Sweden-Number/dlls/rsaenh/rsaenh.c

4647 lines
160 KiB
C

/*
* dlls/rsaenh/rsaenh.c
* RSAENH - RSA encryption for Wine
*
* Copyright 2002 TransGaming Technologies (David Hammerton)
* Copyright 2004 Mike McCormack for CodeWeavers
* Copyright 2004, 2005 Michael Jung
* Copyright 2007 Vijay Kiran Kamuju
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "config.h"
#include "wine/port.h"
#include "wine/library.h"
#include "wine/debug.h"
#include <stdarg.h>
#include <stdio.h>
#include "windef.h"
#include "winbase.h"
#include "winreg.h"
#include "wincrypt.h"
#include "handle.h"
#include "implglue.h"
#include "objbase.h"
#include "rpcproxy.h"
#include "aclapi.h"
WINE_DEFAULT_DEBUG_CHANNEL(crypt);
static HINSTANCE instance;
/******************************************************************************
* CRYPTHASH - hash objects
*/
#define RSAENH_MAGIC_HASH 0x85938417u
#define RSAENH_HASHSTATE_HASHING 1
#define RSAENH_HASHSTATE_FINISHED 2
typedef struct _RSAENH_TLS1PRF_PARAMS
{
CRYPT_DATA_BLOB blobLabel;
CRYPT_DATA_BLOB blobSeed;
} RSAENH_TLS1PRF_PARAMS;
typedef struct tagCRYPTHASH
{
OBJECTHDR header;
ALG_ID aiAlgid;
HCRYPTKEY hKey;
HCRYPTPROV hProv;
DWORD dwHashSize;
DWORD dwState;
HASH_CONTEXT context;
BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
PHMAC_INFO pHMACInfo;
RSAENH_TLS1PRF_PARAMS tpPRFParams;
} CRYPTHASH;
/******************************************************************************
* CRYPTKEY - key objects
*/
#define RSAENH_MAGIC_KEY 0x73620457u
#define RSAENH_MAX_KEY_SIZE 64
#define RSAENH_MAX_BLOCK_SIZE 24
#define RSAENH_KEYSTATE_IDLE 0
#define RSAENH_KEYSTATE_ENCRYPTING 1
#define RSAENH_KEYSTATE_MASTERKEY 2
typedef struct _RSAENH_SCHANNEL_INFO
{
SCHANNEL_ALG saEncAlg;
SCHANNEL_ALG saMACAlg;
CRYPT_DATA_BLOB blobClientRandom;
CRYPT_DATA_BLOB blobServerRandom;
} RSAENH_SCHANNEL_INFO;
typedef struct tagCRYPTKEY
{
OBJECTHDR header;
ALG_ID aiAlgid;
HCRYPTPROV hProv;
DWORD dwMode;
DWORD dwModeBits;
DWORD dwPermissions;
DWORD dwKeyLen;
DWORD dwEffectiveKeyLen;
DWORD dwSaltLen;
DWORD dwBlockLen;
DWORD dwState;
KEY_CONTEXT context;
BYTE abKeyValue[RSAENH_MAX_KEY_SIZE];
BYTE abInitVector[RSAENH_MAX_BLOCK_SIZE];
BYTE abChainVector[RSAENH_MAX_BLOCK_SIZE];
RSAENH_SCHANNEL_INFO siSChannelInfo;
CRYPT_DATA_BLOB blobHmacKey;
} CRYPTKEY;
/******************************************************************************
* KEYCONTAINER - key containers
*/
#define RSAENH_PERSONALITY_BASE 0u
#define RSAENH_PERSONALITY_STRONG 1u
#define RSAENH_PERSONALITY_ENHANCED 2u
#define RSAENH_PERSONALITY_SCHANNEL 3u
#define RSAENH_PERSONALITY_AES 4u
#define RSAENH_MAGIC_CONTAINER 0x26384993u
typedef struct tagKEYCONTAINER
{
OBJECTHDR header;
DWORD dwFlags;
DWORD dwPersonality;
DWORD dwEnumAlgsCtr;
DWORD dwEnumContainersCtr;
CHAR szName[MAX_PATH];
CHAR szProvName[MAX_PATH];
HCRYPTKEY hKeyExchangeKeyPair;
HCRYPTKEY hSignatureKeyPair;
} KEYCONTAINER;
/******************************************************************************
* Some magic constants
*/
#define RSAENH_ENCRYPT 1
#define RSAENH_DECRYPT 0
#define RSAENH_HMAC_DEF_IPAD_CHAR 0x36
#define RSAENH_HMAC_DEF_OPAD_CHAR 0x5c
#define RSAENH_HMAC_DEF_PAD_LEN 64
#define RSAENH_HMAC_BLOCK_LEN 64
#define RSAENH_DES_EFFECTIVE_KEYLEN 56
#define RSAENH_DES_STORAGE_KEYLEN 64
#define RSAENH_3DES112_EFFECTIVE_KEYLEN 112
#define RSAENH_3DES112_STORAGE_KEYLEN 128
#define RSAENH_3DES_EFFECTIVE_KEYLEN 168
#define RSAENH_3DES_STORAGE_KEYLEN 192
#define RSAENH_MAGIC_RSA2 0x32415352
#define RSAENH_MAGIC_RSA1 0x31415352
#define RSAENH_PKC_BLOCKTYPE 0x02
#define RSAENH_SSL3_VERSION_MAJOR 3
#define RSAENH_SSL3_VERSION_MINOR 0
#define RSAENH_TLS1_VERSION_MAJOR 3
#define RSAENH_TLS1_VERSION_MINOR 1
#define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s"
#define RSAENH_MIN(a,b) ((a)<(b)?(a):(b))
/******************************************************************************
* aProvEnumAlgsEx - Defines the capabilities of the CSP personalities.
*/
#define RSAENH_MAX_ENUMALGS 24
#define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1)
#define S(s) sizeof(s), s
static const PROV_ENUMALGS_EX aProvEnumAlgsEx[5][RSAENH_MAX_ENUMALGS+1] =
{
{
{CALG_RC2, 40, 40, 56, 0, S("RC2"), S("RSA Data Security's RC2")},
{CALG_RC4, 40, 40, 56, 0, S("RC4"), S("RSA Data Security's RC4")},
{CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")},
{CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")},
{CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")},
{CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")},
{CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")},
{CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")},
{CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")},
{CALG_RSA_SIGN, 512, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")},
{CALG_RSA_KEYX, 512, 384, 1024, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")},
{CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")},
{0, 0, 0, 0, 0, S(""), S("")}
},
{
{CALG_RC2, 128, 40, 128, 0, S("RC2"), S("RSA Data Security's RC2")},
{CALG_RC4, 128, 40, 128, 0, S("RC4"), S("RSA Data Security's RC4")},
{CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")},
{CALG_3DES_112, 112, 112, 112, 0, S("3DES TWO KEY"), S("Two Key Triple DES")},
{CALG_3DES, 168, 168, 168, 0, S("3DES"), S("Three Key Triple DES")},
{CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")},
{CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")},
{CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")},
{CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")},
{CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")},
{CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")},
{CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")},
{CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")},
{CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")},
{0, 0, 0, 0, 0, S(""), S("")}
},
{
{CALG_RC2, 128, 40, 128, 0, S("RC2"), S("RSA Data Security's RC2")},
{CALG_RC4, 128, 40, 128, 0, S("RC4"), S("RSA Data Security's RC4")},
{CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")},
{CALG_3DES_112, 112, 112, 112, 0, S("3DES TWO KEY"), S("Two Key Triple DES")},
{CALG_3DES, 168, 168, 168, 0, S("3DES"), S("Three Key Triple DES")},
{CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")},
{CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")},
{CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")},
{CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")},
{CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")},
{CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")},
{CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")},
{CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")},
{CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")},
{0, 0, 0, 0, 0, S(""), S("")}
},
{
{CALG_RC2, 128, 40, 128, RSAENH_PCT1_SSL2_SSL3_TLS1, S("RC2"), S("RSA Data Security's RC2")},
{CALG_RC4, 128, 40, 128, RSAENH_PCT1_SSL2_SSL3_TLS1, S("RC4"), S("RSA Data Security's RC4")},
{CALG_DES, 56, 56, 56, RSAENH_PCT1_SSL2_SSL3_TLS1, S("DES"), S("Data Encryption Standard (DES)")},
{CALG_3DES_112, 112, 112, 112, RSAENH_PCT1_SSL2_SSL3_TLS1, S("3DES TWO KEY"), S("Two Key Triple DES")},
{CALG_3DES, 168, 168, 168, RSAENH_PCT1_SSL2_SSL3_TLS1, S("3DES"), S("Three Key Triple DES")},
{CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")},
{CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("MD5"), S("Message Digest 5 (MD5)")},
{CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")},
{CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")},
{CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("RSA_SIGN"), S("RSA Signature")},
{CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("RSA_KEYX"), S("RSA Key Exchange")},
{CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")},
{CALG_PCT1_MASTER, 128, 128, 128, CRYPT_FLAG_PCT1, S("PCT1 MASTER"), S("PCT1 Master")},
{CALG_SSL2_MASTER, 40, 40, 192, CRYPT_FLAG_SSL2, S("SSL2 MASTER"), S("SSL2 Master")},
{CALG_SSL3_MASTER, 384, 384, 384, CRYPT_FLAG_SSL3, S("SSL3 MASTER"), S("SSL3 Master")},
{CALG_TLS1_MASTER, 384, 384, 384, CRYPT_FLAG_TLS1, S("TLS1 MASTER"), S("TLS1 Master")},
{CALG_SCHANNEL_MASTER_HASH, 0, 0, -1, 0, S("SCH MASTER HASH"), S("SChannel Master Hash")},
{CALG_SCHANNEL_MAC_KEY, 0, 0, -1, 0, S("SCH MAC KEY"), S("SChannel MAC Key")},
{CALG_SCHANNEL_ENC_KEY, 0, 0, -1, 0, S("SCH ENC KEY"), S("SChannel Encryption Key")},
{CALG_TLS1PRF, 0, 0, -1, 0, S("TLS1 PRF"), S("TLS1 Pseudo Random Function")},
{0, 0, 0, 0, 0, S(""), S("")}
},
{
{CALG_RC2, 128, 40, 128, 0, S("RC2"), S("RSA Data Security's RC2")},
{CALG_RC4, 128, 40, 128, 0, S("RC4"), S("RSA Data Security's RC4")},
{CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")},
{CALG_3DES_112, 112, 112, 112, 0, S("3DES TWO KEY"), S("Two Key Triple DES")},
{CALG_3DES, 168, 168, 168, 0, S("3DES"), S("Three Key Triple DES")},
{CALG_AES_128, 128, 128, 128, 0, S("AES-128"), S("Advanced Encryption Standard (AES-128)")},
{CALG_AES_192, 192, 192, 192, 0, S("AES-192"), S("Advanced Encryption Standard (AES-192)")},
{CALG_AES_256, 256, 256, 256, 0, S("AES-256"), S("Advanced Encryption Standard (AES-256)")},
{CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")},
{CALG_SHA_256, 256, 256, 256, CRYPT_FLAG_SIGNING, S("SHA-256"), S("Secure Hash Algorithm (SHA-256)")},
{CALG_SHA_384, 384, 384, 384, CRYPT_FLAG_SIGNING, S("SHA-384"), S("Secure Hash Algorithm (SHA-384)")},
{CALG_SHA_512, 512, 512, 512, CRYPT_FLAG_SIGNING, S("SHA-512"), S("Secure Hash Algorithm (SHA-512)")},
{CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")},
{CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")},
{CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")},
{CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")},
{CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")},
{CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")},
{CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")},
{CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")},
{0, 0, 0, 0, 0, S(""), S("")}
}
};
#undef S
/******************************************************************************
* API forward declarations
*/
BOOL WINAPI
RSAENH_CPGetKeyParam(
HCRYPTPROV hProv,
HCRYPTKEY hKey,
DWORD dwParam,
BYTE *pbData,
DWORD *pdwDataLen,
DWORD dwFlags
);
BOOL WINAPI
RSAENH_CPEncrypt(
HCRYPTPROV hProv,
HCRYPTKEY hKey,
HCRYPTHASH hHash,
BOOL Final,
DWORD dwFlags,
BYTE *pbData,
DWORD *pdwDataLen,
DWORD dwBufLen
);
BOOL WINAPI
RSAENH_CPCreateHash(
HCRYPTPROV hProv,
ALG_ID Algid,
HCRYPTKEY hKey,
DWORD dwFlags,
HCRYPTHASH *phHash
);
BOOL WINAPI
RSAENH_CPSetHashParam(
HCRYPTPROV hProv,
HCRYPTHASH hHash,
DWORD dwParam,
BYTE *pbData, DWORD dwFlags
);
BOOL WINAPI
RSAENH_CPGetHashParam(
HCRYPTPROV hProv,
HCRYPTHASH hHash,
DWORD dwParam,
BYTE *pbData,
DWORD *pdwDataLen,
DWORD dwFlags
);
BOOL WINAPI
RSAENH_CPDestroyHash(
HCRYPTPROV hProv,
HCRYPTHASH hHash
);
static BOOL crypt_export_key(
CRYPTKEY *pCryptKey,
HCRYPTKEY hPubKey,
DWORD dwBlobType,
DWORD dwFlags,
BOOL force,
BYTE *pbData,
DWORD *pdwDataLen
);
static BOOL import_key(
HCRYPTPROV hProv,
const BYTE *pbData,
DWORD dwDataLen,
HCRYPTKEY hPubKey,
DWORD dwFlags,
BOOL fStoreKey,
HCRYPTKEY *phKey
);
BOOL WINAPI
RSAENH_CPHashData(
HCRYPTPROV hProv,
HCRYPTHASH hHash,
const BYTE *pbData,
DWORD dwDataLen,
DWORD dwFlags
);
/******************************************************************************
* CSP's handle table (used by all acquired key containers)
*/
static struct handle_table handle_table;
/******************************************************************************
* DllMain (RSAENH.@)
*
* Initializes and destroys the handle table for the CSP's handles.
