0, ret);
return ret;
}
/*********************************************************************
* sqrtf (MSVCRT.@)
*
* Copied from musl: src/math/sqrtf.c
*/
float CDECL sqrtf( float x )
{
static const float tiny = 1.0e-30;
float z;
int sign = 0x80000000;
int ix,s,q,m,t,i;
unsigned int r;
ix = *(int*)&x;
/* take care of Inf and NaN */
if ((ix & 0x7f800000) == 0x7f800000 && (ix == 0x7f800000 || ix & 0x7fffff))
return x;
/* take care of zero */
if (ix <= 0) {
if ((ix & ~sign) == 0)
return x; /* sqrt(+-0) = +-0 */
return math_error(_DOMAIN, "sqrtf", x, 0, (x - x) / (x - x)); /* sqrt(-ve) = sNaN */
}
/* normalize x */
m = ix >> 23;
if (m == 0) { /* subnormal x */
for (i = 0; (ix & 0x00800000) == 0; i++)
ix <<= 1;
m -= i - 1;
}
m -= 127; /* unbias exponent */
ix = (ix & 0x007fffff) | 0x00800000;
if (m & 1) /* odd m, double x to make it even */
ix += ix;
m >>= 1; /* m = [m/2] */
/* generate sqrt(x) bit by bit */
ix += ix;
q = s = 0; /* q = sqrt(x) */
r = 0x01000000; /* r = moving bit from right to left */
while (r != 0) {
t = s + r;
if (t <= ix) {
s = t + r;
ix -= t;
q += r;
}
ix += ix;
r >>= 1;
}
/* use floating add to find out rounding direction */
if (ix != 0) {
z = 1.0f - tiny; /* raise inexact flag */
if (z >= 1.0f) {
z = 1.0f + tiny;
if (z > 1.0f)
q += 2;
else
q += q & 1;
}
}
ix = (q >> 1) + 0x3f000000;
r = ix + ((unsigned int)m << 23);
z = *(float*)&r;
return z;
}
/*********************************************************************
* tanf (MSVCRT.@)
*/
float CDECL tanf( float x )
{
float ret = unix_funcs->tanf(x);
if (!isfinite(x)) return math_error(_DOMAIN, "tanf", x, 0, ret);
return ret;
}
/*********************************************************************
* tanhf (MSVCRT.@)
*/
float CDECL tanhf( float x )
{
float ret = unix_funcs->tanhf(x);
if (!isfinite(x)) return math_error(_DOMAIN, "tanhf", x, 0, ret);
return ret;
}
/*********************************************************************
* ceilf (MSVCRT.@)
*/
float CDECL ceilf( float x )
{
return unix_funcs->ceilf(x);
}
/*********************************************************************
* floorf (MSVCRT.@)
*/
float CDECL floorf( float x )
{
return unix_funcs->floorf(x);
}
/*********************************************************************
* frexpf (MSVCRT.@)
*/
float CDECL frexpf( float x, int *exp )
{
return unix_funcs->frexpf( x, exp );
}
/*********************************************************************
* modff (MSVCRT.@)
*/
float CDECL modff( float x, float *iptr )
{
return unix_funcs->modff( x, iptr );
}
#endif
#if !defined(__i386__) && !defined(__x86_64__) && (_MSVCR_VER == 0 || _MSVCR_VER >= 110)
/*********************************************************************
* fabsf (MSVCRT.@)
*
* Copied from musl: src/math/fabsf.c
*/
float CDECL fabsf( float x )
{
union { float f; UINT32 i; } u = { x };
u.i &= 0x7fffffff;
return u.f;
}
#endif
/*********************************************************************
* acos (MSVCRT.@)
*
* Copied from musl: src/math/acos.c
*/
static double acos_R(double z)
{
static const double pS0 = 1.66666666666666657415e-01,
pS1 = -3.25565818622400915405e-01,
pS2 = 2.01212532134862925881e-01,
pS3 = -4.00555345006794114027e-02,
pS4 = 7.91534994289814532176e-04,
pS5 = 3.47933107596021167570e-05,
qS1 = -2.40339491173441421878e+00,
qS2 = 2.02094576023350569471e+00,
qS3 = -6.88283971605453293030e-01,
qS4 = 7.70381505559019352791e-02;
double p, q;
p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
return p/q;
}
double CDECL acos( double x )
{
static const double pio2_hi = 1.57079632679489655800e+00,
pio2_lo = 6.12323399573676603587e-17;
double z, w, s, c, df;
unsigned int hx, ix;
ULONGLONG llx;
hx = *(ULONGLONG*)&x >> 32;
ix = hx & 0x7fffffff;
/* |x| >= 1 or nan */
if (ix >= 0x3ff00000) {
unsigned int lx;
lx = *(ULONGLONG*)&x;
if (((ix - 0x3ff00000) | lx) == 0) {
/* acos(1)=0, acos(-1)=pi */
if (hx >> 31)
return 2 * pio2_hi + 7.5231638452626401e-37;
return 0;
}
if (isnan(x)) return x;
return math_error(_DOMAIN, "acos", x, 0, 0 / (x - x));
}
/* |x| < 0.5 */
if (ix < 0x3fe00000) {
if (ix <= 0x3c600000) /* |x| < 2**-57 */
return pio2_hi + 7.5231638452626401e-37;
return pio2_hi - (x - (pio2_lo - x * acos_R(x * x)));
}
/* x < -0.5 */
if (hx >> 31) {
z = (1.0 + x) * 0.5;
s = sqrt(z);
w = acos_R(z) * s - pio2_lo;
return 2 * (pio2_hi - (s + w));
}
/* x > 0.5 */
z = (1.0 - x) * 0.5;
s = sqrt(z);
df = s;
llx = (*(ULONGLONG*)&df >> 32) << 32;
df = *(double*)&llx;
c = (z - df * df) / (s + df);
w = acos_R(z) * s + c;
return 2 * (df + w);
}
/*********************************************************************
* asin (MSVCRT.@)
*
* Copied from musl: src/math/asin.c
*/
static double asin_R(double z)
{
/* coefficients for R(x^2) */
static const double pS0 = 1.66666666666666657415e-01,
pS1 = -3.25565818622400915405e-01,
pS2 = 2.01212532134862925881e-01,
pS3 = -4.00555345006794114027e-02,
pS4 = 7.91534994289814532176e-04,
pS5 = 3.47933107596021167570e-05,
qS1 = -2.40339491173441421878e+00,
qS2 = 2.02094576023350569471e+00,
qS3 = -6.88283971605453293030e-01,
qS4 = 7.70381505559019352791e-02;
double p, q;
p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
return p / q;
}
double CDECL asin( double x )
{
static const double pio2_hi = 1.57079632679489655800e+00,
pio2_lo = 6.12323399573676603587e-17;
double z, r, s;
unsigned int hx, ix;
ULONGLONG llx;
hx = *(ULONGLONG*)&x >> 32;
ix = hx & 0x7fffffff;
/* |x| >= 1 or nan */
if (ix >= 0x3ff00000) {
unsigned int lx;
lx = *(ULONGLONG*)&x;
if (((ix - 0x3ff00000) | lx) == 0)
/* asin(1) = +-pi/2 with inexact */
return x * pio2_hi + 7.5231638452626401e-37;
if (isnan(x)) return x;
return math_error(_DOMAIN, "asin", x, 0, 0 / (x - x));
}
/* |x| < 0.5 */
if (ix < 0x3fe00000) {
/* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
if (ix < 0x3e500000 && ix >= 0x00100000)
return x;
return x + x * asin_R(x * x);
}
/* 1 > |x| >= 0.5 */
z = (1 - fabs(x)) * 0.5;
s = sqrt(z);
r = asin_R(z);
if (ix >= 0x3fef3333) { /* if |x| > 0.975 */
x = pio2_hi - (2 * (s + s * r) - pio2_lo);
} else {
double f, c;
/* f+c = sqrt(z) */
f = s;
llx = (*(ULONGLONG*)&f >> 32) << 32;
f = *(double*)&llx;
c = (z - f * f) / (s + f);
x = 0.5 * pio2_hi - (2 * s * r - (pio2_lo - 2 * c) - (0.5 * pio2_hi - 2 * f));
}
if (hx >> 31)
return -x;
return x;
}
/*********************************************************************
* atan (MSVCRT.@)
*
* Copied from musl: src/math/atan.c
*/
double CDECL atan( double x )
{
static const double atanhi[] = {
4.63647609000806093515e-01,
7.85398163397448278999e-01,
9.82793723247329054082e-01,
1.57079632679489655800e+00,
};
static const double atanlo[] = {
2.26987774529616870924e-17,
3.06161699786838301793e-17,
1.39033110312309984516e-17,
6.12323399573676603587e-17,
};
static const double aT[] = {
3.33333333333329318027e-01,
-1.99999999998764832476e-01,
1.42857142725034663711e-01,
-1.11111104054623557880e-01,
9.09088713343650656196e-02,
-7.69187620504482999495e-02,
6.66107313738753120669e-02,
-5.83357013379057348645e-02,
4.97687799461593236017e-02,
-3.65315727442169155270e-02,
1.62858201153657823623e-02,
};
double w, s1, s2, z;
unsigned int ix, sign;
int id;
#if _MSVCR_VER == 0
if (isnan(x)) return math_error(_DOMAIN, "atan", x, 0, x);
#endif
ix = *(ULONGLONG*)&x >> 32;
sign = ix >> 31;
ix &= 0x7fffffff;
if (ix >= 0x44100000) { /* if |x| >= 2^66 */
if (isnan(x))
return x;
z = atanhi[3] + 7.5231638452626401e-37;
return sign ? -z : z;
}
if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
if (ix < 0x3e400000) { /* |x| < 2^-27 */
if (ix < 0x00100000)
/* raise underflow for subnormal x */
fp_barrierf((float)x);
return x;
}
id = -1;
} else {
x = fabs(x);
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
if (ix < 0x3fe60000) { /* 7/16 <= |x| < 11/16 */
id = 0;
x = (2.0 * x - 1.0) / (2.0 + x);
} else { /* 11/16 <= |x| < 19/16 */
id = 1;
x = (x - 1.0) / (x + 1.0);
}
} else {
if (ix < 0x40038000) { /* |x| < 2.4375 */
id = 2;
x = (x - 1.5) / (1.0 + 1.5 * x);
} else { /* 2.4375 <= |x| < 2^66 */
id = 3;
x = -1.0 / x;
}
}
}
/* end of argument reduction */
z = x * x;
w = z * z;
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
s1 = z * (aT[0] + w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10])))));
s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9]))));
if (id < 0)
return x - x * (s1 + s2);
z = atanhi[id] - (x * (s1 + s2) - atanlo[id] - x);
