Sweden-Number/dlls/rsaenh/implossl.c

684 lines
19 KiB
C

/*
* dlls/rsaenh/implossl.c
* Encapsulating the OpenSSL dependend parts of RSAENH
*
* Copyright (c) 2004 Michael Jung
*
* based on code by Mike McCormack and David Hammerton
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include "wine/port.h"
#include "wine/library.h"
#include "wine/debug.h"
#include "windef.h"
#include "wincrypt.h"
#include "implossl.h"
#include <stdio.h>
WINE_DEFAULT_DEBUG_CHANNEL(crypt);
#ifndef SONAME_LIBCRYPTO
#define SONAME_LIBCRYPTO "libcrypto.so"
#endif
static void *libcrypto;
#define MAKE_FUNCPTR(f) static typeof(f) * p##f
/* OpenSSL funtions that we use */
#ifdef HAVE_OPENSSL_MD2_H
MAKE_FUNCPTR(MD2_Init);
MAKE_FUNCPTR(MD2_Update);
MAKE_FUNCPTR(MD2_Final);
#endif
#ifdef HAVE_OPENSSL_RC2_H
MAKE_FUNCPTR(RC2_set_key);
MAKE_FUNCPTR(RC2_ecb_encrypt);
#endif
#ifdef HAVE_OPENSSL_RC4_H
MAKE_FUNCPTR(RC4_set_key);
MAKE_FUNCPTR(RC4);
#endif
#ifdef HAVE_OPENSSL_DES_H
MAKE_FUNCPTR(DES_set_odd_parity);
MAKE_FUNCPTR(DES_set_key_unchecked);
MAKE_FUNCPTR(DES_ecb_encrypt);
MAKE_FUNCPTR(DES_ecb3_encrypt);
#endif
#ifdef HAVE_OPENSSL_RSA_H
MAKE_FUNCPTR(RSA_generate_key);
MAKE_FUNCPTR(RSA_free);
MAKE_FUNCPTR(RSA_size);
MAKE_FUNCPTR(RSA_check_key);
MAKE_FUNCPTR(RSA_public_encrypt);
MAKE_FUNCPTR(RSA_private_encrypt);
MAKE_FUNCPTR(RSAPrivateKey_dup);
MAKE_FUNCPTR(BN_bn2bin);
MAKE_FUNCPTR(BN_bin2bn);
MAKE_FUNCPTR(BN_get_word);
MAKE_FUNCPTR(BN_set_word);
MAKE_FUNCPTR(BN_num_bits);
#endif
/* Function prototypes copied from dlls/advapi32/crypt_md4.c */
VOID WINAPI MD4Init( MD4_CTX *ctx );
VOID WINAPI MD4Update( MD4_CTX *ctx, const unsigned char *buf, unsigned int len );
VOID WINAPI MD4Final( MD4_CTX *ctx );
/* Function prototypes copied from dlls/advapi32/crypt_md5.c */
VOID WINAPI MD5Init( MD5_CTX *ctx );
VOID WINAPI MD5Update( MD5_CTX *ctx, const unsigned char *buf, unsigned int len );
VOID WINAPI MD5Final( MD5_CTX *ctx );
/* Function prototypes copied from dlls/advapi32/crypt_sha.c */
VOID WINAPI A_SHAInit(PSHA_CTX Context);
VOID WINAPI A_SHAUpdate(PSHA_CTX Context, PCHAR Buffer, UINT BufferSize);
VOID WINAPI A_SHAFinal(PSHA_CTX Context, PULONG Result);
BOOL load_lib( void )
{
/* FIXME: Is this portable? */
#if defined HAVE_OPENSSL_MD2_H || defined HAVE_OPENSSL_RC2_H || defined HAVE_OPENSSL_RC4_H || \
defined HAVE_OPENSSL_DES_H || defined HAVE_OPENSSL_RSA_H
libcrypto = wine_dlopen(SONAME_LIBCRYPTO, RTLD_NOW, NULL, 0);
if (!libcrypto)
{
MESSAGE("Couldn't load %s, RSA encryption not available.\n", SONAME_LIBCRYPTO);
MESSAGE("Install the openssl package if you're have problems.\n");
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
#define GETFUNC(x) p##x = wine_dlsym(libcrypto, #x, NULL, 0);
#ifdef HAVE_OPENSSL_MD2_H
GETFUNC(MD2_Init);
GETFUNC(MD2_Update);
GETFUNC(MD2_Final);
#endif
#ifdef HAVE_OPENSSL_RC2_H
GETFUNC(RC2_set_key);
GETFUNC(RC2_ecb_encrypt);
#endif
#ifdef HAVE_OPENSSL_RC4_H
GETFUNC(RC4_set_key);
GETFUNC(RC4);
#endif
#ifdef HAVE_OPENSSL_DES_H