*/
BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID reserved)
{
switch (fdwReason)
{
case DLL_PROCESS_ATTACH:
instance = hInstance;
DisableThreadLibraryCalls(hInstance);
init_handle_table(&handle_table);
break;
case DLL_PROCESS_DETACH:
if (reserved) break;
destroy_handle_table(&handle_table);
break;
}
return TRUE;
}
/******************************************************************************
* copy_param [Internal]
*
* Helper function that supports the standard WINAPI protocol for querying data
* of dynamic size.
*
* PARAMS
* pbBuffer [O] Buffer where the queried parameter is copied to, if it is large enough.
* May be NUL if the required buffer size is to be queried only.
* pdwBufferSize [I/O] In: Size of the buffer at pbBuffer
* Out: Size of parameter pbParam
* pbParam [I] Parameter value.
* dwParamSize [I] Size of pbParam
*
* RETURN
* Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL)
* Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA
*/
static inline BOOL copy_param(BYTE *pbBuffer, DWORD *pdwBufferSize, const BYTE *pbParam,
DWORD dwParamSize)
{
if (pbBuffer)
{
if (dwParamSize > *pdwBufferSize)
{
SetLastError(ERROR_MORE_DATA);
*pdwBufferSize = dwParamSize;
return FALSE;
}
memcpy(pbBuffer, pbParam, dwParamSize);
}
*pdwBufferSize = dwParamSize;
return TRUE;
}
static inline KEYCONTAINER* get_key_container(HCRYPTPROV hProv)
{
KEYCONTAINER *pKeyContainer;
if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
(OBJECTHDR**)&pKeyContainer))
{
SetLastError(NTE_BAD_UID);
return NULL;
}
return pKeyContainer;
}
/******************************************************************************
* get_algid_info [Internal]
*
* Query CSP capabilities for a given crypto algorithm.
*
* PARAMS
* hProv [I] Handle to a key container of the CSP whose capabilities are to be queried.
* algid [I] Identifier of the crypto algorithm about which information is requested.
*
* RETURNS
* Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm.
* Failure: NULL (algid not supported)
*/
static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) {
const PROV_ENUMALGS_EX *iterator;
KEYCONTAINER *pKeyContainer;
if (!(pKeyContainer = get_key_container(hProv))) return NULL;
for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) {
if (iterator->aiAlgid == algid) return iterator;
}
SetLastError(NTE_BAD_ALGID);
return NULL;
}
/******************************************************************************
* copy_data_blob [Internal]
*
* deeply copies a DATA_BLOB
*
* PARAMS
* dst [O] That's where the blob will be copied to
* src [I] Source blob
*
* RETURNS
* Success: TRUE
* Failure: FALSE (GetLastError() == NTE_NO_MEMORY
*
* NOTES
* Use free_data_blob to release resources occupied by copy_data_blob.
*/
static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, const PCRYPT_DATA_BLOB src)
{
dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData);
if (!dst->pbData) {
SetLastError(NTE_NO_MEMORY);
return FALSE;
}
dst->cbData = src->cbData;
memcpy(dst->pbData, src->pbData, src->cbData);
return TRUE;
}
/******************************************************************************
* concat_data_blobs [Internal]
*
* Concatenates two blobs
*
* PARAMS
* dst [O] The new blob will be copied here
* src1 [I] Prefix blob
* src2 [I] Appendix blob
*
* RETURNS
* Success: TRUE
* Failure: FALSE (GetLastError() == NTE_NO_MEMORY)
*
* NOTES
* Release resources occupied by concat_data_blobs with free_data_blobs
*/
static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, const PCRYPT_DATA_BLOB src1,
const PCRYPT_DATA_BLOB src2)
{
dst->cbData = src1->cbData + src2->cbData;
dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData);
if (!dst->pbData) {
SetLastError(NTE_NO_MEMORY);
return FALSE;
}
memcpy(dst->pbData, src1->pbData, src1->cbData);
memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData);
return TRUE;
}
/******************************************************************************
* free_data_blob [Internal]
*
* releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB
*
* PARAMS
* pBlob [I] Heap space occupied by pBlob->pbData is released
*/
static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) {
HeapFree(GetProcessHeap(), 0, pBlob->pbData);
}
/******************************************************************************
* init_data_blob [Internal]
*/
static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) {
pBlob->pbData = NULL;
pBlob->cbData = 0;
}
/******************************************************************************
* free_hmac_info [Internal]
*
* Deeply free an HMAC_INFO struct.
*
* PARAMS
* hmac_info [I] Pointer to the HMAC_INFO struct to be freed.
*
* NOTES
* See Internet RFC 2104 for details on the HMAC algorithm.
*/
static inline void free_hmac_info(PHMAC_INFO hmac_info) {
if (!hmac_info) return;
HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString);
HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString);
HeapFree(GetProcessHeap(), 0, hmac_info);
}
/******************************************************************************
* copy_hmac_info [Internal]
*
* Deeply copy an HMAC_INFO struct
*
* PARAMS
* dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored.
* src [I] Pointer to the HMAC_INFO struct to be copied.
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*
* NOTES
* See Internet RFC 2104 for details on the HMAC algorithm.
*/
static BOOL copy_hmac_info(PHMAC_INFO *dst, const HMAC_INFO *src) {
if (!src) return FALSE;
*dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO));
if (!*dst) return FALSE;
**dst = *src;
(*dst)->pbInnerString = NULL;
(*dst)->pbOuterString = NULL;
if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN;
(*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString);
if (!(*dst)->pbInnerString) {
free_hmac_info(*dst);
return FALSE;
}
if (src->cbInnerString)
memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString);
else
memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN;
(*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString);
if (!(*dst)->pbOuterString) {
free_hmac_info(*dst);
return FALSE;
}
if (src->cbOuterString)
memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString);
else
memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
return TRUE;
}
/******************************************************************************
* destroy_hash [Internal]
*
* Destructor for hash objects
*
* PARAMS
* pCryptHash [I] Pointer to the hash object to be destroyed.
* Will be invalid after function returns!
*/
static void destroy_hash(OBJECTHDR *pObject)
{
CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject;
free_hmac_info(pCryptHash->pHMACInfo);
free_data_blob(&pCryptHash->tpPRFParams.blobLabel);
free_data_blob(&pCryptHash->tpPRFParams.blobSeed);
HeapFree(GetProcessHeap(), 0, pCryptHash);
}
/******************************************************************************
* init_hash [Internal]
*
* Initialize (or reset) a hash object
*
* PARAMS
* pCryptHash [I] The hash object to be initialized.
*/
static inline BOOL init_hash(CRYPTHASH *pCryptHash) {
DWORD dwLen;
switch (pCryptHash->aiAlgid)
{
case CALG_HMAC:
if (pCryptHash->pHMACInfo) {
const PROV_ENUMALGS_EX *pAlgInfo;
pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid);
if (!pAlgInfo) return FALSE;
pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3;
init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
pCryptHash->pHMACInfo->pbInnerString,
pCryptHash->pHMACInfo->cbInnerString);
}
return TRUE;
case CALG_MAC:
dwLen = sizeof(DWORD);
RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN,
(BYTE*)&pCryptHash->dwHashSize, &dwLen, 0);
pCryptHash->dwHashSize >>= 3;
return TRUE;
default:
return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context);
}
}
/******************************************************************************
* update_hash [Internal]
*
* Hashes the given data and updates the hash object's state accordingly
*
* PARAMS
* pCryptHash [I] Hash object to be updated.
* pbData [I] Pointer to data stream to be hashed.
* dwDataLen [I] Length of data stream.
*/
static inline void update_hash(CRYPTHASH *pCryptHash, const BYTE *pbData, DWORD dwDataLen)
{
BYTE *pbTemp;
switch (pCryptHash->aiAlgid)
{
case CALG_HMAC:
if (pCryptHash->pHMACInfo)
update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
pbData, dwDataLen);
break;
case CALG_MAC:
pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen);
if (!pbTemp) return;
memcpy(pbTemp, pbData, dwDataLen);
RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, FALSE, 0,
pbTemp, &dwDataLen, dwDataLen);
HeapFree(GetProcessHeap(), 0, pbTemp);
break;
default:
update_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pbData, dwDataLen);
}
}
/******************************************************************************
* finalize_hash [Internal]
*
* Finalizes the hash, after all data has been hashed with update_hash.
* No additional data can be hashed afterwards until the hash gets initialized again.
*
* PARAMS
* pCryptHash [I] Hash object to be finalized.
*/
static inline void finalize_hash(CRYPTHASH *pCryptHash) {
DWORD dwDataLen;
switch (pCryptHash->aiAlgid)
{
case CALG_HMAC:
if (pCryptHash->pHMACInfo) {
BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
pCryptHash->abHashValue);
memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
pCryptHash->pHMACInfo->pbOuterString,
pCryptHash->pHMACInfo->cbOuterString);
update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
abHashValue, pCryptHash->dwHashSize);
finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
pCryptHash->abHashValue);
}
break;
case CALG_MAC:
dwDataLen = 0;
RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, TRUE, 0,
pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize);
break;
default:
finalize_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pCryptHash->abHashValue);
}
}
/******************************************************************************
* destroy_key [Internal]
*
* Destructor for key objects
*
* PARAMS
* pCryptKey [I] Pointer to the key object to be destroyed.
* Will be invalid after function returns!
*/
static void destroy_key(OBJECTHDR *pObject)
{
CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject;
free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context);
free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
free_data_blob(&pCryptKey->blobHmacKey);
HeapFree(GetProcessHeap(), 0, pCryptKey);
}
/******************************************************************************
* setup_key [Internal]
*
* Initialize (or reset) a key object
*
* PARAMS
* pCryptKey [I] The key object to be initialized.
*/
static inline void setup_key(CRYPTKEY *pCryptKey) {
pCryptKey->dwState = RSAENH_KEYSTATE_IDLE;
memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector));
setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen,
pCryptKey->dwEffectiveKeyLen, pCryptKey->dwSaltLen,
pCryptKey->abKeyValue);
}
/******************************************************************************
* new_key [Internal]
*
* Creates a new key object without assigning the actual binary key value.
* This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function.
*
* PARAMS
* hProv [I] Handle to the provider to which the created key will belong.
* aiAlgid [I] The new key shall use the crypto algorithm identified by aiAlgid.
* dwFlags [I] Upper 16 bits give the key length.
* Lower 16 bits: CRYPT_EXPORTABLE, CRYPT_CREATE_SALT,
* CRYPT_NO_SALT
* ppCryptKey [O] Pointer to the created key
*
* RETURNS
* Success: Handle to the created key.