return sign ? -z : z;
}
/*********************************************************************
* atan2 (MSVCRT.@)
*
* Copied from musl: src/math/atan2.c
*/
double CDECL atan2( double y, double x )
{
static const double pi = 3.1415926535897931160E+00,
pi_lo = 1.2246467991473531772E-16;
double z;
unsigned int m, lx, ly, ix, iy;
if (isnan(x) || isnan(y))
return x+y;
ix = *(ULONGLONG*)&x >> 32;
lx = *(ULONGLONG*)&x;
iy = *(ULONGLONG*)&y >> 32;
ly = *(ULONGLONG*)&y;
if (((ix - 0x3ff00000) | lx) == 0) /* x = 1.0 */
return atan(y);
m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */
ix = ix & 0x7fffffff;
iy = iy & 0x7fffffff;
/* when y = 0 */
if ((iy | ly) == 0) {
switch(m) {
case 0:
case 1: return y; /* atan(+-0,+anything)=+-0 */
case 2: return pi; /* atan(+0,-anything) = pi */
case 3: return -pi; /* atan(-0,-anything) =-pi */
}
}
/* when x = 0 */
if ((ix | lx) == 0)
return m & 1 ? -pi / 2 : pi / 2;
/* when x is INF */
if (ix == 0x7ff00000) {
if (iy == 0x7ff00000) {
switch(m) {
case 0: return pi / 4; /* atan(+INF,+INF) */
case 1: return -pi / 4; /* atan(-INF,+INF) */
case 2: return 3 * pi / 4; /* atan(+INF,-INF) */
case 3: return -3 * pi / 4; /* atan(-INF,-INF) */
}
} else {
switch(m) {
case 0: return 0.0; /* atan(+...,+INF) */
case 1: return -0.0; /* atan(-...,+INF) */
case 2: return pi; /* atan(+...,-INF) */
case 3: return -pi; /* atan(-...,-INF) */
}
}
}
/* |y/x| > 0x1p64 */
if (ix + (64 << 20) < iy || iy == 0x7ff00000)
return m & 1 ? -pi / 2 : pi / 2;
/* z = atan(|y/x|) without spurious underflow */
if ((m & 2) && iy + (64 << 20) < ix) /* |y/x| < 0x1p-64, x<0 */
z = 0;
else
z = atan(fabs(y / x));
switch (m) {
case 0: return z; /* atan(+,+) */
case 1: return -z; /* atan(-,+) */
case 2: return pi - (z - pi_lo); /* atan(+,-) */
default: /* case 3 */
return (z - pi_lo) - pi; /* atan(-,-) */
}
}
/*********************************************************************
* cos (MSVCRT.@)
*/
double CDECL cos( double x )
{
double ret = unix_funcs->cos( x );
if (!isfinite(x)) return math_error(_DOMAIN, "cos", x, 0, ret);
return ret;
}
/*********************************************************************
* cosh (MSVCRT.@)
*/
double CDECL cosh( double x )
{
double ret = unix_funcs->cosh( x );
if (isnan(x)) return math_error(_DOMAIN, "cosh", x, 0, ret);
return ret;
}
/*********************************************************************
* exp (MSVCRT.@)
*/
double CDECL exp( double x )
{
double ret = unix_funcs->exp( x );
if (isnan(x)) return math_error(_DOMAIN, "exp", x, 0, ret);
if (isfinite(x) && !ret) return math_error(_UNDERFLOW, "exp", x, 0, ret);
if (isfinite(x) && !isfinite(ret)) return math_error(_OVERFLOW, "exp", x, 0, ret);
return ret;
}
/*********************************************************************
* fmod (MSVCRT.@)
*/
double CDECL fmod( double x, double y )
{
double ret = unix_funcs->fmod( x, y );
if (!isfinite(x) || !isfinite(y)) return math_error(_DOMAIN, "fmod", x, y, ret);
return ret;
}
/*********************************************************************
* log (MSVCRT.@)
*/
double CDECL log( double x )
{
double ret = unix_funcs->log( x );
if (x < 0.0) return math_error(_DOMAIN, "log", x, 0, ret);
if (x == 0.0) return math_error(_SING, "log", x, 0, ret);
return ret;
}
/*********************************************************************
* log10 (MSVCRT.@)
*/
double CDECL log10( double x )
{
double ret = unix_funcs->log10( x );
if (x < 0.0) return math_error(_DOMAIN, "log10", x, 0, ret);
if (x == 0.0) return math_error(_SING, "log10", x, 0, ret);
return ret;
}
/*********************************************************************
* pow (MSVCRT.@)
*/
double CDECL pow( double x, double y )
{
double z = unix_funcs->pow(x,y);
if (x < 0 && y != floor(y))
return math_error(_DOMAIN, "pow", x, y, z);
if (!x && isfinite(y) && y < 0)
return math_error(_SING, "pow", x, y, z);
if (isfinite(x) && isfinite(y) && !isfinite(z))
return math_error(_OVERFLOW, "pow", x, y, z);
if (x && isfinite(x) && isfinite(y) && !z)
return math_error(_UNDERFLOW, "pow", x, y, z);
return z;
}
/*********************************************************************
* sin (MSVCRT.@)
*/
double CDECL sin( double x )
{
double ret = unix_funcs->sin( x );
if (!isfinite(x)) return math_error(_DOMAIN, "sin", x, 0, ret);
return ret;
}
/*********************************************************************
* sinh (MSVCRT.@)
*/
double CDECL sinh( double x )
{
double ret = unix_funcs->sinh( x );
if (isnan(x)) return math_error(_DOMAIN, "sinh", x, 0, ret);
return ret;
}
static inline double CDECL ret_nan( BOOL update_sw )
{
double x = 1.0;
if (!update_sw) return -NAN;
return (x - x) / (x - x);
}
BOOL sqrt_validate( double *x, BOOL update_sw )
{
short c = _dclass(*x);
if (c == FP_ZERO) return FALSE;
if (c == FP_NAN)
{
#ifdef __i386__
if (update_sw)
*x = math_error(_DOMAIN, "sqrt", *x, 0, *x);
#else
/* set signaling bit */
*(ULONGLONG*)x |= 0x8000000000000ULL;
#endif
return FALSE;
}
if (signbit(*x))
{
*x = math_error(_DOMAIN, "sqrt", *x, 0, ret_nan(update_sw));
return FALSE;
}
if (c == FP_INFINITE) return FALSE;
return TRUE;
}
#if defined(__x86_64__) || defined(__i386__)
double CDECL sse2_sqrt(double);
__ASM_GLOBAL_FUNC( sse2_sqrt,
"sqrtsd %xmm0, %xmm0\n\t"
"ret" )
#endif
#ifdef __i386__
#define SET_X87_CW \
"subl $4, %esp\n\t" \
__ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \
"fnstcw (%esp)\n\t" \
"movw (%esp), %ax\n\t" \
"testw $0xc00, %ax\n\t" \
"jz 1f\n\t" \
"andw $0xf3ff, %ax\n\t" \
"movw %ax, 2(%esp)\n\t" \
"fldcw 2(%esp)\n\t" \
"1:\n\t"
#define RESET_X87_CW \
"movw (%esp), %ax\n\t" \
"testw $0xc00, %ax\n\t" \
"jz 1f\n\t" \
"fldcw (%esp)\n\t" \
"1:\n\t" \
"addl $4, %esp\n\t" \
__ASM_CFI(".cfi_adjust_cfa_offset -4\n\t")
double CDECL x87_sqrt(double);
__ASM_GLOBAL_FUNC( x87_sqrt,
"fldl 4(%esp)\n\t"
SET_X87_CW
"fsqrt\n\t"
RESET_X87_CW
"ret" )
#endif
/*********************************************************************
* sqrt (MSVCRT.@)
*
* Copied from musl: src/math/sqrt.c
*/
double CDECL sqrt( double x )
{
#ifdef __x86_64__
if (!sqrt_validate(&x, TRUE))
return x;
return sse2_sqrt(x);
#elif defined( __i386__ )
if (!sqrt_validate(&x, TRUE))
return x;
return x87_sqrt(x);
#else
static const double tiny = 1.0e-300;
double z;
int sign = 0x80000000;
int ix0,s0,q,m,t,i;
unsigned int r,t1,s1,ix1,q1;
ULONGLONG ix;
if (!sqrt_validate(&x, TRUE))
return x;
ix = *(ULONGLONG*)&x;
ix0 = ix >> 32;
ix1 = ix;
/* normalize x */
m = ix0 >> 20;
if (m == 0) { /* subnormal x */
while (ix0 == 0) {
m -= 21;
ix0 |= (ix1 >> 11);
ix1 <<= 21;
}
for (i=0; (ix0 & 0x00100000) == 0; i++)
ix0 <<= 1;
m -= i - 1;
ix0 |= ix1 >> (32 - i);
ix1 <<= i;
}
m -= 1023; /* unbias exponent */
ix0 = (ix0 & 0x000fffff) | 0x00100000;
if (m & 1) { /* odd m, double x to make it even */
ix0 += ix0 + ((ix1 & sign) >> 31);
ix1 += ix1;
}
m >>= 1; /* m = [m/2] */
/* generate sqrt(x) bit by bit */
ix0 += ix0 + ((ix1 & sign) >> 31);
ix1 += ix1;
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
r = 0x00200000; /* r = moving bit from right to left */
while (r != 0) {
t = s0 + r;
if (t <= ix0) {
s0 = t + r;
ix0 -= t;
q += r;
}
ix0 += ix0 + ((ix1 & sign) >> 31);
ix1 += ix1;
r >>= 1;
}
r = sign;
while (r != 0) {
t1 = s1 + r;
t = s0;
if (t < ix0 || (t == ix0 && t1 <= ix1)) {
s1 = t1 + r;
if ((t1&sign) == sign && (s1 & sign) == 0)
s0++;
ix0 -= t;
if (ix1 < t1)
ix0--;
ix1 -= t1;
q1 += r;
}
ix0 += ix0 + ((ix1 & sign) >> 31);
ix1 += ix1;
r >>= 1;
}
/* use floating add to find out rounding direction */
if ((ix0 | ix1) != 0) {
z = 1.0 - tiny; /* raise inexact flag */
if (z >= 1.0) {
z = 1.0 + tiny;
if (q1 == (unsigned int)0xffffffff) {
q1 = 0;
q++;
} else if (z > 1.0) {
if (q1 == (unsigned int)0xfffffffe)
q++;
q1 += 2;
} else
q1 += q1 & 1;
}
}
ix0 = (q >> 1) + 0x3fe00000;
ix1 = q1 >> 1;
if (q & 1)
ix1 |= sign;
ix = ix0 + ((unsigned int)m << 20);
ix <<= 32;
ix |= ix1;
return *(double*)&ix;
#endif
}
/*********************************************************************
* tan (MSVCRT.@)
*/
double CDECL tan( double x )
{
double ret = unix_funcs->tan(x);
if (!isfinite(x)) return math_error(_DOMAIN, "tan", x, 0, ret);
return ret;
}
/*********************************************************************
* tanh (MSVCRT.@)
*/
double CDECL tanh( double x )
{
double ret = unix_funcs->tanh(x);
if (isnan(x)) return math_error(_DOMAIN, "tanh", x, 0, ret);
return ret;
}