GETFUNC(DES_set_odd_parity);
GETFUNC(DES_set_key_unchecked);
GETFUNC(DES_ecb_encrypt);
GETFUNC(DES_ecb3_encrypt);
#endif
#ifdef HAVE_OPENSSL_RSA_H
GETFUNC(RSA_generate_key);
GETFUNC(RSA_free);
GETFUNC(RSA_size);
GETFUNC(RSA_check_key);
GETFUNC(RSA_public_encrypt);
GETFUNC(RSA_private_encrypt);
GETFUNC(RSAPrivateKey_dup);
GETFUNC(BN_bn2bin);
GETFUNC(BN_bin2bn);
GETFUNC(BN_get_word);
GETFUNC(BN_set_word);
GETFUNC(BN_num_bits);
#endif
#endif /* ifdef have any openssl header */
return TRUE;
}
BOOL init_hash_impl(ALG_ID aiAlgid, HASH_CONTEXT *pHashContext)
{
switch (aiAlgid)
{
#ifdef HAVE_OPENSSL_MD2_H
case CALG_MD2:
if (!pMD2_Init)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pMD2_Init(&pHashContext->md2);
break;
#endif
case CALG_MD4:
MD4Init(&pHashContext->md4);
break;
case CALG_MD5:
MD5Init(&pHashContext->md5);
break;
case CALG_SHA:
A_SHAInit(&pHashContext->sha);
break;
default:
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
return TRUE;
}
BOOL update_hash_impl(ALG_ID aiAlgid, HASH_CONTEXT *pHashContext, CONST BYTE *pbData,
DWORD dwDataLen)
{
switch (aiAlgid)
{
#ifdef HAVE_OPENSSL_MD2_H
case CALG_MD2:
if (!pMD2_Update)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pMD2_Update(&pHashContext->md2, pbData, dwDataLen);
break;
#endif
case CALG_MD4:
MD4Update(&pHashContext->md4, pbData, dwDataLen);
break;
case CALG_MD5:
MD5Update(&pHashContext->md5, pbData, dwDataLen);
break;
case CALG_SHA:
A_SHAUpdate(&pHashContext->sha, (PCHAR)pbData, dwDataLen);
break;
default:
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
return TRUE;
}
BOOL finalize_hash_impl(ALG_ID aiAlgid, HASH_CONTEXT *pHashContext, BYTE *pbHashValue)
{
switch (aiAlgid)
{
#ifdef HAVE_OPENSSL_MD2_H
case CALG_MD2:
if (!pMD2_Final)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pMD2_Final(pbHashValue, &pHashContext->md2);
break;
#endif
case CALG_MD4:
MD4Final(&pHashContext->md4);
memcpy(pbHashValue, pHashContext->md4.digest, 16);
break;
case CALG_MD5:
MD5Final(&pHashContext->md5);
memcpy(pbHashValue, pHashContext->md5.digest, 16);
break;
case CALG_SHA:
A_SHAFinal(&pHashContext->sha, (PULONG)pbHashValue);
break;
default:
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
return TRUE;
}
BOOL duplicate_hash_impl(ALG_ID aiAlgid, CONST HASH_CONTEXT *pSrcHashContext,
HASH_CONTEXT *pDestHashContext)
{
memcpy(pDestHashContext, pSrcHashContext, sizeof(HASH_CONTEXT));
return TRUE;
}
BOOL new_key_impl(ALG_ID aiAlgid, KEY_CONTEXT *pKeyContext, DWORD dwKeyLen)
{
switch (aiAlgid)
{
#ifdef HAVE_OPENSSL_RSA_H
case CALG_RSA_KEYX:
case CALG_RSA_SIGN:
if (!pRSA_generate_key)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pKeyContext->rsa = pRSA_generate_key((int)dwKeyLen*8, 65537, NULL, NULL);
break;
#endif
default:
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
return TRUE;
}
BOOL free_key_impl(ALG_ID aiAlgid, KEY_CONTEXT *pKeyContext)
{
switch (aiAlgid)
{
#ifdef HAVE_OPENSSL_RSA_H
case CALG_RSA_KEYX:
case CALG_RSA_SIGN:
if (!pRSA_free)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
if (pKeyContext->rsa) pRSA_free(pKeyContext->rsa);
break;
#endif
default:
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
return TRUE;
}
BOOL setup_key_impl(ALG_ID aiAlgid, KEY_CONTEXT *pKeyContext, DWORD dwKeyLen, DWORD dwSaltLen,
BYTE *abKeyValue)
{
switch (aiAlgid)
{
#ifdef HAVE_OPENSSL_RC4_H
case CALG_RC4:
if (!pRC4_set_key)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pRC4_set_key(&pKeyContext->rc4, dwKeyLen + dwSaltLen, abKeyValue);
break;
#endif
#ifdef HAVE_OPENSSL_RC2_H
case CALG_RC2:
if (!pRC2_set_key)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pRC2_set_key(&pKeyContext->rc2, dwKeyLen + dwSaltLen, abKeyValue, dwKeyLen * 8);
break;
#endif
#ifdef HAVE_OPENSSL_DES_H
case CALG_3DES:
if (!pDES_set_odd_parity || !pDES_set_key_unchecked)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pDES_set_odd_parity(&((DES_cblock*)abKeyValue)[2]);
pDES_set_key_unchecked(&((DES_cblock*)abKeyValue)[2], &pKeyContext->des[2]);
case CALG_3DES_112:
if (!pDES_set_odd_parity || !pDES_set_key_unchecked)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pDES_set_odd_parity(&((DES_cblock*)abKeyValue)[1]);
pDES_set_key_unchecked(&((DES_cblock*)abKeyValue)[1], &pKeyContext->des[1]);
case CALG_DES:
if (!pDES_set_odd_parity || !pDES_set_key_unchecked)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pDES_set_odd_parity((DES_cblock*)abKeyValue);
pDES_set_key_unchecked((DES_cblock*)abKeyValue, &pKeyContext->des[0]);
break;
#endif
default:
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
return TRUE;
}
BOOL duplicate_key_impl(ALG_ID aiAlgid, CONST KEY_CONTEXT *pSrcKeyContext,
KEY_CONTEXT *pDestKeyContext)
{
switch (aiAlgid)
{
case CALG_RC4:
case CALG_RC2:
case CALG_3DES:
case CALG_3DES_112:
case CALG_DES:
memcpy(pDestKeyContext, pSrcKeyContext, sizeof(KEY_CONTEXT));
break;
#ifdef HAVE_OPENSSL_RSA_H
case CALG_RSA_KEYX:
case CALG_RSA_SIGN:
if (!pRSAPrivateKey_dup)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pDestKeyContext->rsa = pRSAPrivateKey_dup(pSrcKeyContext->rsa);
break;
#endif
default:
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
return TRUE;
}
#ifdef HAVE_OPENSSL_RSA_H
static inline void reverse_bytes(BYTE *pbData, DWORD dwLen) {
BYTE swap;
DWORD i;
for (i=0; i<dwLen/2; i++) {
swap = pbData[i];
pbData[i] = pbData[dwLen-i-1];
pbData[dwLen-i-1] = swap;
}
}
#endif
BOOL encrypt_block_impl(ALG_ID aiAlgid, KEY_CONTEXT *pKeyContext, CONST BYTE *in, BYTE *out,
DWORD enc)
{
#ifdef HAVE_OPENSSL_RSA_H
int cLen;
#endif
switch (aiAlgid) {
#ifdef HAVE_OPENSSL_RC2_H
case CALG_RC2:
if (!pRC2_ecb_encrypt)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pRC2_ecb_encrypt(in, out, &pKeyContext->rc2, enc ? RC2_ENCRYPT : RC2_DECRYPT);
break;
#endif
#ifdef HAVE_OPENSSL_DES_H
case CALG_DES:
if (!pDES_ecb_encrypt)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pDES_ecb_encrypt((const_DES_cblock*)in, (DES_cblock*)out, &pKeyContext->des[0],
enc ? DES_ENCRYPT : DES_DECRYPT);