* Failure: INVALID_HANDLE_VALUE
*/
static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey)
{
HCRYPTKEY hCryptKey;
CRYPTKEY *pCryptKey;
DWORD dwKeyLen = HIWORD(dwFlags);
const PROV_ENUMALGS_EX *peaAlgidInfo;
*ppCryptKey = NULL;
/*
* Retrieve the CSP's capabilities for the given ALG_ID value
*/
peaAlgidInfo = get_algid_info(hProv, aiAlgid);
if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE;
TRACE("alg = %s, dwKeyLen = %d\n", debugstr_a(peaAlgidInfo->szName),
dwKeyLen);
/*
* Assume the default key length, if none is specified explicitly
*/
if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen;
/*
* Check if the requested key length is supported by the current CSP.
* Adjust key length's for DES algorithms.
*/
switch (aiAlgid) {
case CALG_DES:
if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) {
dwKeyLen = RSAENH_DES_STORAGE_KEYLEN;
}
if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) {
SetLastError(NTE_BAD_FLAGS);
return (HCRYPTKEY)INVALID_HANDLE_VALUE;
}
break;
case CALG_3DES_112:
if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) {
dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN;
}
if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) {
SetLastError(NTE_BAD_FLAGS);
return (HCRYPTKEY)INVALID_HANDLE_VALUE;
}
break;
case CALG_3DES:
if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) {
dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN;
}
if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) {
SetLastError(NTE_BAD_FLAGS);
return (HCRYPTKEY)INVALID_HANDLE_VALUE;
}
break;
case CALG_HMAC:
/* Avoid the key length check for HMAC keys, which have unlimited
* length.
*/
break;
default:
if (dwKeyLen % 8 ||
dwKeyLen > peaAlgidInfo->dwMaxLen ||
dwKeyLen < peaAlgidInfo->dwMinLen)
{
TRACE("key len %d out of bounds (%d, %d)\n", dwKeyLen,
peaAlgidInfo->dwMinLen, peaAlgidInfo->dwMaxLen);
SetLastError(NTE_BAD_DATA);
return (HCRYPTKEY)INVALID_HANDLE_VALUE;
}
}
hCryptKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY,
destroy_key, (OBJECTHDR**)&pCryptKey);
if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
{
KEYCONTAINER *pKeyContainer = get_key_container(hProv);
pCryptKey->aiAlgid = aiAlgid;
pCryptKey->hProv = hProv;
pCryptKey->dwModeBits = 0;
pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE |
CRYPT_MAC;
if (dwFlags & CRYPT_EXPORTABLE)
pCryptKey->dwPermissions |= CRYPT_EXPORT;
pCryptKey->dwKeyLen = dwKeyLen >> 3;
pCryptKey->dwEffectiveKeyLen = 0;
/*
* For compatibility reasons a 40 bit key on the Enhanced
* provider will not have salt
*/
if (pKeyContainer->dwPersonality == RSAENH_PERSONALITY_ENHANCED
&& (aiAlgid == CALG_RC2 || aiAlgid == CALG_RC4)
&& (dwFlags & CRYPT_CREATE_SALT) && dwKeyLen == 40)
pCryptKey->dwSaltLen = 0;
else if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT)))
pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen;
else
pCryptKey->dwSaltLen = 0;
memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue));
memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector));
memset(&pCryptKey->siSChannelInfo.saEncAlg, 0, sizeof(pCryptKey->siSChannelInfo.saEncAlg));
memset(&pCryptKey->siSChannelInfo.saMACAlg, 0, sizeof(pCryptKey->siSChannelInfo.saMACAlg));
init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
init_data_blob(&pCryptKey->blobHmacKey);
switch(aiAlgid)
{
case CALG_PCT1_MASTER:
case CALG_SSL2_MASTER:
case CALG_SSL3_MASTER:
case CALG_TLS1_MASTER:
case CALG_RC4:
pCryptKey->dwBlockLen = 0;
pCryptKey->dwMode = 0;
break;
case CALG_RC2:
case CALG_DES:
case CALG_3DES_112:
case CALG_3DES:
pCryptKey->dwBlockLen = 8;
pCryptKey->dwMode = CRYPT_MODE_CBC;
break;
case CALG_AES_128:
case CALG_AES_192:
case CALG_AES_256:
pCryptKey->dwBlockLen = 16;
pCryptKey->dwMode = CRYPT_MODE_CBC;
break;
case CALG_RSA_KEYX:
case CALG_RSA_SIGN:
pCryptKey->dwBlockLen = dwKeyLen >> 3;
pCryptKey->dwMode = 0;
break;
case CALG_HMAC:
pCryptKey->dwBlockLen = 0;
pCryptKey->dwMode = 0;
break;
}
*ppCryptKey = pCryptKey;
}
return hCryptKey;
}
/******************************************************************************
* map_key_spec_to_key_pair_name [Internal]
*
* Returns the name of the registry value associated with a key spec.
*
* PARAMS
* dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
*
* RETURNS
* Success: Name of registry value.
* Failure: NULL
*/
static LPCSTR map_key_spec_to_key_pair_name(DWORD dwKeySpec)
{
LPCSTR szValueName;
switch (dwKeySpec)
{
case AT_KEYEXCHANGE:
szValueName = "KeyExchangeKeyPair";
break;
case AT_SIGNATURE:
szValueName = "SignatureKeyPair";
break;
default:
WARN("invalid key spec %d\n", dwKeySpec);
szValueName = NULL;
}
return szValueName;
}
/******************************************************************************
* store_key_pair [Internal]
*
* Stores a key pair to the registry
*
* PARAMS
* hCryptKey [I] Handle to the key to be stored
* hKey [I] Registry key where the key pair is to be stored
* dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
* dwFlags [I] Flags for protecting the key
*/
static void store_key_pair(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags)
{
LPCSTR szValueName;
DATA_BLOB blobIn, blobOut;
CRYPTKEY *pKey;
DWORD dwLen;
BYTE *pbKey;
if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
return;
if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
(OBJECTHDR**)&pKey))
{
if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, 0, &dwLen))
{
pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
if (pbKey)
{
if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, pbKey,
&dwLen))
{
blobIn.pbData = pbKey;
blobIn.cbData = dwLen;
if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL,
dwFlags, &blobOut))
{
RegSetValueExA(hKey, szValueName, 0, REG_BINARY,
blobOut.pbData, blobOut.cbData);
LocalFree(blobOut.pbData);
}
}
HeapFree(GetProcessHeap(), 0, pbKey);
}
}
}
}
/******************************************************************************
* map_key_spec_to_permissions_name [Internal]
*
* Returns the name of the registry value associated with the permissions for
* a key spec.
*
* PARAMS
* dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
*
* RETURNS
* Success: Name of registry value.
* Failure: NULL
*/
static LPCSTR map_key_spec_to_permissions_name(DWORD dwKeySpec)
{
LPCSTR szValueName;
switch (dwKeySpec)
{
case AT_KEYEXCHANGE:
szValueName = "KeyExchangePermissions";
break;
case AT_SIGNATURE:
szValueName = "SignaturePermissions";
break;
default:
WARN("invalid key spec %d\n", dwKeySpec);
szValueName = NULL;
}
return szValueName;
}
/******************************************************************************
* store_key_permissions [Internal]
*
* Stores a key's permissions to the registry
*
* PARAMS
* hCryptKey [I] Handle to the key whose permissions are to be stored
* hKey [I] Registry key where the key permissions are to be stored
* dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
*/
static void store_key_permissions(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec)
{
LPCSTR szValueName;
CRYPTKEY *pKey;
if (!(szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
return;
if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
(OBJECTHDR**)&pKey))
RegSetValueExA(hKey, szValueName, 0, REG_DWORD,
(BYTE *)&pKey->dwPermissions,
sizeof(pKey->dwPermissions));
}
/******************************************************************************
* create_container_key [Internal]
*
* Creates the registry key for a key container's persistent storage.
*
* PARAMS
* pKeyContainer [I] Pointer to the key container
* sam [I] Desired registry access
* phKey [O] Returned key
*/
static BOOL create_container_key(KEYCONTAINER *pKeyContainer, REGSAM sam, HKEY *phKey)
{
CHAR szRSABase[sizeof(RSAENH_REGKEY) + MAX_PATH];
HKEY hRootKey;
sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
hRootKey = HKEY_LOCAL_MACHINE;
else
hRootKey = HKEY_CURRENT_USER;
/* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
/* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
return RegCreateKeyExA(hRootKey, szRSABase, 0, NULL,
REG_OPTION_NON_VOLATILE, sam, NULL, phKey, NULL)
== ERROR_SUCCESS;
}
/******************************************************************************
* open_container_key [Internal]
*
* Opens a key container's persistent storage for reading.
*
* PARAMS
* pszContainerName [I] Name of the container to be opened. May be the empty
* string if the parent key of all containers is to be
* opened.
* dwFlags [I] Flags indicating which keyset to be opened.
* phKey [O] Returned key
*/
static BOOL open_container_key(LPCSTR pszContainerName, DWORD dwFlags, REGSAM access, HKEY *phKey)
{
CHAR szRSABase[sizeof(RSAENH_REGKEY) + MAX_PATH];
HKEY hRootKey;
sprintf(szRSABase, RSAENH_REGKEY, pszContainerName);
if (dwFlags & CRYPT_MACHINE_KEYSET)
hRootKey = HKEY_LOCAL_MACHINE;
else
hRootKey = HKEY_CURRENT_USER;
/* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
/* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
return RegOpenKeyExA(hRootKey, szRSABase, 0, access, phKey) ==
ERROR_SUCCESS;
}
/******************************************************************************
* delete_container_key [Internal]
*
* Deletes a key container's persistent storage.
*
* PARAMS
* pszContainerName [I] Name of the container to be opened.
* dwFlags [I] Flags indicating which keyset to be opened.
*/
static BOOL delete_container_key(LPCSTR pszContainerName, DWORD dwFlags)
{
CHAR szRegKey[sizeof(RSAENH_REGKEY) + MAX_PATH];
HKEY hRootKey;
sprintf(szRegKey, RSAENH_REGKEY, pszContainerName);
if (dwFlags & CRYPT_MACHINE_KEYSET)
hRootKey = HKEY_LOCAL_MACHINE;
else
hRootKey = HKEY_CURRENT_USER;
if (!RegDeleteKeyA(hRootKey, szRegKey)) {
SetLastError(ERROR_SUCCESS);
return TRUE;
} else {
SetLastError(NTE_BAD_KEYSET);
return FALSE;
}
}
/******************************************************************************
* store_key_container_keys [Internal]
*
* Stores key container's keys in a persistent location.
*
* PARAMS
* pKeyContainer [I] Pointer to the key container whose keys are to be saved
*/
static void store_key_container_keys(KEYCONTAINER *pKeyContainer)
{
HKEY hKey;
DWORD dwFlags;
/* On WinXP, persistent keys are stored in a file located at:
* $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
*/
if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
else
dwFlags = 0;
if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
{
store_key_pair(pKeyContainer->hKeyExchangeKeyPair, hKey,
AT_KEYEXCHANGE, dwFlags);
store_key_pair(pKeyContainer->hSignatureKeyPair, hKey,
AT_SIGNATURE, dwFlags);
RegCloseKey(hKey);
}
}
/******************************************************************************
* store_key_container_permissions [Internal]
*
* Stores key container's key permissions in a persistent location.
*
* PARAMS
* pKeyContainer [I] Pointer to the key container whose key permissions are to
* be saved
*/
static void store_key_container_permissions(KEYCONTAINER *pKeyContainer)
{
HKEY hKey;
if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
{
store_key_permissions(pKeyContainer->hKeyExchangeKeyPair, hKey,
AT_KEYEXCHANGE);
store_key_permissions(pKeyContainer->hSignatureKeyPair, hKey,
AT_SIGNATURE);
RegCloseKey(hKey);
}
}
/******************************************************************************
* release_key_container_keys [Internal]
*
* Releases key container's keys.
*
* PARAMS
* pKeyContainer [I] Pointer to the key container whose keys are to be released.
*/
static void release_key_container_keys(KEYCONTAINER *pKeyContainer)
{
release_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair,
RSAENH_MAGIC_KEY);
release_handle(&handle_table, pKeyContainer->hSignatureKeyPair,
RSAENH_MAGIC_KEY);
}
/******************************************************************************
* destroy_key_container [Internal]
*
* Destructor for key containers.
*
* PARAMS
* pObjectHdr [I] Pointer to the key container to be destroyed.