#if (defined(__GNUC__) || defined(__clang__)) && defined(__i386__)
#define CREATE_FPU_FUNC1(name, call) \
__ASM_GLOBAL_FUNC(name, \
"pushl %ebp\n\t" \
__ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \
__ASM_CFI(".cfi_rel_offset %ebp,0\n\t") \
"movl %esp, %ebp\n\t" \
__ASM_CFI(".cfi_def_cfa_register %ebp\n\t") \
"subl $68, %esp\n\t" /* sizeof(double)*8 + sizeof(int) */ \
"fstpl (%esp)\n\t" /* store function argument */ \
"fwait\n\t" \
"movl $1, %ecx\n\t" /* empty FPU stack */ \
"1:\n\t" \
"fxam\n\t" \
"fstsw %ax\n\t" \
"and $0x4500, %ax\n\t" \
"cmp $0x4100, %ax\n\t" \
"je 2f\n\t" \
"fstpl (%esp,%ecx,8)\n\t" \
"fwait\n\t" \
"incl %ecx\n\t" \
"jmp 1b\n\t" \
"2:\n\t" \
"movl %ecx, -4(%ebp)\n\t" \
"call " __ASM_NAME( #call ) "\n\t" \
"movl -4(%ebp), %ecx\n\t" \
"fstpl (%esp)\n\t" /* save result */ \
"3:\n\t" /* restore FPU stack */ \
"decl %ecx\n\t" \
"fldl (%esp,%ecx,8)\n\t" \
"cmpl $0, %ecx\n\t" \
"jne 3b\n\t" \
"leave\n\t" \
__ASM_CFI(".cfi_def_cfa %esp,4\n\t") \
__ASM_CFI(".cfi_same_value %ebp\n\t") \
"ret")
#define CREATE_FPU_FUNC2(name, call) \
__ASM_GLOBAL_FUNC(name, \
"pushl %ebp\n\t" \
__ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \
__ASM_CFI(".cfi_rel_offset %ebp,0\n\t") \
"movl %esp, %ebp\n\t" \
__ASM_CFI(".cfi_def_cfa_register %ebp\n\t") \
"subl $68, %esp\n\t" /* sizeof(double)*8 + sizeof(int) */ \
"fstpl 8(%esp)\n\t" /* store function argument */ \
"fwait\n\t" \
"fstpl (%esp)\n\t" \
"fwait\n\t" \
"movl $2, %ecx\n\t" /* empty FPU stack */ \
"1:\n\t" \
"fxam\n\t" \
"fstsw %ax\n\t" \
"and $0x4500, %ax\n\t" \
"cmp $0x4100, %ax\n\t" \
"je 2f\n\t" \
"fstpl (%esp,%ecx,8)\n\t" \
"fwait\n\t" \
"incl %ecx\n\t" \
"jmp 1b\n\t" \
"2:\n\t" \
"movl %ecx, -4(%ebp)\n\t" \
"call " __ASM_NAME( #call ) "\n\t" \
"movl -4(%ebp), %ecx\n\t" \
"fstpl 8(%esp)\n\t" /* save result */ \
"3:\n\t" /* restore FPU stack */ \
"decl %ecx\n\t" \
"fldl (%esp,%ecx,8)\n\t" \
"cmpl $1, %ecx\n\t" \
"jne 3b\n\t" \
"leave\n\t" \
__ASM_CFI(".cfi_def_cfa %esp,4\n\t") \
__ASM_CFI(".cfi_same_value %ebp\n\t") \
"ret")
CREATE_FPU_FUNC1(_CIacos, acos)
CREATE_FPU_FUNC1(_CIasin, asin)
CREATE_FPU_FUNC1(_CIatan, atan)
CREATE_FPU_FUNC2(_CIatan2, atan2)
CREATE_FPU_FUNC1(_CIcos, cos)
CREATE_FPU_FUNC1(_CIcosh, cosh)
CREATE_FPU_FUNC1(_CIexp, exp)
CREATE_FPU_FUNC2(_CIfmod, fmod)
CREATE_FPU_FUNC1(_CIlog, log)
CREATE_FPU_FUNC1(_CIlog10, log10)
CREATE_FPU_FUNC2(_CIpow, pow)
CREATE_FPU_FUNC1(_CIsin, sin)
CREATE_FPU_FUNC1(_CIsinh, sinh)
CREATE_FPU_FUNC1(_CIsqrt, sqrt)
CREATE_FPU_FUNC1(_CItan, tan)
CREATE_FPU_FUNC1(_CItanh, tanh)
__ASM_GLOBAL_FUNC(_ftol,
"pushl %ebp\n\t"
__ASM_CFI(".cfi_adjust_cfa_offset 4\n\t")
__ASM_CFI(".cfi_rel_offset %ebp,0\n\t")
"movl %esp, %ebp\n\t"
__ASM_CFI(".cfi_def_cfa_register %ebp\n\t")
"subl $12, %esp\n\t" /* sizeof(LONGLONG) + 2*sizeof(WORD) */
"fnstcw (%esp)\n\t"
"mov (%esp), %ax\n\t"
"or $0xc00, %ax\n\t"
"mov %ax, 2(%esp)\n\t"
"fldcw 2(%esp)\n\t"
"fistpq 4(%esp)\n\t"
"fldcw (%esp)\n\t"
"movl 4(%esp), %eax\n\t"
"movl 8(%esp), %edx\n\t"
"leave\n\t"
__ASM_CFI(".cfi_def_cfa %esp,4\n\t")
__ASM_CFI(".cfi_same_value %ebp\n\t")
"ret")
#endif /* (defined(__GNUC__) || defined(__clang__)) && defined(__i386__) */
/*********************************************************************
* _fpclass (MSVCRT.@)
*/
int CDECL _fpclass(double num)
{
union { double f; UINT64 i; } u = { num };
int e = u.i >> 52 & 0x7ff;
int s = u.i >> 63;
switch (e)
{
case 0:
if (u.i << 1) return s ? _FPCLASS_ND : _FPCLASS_PD;
return s ? _FPCLASS_NZ : _FPCLASS_PZ;
case 0x7ff:
if (u.i << 12) return ((u.i >> 51) & 1) ? _FPCLASS_QNAN : _FPCLASS_SNAN;
return s ? _FPCLASS_NINF : _FPCLASS_PINF;
default:
return s ? _FPCLASS_NN : _FPCLASS_PN;
}
}
/*********************************************************************
* _rotl (MSVCRT.@)
*/
unsigned int CDECL MSVCRT__rotl(unsigned int num, int shift)
{
shift &= 31;
return (num << shift) | (num >> (32-shift));
}
/*********************************************************************
* _lrotl (MSVCRT.@)
*/
__msvcrt_ulong CDECL MSVCRT__lrotl(__msvcrt_ulong num, int shift)
{
shift &= 0x1f;
return (num << shift) | (num >> (32-shift));
}
/*********************************************************************
* _lrotr (MSVCRT.@)
*/
__msvcrt_ulong CDECL MSVCRT__lrotr(__msvcrt_ulong num, int shift)
{
shift &= 0x1f;
return (num >> shift) | (num << (32-shift));
}
/*********************************************************************
* _rotr (MSVCRT.@)
*/
unsigned int CDECL MSVCRT__rotr(unsigned int num, int shift)
{
shift &= 0x1f;
return (num >> shift) | (num << (32-shift));
}
/*********************************************************************
* _rotl64 (MSVCRT.@)
*/
unsigned __int64 CDECL MSVCRT__rotl64(unsigned __int64 num, int shift)
{
shift &= 63;
return (num << shift) | (num >> (64-shift));
}
/*********************************************************************
* _rotr64 (MSVCRT.@)
*/
unsigned __int64 CDECL MSVCRT__rotr64(unsigned __int64 num, int shift)
{
shift &= 63;
return (num >> shift) | (num << (64-shift));
}
/*********************************************************************
* abs (MSVCRT.@)
*/
int CDECL abs( int n )
{
return n >= 0 ? n : -n;
}
/*********************************************************************
* labs (MSVCRT.@)
*/
__msvcrt_long CDECL labs( __msvcrt_long n )
{
return n >= 0 ? n : -n;
}
#if _MSVCR_VER>=100
/*********************************************************************
* llabs (MSVCR100.@)
*/
__int64 CDECL llabs( __int64 n )
{
return n >= 0 ? n : -n;
}
#endif
#if _MSVCR_VER>=120
/*********************************************************************
* imaxabs (MSVCR120.@)
*/
intmax_t CDECL imaxabs( intmax_t n )
{
return n >= 0 ? n : -n;
}
#endif
/*********************************************************************
* _abs64 (MSVCRT.@)
*/
__int64 CDECL _abs64( __int64 n )
{
return n >= 0 ? n : -n;
}
/*********************************************************************
* _logb (MSVCRT.@)
*/
double CDECL _logb(double num)
{
double ret = unix_funcs->logb(num);
if (isnan(num)) return math_error(_DOMAIN, "_logb", num, 0, ret);
if (!num) return math_error(_SING, "_logb", num, 0, ret);
return ret;
}
/*********************************************************************
* _hypot (MSVCRT.@)
*/
double CDECL _hypot(double x, double y)
{
/* FIXME: errno handling */
return unix_funcs->hypot( x, y );
}
/*********************************************************************
* _hypotf (MSVCRT.@)
*/
float CDECL _hypotf(float x, float y)
{
/* FIXME: errno handling */
return unix_funcs->hypotf( x, y );
}
/*********************************************************************
* ceil (MSVCRT.@)
*/
double CDECL ceil( double x )
{
return unix_funcs->ceil(x);
}
/*********************************************************************
* floor (MSVCRT.@)
*/
double CDECL floor( double x )
{
return unix_funcs->floor(x);
}
/*********************************************************************
* fma (MSVCRT.@)
*/
double CDECL fma( double x, double y, double z )
{
double w = unix_funcs->fma(x, y, z);
if ((isinf(x) && y == 0) || (x == 0 && isinf(y))) *_errno() = EDOM;
else if (isinf(x) && isinf(z) && x != z) *_errno() = EDOM;
else if (isinf(y) && isinf(z) && y != z) *_errno() = EDOM;
return w;
}
/*********************************************************************
* fmaf (MSVCRT.@)
*/
float CDECL fmaf( float x, float y, float z )
{
float w = unix_funcs->fmaf(x, y, z);
if ((isinf(x) && y == 0) || (x == 0 && isinf(y))) *_errno() = EDOM;
else if (isinf(x) && isinf(z) && x != z) *_errno() = EDOM;
else if (isinf(y) && isinf(z) && y != z) *_errno() = EDOM;
return w;
}
/*********************************************************************
* fabs (MSVCRT.@)
*
* Copied from musl: src/math/fabsf.c
*/
double CDECL fabs( double x )
{
union { double f; UINT64 i; } u = { x };
u.i &= ~0ull >> 1;
return u.f;
}
/*********************************************************************
* frexp (MSVCRT.@)
*/
double CDECL frexp( double x, int *exp )
{
return unix_funcs->frexp( x, exp );
}
/*********************************************************************
* modf (MSVCRT.@)
*/
double CDECL modf( double x, double *iptr )
{
return unix_funcs->modf( x, iptr );
}
/**********************************************************************
* _statusfp2 (MSVCRT.@)
*
* Not exported by native msvcrt, added in msvcr80.