break;
case CALG_3DES_112:
if (!pDES_ecb3_encrypt)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pDES_ecb3_encrypt((const_DES_cblock*)in, (DES_cblock*)out,
&pKeyContext->des[0], &pKeyContext->des[1], &pKeyContext->des[0],
enc ? DES_ENCRYPT : DES_DECRYPT);
break;
case CALG_3DES:
if (!pDES_ecb3_encrypt)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pDES_ecb3_encrypt((const_DES_cblock*)in, (DES_cblock*)out,
&pKeyContext->des[0], &pKeyContext->des[1], &pKeyContext->des[2],
enc ? DES_ENCRYPT : DES_DECRYPT);
break;
#endif
#ifdef HAVE_OPENSSL_RSA_H
case CALG_RSA_KEYX:
if (!pBN_num_bits || !pRSA_public_encrypt || !pRSA_private_encrypt)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
cLen = pBN_num_bits(pKeyContext->rsa->n)/8;
if (enc) {
pRSA_public_encrypt(cLen, in, out, pKeyContext->rsa, RSA_NO_PADDING);
reverse_bytes((BYTE*)in, cLen);
} else {
reverse_bytes((BYTE*)in, cLen);
pRSA_private_encrypt(cLen, in, out, pKeyContext->rsa, RSA_NO_PADDING);
}
break;
case CALG_RSA_SIGN:
if (!pBN_num_bits || !pRSA_public_encrypt || !pRSA_private_encrypt)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
cLen = pBN_num_bits(pKeyContext->rsa->n)/8;
if (enc) {
pRSA_private_encrypt(cLen, in, out, pKeyContext->rsa, RSA_NO_PADDING);
reverse_bytes((BYTE*)in, cLen);
} else {
reverse_bytes((BYTE*)in, cLen);
pRSA_public_encrypt(cLen, in, out, pKeyContext->rsa, RSA_NO_PADDING);
}
break;
#endif
default:
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
return TRUE;
}
BOOL encrypt_stream_impl(ALG_ID aiAlgid, KEY_CONTEXT *pKeyContext, BYTE *stream, DWORD dwLen)
{
switch (aiAlgid) {
#ifdef HAVE_OPENSSL_RC4_H
case CALG_RC4:
if (!pRC4)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pRC4(&pKeyContext->rc4, (unsigned long)dwLen, stream, stream);
break;
#endif
default:
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
return TRUE;
}
BOOL gen_rand_impl(BYTE *pbBuffer, DWORD dwLen)
{
FILE *dev_random;
/* FIXME: /dev/urandom does not provide random numbers of a sufficient
* quality for cryptographic applications. /dev/random is much better,
* but it blocks if the kernel has not yet collected enough entropy for
* the request, which will suspend the calling thread for an indefinite
* amount of time. */
dev_random = fopen("/dev/urandom", "r");
if (dev_random)
{
if (fread(pbBuffer, (size_t)dwLen, 1, dev_random) == 1)
{
fclose(dev_random);
return TRUE;
}
fclose(dev_random);
}
SetLastError(NTE_FAIL);
return FALSE;
}
BOOL export_public_key_impl(BYTE *pbDest, KEY_CONTEXT *pKeyContext, DWORD dwKeyLen,DWORD *pdwPubExp)
{
#ifdef HAVE_OPENSSL_RSA_H
if (!pBN_bn2bin || !pBN_get_word)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pBN_bn2bin(pKeyContext->rsa->n, pbDest);
reverse_bytes(pbDest, dwKeyLen);
*pdwPubExp = (DWORD)pBN_get_word(pKeyContext->rsa->e);
return TRUE;
#else
SetLastError(NTE_FAIL);
return FALSE;
#endif
}
BOOL import_public_key_impl(CONST BYTE *pbSrc, KEY_CONTEXT *pKeyContext, DWORD dwKeyLen,
DWORD dwPubExp)
{