*/
static void destroy_key_container(OBJECTHDR *pObjectHdr)
{
KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr;
if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT))
{
store_key_container_keys(pKeyContainer);
store_key_container_permissions(pKeyContainer);
release_key_container_keys(pKeyContainer);
}
else
release_key_container_keys(pKeyContainer);
HeapFree( GetProcessHeap(), 0, pKeyContainer );
}
/******************************************************************************
* new_key_container [Internal]
*
* Create a new key container. The personality (RSA Base, Strong or Enhanced CP)
* of the CSP is determined via the pVTable->pszProvName string.
*
* PARAMS
* pszContainerName [I] Name of the key container.
* pVTable [I] Callback functions and context info provided by the OS
*
* RETURNS
* Success: Handle to the new key container.
* Failure: INVALID_HANDLE_VALUE
*/
static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
{
KEYCONTAINER *pKeyContainer;
HCRYPTPROV hKeyContainer;
hKeyContainer = new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER,
destroy_key_container, (OBJECTHDR**)&pKeyContainer);
if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
{
lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH);
pKeyContainer->dwFlags = dwFlags;
pKeyContainer->dwEnumAlgsCtr = 0;
pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
if (pVTable && pVTable->pszProvName) {
lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH);
if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) {
pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE;
} else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) {
pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED;
} else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) {
pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL;
} else if (!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_A) ||
!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_XP_A)) {
pKeyContainer->dwPersonality = RSAENH_PERSONALITY_AES;
} else {
pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG;
}
}
/* The new key container has to be inserted into the CSP immediately
* after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */
if (!(dwFlags & CRYPT_VERIFYCONTEXT)) {
HKEY hKey;
if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
RegCloseKey(hKey);
}
}
return hKeyContainer;
}
/******************************************************************************
* read_key_value [Internal]
*
* Reads a key pair value from the registry
*
* PARAMS
* hKeyContainer [I] Crypt provider to use to import the key
* hKey [I] Registry key from which to read the key pair
* dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
* dwFlags [I] Flags for unprotecting the key
* phCryptKey [O] Returned key
*/
static BOOL read_key_value(HCRYPTPROV hKeyContainer, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags, HCRYPTKEY *phCryptKey)
{
LPCSTR szValueName;
DWORD dwValueType, dwLen;
BYTE *pbKey;
DATA_BLOB blobIn, blobOut;
BOOL ret = FALSE;
if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
return FALSE;
if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, NULL, &dwLen) ==
ERROR_SUCCESS)
{
pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
if (pbKey)
{
if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, pbKey, &dwLen) ==
ERROR_SUCCESS)
{
blobIn.pbData = pbKey;
blobIn.cbData = dwLen;
if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL,
dwFlags, &blobOut))
{
ret = import_key(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
FALSE, phCryptKey);
LocalFree(blobOut.pbData);
}
}
HeapFree(GetProcessHeap(), 0, pbKey);
}
}
if (ret)
{
CRYPTKEY *pKey;
if (lookup_handle(&handle_table, *phCryptKey, RSAENH_MAGIC_KEY,
(OBJECTHDR**)&pKey))
{
if ((szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
{
dwLen = sizeof(pKey->dwPermissions);
RegQueryValueExA(hKey, szValueName, 0, NULL,
(BYTE *)&pKey->dwPermissions, &dwLen);
}
}
}
return ret;
}
/******************************************************************************
* read_key_container [Internal]
*
* Tries to read the persistent state of the key container (mainly the signature
* and key exchange private keys) given by pszContainerName.
*
* PARAMS
* pszContainerName [I] Name of the key container to read from the registry
* pVTable [I] Pointer to context data provided by the operating system
*
* RETURNS
* Success: Handle to the key container read from the registry
* Failure: INVALID_HANDLE_VALUE
*/
static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
{
HKEY hKey;
KEYCONTAINER *pKeyContainer;
HCRYPTPROV hKeyContainer;
HCRYPTKEY hCryptKey;
if (!open_container_key(pszContainerName, dwFlags, KEY_READ, &hKey))
{
SetLastError(NTE_BAD_KEYSET);
return (HCRYPTPROV)INVALID_HANDLE_VALUE;
}
hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable);
if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
{
DWORD dwProtectFlags = (dwFlags & CRYPT_MACHINE_KEYSET) ?
CRYPTPROTECT_LOCAL_MACHINE : 0;
if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER,
(OBJECTHDR**)&pKeyContainer))
return (HCRYPTPROV)INVALID_HANDLE_VALUE;
/* read_key_value calls import_key, which calls import_private_key,
* which implicitly installs the key value into the appropriate key
* container key. Thus the ref count is incremented twice, once for
* the output key value, and once for the implicit install, and needs
* to be decremented to balance the two.
*/
if (read_key_value(hKeyContainer, hKey, AT_KEYEXCHANGE,
dwProtectFlags, &hCryptKey))
release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
if (read_key_value(hKeyContainer, hKey, AT_SIGNATURE,
dwProtectFlags, &hCryptKey))
release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
}
return hKeyContainer;
}
/******************************************************************************
* build_hash_signature [Internal]
*
* Builds a padded version of a hash to match the length of the RSA key modulus.
*
* PARAMS
* pbSignature [O] The padded hash object is stored here.
* dwLen [I] Length of the pbSignature buffer.
* aiAlgid [I] Algorithm identifier of the hash to be padded.
* abHashValue [I] The value of the hash object.
* dwHashLen [I] Length of the hash value.
* dwFlags [I] Selection of padding algorithm.
*
* RETURNS
* Success: TRUE
* Failure: FALSE (NTE_BAD_ALGID)
*/
static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid,
const BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags)
{
/* These prefixes are meant to be concatenated with hash values of the
* respective kind to form a PKCS #7 DigestInfo. */
static const struct tagOIDDescriptor {
ALG_ID aiAlgid;
DWORD dwLen;
const BYTE abOID[19];
} aOIDDescriptor[] = {
{ CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } },
{ CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } },
{ CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } },
{ CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03,
0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } },
{ CALG_SHA_256, 19, { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
0x05, 0x00, 0x04, 0x20 } },
{ CALG_SHA_384, 19, { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
0x05, 0x00, 0x04, 0x30 } },
{ CALG_SHA_512, 19, { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
0x05, 0x00, 0x04, 0x40 } },
{ CALG_SSL3_SHAMD5, 0, { 0 } },
{ 0, 0, { 0 } }
};
DWORD dwIdxOID, i, j;
for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) {
if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break;
}
if (!aOIDDescriptor[dwIdxOID].aiAlgid) {
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
/* Build the padded signature */
if (dwFlags & CRYPT_X931_FORMAT) {
pbSignature[0] = 0x6b;
for (i=1; i < dwLen - dwHashLen - 3; i++) {
pbSignature[i] = 0xbb;
}
pbSignature[i++] = 0xba;
for (j=0; j < dwHashLen; j++, i++) {
pbSignature[i] = abHashValue[j];
}
pbSignature[i++] = 0x33;
pbSignature[i++] = 0xcc;
} else {
pbSignature[0] = 0x00;
pbSignature[1] = 0x01;
if (dwFlags & CRYPT_NOHASHOID) {
for (i=2; i < dwLen - 1 - dwHashLen; i++) {
pbSignature[i] = 0xff;
}
pbSignature[i++] = 0x00;
} else {
for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) {
pbSignature[i] = 0xff;
}
pbSignature[i++] = 0x00;
for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) {
pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j];
}
}
for (j=0; j < dwHashLen; j++) {
pbSignature[i++] = abHashValue[j];
}
}
return TRUE;
}
/******************************************************************************
* tls1_p [Internal]
*
* This is an implementation of the 'P_hash' helper function for TLS1's PRF.
* It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5.
* The pseudo random stream generated by this function is exclusive or'ed with
* the data in pbBuffer.
*
* PARAMS
* hHMAC [I] HMAC object, which will be used in pseudo random generation
* pblobSeed [I] Seed value
* pbBuffer [I/O] Pseudo random stream will be xor'ed to the provided data
* dwBufferLen [I] Number of pseudo random bytes desired
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*/
static BOOL tls1_p(HCRYPTHASH hHMAC, const PCRYPT_DATA_BLOB pblobSeed, BYTE *pbBuffer,
DWORD dwBufferLen)
{
CRYPTHASH *pHMAC;
BYTE abAi[RSAENH_MAX_HASH_SIZE];
DWORD i = 0;
if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) {
SetLastError(NTE_BAD_HASH);
return FALSE;
}
/* compute A_1 = HMAC(seed) */
init_hash(pHMAC);
update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
finalize_hash(pHMAC);
memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
do {
/* compute HMAC(A_i + seed) */
init_hash(pHMAC);
update_hash(pHMAC, abAi, pHMAC->dwHashSize);
update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
finalize_hash(pHMAC);
/* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */
do {
if (i >= dwBufferLen) break;
pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize];
i++;
} while (i % pHMAC->dwHashSize);
/* compute A_{i+1} = HMAC(A_i) */
init_hash(pHMAC);
update_hash(pHMAC, abAi, pHMAC->dwHashSize);
finalize_hash(pHMAC);
memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
} while (i < dwBufferLen);
return TRUE;
}
/******************************************************************************
* tls1_prf [Internal]
*
* TLS1 pseudo random function as specified in RFC 2246, chapter 5
*
* PARAMS
* hProv [I] Key container used to compute the pseudo random stream
* hSecret [I] Key that holds the (pre-)master secret
* pblobLabel [I] Descriptive label
* pblobSeed [I] Seed value
* pbBuffer [O] Pseudo random numbers will be stored here
* dwBufferLen [I] Number of pseudo random bytes desired
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*/
static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, const PCRYPT_DATA_BLOB pblobLabel,
const PCRYPT_DATA_BLOB pblobSeed, BYTE *pbBuffer, DWORD dwBufferLen)
{
HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 };
HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE;
HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE;
CRYPTKEY *pHalfSecret, *pSecret;
DWORD dwHalfSecretLen;
BOOL result = FALSE;
CRYPT_DATA_BLOB blobLabelSeed;
TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%d)\n",
hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen);
if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) {
SetLastError(NTE_FAIL);
return FALSE;
}
dwHalfSecretLen = (pSecret->dwKeyLen+1)/2;
/* concatenation of the label and the seed */
if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit;
/* zero out the buffer, since two random streams will be xor'ed into it. */
memset(pbBuffer, 0, dwBufferLen);
/* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides
* the biggest range of valid key lengths. */
hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret);
if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit;
/* Derive an HMAC_MD5 hash and call the helper function. */
memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen);
if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit;
hmacInfo.HashAlgid = CALG_MD5;
if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
/* Reconfigure to HMAC_SHA hash and call helper function again. */
memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen);
hmacInfo.HashAlgid = CALG_SHA;
if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
result = TRUE;
exit:
release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY);
if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC);
free_data_blob(&blobLabelSeed);
return result;
}
/******************************************************************************
* pad_data [Internal]
*
* Helper function for data padding according to PKCS1 #2
*
* PARAMS
* abData [I] The data to be padded
* dwDataLen [I] Length of the data
* abBuffer [O] Padded data will be stored here
* dwBufferLen [I] Length of the buffer (also length of padded data)
* dwFlags [I] Padding format (CRYPT_SSL2_FALLBACK)
*
* RETURN
* Success: TRUE
* Failure: FALSE (NTE_BAD_LEN, too much data to pad)
*/
static BOOL pad_data(const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen,
DWORD dwFlags)
{
DWORD i;
/* Ensure there is enough space for PKCS1 #2 padding */
if (dwDataLen > dwBufferLen-11) {
SetLastError(NTE_BAD_LEN);
return FALSE;
}
memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen);
abBuffer[0] = 0x00;
abBuffer[1] = RSAENH_PKC_BLOCKTYPE;
for (i=2; i < dwBufferLen - dwDataLen - 1; i++)
do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]);
if (dwFlags & CRYPT_SSL2_FALLBACK)
for (i-=8; i < dwBufferLen - dwDataLen - 1; i++)
abBuffer[i] = 0x03;
abBuffer[i] = 0x00;
return TRUE;
}
/******************************************************************************
* unpad_data [Internal]
*
* Remove the PKCS1 padding from RSA decrypted data
*
* PARAMS
* abData [I] The padded data
* dwDataLen [I] Length of the padded data
* abBuffer [O] Data without padding will be stored here
* dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
* dwFlags [I] Currently none defined
*
* RETURNS
* Success: TRUE
* Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small)
*/
static BOOL unpad_data(const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen,
DWORD dwFlags)
{
DWORD i;
if (dwDataLen < 3)
{
SetLastError(NTE_BAD_DATA);
return FALSE;
}
for (i=2; i<dwDataLen; i++)
if (!abData[i])
break;
if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) ||
(abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE))
{
SetLastError(NTE_BAD_DATA);
return FALSE;
}
*dwBufferLen = dwDataLen - i - 1;
memmove(abBuffer, abData + i + 1, *dwBufferLen);
return TRUE;
}
/******************************************************************************
* CPAcquireContext (RSAENH.@)
*
* Acquire a handle to the key container specified by pszContainer
*
* PARAMS
* phProv [O] Pointer to the location the acquired handle will be written to.