*/
#if defined(__i386__) || defined(__x86_64__)
void CDECL _statusfp2( unsigned int *x86_sw, unsigned int *sse2_sw )
{
#if defined(__GNUC__) || defined(__clang__)
unsigned int flags;
unsigned long fpword;
if (x86_sw)
{
__asm__ __volatile__( "fstsw %0" : "=m" (fpword) );
flags = 0;
if (fpword & 0x1) flags |= _SW_INVALID;
if (fpword & 0x2) flags |= _SW_DENORMAL;
if (fpword & 0x4) flags |= _SW_ZERODIVIDE;
if (fpword & 0x8) flags |= _SW_OVERFLOW;
if (fpword & 0x10) flags |= _SW_UNDERFLOW;
if (fpword & 0x20) flags |= _SW_INEXACT;
*x86_sw = flags;
}
if (!sse2_sw) return;
if (sse2_supported)
{
__asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
flags = 0;
if (fpword & 0x1) flags |= _SW_INVALID;
if (fpword & 0x2) flags |= _SW_DENORMAL;
if (fpword & 0x4) flags |= _SW_ZERODIVIDE;
if (fpword & 0x8) flags |= _SW_OVERFLOW;
if (fpword & 0x10) flags |= _SW_UNDERFLOW;
if (fpword & 0x20) flags |= _SW_INEXACT;
*sse2_sw = flags;
}
else *sse2_sw = 0;
#else
FIXME( "not implemented\n" );
#endif
}
#endif
/**********************************************************************
* _statusfp (MSVCRT.@)
*/
unsigned int CDECL _statusfp(void)
{
unsigned int flags = 0;
#if defined(__i386__) || defined(__x86_64__)
unsigned int x86_sw, sse2_sw;
_statusfp2( &x86_sw, &sse2_sw );
/* FIXME: there's no definition for ambiguous status, just return all status bits for now */
flags = x86_sw | sse2_sw;
#elif defined(__aarch64__)
ULONG_PTR fpsr;
__asm__ __volatile__( "mrs %0, fpsr" : "=r" (fpsr) );
if (fpsr & 0x1) flags |= _SW_INVALID;
if (fpsr & 0x2) flags |= _SW_ZERODIVIDE;
if (fpsr & 0x4) flags |= _SW_OVERFLOW;
if (fpsr & 0x8) flags |= _SW_UNDERFLOW;
if (fpsr & 0x10) flags |= _SW_INEXACT;
if (fpsr & 0x80) flags |= _SW_DENORMAL;
#else
FIXME( "not implemented\n" );
#endif
return flags;
}
/*********************************************************************
* _clearfp (MSVCRT.@)
*/
unsigned int CDECL _clearfp(void)
{
unsigned int flags = 0;
#if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__))
unsigned long fpword;
__asm__ __volatile__( "fnstsw %0; fnclex" : "=m" (fpword) );
if (fpword & 0x1) flags |= _SW_INVALID;
if (fpword & 0x2) flags |= _SW_DENORMAL;
if (fpword & 0x4) flags |= _SW_ZERODIVIDE;
if (fpword & 0x8) flags |= _SW_OVERFLOW;
if (fpword & 0x10) flags |= _SW_UNDERFLOW;
if (fpword & 0x20) flags |= _SW_INEXACT;
if (sse2_supported)
{
__asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
if (fpword & 0x1) flags |= _SW_INVALID;
if (fpword & 0x2) flags |= _SW_DENORMAL;
if (fpword & 0x4) flags |= _SW_ZERODIVIDE;
if (fpword & 0x8) flags |= _SW_OVERFLOW;
if (fpword & 0x10) flags |= _SW_UNDERFLOW;
if (fpword & 0x20) flags |= _SW_INEXACT;
fpword &= ~0x3f;
__asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) );
}
#elif defined(__aarch64__)
ULONG_PTR fpsr;
__asm__ __volatile__( "mrs %0, fpsr" : "=r" (fpsr) );
if (fpsr & 0x1) flags |= _SW_INVALID;
if (fpsr & 0x2) flags |= _SW_ZERODIVIDE;
if (fpsr & 0x4) flags |= _SW_OVERFLOW;
if (fpsr & 0x8) flags |= _SW_UNDERFLOW;
if (fpsr & 0x10) flags |= _SW_INEXACT;
if (fpsr & 0x80) flags |= _SW_DENORMAL;
fpsr &= ~0x9f;
__asm__ __volatile__( "msr fpsr, %0" :: "r" (fpsr) );
#else
FIXME( "not implemented\n" );
#endif
return flags;
}
/*********************************************************************
* __fpecode (MSVCRT.@)
*/
int * CDECL __fpecode(void)
{
return &msvcrt_get_thread_data()->fpecode;
}
/*********************************************************************
* ldexp (MSVCRT.@)
*/
double CDECL ldexp(double num, int exp)
{
double z = unix_funcs->ldexp(num,exp);
if (isfinite(num) && !isfinite(z))
return math_error(_OVERFLOW, "ldexp", num, exp, z);
if (num && isfinite(num) && !z)
return math_error(_UNDERFLOW, "ldexp", num, exp, z);
if (z == 0 && signbit(z))
z = 0.0; /* Convert -0 -> +0 */
return z;
}
/*********************************************************************
* _cabs (MSVCRT.@)
*/
double CDECL _cabs(struct _complex num)
{
return sqrt(num.x * num.x + num.y * num.y);
}
/*********************************************************************
* _chgsign (MSVCRT.@)
*/
double CDECL _chgsign(double num)
{
union { double f; UINT64 i; } u = { num };
u.i ^= 1ull << 63;
return u.f;
}
/*********************************************************************
* __control87_2 (MSVCR80.@)
*
* Not exported by native msvcrt, added in msvcr80.
*/
#ifdef __i386__
int CDECL __control87_2( unsigned int newval, unsigned int mask,
unsigned int *x86_cw, unsigned int *sse2_cw )
{
#if defined(__GNUC__) || defined(__clang__)
unsigned long fpword;
unsigned int flags;
unsigned int old_flags;
if (x86_cw)
{
__asm__ __volatile__( "fstcw %0" : "=m" (fpword) );
/* Convert into mask constants */
flags = 0;
if (fpword & 0x1) flags |= _EM_INVALID;
if (fpword & 0x2) flags |= _EM_DENORMAL;
if (fpword & 0x4) flags |= _EM_ZERODIVIDE;
if (fpword & 0x8) flags |= _EM_OVERFLOW;
if (fpword & 0x10) flags |= _EM_UNDERFLOW;
if (fpword & 0x20) flags |= _EM_INEXACT;
switch (fpword & 0xc00)
{
case 0xc00: flags |= _RC_UP|_RC_DOWN; break;
case 0x800: flags |= _RC_UP; break;
case 0x400: flags |= _RC_DOWN; break;
}
switch (fpword & 0x300)
{
case 0x0: flags |= _PC_24; break;
case 0x200: flags |= _PC_53; break;
case 0x300: flags |= _PC_64; break;
}
if (fpword & 0x1000) flags |= _IC_AFFINE;
TRACE( "x86 flags=%08x newval=%08x mask=%08x\n", flags, newval, mask );
if (mask)
{
flags = (flags & ~mask) | (newval & mask);
/* Convert (masked) value back to fp word */
fpword = 0;
if (flags & _EM_INVALID) fpword |= 0x1;
if (flags & _EM_DENORMAL) fpword |= 0x2;
if (flags & _EM_ZERODIVIDE) fpword |= 0x4;
if (flags & _EM_OVERFLOW) fpword |= 0x8;
if (flags & _EM_UNDERFLOW) fpword |= 0x10;
if (flags & _EM_INEXACT) fpword |= 0x20;
switch (flags & _MCW_RC)
{
case _RC_UP|_RC_DOWN: fpword |= 0xc00; break;
case _RC_UP: fpword |= 0x800; break;
case _RC_DOWN: fpword |= 0x400; break;
}
switch (flags & _MCW_PC)
{
case _PC_64: fpword |= 0x300; break;
case _PC_53: fpword |= 0x200; break;
case _PC_24: fpword |= 0x0; break;
}
if (flags & _IC_AFFINE) fpword |= 0x1000;
__asm__ __volatile__( "fldcw %0" : : "m" (fpword) );
}
*x86_cw = flags;
}
if (!sse2_cw) return 1;
if (sse2_supported)
{
__asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
/* Convert into mask constants */
flags = 0;
if (fpword & 0x80) flags |= _EM_INVALID;
if (fpword & 0x100) flags |= _EM_DENORMAL;
if (fpword & 0x200) flags |= _EM_ZERODIVIDE;
if (fpword & 0x400) flags |= _EM_OVERFLOW;
if (fpword & 0x800) flags |= _EM_UNDERFLOW;
if (fpword & 0x1000) flags |= _EM_INEXACT;
switch (fpword & 0x6000)
{
case 0x6000: flags |= _RC_UP|_RC_DOWN; break;
case 0x4000: flags |= _RC_UP; break;
case 0x2000: flags |= _RC_DOWN; break;
}
switch (fpword & 0x8040)
{
case 0x0040: flags |= _DN_FLUSH_OPERANDS_SAVE_RESULTS; break;
case 0x8000: flags |= _DN_SAVE_OPERANDS_FLUSH_RESULTS; break;
case 0x8040: flags |= _DN_FLUSH; break;
}
TRACE( "sse2 flags=%08x newval=%08x mask=%08x\n", flags, newval, mask );
if (mask)
{
old_flags = flags;
mask &= _MCW_EM | _MCW_RC | _MCW_DN;
flags = (flags & ~mask) | (newval & mask);
if (flags != old_flags)
{
/* Convert (masked) value back to fp word */
fpword = 0;
if (flags & _EM_INVALID) fpword |= 0x80;
if (flags & _EM_DENORMAL) fpword |= 0x100;
if (flags & _EM_ZERODIVIDE) fpword |= 0x200;
if (flags & _EM_OVERFLOW) fpword |= 0x400;
if (flags & _EM_UNDERFLOW) fpword |= 0x800;
if (flags & _EM_INEXACT) fpword |= 0x1000;
switch (flags & _MCW_RC)
{
case _RC_UP|_RC_DOWN: fpword |= 0x6000; break;
case _RC_UP: fpword |= 0x4000; break;
case _RC_DOWN: fpword |= 0x2000; break;
}
switch (flags & _MCW_DN)
{
case _DN_FLUSH_OPERANDS_SAVE_RESULTS: fpword |= 0x0040; break;
case _DN_SAVE_OPERANDS_FLUSH_RESULTS: fpword |= 0x8000; break;
case _DN_FLUSH: fpword |= 0x8040; break;
}
__asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) );
}
}
*sse2_cw = flags;
}
else *sse2_cw = 0;
return 1;
#else
FIXME( "not implemented\n" );
return 0;
#endif
}
#endif
/*********************************************************************
* _control87 (MSVCRT.@)
*/
unsigned int CDECL _control87(unsigned int newval, unsigned int mask)
{
unsigned int flags = 0;
#ifdef __i386__
unsigned int sse2_cw;
__control87_2( newval, mask, &flags, &sse2_cw );
if ((flags ^ sse2_cw) & (_MCW_EM | _MCW_RC)) flags |= _EM_AMBIGUOUS;
flags |= sse2_cw;
#elif defined(__x86_64__)
unsigned long fpword;
unsigned int old_flags;
__asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
if (fpword & 0x80) flags |= _EM_INVALID;
if (fpword & 0x100) flags |= _EM_DENORMAL;
if (fpword & 0x200) flags |= _EM_ZERODIVIDE;
if (fpword & 0x400) flags |= _EM_OVERFLOW;
if (fpword & 0x800) flags |= _EM_UNDERFLOW;
if (fpword & 0x1000) flags |= _EM_INEXACT;
switch (fpword & 0x6000)
{
case 0x6000: flags |= _RC_CHOP; break;
case 0x4000: flags |= _RC_UP; break;
case 0x2000: flags |= _RC_DOWN; break;
}
switch (fpword & 0x8040)
{
case 0x0040: flags |= _DN_FLUSH_OPERANDS_SAVE_RESULTS; break;
case 0x8000: flags |= _DN_SAVE_OPERANDS_FLUSH_RESULTS; break;
case 0x8040: flags |= _DN_FLUSH; break;
}
old_flags = flags;
mask &= _MCW_EM | _MCW_RC | _MCW_DN;
flags = (flags & ~mask) | (newval & mask);
if (flags != old_flags)
{
fpword = 0;
if (flags & _EM_INVALID) fpword |= 0x80;
if (flags & _EM_DENORMAL) fpword |= 0x100;
if (flags & _EM_ZERODIVIDE) fpword |= 0x200;
if (flags & _EM_OVERFLOW) fpword |= 0x400;
if (flags & _EM_UNDERFLOW) fpword |= 0x800;
if (flags & _EM_INEXACT) fpword |= 0x1000;