#ifdef HAVE_OPENSSL_RSA_H
BYTE *pbTemp;
if (!pBN_bin2bn || !pBN_set_word)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pbTemp = (BYTE*)HeapAlloc(GetProcessHeap(), 0, dwKeyLen);
if (!pbTemp) return FALSE;
memcpy(pbTemp, pbSrc, dwKeyLen);
reverse_bytes(pbTemp, dwKeyLen);
pBN_bin2bn(pbTemp, dwKeyLen, pKeyContext->rsa->n);
HeapFree(GetProcessHeap(), 0, pbTemp);
pBN_set_word(pKeyContext->rsa->e, (BN_ULONG)dwPubExp);
return TRUE;
#else
SetLastError(NTE_FAIL);
return FALSE;
#endif
}
BOOL export_private_key_impl(BYTE *pbDest, KEY_CONTEXT *pKeyContext, DWORD dwKeyLen,
DWORD *pdwPubExp)
{
#ifdef HAVE_OPENSSL_RSA_H
if (!pBN_bn2bin || !pBN_get_word)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pBN_bn2bin(pKeyContext->rsa->n, pbDest);
reverse_bytes(pbDest, dwKeyLen);
pbDest += dwKeyLen;
pBN_bn2bin(pKeyContext->rsa->p, pbDest);
reverse_bytes(pbDest, (dwKeyLen+1)>>1);
pbDest += (dwKeyLen+1)>>1;
pBN_bn2bin(pKeyContext->rsa->q, pbDest);
reverse_bytes(pbDest, (dwKeyLen+1)>>1);
pbDest += (dwKeyLen+1)>>1;
pBN_bn2bin(pKeyContext->rsa->dmp1, pbDest);
reverse_bytes(pbDest, (dwKeyLen+1)>>1);
pbDest += (dwKeyLen+1)>>1;
pBN_bn2bin(pKeyContext->rsa->dmq1, pbDest);
reverse_bytes(pbDest, (dwKeyLen+1)>>1);
pbDest += (dwKeyLen+1)>>1;
pBN_bn2bin(pKeyContext->rsa->iqmp, pbDest);
reverse_bytes(pbDest, (dwKeyLen+1)>>1);
pbDest += (dwKeyLen+1)>>1;
pBN_bn2bin(pKeyContext->rsa->d, pbDest);
reverse_bytes(pbDest, dwKeyLen);
*pdwPubExp = (DWORD)pBN_get_word(pKeyContext->rsa->e);
return TRUE;
#else
SetLastError(NTE_FAIL);
return FALSE;
#endif
}
BOOL import_private_key_impl(CONST BYTE *pbSrc, KEY_CONTEXT *pKeyContext, DWORD dwKeyLen,
DWORD dwPubExp)
{
#ifdef HAVE_OPENSSL_RSA_H
BYTE *pbTemp, *pbBigNum;
if (!pBN_bin2bn || !pBN_set_word)
{
SetLastError(NTE_PROVIDER_DLL_FAIL);
return FALSE;
}
pbTemp = HeapAlloc(GetProcessHeap(), 0, 2*dwKeyLen+5*((dwKeyLen+1)>>1));
if (!pbTemp) return FALSE;
memcpy(pbTemp, pbSrc, 2*dwKeyLen+5*((dwKeyLen+1)>>1));
pbBigNum = pbTemp;
reverse_bytes(pbBigNum, dwKeyLen);
pBN_bin2bn(pbBigNum, dwKeyLen, pKeyContext->rsa->n);
pbBigNum += dwKeyLen;
reverse_bytes(pbBigNum, (dwKeyLen+1)>>1);
pBN_bin2bn(pbBigNum, (dwKeyLen+1)>>1, pKeyContext->rsa->p);
pbBigNum += (dwKeyLen+1)>>1;
reverse_bytes(pbBigNum, (dwKeyLen+1)>>1);
pBN_bin2bn(pbBigNum, (dwKeyLen+1)>>1, pKeyContext->rsa->q);
pbBigNum += (dwKeyLen+1)>>1;
reverse_bytes(pbBigNum, (dwKeyLen+1)>>1);
pBN_bin2bn(pbBigNum, (dwKeyLen+1)>>1, pKeyContext->rsa->dmp1);
pbBigNum += (dwKeyLen+1)>>1;
reverse_bytes(pbBigNum, (dwKeyLen+1)>>1);
pBN_bin2bn(pbBigNum, (dwKeyLen+1)>>1, pKeyContext->rsa->dmq1);
pbBigNum += (dwKeyLen+1)>>1;
reverse_bytes(pbBigNum, (dwKeyLen+1)>>1);
pBN_bin2bn(pbBigNum, (dwKeyLen+1)>>1, pKeyContext->rsa->iqmp);
pbBigNum += (dwKeyLen+1)>>1;
reverse_bytes(pbBigNum, dwKeyLen);
pBN_bin2bn(pbBigNum, dwKeyLen, pKeyContext->rsa->d);
pBN_set_word(pKeyContext->rsa->e, (BN_ULONG)dwPubExp);
HeapFree(GetProcessHeap(), 0, pbTemp);
return TRUE;
#else
SetLastError(NTE_FAIL);
return FALSE;
#endif
}