* pszContainer [I] Name of the desired key container. See Notes
* dwFlags [I] Flags. See Notes.
* pVTable [I] Pointer to a PVTableProvStruct containing callbacks.
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*
* NOTES
* If pszContainer is NULL or points to a zero length string the user's login
* name will be used as the key container name.
*
* If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created.
* If a keyset with the given name already exists, the function fails and sets
* last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified
* key container does not exist, function fails and sets last error to
* NTE_BAD_KEYSET.
*/
BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer,
DWORD dwFlags, PVTableProvStruc pVTable)
{
CHAR szKeyContainerName[MAX_PATH];
TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08x, pVTable=%p)\n", phProv,
debugstr_a(pszContainer), dwFlags, pVTable);
if (pszContainer && *pszContainer)
{
lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH);
}
else
{
DWORD dwLen = sizeof(szKeyContainerName);
if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE;
}
switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET))
{
case 0:
*phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
break;
case CRYPT_DELETEKEYSET:
return delete_container_key(szKeyContainerName, dwFlags);
case CRYPT_NEWKEYSET:
*phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE)
{
release_handle(&handle_table, *phProv, RSAENH_MAGIC_CONTAINER);
TRACE("Can't create new keyset, already exists\n");
SetLastError(NTE_EXISTS);
return FALSE;
}
*phProv = new_key_container(szKeyContainerName, dwFlags, pVTable);
break;
case CRYPT_VERIFYCONTEXT|CRYPT_NEWKEYSET:
case CRYPT_VERIFYCONTEXT:
if (pszContainer && *pszContainer) {
TRACE("pszContainer should be empty\n");
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
*phProv = new_key_container("", dwFlags, pVTable);
break;
default:
*phProv = (HCRYPTPROV)INVALID_HANDLE_VALUE;
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) {
SetLastError(ERROR_SUCCESS);
return TRUE;
} else {
return FALSE;
}
}
/******************************************************************************
* CPCreateHash (RSAENH.@)
*
* CPCreateHash creates and initializes a new hash object.
*
* PARAMS
* hProv [I] Handle to the key container to which the new hash will belong.
* Algid [I] Identifies the hash algorithm, which will be used for the hash.
* hKey [I] Handle to a session key applied for keyed hashes.
* dwFlags [I] Currently no flags defined. Must be zero.
* phHash [O] Points to the location where a handle to the new hash will be stored.
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*
* NOTES
* hKey is a handle to a session key applied in keyed hashes like MAC and HMAC.
* If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero.
*/
BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags,
HCRYPTHASH *phHash)
{
CRYPTKEY *pCryptKey;
CRYPTHASH *pCryptHash;
const PROV_ENUMALGS_EX *peaAlgidInfo;
TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08x, phHash=%p)\n", hProv, Algid, hKey,
dwFlags, phHash);
peaAlgidInfo = get_algid_info(hProv, Algid);
if (!peaAlgidInfo) return FALSE;
if (dwFlags)
{
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH ||
Algid == CALG_TLS1PRF)
{
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) {
SetLastError(NTE_BAD_KEY);
return FALSE;
}
if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) {
SetLastError(NTE_BAD_KEY);
return FALSE;
}
if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) &&
(pCryptKey->aiAlgid != CALG_TLS1_MASTER))
{
SetLastError(NTE_BAD_KEY);
return FALSE;
}
if (Algid == CALG_SCHANNEL_MASTER_HASH &&
((!pCryptKey->siSChannelInfo.blobClientRandom.cbData) ||
(!pCryptKey->siSChannelInfo.blobServerRandom.cbData)))
{
SetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) {
SetLastError(NTE_BAD_KEY_STATE);
return FALSE;
}
}
*phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
destroy_hash, (OBJECTHDR**)&pCryptHash);
if (!pCryptHash) return FALSE;
pCryptHash->aiAlgid = Algid;
pCryptHash->hKey = hKey;
pCryptHash->hProv = hProv;
pCryptHash->dwState = RSAENH_HASHSTATE_HASHING;
pCryptHash->pHMACInfo = NULL;
pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3;
init_data_blob(&pCryptHash->tpPRFParams.blobLabel);
init_data_blob(&pCryptHash->tpPRFParams.blobSeed);
if (Algid == CALG_SCHANNEL_MASTER_HASH) {
static const char keyex[] = "key expansion";
BYTE key_expansion[sizeof keyex];
CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion };
memcpy( key_expansion, keyex, sizeof keyex );
if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) {
static const char msec[] = "master secret";
BYTE master_secret[sizeof msec];
CRYPT_DATA_BLOB blobLabel = { 13, master_secret };
BYTE abKeyValue[48];
memcpy( master_secret, msec, sizeof msec );
/* See RFC 2246, chapter 8.1 */
if (!concat_data_blobs(&blobRandom,
&pCryptKey->siSChannelInfo.blobClientRandom,
&pCryptKey->siSChannelInfo.blobServerRandom))
{
return FALSE;
}
tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48);
pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY;
memcpy(pCryptKey->abKeyValue, abKeyValue, 48);
free_data_blob(&blobRandom);
}
/* See RFC 2246, chapter 6.3 */
if (!concat_data_blobs(&blobRandom,
&pCryptKey->siSChannelInfo.blobServerRandom,
&pCryptKey->siSChannelInfo.blobClientRandom))
{
return FALSE;
}
tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue,
RSAENH_MAX_HASH_SIZE);
free_data_blob(&blobRandom);
}
return init_hash(pCryptHash);
}
/******************************************************************************
* CPDestroyHash (RSAENH.@)
*
* Releases the handle to a hash object. The object is destroyed if its reference
* count reaches zero.
*
* PARAMS
* hProv [I] Handle to the key container to which the hash object belongs.
* hHash [I] Handle to the hash object to be released.
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*/
BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash)
{
TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash);
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
{
SetLastError(NTE_BAD_UID);
return FALSE;
}
if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH))
{
SetLastError(NTE_BAD_HASH);
return FALSE;
}
return TRUE;
}
/******************************************************************************
* CPDestroyKey (RSAENH.@)
*
* Releases the handle to a key object. The object is destroyed if its reference
* count reaches zero.
*
* PARAMS
* hProv [I] Handle to the key container to which the key object belongs.
* hKey [I] Handle to the key object to be released.
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*/
BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey)
{
TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey);
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
{
SetLastError(NTE_BAD_UID);
return FALSE;
}
if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY))
{
SetLastError(NTE_BAD_KEY);
return FALSE;
}
return TRUE;
}
/******************************************************************************
* CPDuplicateHash (RSAENH.@)
*
* Clones a hash object including its current state.
*
* PARAMS
* hUID [I] Handle to the key container the hash belongs to.
* hHash [I] Handle to the hash object to be cloned.
* pdwReserved [I] Reserved. Must be NULL.
* dwFlags [I] No flags are currently defined. Must be 0.
* phHash [O] Handle to the cloned hash object.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*/
BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved,
DWORD dwFlags, HCRYPTHASH *phHash)
{
CRYPTHASH *pSrcHash, *pDestHash;
TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08x, phHash=%p)\n", hUID, hHash,
pdwReserved, dwFlags, phHash);
if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
{
SetLastError(NTE_BAD_UID);
return FALSE;
}
if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash))
{
SetLastError(NTE_BAD_HASH);
return FALSE;
}
if (!phHash || pdwReserved || dwFlags)
{
SetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
*phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
destroy_hash, (OBJECTHDR**)&pDestHash);
if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE)
{
*pDestHash = *pSrcHash;
duplicate_hash_impl(pSrcHash->aiAlgid, &pSrcHash->context, &pDestHash->context);
copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo);
copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel);
copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed);
}
return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE;
}
/******************************************************************************
* CPDuplicateKey (RSAENH.@)
*
* Clones a key object including its current state.
*
* PARAMS
* hUID [I] Handle to the key container the hash belongs to.
* hKey [I] Handle to the key object to be cloned.
* pdwReserved [I] Reserved. Must be NULL.
* dwFlags [I] No flags are currently defined. Must be 0.
* phHash [O] Handle to the cloned key object.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*/
BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved,
DWORD dwFlags, HCRYPTKEY *phKey)
{
CRYPTKEY *pSrcKey, *pDestKey;
TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08x, phKey=%p)\n", hUID, hKey,
pdwReserved, dwFlags, phKey);
if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
{
SetLastError(NTE_BAD_UID);
return FALSE;
}
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey))
{
SetLastError(NTE_BAD_KEY);
return FALSE;
}
if (!phKey || pdwReserved || dwFlags)
{
SetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
*phKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key,
(OBJECTHDR**)&pDestKey);
if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
{
*pDestKey = *pSrcKey;
copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom,
&pSrcKey->siSChannelInfo.blobServerRandom);
copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom,
&pSrcKey->siSChannelInfo.blobClientRandom);
duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context);
return TRUE;
}
else
{
return FALSE;
}
}
/******************************************************************************
* CPEncrypt (RSAENH.@)
*
* Encrypt data.
*
* PARAMS
* hProv [I] The key container hKey and hHash belong to.
* hKey [I] The key used to encrypt the data.
* hHash [I] An optional hash object for parallel hashing. See notes.
* Final [I] Indicates if this is the last block of data to encrypt.
* dwFlags [I] Currently no flags defined. Must be zero.
* pbData [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there.
* pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data.
* dwBufLen [I] Size of the buffer at pbData.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*
* NOTES
* If a hash object handle is provided in hHash, it will be updated with the plaintext.
* This is useful for message signatures.
*
* This function uses the standard WINAPI protocol for querying data of dynamic length.
*/
BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen)
{
CRYPTKEY *pCryptKey;
BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
DWORD dwEncryptedLen, i, j, k;
TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
"pdwDataLen=%p, dwBufLen=%d)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen,
dwBufLen);
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
{
SetLastError(NTE_BAD_UID);
return FALSE;
}
if (dwFlags)
{
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
{
SetLastError(NTE_BAD_KEY);
return FALSE;
}
if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
{
SetLastError(NTE_BAD_DATA);
return FALSE;
}
if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
}
if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) {
SetLastError(NTE_BAD_DATA);
return FALSE;
}
dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen;
if (pbData == NULL) {
*pdwDataLen = dwEncryptedLen;
return TRUE;
}
else if (dwEncryptedLen > dwBufLen) {
*pdwDataLen = dwEncryptedLen;
SetLastError(ERROR_MORE_DATA);
return FALSE;
}
/* Pad final block with length bytes */
for (i=*pdwDataLen; i<dwEncryptedLen; i++) pbData[i] = dwEncryptedLen - *pdwDataLen;
*pdwDataLen = dwEncryptedLen;
for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
switch (pCryptKey->dwMode) {
case CRYPT_MODE_ECB:
encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
RSAENH_ENCRYPT);
break;
case CRYPT_MODE_CBC:
for (j=0; j<pCryptKey->dwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j];
encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
RSAENH_ENCRYPT);
memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen);
break;
case CRYPT_MODE_CFB:
for (j=0; j<pCryptKey->dwBlockLen; j++) {
encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
out[j] = in[j] ^ o[0];
for (k=0; k<pCryptKey->dwBlockLen-1; k++)
pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
pCryptKey->abChainVector[k] = out[j];
}
break;
default:
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
memcpy(in, out, pCryptKey->dwBlockLen);
}
} else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
if (pbData == NULL) {
*pdwDataLen = dwBufLen;
return TRUE;
}
encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
} else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
SetLastError(NTE_BAD_KEY);
return FALSE;
}
if (!pbData) {
*pdwDataLen = pCryptKey->dwBlockLen;
return TRUE;
}
if (dwBufLen < pCryptKey->dwBlockLen) {
SetLastError(ERROR_MORE_DATA);
return FALSE;
}
if (!pad_data(pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE;
encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT);
*pdwDataLen = pCryptKey->dwBlockLen;
Final = TRUE;
} else {
SetLastError(NTE_BAD_TYPE);
return FALSE;
}
if (Final) setup_key(pCryptKey);
return TRUE;
}
/******************************************************************************
* CPDecrypt (RSAENH.@)
*
* Decrypt data.