switch (flags & _MCW_RC)
{
case _RC_CHOP: fpword |= 0x6000; break;
case _RC_UP: fpword |= 0x4000; break;
case _RC_DOWN: fpword |= 0x2000; break;
}
switch (flags & _MCW_DN)
{
case _DN_FLUSH_OPERANDS_SAVE_RESULTS: fpword |= 0x0040; break;
case _DN_SAVE_OPERANDS_FLUSH_RESULTS: fpword |= 0x8000; break;
case _DN_FLUSH: fpword |= 0x8040; break;
}
__asm__ __volatile__( "ldmxcsr %0" :: "m" (fpword) );
}
#elif defined(__aarch64__)
ULONG_PTR fpcr;
__asm__ __volatile__( "mrs %0, fpcr" : "=r" (fpcr) );
if (!(fpcr & 0x100)) flags |= _EM_INVALID;
if (!(fpcr & 0x200)) flags |= _EM_ZERODIVIDE;
if (!(fpcr & 0x400)) flags |= _EM_OVERFLOW;
if (!(fpcr & 0x800)) flags |= _EM_UNDERFLOW;
if (!(fpcr & 0x1000)) flags |= _EM_INEXACT;
if (!(fpcr & 0x8000)) flags |= _EM_DENORMAL;
switch (fpcr & 0xc00000)
{
case 0x400000: flags |= _RC_UP; break;
case 0x800000: flags |= _RC_DOWN; break;
case 0xc00000: flags |= _RC_CHOP; break;
}
flags = (flags & ~mask) | (newval & mask);
fpcr &= ~0xc09f00ul;
if (!(flags & _EM_INVALID)) fpcr |= 0x100;
if (!(flags & _EM_ZERODIVIDE)) fpcr |= 0x200;
if (!(flags & _EM_OVERFLOW)) fpcr |= 0x400;
if (!(flags & _EM_UNDERFLOW)) fpcr |= 0x800;
if (!(flags & _EM_INEXACT)) fpcr |= 0x1000;
if (!(flags & _EM_DENORMAL)) fpcr |= 0x8000;
switch (flags & _MCW_RC)
{
case _RC_CHOP: fpcr |= 0xc00000; break;
case _RC_UP: fpcr |= 0x400000; break;
case _RC_DOWN: fpcr |= 0x800000; break;
}
__asm__ __volatile__( "msr fpcr, %0" :: "r" (fpcr) );
#else
FIXME( "not implemented\n" );
#endif
return flags;
}
/*********************************************************************
* _controlfp (MSVCRT.@)
*/
unsigned int CDECL _controlfp(unsigned int newval, unsigned int mask)
{
return _control87( newval, mask & ~_EM_DENORMAL );
}
/*********************************************************************
* _set_controlfp (MSVCRT.@)
*/
void CDECL _set_controlfp( unsigned int newval, unsigned int mask )
{
_controlfp( newval, mask );
}
/*********************************************************************
* _controlfp_s (MSVCRT.@)
*/
int CDECL _controlfp_s(unsigned int *cur, unsigned int newval, unsigned int mask)
{
static const unsigned int all_flags = (_MCW_EM | _MCW_IC | _MCW_RC |
_MCW_PC | _MCW_DN);
unsigned int val;
if (!MSVCRT_CHECK_PMT( !(newval & mask & ~all_flags) ))
{
if (cur) *cur = _controlfp( 0, 0 ); /* retrieve it anyway */
return EINVAL;
}
val = _controlfp( newval, mask );
if (cur) *cur = val;
return 0;
}
#if _MSVCR_VER>=120
/*********************************************************************
* fegetenv (MSVCR120.@)
*/
int CDECL fegetenv(fenv_t *env)
{
env->_Fe_ctl = _controlfp(0, 0) & (_EM_INEXACT | _EM_UNDERFLOW |
_EM_OVERFLOW | _EM_ZERODIVIDE | _EM_INVALID | _RC_CHOP);
env->_Fe_stat = _statusfp();
return 0;
}
#endif
#if _MSVCR_VER>=140
/*********************************************************************
* __fpe_flt_rounds (UCRTBASE.@)
*/
int CDECL __fpe_flt_rounds(void)
{
unsigned int fpc = _controlfp(0, 0) & _RC_CHOP;
TRACE("()\n");
switch(fpc) {
case _RC_CHOP: return 0;
case _RC_NEAR: return 1;
case _RC_UP: return 2;
default: return 3;
}
}
#endif
#if _MSVCR_VER>=120
/*********************************************************************
* fegetround (MSVCR120.@)
*/
int CDECL fegetround(void)
{
return _controlfp(0, 0) & _RC_CHOP;
}
/*********************************************************************
* fesetround (MSVCR120.@)
*/
int CDECL fesetround(int round_mode)
{
if (round_mode & (~_RC_CHOP))
return 1;
_controlfp(round_mode, _RC_CHOP);
return 0;
}
#endif /* _MSVCR_VER>=120 */
/*********************************************************************
* _copysign (MSVCRT.@)
*
* Copied from musl: src/math/copysign.c
*/
double CDECL _copysign( double x, double y )
{
union { double f; UINT64 i; } ux = { x }, uy = { y };
ux.i &= ~0ull >> 1;
ux.i |= uy.i & 1ull << 63;
return ux.f;
}
/*********************************************************************
* _finite (MSVCRT.@)
*/
int CDECL _finite(double num)
{
union { double f; UINT64 i; } u = { num };
return (u.i & ~0ull >> 1) < 0x7ffull << 52;
}
/*********************************************************************
* _fpreset (MSVCRT.@)
*/
void CDECL _fpreset(void)
{
#if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__))
const unsigned int x86_cw = 0x27f;
__asm__ __volatile__( "fninit; fldcw %0" : : "m" (x86_cw) );
if (sse2_supported)
{
const unsigned long sse2_cw = 0x1f80;
__asm__ __volatile__( "ldmxcsr %0" : : "m" (sse2_cw) );
}
#else
FIXME( "not implemented\n" );
#endif
}
#if _MSVCR_VER>=120
/*********************************************************************
* fesetenv (MSVCR120.@)
*/
int CDECL fesetenv(const fenv_t *env)
{
#if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__))
struct {
WORD control_word;
WORD unused1;
WORD status_word;
WORD unused2;
WORD tag_word;
WORD unused3;
DWORD instruction_pointer;
WORD code_segment;
WORD unused4;
DWORD operand_addr;
WORD data_segment;
WORD unused5;
} fenv;
TRACE( "(%p)\n", env );
if (!env->_Fe_ctl && !env->_Fe_stat) {
_fpreset();
return 0;
}
__asm__ __volatile__( "fnstenv %0" : "=m" (fenv) );
fenv.control_word &= ~0xc3d;
if (env->_Fe_ctl & _EM_INVALID) fenv.control_word |= 0x1;
if (env->_Fe_ctl & _EM_ZERODIVIDE) fenv.control_word |= 0x4;
if (env->_Fe_ctl & _EM_OVERFLOW) fenv.control_word |= 0x8;
if (env->_Fe_ctl & _EM_UNDERFLOW) fenv.control_word |= 0x10;
if (env->_Fe_ctl & _EM_INEXACT) fenv.control_word |= 0x20;
switch (env->_Fe_ctl & _MCW_RC)
{
case _RC_UP|_RC_DOWN: fenv.control_word |= 0xc00; break;
case _RC_UP: fenv.control_word |= 0x800; break;
case _RC_DOWN: fenv.control_word |= 0x400; break;
}
fenv.status_word &= ~0x3d;
if (env->_Fe_stat & FE_INVALID) fenv.status_word |= 0x1;
if (env->_Fe_stat & FE_DIVBYZERO) fenv.status_word |= 0x4;
if (env->_Fe_stat & FE_OVERFLOW) fenv.status_word |= 0x8;
if (env->_Fe_stat & FE_UNDERFLOW) fenv.status_word |= 0x10;
if (env->_Fe_stat & FE_INEXACT) fenv.status_word |= 0x20;
__asm__ __volatile__( "fldenv %0" : : "m" (fenv) : "st", "st(1)",
"st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)" );
if (sse2_supported)
{
DWORD fpword;
__asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
fpword &= ~0x7e80;
if (env->_Fe_ctl & _EM_INVALID) fpword |= 0x80;
if (env->_Fe_ctl & _EM_ZERODIVIDE) fpword |= 0x200;
if (env->_Fe_ctl & _EM_OVERFLOW) fpword |= 0x400;
if (env->_Fe_ctl & _EM_UNDERFLOW) fpword |= 0x800;
if (env->_Fe_ctl & _EM_INEXACT) fpword |= 0x1000;
switch (env->_Fe_ctl & _MCW_RC)
{
case _RC_CHOP: fpword |= 0x6000; break;
case _RC_UP: fpword |= 0x4000; break;
case _RC_DOWN: fpword |= 0x2000; break;
}
__asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) );
}
return 0;
#else
FIXME( "not implemented\n" );
#endif
return 1;
}
#endif
/*********************************************************************
* _isnan (MSVCRT.@)
*/
int CDECL _isnan(double num)
{
union { double f; UINT64 i; } u = { num };
return (u.i & ~0ull >> 1) > 0x7ffull << 52;
}
/*********************************************************************
* _j0 (MSVCRT.@)
*/
double CDECL _j0(double num)
{
/* FIXME: errno handling */
return unix_funcs->j0( num );
}
/*********************************************************************
* _j1 (MSVCRT.@)
*/
double CDECL _j1(double num)
{
/* FIXME: errno handling */
return unix_funcs->j1( num );
}
/*********************************************************************
* _jn (MSVCRT.@)
*/
double CDECL _jn(int n, double num)
{
/* FIXME: errno handling */
return unix_funcs->jn( n, num );
}
/*********************************************************************
* _y0 (MSVCRT.@)
*/
double CDECL _y0(double num)
{
double retval;
if (!isfinite(num)) *_errno() = EDOM;
retval = unix_funcs->y0( num );
if (_fpclass(retval) == _FPCLASS_NINF)
{
*_errno() = EDOM;
retval = NAN;
}
return retval;
}
/*********************************************************************
* _y1 (MSVCRT.@)
*/
double CDECL _y1(double num)
{
double retval;
if (!isfinite(num)) *_errno() = EDOM;
retval = unix_funcs->y1( num );
if (_fpclass(retval) == _FPCLASS_NINF)
{
*_errno() = EDOM;
retval = NAN;
}
return retval;
}
/*********************************************************************
* _yn (MSVCRT.@)
*/
double CDECL _yn(int order, double num)
{
double retval;
if (!isfinite(num)) *_errno() = EDOM;
retval = unix_funcs->yn( order, num );
if (_fpclass(retval) == _FPCLASS_NINF)
{
*_errno() = EDOM;
retval = NAN;
}
return retval;
}
#if _MSVCR_VER>=120
/*********************************************************************
* _nearbyint (MSVCR120.@)
*/
double CDECL nearbyint(double num)
{
return unix_funcs->nearbyint( num );
}
/*********************************************************************
* _nearbyintf (MSVCR120.@)
*/
float CDECL nearbyintf(float num)
{
return unix_funcs->nearbyintf( num );
}
/*********************************************************************
* nexttoward (MSVCR120.@)
*/
double CDECL MSVCRT_nexttoward(double num, double next)
{
double ret = unix_funcs->nexttoward(num, next);
if (!(_fpclass(ret) & (_FPCLASS_PN | _FPCLASS_NN
| _FPCLASS_SNAN | _FPCLASS_QNAN)) && !isinf(num))
{
*_errno() = ERANGE;
}
return ret;
}
/*********************************************************************
* nexttowardf (MSVCR120.@)
*/
float CDECL MSVCRT_nexttowardf(float num, double next)
{
float ret = unix_funcs->nexttowardf( num, next );
if (!(_fpclass(ret) & (_FPCLASS_PN | _FPCLASS_NN