*
* PARAMS
* hProv [I] The key container hKey and hHash belong to.
* hKey [I] The key used to decrypt the data.
* hHash [I] An optional hash object for parallel hashing. See notes.
* Final [I] Indicates if this is the last block of data to decrypt.
* dwFlags [I] Currently no flags defined. Must be zero.
* pbData [I/O] Pointer to the data to decrypt. Plaintext will also be stored there.
* pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*
* NOTES
* If a hash object handle is provided in hHash, it will be updated with the plaintext.
* This is useful for message signatures.
*
* This function uses the standard WINAPI protocol for querying data of dynamic length.
*/
BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
{
CRYPTKEY *pCryptKey;
BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
DWORD i, j, k;
DWORD dwMax;
TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
"pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen);
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
{
SetLastError(NTE_BAD_UID);
return FALSE;
}
if (dwFlags)
{
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
{
SetLastError(NTE_BAD_KEY);
return FALSE;
}
if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
{
SetLastError(NTE_BAD_DATA);
return FALSE;
}
dwMax=*pdwDataLen;
if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
switch (pCryptKey->dwMode) {
case CRYPT_MODE_ECB:
encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
RSAENH_DECRYPT);
break;
case CRYPT_MODE_CBC:
encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
RSAENH_DECRYPT);
for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j];
memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen);
break;
case CRYPT_MODE_CFB:
for (j=0; j<pCryptKey->dwBlockLen; j++) {
encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
out[j] = in[j] ^ o[0];
for (k=0; k<pCryptKey->dwBlockLen-1; k++)
pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
pCryptKey->abChainVector[k] = in[j];
}
break;
default:
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
memcpy(in, out, pCryptKey->dwBlockLen);
}
if (Final) {
if (pbData[*pdwDataLen-1] &&
pbData[*pdwDataLen-1] <= pCryptKey->dwBlockLen &&
pbData[*pdwDataLen-1] <= *pdwDataLen) {
BOOL padOkay = TRUE;
/* check that every bad byte has the same value */
for (i = 1; padOkay && i < pbData[*pdwDataLen-1]; i++)
if (pbData[*pdwDataLen - i - 1] != pbData[*pdwDataLen - 1])
padOkay = FALSE;
if (padOkay)
*pdwDataLen -= pbData[*pdwDataLen-1];
else {
SetLastError(NTE_BAD_DATA);
setup_key(pCryptKey);
return FALSE;
}
}
else {
SetLastError(NTE_BAD_DATA);
setup_key(pCryptKey);
return FALSE;
}
}
} else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
} else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
SetLastError(NTE_BAD_KEY);
return FALSE;
}
encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT);
if (!unpad_data(pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE;
Final = TRUE;
} else {
SetLastError(NTE_BAD_TYPE);
return FALSE;
}
if (Final) setup_key(pCryptKey);
if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
if (*pdwDataLen>dwMax ||
!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
}
return TRUE;
}
static BOOL crypt_export_simple(CRYPTKEY *pCryptKey, CRYPTKEY *pPubKey,
DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
{
BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1);
DWORD dwDataLen;
if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) {
SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
return FALSE;
}
dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen;
if (pbData) {
if (*pdwDataLen < dwDataLen) {
SetLastError(ERROR_MORE_DATA);
*pdwDataLen = dwDataLen;
return FALSE;
}
pBlobHeader->bType = SIMPLEBLOB;
pBlobHeader->bVersion = CUR_BLOB_VERSION;
pBlobHeader->reserved = 0;
pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
*pAlgid = pPubKey->aiAlgid;
if (!pad_data(pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1),
pPubKey->dwBlockLen, dwFlags))
{
return FALSE;
}
encrypt_block_impl(pPubKey->aiAlgid, PK_PUBLIC, &pPubKey->context, (BYTE*)(pAlgid+1),
(BYTE*)(pAlgid+1), RSAENH_ENCRYPT);
}
*pdwDataLen = dwDataLen;
return TRUE;
}
static BOOL crypt_export_public_key(CRYPTKEY *pCryptKey, BYTE *pbData,
DWORD *pdwDataLen)
{
BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
DWORD dwDataLen;
if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
SetLastError(NTE_BAD_KEY);
return FALSE;
}
dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen;
if (pbData) {
if (*pdwDataLen < dwDataLen) {
SetLastError(ERROR_MORE_DATA);
*pdwDataLen = dwDataLen;
return FALSE;
}
pBlobHeader->bType = PUBLICKEYBLOB;
pBlobHeader->bVersion = CUR_BLOB_VERSION;
pBlobHeader->reserved = 0;
pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
pRSAPubKey->magic = RSAENH_MAGIC_RSA1;
pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
}
*pdwDataLen = dwDataLen;
return TRUE;
}
static BOOL crypt_export_private_key(CRYPTKEY *pCryptKey, BOOL force,
BYTE *pbData, DWORD *pdwDataLen)
{
BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
DWORD dwDataLen;
if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
SetLastError(NTE_BAD_KEY);
return FALSE;
}
if (!force && !(pCryptKey->dwPermissions & CRYPT_EXPORT))
{
SetLastError(NTE_BAD_KEY_STATE);
return FALSE;
}
dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1);
if (pbData) {
if (*pdwDataLen < dwDataLen) {
SetLastError(ERROR_MORE_DATA);
*pdwDataLen = dwDataLen;
return FALSE;
}
pBlobHeader->bType = PRIVATEKEYBLOB;
pBlobHeader->bVersion = CUR_BLOB_VERSION;
pBlobHeader->reserved = 0;
pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
pRSAPubKey->magic = RSAENH_MAGIC_RSA2;
pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
}
*pdwDataLen = dwDataLen;
return TRUE;
}
static BOOL crypt_export_plaintext_key(CRYPTKEY *pCryptKey, BYTE *pbData,
DWORD *pdwDataLen)
{
BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
DWORD *pKeyLen = (DWORD*)(pBlobHeader+1);
BYTE *pbKey = (BYTE*)(pKeyLen+1);
DWORD dwDataLen;
dwDataLen = sizeof(BLOBHEADER) + sizeof(DWORD) + pCryptKey->dwKeyLen;
if (pbData) {
if (*pdwDataLen < dwDataLen) {
SetLastError(ERROR_MORE_DATA);
*pdwDataLen = dwDataLen;
return FALSE;
}
pBlobHeader->bType = PLAINTEXTKEYBLOB;
pBlobHeader->bVersion = CUR_BLOB_VERSION;
pBlobHeader->reserved = 0;
pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
*pKeyLen = pCryptKey->dwKeyLen;
memcpy(pbKey, pCryptKey->abKeyValue, pCryptKey->dwKeyLen);
}
*pdwDataLen = dwDataLen;
return TRUE;
}
/******************************************************************************
* crypt_export_key [Internal]
*
* Export a key into a binary large object (BLOB). Called by CPExportKey and
* by store_key_pair.
*
* PARAMS
* pCryptKey [I] Key to be exported.
* hPubKey [I] Key used to encrypt sensitive BLOB data.
* dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
* dwFlags [I] Currently none defined.
* force [I] If TRUE, the key is written no matter what the key's
* permissions are. Otherwise the key's permissions are
* checked before exporting.
* pbData [O] Pointer to a buffer where the BLOB will be written to.
* pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*/
static BOOL crypt_export_key(CRYPTKEY *pCryptKey, HCRYPTKEY hPubKey,
DWORD dwBlobType, DWORD dwFlags, BOOL force,
BYTE *pbData, DWORD *pdwDataLen)
{
CRYPTKEY *pPubKey;
if (dwFlags & CRYPT_SSL2_FALLBACK) {
if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) {
SetLastError(NTE_BAD_KEY);
return FALSE;
}
}
switch ((BYTE)dwBlobType)
{
case SIMPLEBLOB:
if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){
SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */
return FALSE;
}
return crypt_export_simple(pCryptKey, pPubKey, dwFlags, pbData,
pdwDataLen);
case PUBLICKEYBLOB:
if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) {
SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
return FALSE;
}
return crypt_export_public_key(pCryptKey, pbData, pdwDataLen);
case PRIVATEKEYBLOB:
return crypt_export_private_key(pCryptKey, force, pbData, pdwDataLen);
case PLAINTEXTKEYBLOB:
return crypt_export_plaintext_key(pCryptKey, pbData, pdwDataLen);
default:
SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
return FALSE;
}
}
/******************************************************************************
* CPExportKey (RSAENH.@)
*
* Export a key into a binary large object (BLOB).
*
* PARAMS
* hProv [I] Key container from which a key is to be exported.
* hKey [I] Key to be exported.
* hPubKey [I] Key used to encrypt sensitive BLOB data.
* dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
* dwFlags [I] Currently none defined.
* pbData [O] Pointer to a buffer where the BLOB will be written to.
* pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*/
BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey,
DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
{
CRYPTKEY *pCryptKey;
TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08x, dwFlags=%08x, pbData=%p,"
"pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen);
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
{
SetLastError(NTE_BAD_UID);
return FALSE;
}
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
{
SetLastError(NTE_BAD_KEY);
return FALSE;
}
return crypt_export_key(pCryptKey, hPubKey, dwBlobType, dwFlags, FALSE,
pbData, pdwDataLen);
}
/******************************************************************************
* release_and_install_key [Internal]
*
* Release an existing key, if present, and replaces it with a new one.
*
* PARAMS
* hProv [I] Key container into which the key is to be imported.
* src [I] Key which will replace *dest
* dest [I] Points to key to be released and replaced with src
* fStoreKey [I] If TRUE, the newly installed key is stored to the registry.
*/
static void release_and_install_key(HCRYPTPROV hProv, HCRYPTKEY src,
HCRYPTKEY *dest, DWORD fStoreKey)
{
RSAENH_CPDestroyKey(hProv, *dest);
copy_handle(&handle_table, src, RSAENH_MAGIC_KEY, dest);
if (fStoreKey)
{
KEYCONTAINER *pKeyContainer;
if ((pKeyContainer = get_key_container(hProv)))
{
store_key_container_keys(pKeyContainer);
store_key_container_permissions(pKeyContainer);
}
}
}
/******************************************************************************
* import_private_key [Internal]
*
* Import a BLOB'ed private key into a key container.
*
* PARAMS
* hProv [I] Key container into which the private key is to be imported.
* pbData [I] Pointer to a buffer which holds the private key BLOB.
* dwDataLen [I] Length of data in buffer at pbData.
* dwFlags [I] One of:
* CRYPT_EXPORTABLE: the imported key is marked exportable
* fStoreKey [I] If TRUE, the imported key is stored to the registry.
* phKey [O] Handle to the imported key.
*
*
* NOTES
* Assumes the caller has already checked the BLOBHEADER at pbData to ensure
* it's a PRIVATEKEYBLOB.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*/
static BOOL import_private_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
{
KEYCONTAINER *pKeyContainer;
CRYPTKEY *pCryptKey;
const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
const RSAPUBKEY *pRSAPubKey = (const RSAPUBKEY*)(pBlobHeader+1);
BOOL ret;
if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
{
FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
if (!(pKeyContainer = get_key_container(hProv)))
return FALSE;
if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)))
{
ERR("datalen %d not long enough for a BLOBHEADER + RSAPUBKEY\n",
dwDataLen);
SetLastError(NTE_BAD_DATA);
return FALSE;
}
if (pRSAPubKey->magic != RSAENH_MAGIC_RSA2)
{
ERR("unexpected magic %08x\n", pRSAPubKey->magic);
SetLastError(NTE_BAD_DATA);
return FALSE;
}
if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
(pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4))))
{
DWORD expectedLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
(pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4));
ERR("blob too short for pub key: expect %d, got %d\n",
expectedLen, dwDataLen);
SetLastError(NTE_BAD_DATA);
return FALSE;
}
*phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
setup_key(pCryptKey);
ret = import_private_key_impl((const BYTE*)(pRSAPubKey+1), &pCryptKey->context,
pRSAPubKey->bitlen/8, dwDataLen, pRSAPubKey->pubexp);
if (ret) {
if (dwFlags & CRYPT_EXPORTABLE)
pCryptKey->dwPermissions |= CRYPT_EXPORT;
switch (pBlobHeader->aiKeyAlg)
{
case AT_SIGNATURE:
case CALG_RSA_SIGN:
TRACE("installing signing key\n");
release_and_install_key(hProv, *phKey, &pKeyContainer->hSignatureKeyPair,
fStoreKey);
break;
case AT_KEYEXCHANGE:
case CALG_RSA_KEYX:
TRACE("installing key exchange key\n");
release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
fStoreKey);
break;
}
}
return ret;
}
/******************************************************************************
* import_public_key [Internal]
*
* Import a BLOB'ed public key.