| _FPCLASS_SNAN | _FPCLASS_QNAN)) && !isinf(num))
{
*_errno() = ERANGE;
}
return ret;
}
#endif /* _MSVCR_VER>=120 */
/*********************************************************************
* _nextafter (MSVCRT.@)
*/
double CDECL _nextafter(double num, double next)
{
double retval;
if (!isfinite(num) || !isfinite(next)) *_errno() = EDOM;
retval = unix_funcs->nextafter(num,next);
return retval;
}
/*********************************************************************
* _ecvt (MSVCRT.@)
*/
char * CDECL _ecvt( double number, int ndigits, int *decpt, int *sign )
{
int prec, len;
thread_data_t *data = msvcrt_get_thread_data();
/* FIXME: check better for overflow (native supports over 300 chars) */
ndigits = min( ndigits, 80 - 7); /* 7 : space for dec point, 1 for "e",
* 4 for exponent and one for
* terminating '\0' */
if (!data->efcvt_buffer)
data->efcvt_buffer = malloc( 80 ); /* ought to be enough */
if( number < 0) {
*sign = TRUE;
number = -number;
} else
*sign = FALSE;
/* handle cases with zero ndigits or less */
prec = ndigits;
if( prec < 1) prec = 2;
len = _snprintf(data->efcvt_buffer, 80, "%.*le", prec - 1, number);
/* take the decimal "point away */
if( prec != 1)
memmove( data->efcvt_buffer + 1, data->efcvt_buffer + 2, len - 1 );
/* take the exponential "e" out */
data->efcvt_buffer[ prec] = '\0';
/* read the exponent */
sscanf( data->efcvt_buffer + prec + 1, "%d", decpt);
(*decpt)++;
/* adjust for some border cases */
if( data->efcvt_buffer[0] == '0')/* value is zero */
*decpt = 0;
/* handle cases with zero ndigits or less */
if( ndigits < 1){
if( data->efcvt_buffer[ 0] >= '5')
(*decpt)++;
data->efcvt_buffer[ 0] = '\0';
}
TRACE("out=\"%s\"\n",data->efcvt_buffer);
return data->efcvt_buffer;
}
/*********************************************************************
* _ecvt_s (MSVCRT.@)
*/
int CDECL _ecvt_s( char *buffer, size_t length, double number, int ndigits, int *decpt, int *sign )
{
int prec, len;
char *result;
const char infret[] = "1#INF";
if (!MSVCRT_CHECK_PMT(buffer != NULL)) return EINVAL;
if (!MSVCRT_CHECK_PMT(decpt != NULL)) return EINVAL;
if (!MSVCRT_CHECK_PMT(sign != NULL)) return EINVAL;
if (!MSVCRT_CHECK_PMT_ERR( length > 2, ERANGE )) return ERANGE;
if (!MSVCRT_CHECK_PMT_ERR(ndigits < (int)length - 1, ERANGE )) return ERANGE;
/* special case - inf */
if(number == HUGE_VAL || number == -HUGE_VAL)
{
memset(buffer, '0', ndigits);
memcpy(buffer, infret, min(ndigits, sizeof(infret) - 1 ) );
buffer[ndigits] = '\0';
(*decpt) = 1;
if(number == -HUGE_VAL)
(*sign) = 1;
else
(*sign) = 0;
return 0;
}
/* handle cases with zero ndigits or less */
prec = ndigits;
if( prec < 1) prec = 2;
result = malloc(prec + 7);
if( number < 0) {
*sign = TRUE;
number = -number;
} else
*sign = FALSE;
len = _snprintf(result, prec + 7, "%.*le", prec - 1, number);
/* take the decimal "point away */
if( prec != 1)
memmove( result + 1, result + 2, len - 1 );
/* take the exponential "e" out */
result[ prec] = '\0';
/* read the exponent */
sscanf( result + prec + 1, "%d", decpt);
(*decpt)++;
/* adjust for some border cases */
if( result[0] == '0')/* value is zero */
*decpt = 0;
/* handle cases with zero ndigits or less */
if( ndigits < 1){
if( result[ 0] >= '5')
(*decpt)++;
result[ 0] = '\0';
}
memcpy( buffer, result, max(ndigits + 1, 1) );
free( result );
return 0;
}
/***********************************************************************
* _fcvt (MSVCRT.@)
*/
char * CDECL _fcvt( double number, int ndigits, int *decpt, int *sign )
{
thread_data_t *data = msvcrt_get_thread_data();
int stop, dec1, dec2;
char *ptr1, *ptr2, *first;
char buf[80]; /* ought to be enough */
char decimal_separator = get_locinfo()->lconv->decimal_point[0];
if (!data->efcvt_buffer)
data->efcvt_buffer = malloc( 80 ); /* ought to be enough */
if (number < 0)
{
*sign = 1;
number = -number;
} else *sign = 0;
stop = _snprintf(buf, 80, "%.*f", ndigits < 0 ? 0 : ndigits, number);
ptr1 = buf;
ptr2 = data->efcvt_buffer;
first = NULL;
dec1 = 0;
dec2 = 0;
/* For numbers below the requested resolution, work out where
the decimal point will be rather than finding it in the string */
if (number < 1.0 && number > 0.0) {
dec2 = log10(number + 1e-10);
if (-dec2 <= ndigits) dec2 = 0;
}
/* If requested digits is zero or less, we will need to truncate
* the returned string */
if (ndigits < 1) {
stop += ndigits;
}
while (*ptr1 == '0') ptr1++; /* Skip leading zeroes */
while (*ptr1 != '\0' && *ptr1 != decimal_separator) {
if (!first) first = ptr2;
if ((ptr1 - buf) < stop) {
*ptr2++ = *ptr1++;
} else {
ptr1++;
}
dec1++;
}
if (ndigits > 0) {
ptr1++;
if (!first) {
while (*ptr1 == '0') { /* Process leading zeroes */
*ptr2++ = *ptr1++;
dec1--;
}
}
while (*ptr1 != '\0') {
if (!first) first = ptr2;
*ptr2++ = *ptr1++;
}
}
*ptr2 = '\0';
/* We never found a non-zero digit, then our number is either
* smaller than the requested precision, or 0.0 */
if (!first) {
if (number > 0.0) {
first = ptr2;
} else {
first = data->efcvt_buffer;
dec1 = 0;
}
}
*decpt = dec2 ? dec2 : dec1;
return first;
}
/***********************************************************************
* _fcvt_s (MSVCRT.@)
*/
int CDECL _fcvt_s(char* outbuffer, size_t size, double number, int ndigits, int *decpt, int *sign)
{
int stop, dec1, dec2;
char *ptr1, *ptr2, *first;
char buf[80]; /* ought to be enough */
char decimal_separator = get_locinfo()->lconv->decimal_point[0];
if (!outbuffer || !decpt || !sign || size == 0)
{
*_errno() = EINVAL;
return EINVAL;
}
if (number < 0)
{
*sign = 1;
number = -number;
} else *sign = 0;
stop = _snprintf(buf, 80, "%.*f", ndigits < 0 ? 0 : ndigits, number);
ptr1 = buf;
ptr2 = outbuffer;
first = NULL;
dec1 = 0;
dec2 = 0;
/* For numbers below the requested resolution, work out where
the decimal point will be rather than finding it in the string */
if (number < 1.0 && number > 0.0) {
dec2 = log10(number + 1e-10);
if (-dec2 <= ndigits) dec2 = 0;
}
/* If requested digits is zero or less, we will need to truncate
* the returned string */
if (ndigits < 1) {
stop += ndigits;
}
while (*ptr1 == '0') ptr1++; /* Skip leading zeroes */
while (*ptr1 != '\0' && *ptr1 != decimal_separator) {
if (!first) first = ptr2;
if ((ptr1 - buf) < stop) {
if (size > 1) {
*ptr2++ = *ptr1++;
size--;
}
} else {
ptr1++;
}
dec1++;
}
if (ndigits > 0) {
ptr1++;
if (!first) {
while (*ptr1 == '0') { /* Process leading zeroes */
if (number == 0.0 && size > 1) {
*ptr2++ = '0';
size--;
}
ptr1++;
dec1--;
}
}
while (*ptr1 != '\0') {
if (!first) first = ptr2;
if (size > 1) {
*ptr2++ = *ptr1++;
size--;
}
}
}
*ptr2 = '\0';
/* We never found a non-zero digit, then our number is either
* smaller than the requested precision, or 0.0 */
if (!first && (number <= 0.0))
dec1 = 0;
*decpt = dec2 ? dec2 : dec1;
return 0;
}
/***********************************************************************
* _gcvt (MSVCRT.@)
*/
char * CDECL _gcvt( double number, int ndigit, char *buff )
{
if(!buff) {
*_errno() = EINVAL;
return NULL;
}
if(ndigit < 0) {
*_errno() = ERANGE;
return NULL;
}
sprintf(buff, "%.*g", ndigit, number);
return buff;
}
/***********************************************************************
* _gcvt_s (MSVCRT.@)
*/
int CDECL _gcvt_s(char *buff, size_t size, double number, int digits)
{
int len;
if(!buff) {
*_errno() = EINVAL;
return EINVAL;
}
if( digits<0 || digits>=size) {
if(size)
buff[0] = '\0';
*_errno() = ERANGE;
return ERANGE;
}
len = _scprintf("%.*g", digits, number);
if(len > size) {
buff[0] = '\0';
*_errno() = ERANGE;
return ERANGE;
}
sprintf(buff, "%.*g", digits, number);
return 0;
}
#include <stdlib.h> /* div_t, ldiv_t */
/*********************************************************************
* div (MSVCRT.@)
* VERSION
* [i386] Windows binary compatible - returns the struct in eax/edx.
*/
#ifdef __i386__
unsigned __int64 CDECL div(int num, int denom)
{
union {
div_t div;
unsigned __int64 uint64;
} ret;
ret.div.quot = num / denom;
ret.div.rem = num % denom;
return ret.uint64;
}
#else
/*********************************************************************
* div (MSVCRT.@)
* VERSION
* [!i386] Non-x86 can't run win32 apps so we don't need binary compatibility
*/
div_t CDECL div(int num, int denom)
{
div_t ret;
ret.quot = num / denom;
ret.rem = num % denom;
return ret;
}
#endif /* ifdef __i386__ */
/*********************************************************************
* ldiv (MSVCRT.@)
* VERSION
* [i386] Windows binary compatible - returns the struct in eax/edx.
*/
#ifdef __i386__
unsigned __int64 CDECL ldiv(__msvcrt_long num, __msvcrt_long denom)
{
union {
ldiv_t ldiv;
unsigned __int64 uint64;
} ret;
ret.ldiv.quot = num / denom;
ret.ldiv.rem = num % denom;
return ret.uint64;
}
#else
/*********************************************************************
* ldiv (MSVCRT.@)
* VERSION
* [!i386] Non-x86 can't run win32 apps so we don't need binary compatibility
*/
ldiv_t CDECL ldiv(__msvcrt_long num, __msvcrt_long denom)
{
ldiv_t ret;
ret.quot = num / denom;
ret.rem = num % denom;
return ret;
}
#endif /* ifdef __i386__ */
#if _MSVCR_VER>=100
/*********************************************************************
* lldiv (MSVCR100.@)
*/
lldiv_t CDECL lldiv(__int64 num, __int64 denom)
{
lldiv_t ret;
ret.quot = num / denom;
ret.rem = num % denom;
return ret;
}
#endif
#ifdef __i386__
/*********************************************************************
* _adjust_fdiv (MSVCRT.@)
* Used by the MSVC compiler to work around the Pentium FDIV bug.