*
* PARAMS
* hProv [I] A CSP.
* pbData [I] Pointer to a buffer which holds the public key BLOB.
* dwDataLen [I] Length of data in buffer at pbData.
* dwFlags [I] One of:
* CRYPT_EXPORTABLE: the imported key is marked exportable
* phKey [O] Handle to the imported key.
*
*
* NOTES
* Assumes the caller has already checked the BLOBHEADER at pbData to ensure
* it's a PUBLICKEYBLOB.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*/
static BOOL import_public_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
DWORD dwFlags, HCRYPTKEY *phKey)
{
CRYPTKEY *pCryptKey;
const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
const RSAPUBKEY *pRSAPubKey = (const RSAPUBKEY*)(pBlobHeader+1);
ALG_ID algID;
BOOL ret;
if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
{
FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
(pRSAPubKey->magic != RSAENH_MAGIC_RSA1) ||
(dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3)))
{
SetLastError(NTE_BAD_DATA);
return FALSE;
}
/* Since this is a public key blob, only the public key is
* available, so only signature verification is possible.
*/
algID = pBlobHeader->aiKeyAlg;
*phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
setup_key(pCryptKey);
ret = import_public_key_impl((const BYTE*)(pRSAPubKey+1), &pCryptKey->context,
pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp);
if (ret) {
if (dwFlags & CRYPT_EXPORTABLE)
pCryptKey->dwPermissions |= CRYPT_EXPORT;
}
return ret;
}
/******************************************************************************
* import_symmetric_key [Internal]
*
* Import a BLOB'ed symmetric key into a key container.
*
* PARAMS
* hProv [I] Key container into which the symmetric key is to be imported.
* pbData [I] Pointer to a buffer which holds the symmetric key BLOB.
* dwDataLen [I] Length of data in buffer at pbData.
* hPubKey [I] Key used to decrypt sensitive BLOB data.
* dwFlags [I] One of:
* CRYPT_EXPORTABLE: the imported key is marked exportable
* phKey [O] Handle to the imported key.
*
*
* NOTES
* Assumes the caller has already checked the BLOBHEADER at pbData to ensure
* it's a SIMPLEBLOB.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*/
static BOOL import_symmetric_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
{
CRYPTKEY *pCryptKey, *pPubKey;
const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
const ALG_ID *pAlgid = (const ALG_ID*)(pBlobHeader+1);
const BYTE *pbKeyStream = (const BYTE*)(pAlgid + 1);
BYTE *pbDecrypted;
DWORD dwKeyLen;
if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
{
FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) ||
pPubKey->aiAlgid != CALG_RSA_KEYX)
{
SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */
return FALSE;
}
if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen)
{
SetLastError(NTE_BAD_DATA); /* FIXME: error code */
return FALSE;
}
pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen);
if (!pbDecrypted) return FALSE;
encrypt_block_impl(pPubKey->aiAlgid, PK_PRIVATE, &pPubKey->context, pbKeyStream, pbDecrypted,
RSAENH_DECRYPT);
dwKeyLen = RSAENH_MAX_KEY_SIZE;
if (!unpad_data(pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) {
HeapFree(GetProcessHeap(), 0, pbDecrypted);
return FALSE;
}
*phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey);
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
{
HeapFree(GetProcessHeap(), 0, pbDecrypted);
return FALSE;
}
memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen);
HeapFree(GetProcessHeap(), 0, pbDecrypted);
setup_key(pCryptKey);
if (dwFlags & CRYPT_EXPORTABLE)
pCryptKey->dwPermissions |= CRYPT_EXPORT;
return TRUE;
}
/******************************************************************************
* import_plaintext_key [Internal]
*
* Import a plaintext key into a key container.
*
* PARAMS
* hProv [I] Key container into which the symmetric key is to be imported.
* pbData [I] Pointer to a buffer which holds the plaintext key BLOB.
* dwDataLen [I] Length of data in buffer at pbData.
* dwFlags [I] One of:
* CRYPT_EXPORTABLE: the imported key is marked exportable
* phKey [O] Handle to the imported key.
*
*
* NOTES
* Assumes the caller has already checked the BLOBHEADER at pbData to ensure
* it's a PLAINTEXTKEYBLOB.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*/
static BOOL import_plaintext_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
DWORD dwFlags, HCRYPTKEY *phKey)
{
CRYPTKEY *pCryptKey;
const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
const DWORD *pKeyLen = (const DWORD *)(pBlobHeader + 1);
const BYTE *pbKeyStream = (const BYTE*)(pKeyLen + 1);
if (dwDataLen < sizeof(BLOBHEADER)+sizeof(DWORD)+*pKeyLen)
{
SetLastError(NTE_BAD_DATA); /* FIXME: error code */
return FALSE;
}
if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
{
*phKey = new_key(hProv, CALG_HMAC, 0, &pCryptKey);
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
return FALSE;
if (*pKeyLen <= RSAENH_MIN(sizeof(pCryptKey->abKeyValue), RSAENH_HMAC_BLOCK_LEN))
{
memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
pCryptKey->dwKeyLen = *pKeyLen;
}
else
{
CRYPT_DATA_BLOB blobHmacKey = { *pKeyLen, (BYTE *)pbKeyStream };
/* In order to initialize an HMAC key, the key material is hashed,
* and the output of the hash function is used as the key material.
* Unfortunately, the way the Crypto API is designed, we don't know
* the hash algorithm yet, so we have to copy the entire key
* material.
*/
if (!copy_data_blob(&pCryptKey->blobHmacKey, &blobHmacKey))
{
release_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY);
*phKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
return FALSE;
}
}
setup_key(pCryptKey);
if (dwFlags & CRYPT_EXPORTABLE)
pCryptKey->dwPermissions |= CRYPT_EXPORT;
}
else
{
*phKey = new_key(hProv, pBlobHeader->aiKeyAlg, *pKeyLen<<19, &pCryptKey);
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
return FALSE;
memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
setup_key(pCryptKey);
if (dwFlags & CRYPT_EXPORTABLE)
pCryptKey->dwPermissions |= CRYPT_EXPORT;
}
return TRUE;
}
/******************************************************************************
* import_key [Internal]
*
* Import a BLOB'ed key into a key container, optionally storing the key's
* value to the registry.
*
* PARAMS
* hProv [I] Key container into which the key is to be imported.
* pbData [I] Pointer to a buffer which holds the BLOB.
* dwDataLen [I] Length of data in buffer at pbData.
* hPubKey [I] Key used to decrypt sensitive BLOB data.
* dwFlags [I] One of:
* CRYPT_EXPORTABLE: the imported key is marked exportable
* fStoreKey [I] If TRUE, the imported key is stored to the registry.
* phKey [O] Handle to the imported key.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*/
static BOOL import_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, HCRYPTKEY hPubKey,
DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
{
KEYCONTAINER *pKeyContainer;
const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
if (!(pKeyContainer = get_key_container(hProv)))
return FALSE;
if (dwDataLen < sizeof(BLOBHEADER) ||
pBlobHeader->bVersion != CUR_BLOB_VERSION ||
pBlobHeader->reserved != 0)
{
TRACE("bVersion = %d, reserved = %d\n", pBlobHeader->bVersion,
pBlobHeader->reserved);
SetLastError(NTE_BAD_DATA);
return FALSE;
}
/* If this is a verify-only context, the key is not persisted regardless of
* fStoreKey's original value.
*/
fStoreKey = fStoreKey && !(dwFlags & CRYPT_VERIFYCONTEXT);
TRACE("blob type: %x\n", pBlobHeader->bType);
switch (pBlobHeader->bType)
{
case PRIVATEKEYBLOB:
return import_private_key(hProv, pbData, dwDataLen, dwFlags,
fStoreKey, phKey);
case PUBLICKEYBLOB:
return import_public_key(hProv, pbData, dwDataLen, dwFlags,
phKey);
case SIMPLEBLOB:
return import_symmetric_key(hProv, pbData, dwDataLen, hPubKey,
dwFlags, phKey);
case PLAINTEXTKEYBLOB:
return import_plaintext_key(hProv, pbData, dwDataLen, dwFlags,
phKey);
default:
SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
return FALSE;
}
}
/******************************************************************************
* CPImportKey (RSAENH.@)
*
* Import a BLOB'ed key into a key container.
*
* PARAMS
* hProv [I] Key container into which the key is to be imported.
* pbData [I] Pointer to a buffer which holds the BLOB.
* dwDataLen [I] Length of data in buffer at pbData.
* hPubKey [I] Key used to decrypt sensitive BLOB data.
* dwFlags [I] One of:
* CRYPT_EXPORTABLE: the imported key is marked exportable
* phKey [O] Handle to the imported key.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*/
BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
{
TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%d, hPubKey=%08lx, dwFlags=%08x, phKey=%p)\n",
hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey);
return import_key(hProv, pbData, dwDataLen, hPubKey, dwFlags, TRUE, phKey);
}
/******************************************************************************
* CPGenKey (RSAENH.@)
*
* Generate a key in the key container
*
* PARAMS
* hProv [I] Key container for which a key is to be generated.
* Algid [I] Crypto algorithm identifier for the key to be generated.
* dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes
* phKey [O] Handle to the generated key.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*
* FIXME
* Flags currently not considered.
*
* NOTES
* Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE
* and AT_SIGNATURE values.
*/
BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey)
{
KEYCONTAINER *pKeyContainer;
CRYPTKEY *pCryptKey;
TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08x, phKey=%p)\n", hProv, Algid, dwFlags, phKey);
if (!(pKeyContainer = get_key_container(hProv)))
{
/* MSDN: hProv not containing valid context handle */
return FALSE;
}
switch (Algid)
{
case AT_SIGNATURE:
case CALG_RSA_SIGN:
*phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey);
if (pCryptKey) {
new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
setup_key(pCryptKey);
release_and_install_key(hProv, *phKey,
&pKeyContainer->hSignatureKeyPair,
FALSE);
}
break;
case AT_KEYEXCHANGE:
case CALG_RSA_KEYX:
*phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey);
if (pCryptKey) {
new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
setup_key(pCryptKey);
release_and_install_key(hProv, *phKey,
&pKeyContainer->hKeyExchangeKeyPair,
FALSE);
}
break;
case CALG_RC2:
case CALG_RC4:
case CALG_DES:
case CALG_3DES_112:
case CALG_3DES:
case CALG_AES_128:
case CALG_AES_192:
case CALG_AES_256:
case CALG_PCT1_MASTER:
case CALG_SSL2_MASTER:
case CALG_SSL3_MASTER:
case CALG_TLS1_MASTER:
*phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
if (pCryptKey) {
gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE);
switch (Algid) {
case CALG_SSL3_MASTER:
pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR;
pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR;
break;
case CALG_TLS1_MASTER:
pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR;
pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR;
break;
}
setup_key(pCryptKey);
}
break;
default:
/* MSDN: Algorithm not supported specified by Algid */
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
return *phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE;
}
/******************************************************************************
* CPGenRandom (RSAENH.@)
*
* Generate a random byte stream.
*
* PARAMS
* hProv [I] Key container that is used to generate random bytes.
* dwLen [I] Specifies the number of requested random data bytes.
* pbBuffer [O] Random bytes will be stored here.
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*/
BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer)
{
TRACE("(hProv=%08lx, dwLen=%d, pbBuffer=%p)\n", hProv, dwLen, pbBuffer);
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
{
/* MSDN: hProv not containing valid context handle */
SetLastError(NTE_BAD_UID);
return FALSE;
}
return gen_rand_impl(pbBuffer, dwLen);
}
/******************************************************************************
* CPGetHashParam (RSAENH.@)
*
* Query parameters of an hash object.
*
* PARAMS
* hProv [I] The kea container, which the hash belongs to.
* hHash [I] The hash object that is to be queried.
* dwParam [I] Specifies the parameter that is to be queried.