*/
int MSVCRT__adjust_fdiv = 0;
/***********************************************************************
* _adj_fdiv_m16i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m16i( short arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_m32 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m32( unsigned int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_m32i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m32i( int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_m64 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m64( unsigned __int64 arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_r (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fdiv_r(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m16i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m16i( short arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m32 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m32( unsigned int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m32i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m32i( int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m64 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m64( unsigned __int64 arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fpatan (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fpatan(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fprem (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fprem(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fprem1 (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fprem1(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fptan (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fptan(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fdiv (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fdiv(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fdivr (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fdivr(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fprem (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fprem(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fprem1 (MSVCRT.@)
*
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fprem1(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* __libm_sse2_acos (MSVCRT.@)
*/
void __cdecl __libm_sse2_acos(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = acos( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_acosf (MSVCRT.@)
*/
void __cdecl __libm_sse2_acosf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = acosf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_asin (MSVCRT.@)
*/
void __cdecl __libm_sse2_asin(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = asin( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_asinf (MSVCRT.@)
*/
void __cdecl __libm_sse2_asinf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = asinf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_atan (MSVCRT.@)
*/
void __cdecl __libm_sse2_atan(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = atan( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_atan2 (MSVCRT.@)
*/
void __cdecl __libm_sse2_atan2(void)
{
double d1, d2;
__asm__ __volatile__( "movq %%xmm0,%0; movq %%xmm1,%1 " : "=m" (d1), "=m" (d2) );
d1 = atan2( d1, d2 );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d1) );
}
/***********************************************************************
* __libm_sse2_atanf (MSVCRT.@)
*/
void __cdecl __libm_sse2_atanf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = atanf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_cos (MSVCRT.@)
*/
void __cdecl __libm_sse2_cos(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = cos( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_cosf (MSVCRT.@)
*/
void __cdecl __libm_sse2_cosf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = cosf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_exp (MSVCRT.@)
*/
void __cdecl __libm_sse2_exp(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = exp( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_expf (MSVCRT.@)
*/
void __cdecl __libm_sse2_expf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = expf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_log (MSVCRT.@)
*/
void __cdecl __libm_sse2_log(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = log( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_log10 (MSVCRT.@)
*/
void __cdecl __libm_sse2_log10(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = log10( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_log10f (MSVCRT.@)
*/
void __cdecl __libm_sse2_log10f(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = log10f( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_logf (MSVCRT.@)
*/
void __cdecl __libm_sse2_logf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = logf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_pow (MSVCRT.@)
*/
void __cdecl __libm_sse2_pow(void)
{
double d1, d2;
__asm__ __volatile__( "movq %%xmm0,%0; movq %%xmm1,%1 " : "=m" (d1), "=m" (d2) );
d1 = pow( d1, d2 );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d1) );
}
/***********************************************************************
* __libm_sse2_powf (MSVCRT.@)
*/
void __cdecl __libm_sse2_powf(void)
{
float f1, f2;
__asm__ __volatile__( "movd %%xmm0,%0; movd %%xmm1,%1" : "=g" (f1), "=g" (f2) );
f1 = powf( f1, f2 );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f1) );
}
/***********************************************************************
* __libm_sse2_sin (MSVCRT.@)
*/
void __cdecl __libm_sse2_sin(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = sin( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_sinf (MSVCRT.@)
*/
void __cdecl __libm_sse2_sinf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = sinf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_tan (MSVCRT.@)
*/
void __cdecl __libm_sse2_tan(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = tan( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_tanf (MSVCRT.@)
*/
void __cdecl __libm_sse2_tanf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = tanf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_sqrt_precise (MSVCR110.@)
*/
void __cdecl __libm_sse2_sqrt_precise(void)
{
unsigned int cw;
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
__control87_2(0, 0, NULL, &cw);
if (cw & _MCW_RC)
{
d = sqrt(d);
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
return;
}
if (!sqrt_validate(&d, FALSE))
{
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
return;
}
__asm__ __volatile__( "call " __ASM_NAME( "sse2_sqrt" ) );
}
#endif /* __i386__ */
/*********************************************************************
* cbrt (MSVCR120.@)
*/
double CDECL cbrt(double x)
{
return unix_funcs->cbrt( x );
}
/*********************************************************************
* cbrtf (MSVCR120.@)
*/
float CDECL cbrtf(float x)
{
return unix_funcs->cbrtf( x );
}
/*********************************************************************
* exp2 (MSVCR120.@)
*/
double CDECL exp2(double x)
{
double ret = unix_funcs->exp2( x );
if (isfinite(x) && !isfinite(ret)) *_errno() = ERANGE;
return ret;
}
/*********************************************************************
* exp2f (MSVCR120.@)
*/
float CDECL exp2f(float x)
{
float ret = unix_funcs->exp2f( x );
if (isfinite(x) && !isfinite(ret)) *_errno() = ERANGE;
return ret;
}
/*********************************************************************
* expm1 (MSVCR120.@)
*/
double CDECL expm1(double x)
{
double ret = unix_funcs->expm1( x );
if (isfinite(x) && !isfinite(ret)) *_errno() = ERANGE;
return ret;
}
/*********************************************************************
* expm1f (MSVCR120.@)
*/
float CDECL expm1f(float x)
{
float ret = unix_funcs->expm1f( x );
if (isfinite(x) && !isfinite(ret)) *_errno() = ERANGE;
return ret;
}
/*********************************************************************
* log1p (MSVCR120.@)
*/
double CDECL log1p(double x)
{
if (x < -1) *_errno() = EDOM;
else if (x == -1) *_errno() = ERANGE;
return unix_funcs->log1p( x );
}
/*********************************************************************
* log1pf (MSVCR120.@)
*/
float CDECL log1pf(float x)
{
if (x < -1) *_errno() = EDOM;
else if (x == -1) *_errno() = ERANGE;
return unix_funcs->log1pf( x );
}
/*********************************************************************
* log2 (MSVCR120.@)
*/
double CDECL log2(double x)
{
if (x < 0) *_errno() = EDOM;
else if (x == 0) *_errno() = ERANGE;
return unix_funcs->log2( x );
}
/*********************************************************************
* log2f (MSVCR120.@)
*/
float CDECL log2f(float x)
{
if (x < 0) *_errno() = EDOM;
else if (x == 0) *_errno() = ERANGE;
return unix_funcs->log2f( x );
}
/*********************************************************************
* rint (MSVCR120.@)
*/
double CDECL rint(double x)
{
return unix_funcs->rint(x);
}
/*********************************************************************
* rintf (MSVCR120.@)
*/
float CDECL rintf(float x)
{
return unix_funcs->rintf(x);
}
/*********************************************************************
* lrint (MSVCR120.@)
*/
__msvcrt_long CDECL lrint(double x)
{
return unix_funcs->lrint( x );
}
/*********************************************************************
* lrintf (MSVCR120.@)
*/
__msvcrt_long CDECL lrintf(float x)
{
return unix_funcs->lrintf( x );
}
/*********************************************************************
* llrint (MSVCR120.@)
*/
__int64 CDECL llrint(double x)
{
return unix_funcs->llrint( x );
}
/*********************************************************************
* llrintf (MSVCR120.@)
*/
__int64 CDECL llrintf(float x)
{
return unix_funcs->llrintf( x );
}
/*********************************************************************
* _dclass (MSVCR120.@)
*
* Copied from musl: src/math/__fpclassify.c
*/
short CDECL _dclass(double x)
{
union { double f; UINT64 i; } u = { x };
int e = u.i >> 52 & 0x7ff;
if (!e) return u.i << 1 ? FP_SUBNORMAL : FP_ZERO;
if (e == 0x7ff) return (u.i << 12) ? FP_NAN : FP_INFINITE;
return FP_NORMAL;
}
#if _MSVCR_VER>=120
/*********************************************************************
* round (MSVCR120.@)
*/
double CDECL round(double x)
{
return unix_funcs->round(x);
}
/*********************************************************************
* roundf (MSVCR120.@)
*/
float CDECL roundf(float x)
{
return unix_funcs->roundf(x);
}
/*********************************************************************
* lround (MSVCR120.@)
*/
__msvcrt_long CDECL lround(double x)
{
return unix_funcs->lround( x );
}
/*********************************************************************
* lroundf (MSVCR120.@)
*/
__msvcrt_long CDECL lroundf(float x)
{
return unix_funcs->lroundf( x );
}
/*********************************************************************
* llround (MSVCR120.@)
*/
__int64 CDECL llround(double x)
{
return unix_funcs->llround( x );
}
/*********************************************************************
* llroundf (MSVCR120.@)
*/
__int64 CDECL llroundf(float x)
{
return unix_funcs->llroundf( x );
}
/*********************************************************************
* trunc (MSVCR120.@)
*/
double CDECL trunc(double x)
{
return unix_funcs->trunc(x);
}
/*********************************************************************
* truncf (MSVCR120.@)
*/
float CDECL truncf(float x)
{
return unix_funcs->truncf(x);
}
/*********************************************************************
* _fdclass (MSVCR120.@)
*
* Copied from musl: src/math/__fpclassifyf.c
*/
short CDECL _fdclass(float x)
{
union { float f; UINT32 i; } u = { x };
int e = u.i >> 23 & 0xff;
if (!e) return u.i << 1 ? FP_SUBNORMAL : FP_ZERO;
if (e == 0xff) return u.i << 9 ? FP_NAN : FP_INFINITE;
return FP_NORMAL;
}
/*********************************************************************
* _dtest (MSVCR120.@)
*/
short CDECL _dtest(double *x)
{
return _dclass(*x);
}
/*********************************************************************
* _fdtest (MSVCR120.@)
*/
short CDECL _fdtest(float *x)
{
return _fdclass(*x);
}
/*********************************************************************
* erf (MSVCR120.@)
*/
double CDECL erf(double x)
{
return unix_funcs->erf( x );
}
/*********************************************************************
* erff (MSVCR120.@)
*/
float CDECL erff(float x)
{
return unix_funcs->erff( x );
}
/*********************************************************************
* erfc (MSVCR120.@)
*/
double CDECL erfc(double x)
{
return unix_funcs->erfc( x );
}
/*********************************************************************
* erfcf (MSVCR120.@)
*/
float CDECL erfcf(float x)
{
return unix_funcs->erfcf( x );
}
/*********************************************************************
* fmaxf (MSVCR120.@)
*/
float CDECL fmaxf(float x, float y)
{
if(isnan(x))
return y;
if(isnan(y))
return x;
if(x==0 && y==0)
return signbit(x) ? y : x;
return x<y ? y : x;
}
/*********************************************************************
* fmax (MSVCR120.@)
*/
double CDECL fmax(double x, double y)
{
if(isnan(x))
return y;
if(isnan(y))
return x;
if(x==0 && y==0)
return signbit(x) ? y : x;
return x<y ? y : x;
}
/*********************************************************************
* fdimf (MSVCR120.@)
*/
float CDECL fdimf(float x, float y)
{
if(isnan(x))
return x;
if(isnan(y))
return y;
return x>y ? x-y : 0;
}
/*********************************************************************
* fdim (MSVCR120.@)
*/
double CDECL fdim(double x, double y)
{
if(isnan(x))
return x;
if(isnan(y))
return y;
return x>y ? x-y : 0;
}
/*********************************************************************
* _fdsign (MSVCR120.@)
*/
int CDECL _fdsign(float x)
{
union { float f; UINT32 i; } u = { x };
return (u.i >> 16) & 0x8000;
}
/*********************************************************************
* _dsign (MSVCR120.@)
*/
int CDECL _dsign(double x)
{
union { double f; UINT64 i; } u = { x };
return (u.i >> 48) & 0x8000;
}
/*********************************************************************
* _dpcomp (MSVCR120.@)
*/
int CDECL _dpcomp(double x, double y)
{
if(isnan(x) || isnan(y))
return 0;
if(x == y) return 2;
return x < y ? 1 : 4;
}
/*********************************************************************
* _fdpcomp (MSVCR120.@)
*/
int CDECL _fdpcomp(float x, float y)
{
return _dpcomp(x, y);
}
/*********************************************************************
* fminf (MSVCR120.@)
*/
float CDECL fminf(float x, float y)
{
if(isnan(x))
return y;
if(isnan(y))
return x;
if(x==0 && y==0)
return signbit(x) ? x : y;
return x<y ? x : y;
}
/*********************************************************************
* fmin (MSVCR120.@)
*/
double CDECL fmin(double x, double y)
{
if(isnan(x))
return y;
if(isnan(y))
return x;
if(x==0 && y==0)
return signbit(x) ? x : y;
return x<y ? x : y;
}
/*********************************************************************
* asinh (MSVCR120.@)
*/
double CDECL asinh(double x)
{
return unix_funcs->asinh( x );
}
/*********************************************************************
* asinhf (MSVCR120.@)
*/
float CDECL asinhf(float x)
{
return unix_funcs->asinhf( x );
}
/*********************************************************************
* acosh (MSVCR120.@)
*/
double CDECL acosh(double x)
{
if (x < 1)
{
fenv_t env;
*_errno() = EDOM;
fegetenv(&env);
env._Fe_stat |= FE_INVALID;
fesetenv(&env);
return NAN;
}
return unix_funcs->acosh( x );
}
/*********************************************************************
* acoshf (MSVCR120.@)
*/
float CDECL acoshf(float x)
{
if (x < 1)
{
fenv_t env;
*_errno() = EDOM;
fegetenv(&env);
env._Fe_stat |= FE_INVALID;
fesetenv(&env);
return NAN;
}
return unix_funcs->acoshf( x );
}
/*********************************************************************
* atanh (MSVCR120.@)
*/
double CDECL atanh(double x)
{
double ret;
if (x > 1 || x < -1) {
fenv_t env;
*_errno() = EDOM;
/* on Linux atanh returns -NAN in this case */
fegetenv(&env);
env._Fe_stat |= FE_INVALID;
fesetenv(&env);
return NAN;
}
ret = unix_funcs->atanh( x );
if (!isfinite(ret)) *_errno() = ERANGE;
return ret;
}
/*********************************************************************
* atanhf (MSVCR120.@)
*/
float CDECL atanhf(float x)
{
float ret;
if (x > 1 || x < -1) {
fenv_t env;
*_errno() = EDOM;
fegetenv(&env);
env._Fe_stat |= FE_INVALID;
fesetenv(&env);
return NAN;
}
ret = unix_funcs->atanh( x );
if (!isfinite(ret)) *_errno() = ERANGE;
return ret;
}
#endif /* _MSVCR_VER>=120 */
/*********************************************************************
* _scalb (MSVCRT.@)
* scalbn (MSVCR120.@)
* scalbln (MSVCR120.@)
*/
double CDECL _scalb(double num, __msvcrt_long power)
{
return ldexp(num, power);
}
/*********************************************************************
* _scalbf (MSVCRT.@)
* scalbnf (MSVCR120.@)
* scalblnf (MSVCR120.@)
*/
float CDECL _scalbf(float num, __msvcrt_long power)
{
return ldexp(num, power);
}
#if _MSVCR_VER>=120
/*********************************************************************
* remainder (MSVCR120.@)
*/
double CDECL remainder(double x, double y)
{
/* this matches 64-bit Windows. 32-bit Windows is slightly different */
if(!isfinite(x)) *_errno() = EDOM;
if(isnan(y) || y==0.0) *_errno() = EDOM;
return unix_funcs->remainder( x, y );
}
/*********************************************************************
* remainderf (MSVCR120.@)
*/
float CDECL remainderf(float x, float y)
{
/* this matches 64-bit Windows. 32-bit Windows is slightly different */
if(!isfinite(x)) *_errno() = EDOM;
if(isnan(y) || y==0.0f) *_errno() = EDOM;
return unix_funcs->remainderf( x, y );
}
/*********************************************************************
* remquo (MSVCR120.@)
*/
double CDECL remquo(double x, double y, int *quo)
{
if(!isfinite(x)) *_errno() = EDOM;
if(isnan(y) || y==0.0) *_errno() = EDOM;
return unix_funcs->remquo( x, y, quo );
}
/*********************************************************************
* remquof (MSVCR120.@)
*/
float CDECL remquof(float x, float y, int *quo)
{
if(!isfinite(x)) *_errno() = EDOM;
if(isnan(y) || y==0.0f) *_errno() = EDOM;
return unix_funcs->remquof( x, y, quo );
}
/*********************************************************************
* lgamma (MSVCR120.@)
*/
double CDECL lgamma(double x)
{
return unix_funcs->lgamma( x );
}
/*********************************************************************
* lgammaf (MSVCR120.@)
*/
float CDECL lgammaf(float x)
{
return unix_funcs->lgammaf( x );
}
/*********************************************************************
* tgamma (MSVCR120.@)
*/
double CDECL tgamma(double x)
{
return unix_funcs->tgamma( x );
}
/*********************************************************************
* tgammaf (MSVCR120.@)
*/
float CDECL tgammaf(float x)
{
return unix_funcs->tgammaf( x );
}
/*********************************************************************
* nan (MSVCR120.@)
*/
double CDECL nan(const char *tagp)
{
/* Windows ignores input (MSDN) */
return NAN;
}
/*********************************************************************
* nanf (MSVCR120.@)
*/
float CDECL nanf(const char *tagp)
{
return NAN;
}
/*********************************************************************
* _except1 (MSVCR120.@)
* TODO:
* - find meaning of ignored cw and operation bits
* - unk parameter
*/
double CDECL _except1(DWORD fpe, _FP_OPERATION_CODE op, double arg, double res, DWORD cw, void *unk)
{
ULONG_PTR exception_arg;
DWORD exception = 0;
fenv_t env;
DWORD fpword = 0;
WORD operation;
TRACE("(%x %x %lf %lf %x %p)\n", fpe, op, arg, res, cw, unk);
#ifdef _WIN64
cw = ((cw >> 7) & 0x3f) | ((cw >> 3) & 0xc00);
#endif
operation = op << 5;
exception_arg = (ULONG_PTR)&operation;
fegetenv(&env);
if (fpe & 0x1) { /* overflow */
if ((fpe == 0x1 && (cw & 0x8)) || (fpe==0x11 && (cw & 0x28))) {
/* 32-bit version also sets SW_INEXACT here */
env._Fe_stat |= FE_OVERFLOW;
if (fpe & 0x10) env._Fe_stat |= FE_INEXACT;
res = signbit(res) ? -INFINITY : INFINITY;
} else {
exception = EXCEPTION_FLT_OVERFLOW;
}
} else if (fpe & 0x2) { /* underflow */
if ((fpe == 0x2 && (cw & 0x10)) || (fpe==0x12 && (cw & 0x30))) {
env._Fe_stat |= FE_UNDERFLOW;
if (fpe & 0x10) env._Fe_stat |= FE_INEXACT;
res = signbit(res) ? -0.0 : 0.0;
} else {
exception = EXCEPTION_FLT_UNDERFLOW;
}
} else if (fpe & 0x4) { /* zerodivide */
if ((fpe == 0x4 && (cw & 0x4)) || (fpe==0x14 && (cw & 0x24))) {
env._Fe_stat |= FE_DIVBYZERO;
if (fpe & 0x10) env._Fe_stat |= FE_INEXACT;
} else {
exception = EXCEPTION_FLT_DIVIDE_BY_ZERO;
}
} else if (fpe & 0x8) { /* invalid */
if (fpe == 0x8 && (cw & 0x1)) {
env._Fe_stat |= FE_INVALID;
} else {
exception = EXCEPTION_FLT_INVALID_OPERATION;
}
} else if (fpe & 0x10) { /* inexact */
if (fpe == 0x10 && (cw & 0x20)) {
env._Fe_stat |= FE_INEXACT;
} else {
exception = EXCEPTION_FLT_INEXACT_RESULT;
}
}
if (exception)
env._Fe_stat = 0;
fesetenv(&env);
if (exception)
RaiseException(exception, 0, 1, &exception_arg);
if (cw & 0x1) fpword |= _EM_INVALID;
if (cw & 0x2) fpword |= _EM_DENORMAL;
if (cw & 0x4) fpword |= _EM_ZERODIVIDE;
if (cw & 0x8) fpword |= _EM_OVERFLOW;
if (cw & 0x10) fpword |= _EM_UNDERFLOW;
if (cw & 0x20) fpword |= _EM_INEXACT;
switch (cw & 0xc00)
{
case 0xc00: fpword |= _RC_UP|_RC_DOWN; break;
case 0x800: fpword |= _RC_UP; break;
case 0x400: fpword |= _RC_DOWN; break;
}
switch (cw & 0x300)
{
case 0x0: fpword |= _PC_24; break;
case 0x200: fpword |= _PC_53; break;
case 0x300: fpword |= _PC_64; break;
}
if (cw & 0x1000) fpword |= _IC_AFFINE;
_control87(fpword, 0xffffffff);
return res;
}
_Dcomplex* CDECL _Cbuild(_Dcomplex *ret, double r, double i)
{
ret->_Val[0] = r;
ret->_Val[1] = i;
return ret;
}
double CDECL MSVCR120_creal(_Dcomplex z)
{
return z._Val[0];
}
/*********************************************************************
* ilogb (MSVCR120.@)
*
* Copied from musl: src/math/ilogb.c
*/
int CDECL ilogb(double x)
{
union { double f; UINT64 i; } u = { x };
int e = u.i >> 52 & 0x7ff;
if (!e)
{
u.i <<= 12;
if (u.i == 0) return FP_ILOGB0;
/* subnormal x */
for (e = -0x3ff; u.i >> 63 == 0; e--, u.i <<= 1);
return e;
}
if (e == 0x7ff) return u.i << 12 ? FP_ILOGBNAN : INT_MAX;
return e - 0x3ff;
}
/*********************************************************************
* ilogbf (MSVCR120.@)
*
* Copied from musl: src/math/ilogbf.c
*/
int CDECL ilogbf(float x)
{
union { float f; UINT32 i; } u = { x };
int e = u.i >> 23 & 0xff;
if (!e)
{
u.i <<= 9;
if (u.i == 0) return FP_ILOGB0;
/* subnormal x */
for (e = -0x7f; u.i >> 31 == 0; e--, u.i <<= 1);
return e;
}
if (e == 0xff) return u.i << 9 ? FP_ILOGBNAN : INT_MAX;
return e - 0x7f;
}
#endif /* _MSVCR_VER>=120 */