* pbData [I] Pointer to the buffer where the parameter value will be stored.
* pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
* dwFlags [I] None currently defined.
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*
* NOTES
* Valid dwParams are: HP_ALGID, HP_HASHSIZE, HP_HASHVALUE. The hash will be
* finalized if HP_HASHVALUE is queried.
*/
BOOL WINAPI RSAENH_CPGetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData,
DWORD *pdwDataLen, DWORD dwFlags)
{
CRYPTHASH *pCryptHash;
TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
hProv, hHash, dwParam, pbData, pdwDataLen, dwFlags);
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
{
SetLastError(NTE_BAD_UID);
return FALSE;
}
if (dwFlags)
{
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
(OBJECTHDR**)&pCryptHash))
{
SetLastError(NTE_BAD_HASH);
return FALSE;
}
if (!pdwDataLen)
{
SetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
switch (dwParam)
{
case HP_ALGID:
return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptHash->aiAlgid,
sizeof(ALG_ID));
case HP_HASHSIZE:
return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptHash->dwHashSize,
sizeof(DWORD));
case HP_HASHVAL:
if (pCryptHash->aiAlgid == CALG_TLS1PRF) {
return tls1_prf(hProv, pCryptHash->hKey, &pCryptHash->tpPRFParams.blobLabel,
&pCryptHash->tpPRFParams.blobSeed, pbData, *pdwDataLen);
}
if ( pbData == NULL ) {
*pdwDataLen = pCryptHash->dwHashSize;
return TRUE;
}
if (pbData && (pCryptHash->dwState != RSAENH_HASHSTATE_FINISHED))
{
finalize_hash(pCryptHash);
pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
}
return copy_param(pbData, pdwDataLen, pCryptHash->abHashValue,
pCryptHash->dwHashSize);
default:
SetLastError(NTE_BAD_TYPE);
return FALSE;
}
}
/******************************************************************************
* CPSetKeyParam (RSAENH.@)
*
* Set a parameter of a key object
*
* PARAMS
* hProv [I] The key container to which the key belongs.
* hKey [I] The key for which a parameter is to be set.
* dwParam [I] Parameter type. See Notes.
* pbData [I] Pointer to the parameter value.
* dwFlags [I] Currently none defined.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*
* NOTES:
* Defined dwParam types are:
* - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
* - KP_MODE_BITS: Shift width for cipher feedback mode. (Currently ignored by MS CSP's)
* - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT,
* CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
* - KP_IV: Initialization vector
*/
BOOL WINAPI RSAENH_CPSetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData,
DWORD dwFlags)
{
CRYPTKEY *pCryptKey;
TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, hKey,
dwParam, pbData, dwFlags);
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
{
SetLastError(NTE_BAD_UID);
return FALSE;
}
if (dwFlags) {
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
{
SetLastError(NTE_BAD_KEY);
return FALSE;
}
switch (dwParam) {
case KP_PADDING:
/* The MS providers only support PKCS5_PADDING */
if (*(DWORD *)pbData != PKCS5_PADDING) {
SetLastError(NTE_BAD_DATA);
return FALSE;
}
return TRUE;
case KP_MODE:
pCryptKey->dwMode = *(DWORD*)pbData;
return TRUE;
case KP_MODE_BITS:
pCryptKey->dwModeBits = *(DWORD*)pbData;
return TRUE;
case KP_PERMISSIONS:
{
DWORD perms = *(DWORD *)pbData;
if ((perms & CRYPT_EXPORT) &&
!(pCryptKey->dwPermissions & CRYPT_EXPORT))
{
SetLastError(NTE_BAD_DATA);
return FALSE;
}
else if (!(perms & CRYPT_EXPORT) &&
(pCryptKey->dwPermissions & CRYPT_EXPORT))
{
/* Clearing the export permission appears to be ignored,
* see tests.
*/
perms |= CRYPT_EXPORT;
}
pCryptKey->dwPermissions = perms;
return TRUE;
}
case KP_IV:
memcpy(pCryptKey->abInitVector, pbData, pCryptKey->dwBlockLen);
setup_key(pCryptKey);
return TRUE;
case KP_SALT:
switch (pCryptKey->aiAlgid) {
case CALG_RC2:
case CALG_RC4:
{
KEYCONTAINER *pKeyContainer = get_key_container(pCryptKey->hProv);
if (!pbData)
{
SetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
/* MSDN: the base provider always sets eleven bytes of
* salt value.
*/
memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen,
pbData, 11);
pCryptKey->dwSaltLen = 11;
setup_key(pCryptKey);
/* After setting the salt value if the provider is not base or
* strong the salt length will be reset. */
if (pKeyContainer->dwPersonality != RSAENH_PERSONALITY_BASE &&
pKeyContainer->dwPersonality != RSAENH_PERSONALITY_STRONG)
pCryptKey->dwSaltLen = 0;
break;
}
default:
SetLastError(NTE_BAD_KEY);
return FALSE;
}
return TRUE;
case KP_SALT_EX:
{
CRYPT_INTEGER_BLOB *blob = (CRYPT_INTEGER_BLOB *)pbData;
/* salt length can't be greater than 184 bits = 24 bytes */
if (blob->cbData > 24)
{
SetLastError(NTE_BAD_DATA);
return FALSE;
}
memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen, blob->pbData,
blob->cbData);
pCryptKey->dwSaltLen = blob->cbData;
setup_key(pCryptKey);
return TRUE;
}
case KP_EFFECTIVE_KEYLEN:
switch (pCryptKey->aiAlgid) {
case CALG_RC2:
{
DWORD keylen, deflen;
BOOL ret = TRUE;
KEYCONTAINER *pKeyContainer = get_key_container(pCryptKey->hProv);
if (!pbData)
{
SetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
keylen = *(DWORD *)pbData;
if (!keylen || keylen > 1024)
{
SetLastError(NTE_BAD_DATA);
return FALSE;
}
/*
* The Base provider will force the key length to default
* and set an error state if a key length different from
* the default is tried.
*/
deflen = aProvEnumAlgsEx[pKeyContainer->dwPersonality]->dwDefaultLen;
if (pKeyContainer->dwPersonality == RSAENH_PERSONALITY_BASE
&& keylen != deflen)
{
keylen = deflen;
SetLastError(NTE_BAD_DATA);
ret = FALSE;
}
pCryptKey->dwEffectiveKeyLen = keylen;
setup_key(pCryptKey);
return ret;
}
default:
SetLastError(NTE_BAD_TYPE);
return FALSE;
}
return TRUE;
case KP_SCHANNEL_ALG:
switch (((PSCHANNEL_ALG)pbData)->dwUse) {
case SCHANNEL_ENC_KEY:
memcpy(&pCryptKey->siSChannelInfo.saEncAlg, pbData, sizeof(SCHANNEL_ALG));
break;
case SCHANNEL_MAC_KEY:
memcpy(&pCryptKey->siSChannelInfo.saMACAlg, pbData, sizeof(SCHANNEL_ALG));
break;
default:
SetLastError(NTE_FAIL); /* FIXME: error code */
return FALSE;
}
return TRUE;
case KP_CLIENT_RANDOM:
return copy_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom, (PCRYPT_DATA_BLOB)pbData);
case KP_SERVER_RANDOM:
return copy_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom, (PCRYPT_DATA_BLOB)pbData);
default:
SetLastError(NTE_BAD_TYPE);
return FALSE;
}
}
/******************************************************************************
* CPGetKeyParam (RSAENH.@)
*
* Query a key parameter.
*
* PARAMS
* hProv [I] The key container, which the key belongs to.
* hHash [I] The key object that is to be queried.
* dwParam [I] Specifies the parameter that is to be queried.
* pbData [I] Pointer to the buffer where the parameter value will be stored.
* pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
* dwFlags [I] None currently defined.
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*
* NOTES
* Defined dwParam types are:
* - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
* - KP_MODE_BITS: Shift width for cipher feedback mode.
* (Currently ignored by MS CSP's - always eight)
* - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT,
* CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
* - KP_IV: Initialization vector.
* - KP_KEYLEN: Bitwidth of the key.
* - KP_BLOCKLEN: Size of a block cipher block.
* - KP_SALT: Salt value.
*/
BOOL WINAPI RSAENH_CPGetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData,
DWORD *pdwDataLen, DWORD dwFlags)
{
CRYPTKEY *pCryptKey;
DWORD dwValue;
TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p dwFlags=%08x)\n",
hProv, hKey, dwParam, pbData, pdwDataLen, dwFlags);
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
{
SetLastError(NTE_BAD_UID);
return FALSE;
}
if (dwFlags) {
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
{
SetLastError(NTE_BAD_KEY);
return FALSE;
}
switch (dwParam)
{
case KP_IV:
return copy_param(pbData, pdwDataLen, pCryptKey->abInitVector,
pCryptKey->dwBlockLen);
case KP_SALT:
switch (pCryptKey->aiAlgid) {
case CALG_RC2:
case CALG_RC4:
return copy_param(pbData, pdwDataLen,
&pCryptKey->abKeyValue[pCryptKey->dwKeyLen],
pCryptKey->dwSaltLen);
default:
SetLastError(NTE_BAD_KEY);
return FALSE;
}
case KP_PADDING:
dwValue = PKCS5_PADDING;
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
case KP_KEYLEN:
dwValue = pCryptKey->dwKeyLen << 3;
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
case KP_EFFECTIVE_KEYLEN:
if (pCryptKey->dwEffectiveKeyLen)
dwValue = pCryptKey->dwEffectiveKeyLen;
else
dwValue = pCryptKey->dwKeyLen << 3;
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
case KP_BLOCKLEN:
dwValue = pCryptKey->dwBlockLen << 3;
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
case KP_MODE:
return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwMode, sizeof(DWORD));
case KP_MODE_BITS:
return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwModeBits,
sizeof(DWORD));
case KP_PERMISSIONS:
return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwPermissions,
sizeof(DWORD));
case KP_ALGID:
return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->aiAlgid, sizeof(DWORD));
default:
SetLastError(NTE_BAD_TYPE);
return FALSE;
}
}
/******************************************************************************
* CPGetProvParam (RSAENH.@)
*
* Query a CSP parameter.
*
* PARAMS
* hProv [I] The key container that is to be queried.
* dwParam [I] Specifies the parameter that is to be queried.
* pbData [I] Pointer to the buffer where the parameter value will be stored.
* pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
* dwFlags [I] CRYPT_FIRST: Start enumeration (for PP_ENUMALGS{_EX}).
*
* RETURNS
* Success: TRUE
* Failure: FALSE
* NOTES:
* Defined dwParam types:
* - PP_CONTAINER: Name of the key container.
* - PP_NAME: Name of the cryptographic service provider.
* - PP_SIG_KEYSIZE_INC: RSA signature keywidth granularity in bits.
* - PP_KEYX_KEYSIZE_INC: RSA key-exchange keywidth granularity in bits.
* - PP_ENUMALGS{_EX}: Query provider capabilities.
* - PP_KEYSET_SEC_DESCR: Retrieve security descriptor on container.
*/
BOOL WINAPI RSAENH_CPGetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData,
DWORD *pdwDataLen, DWORD dwFlags)
{
KEYCONTAINER *pKeyContainer;
PROV_ENUMALGS provEnumalgs;
DWORD dwTemp;
HKEY hKey;
/* This is for dwParam PP_CRYPT_COUNT_KEY_USE.
* IE6 SP1 asks for it in the 'About' dialog.
* Returning this BLOB seems to satisfy IE. The marked 0x00 seem
* to be 'don't care's. If you know anything more specific about
* this provider parameter, please report to wine-devel@winehq.org */
static const BYTE abWTF[96] = {
0xb0, 0x25, 0x63, 0x86, 0x9c, 0xab, 0xb6, 0x37,
0xe8, 0x82, /**/0x00,/**/ 0x72, 0x06, 0xb2, /**/0x00,/**/ 0x3b,
0x60, 0x35, /**/0x00,/**/ 0x3b, 0x88, 0xce, /**/0x00,/**/ 0x82,
0xbc, 0x7a, /**/0x00,/**/ 0xb7, 0x4f, 0x7e, /**/0x00,/**/ 0xde,
0x92, 0xf1, /**/0x00,/**/ 0x83, 0xea, 0x5e, /**/0x00,/**/ 0xc8,
0x12, 0x1e, 0xd4, 0x06, 0xf7, 0x66, /**/0x00,/**/ 0x01,
0x29, 0xa4, /**/0x00,/**/ 0xf8, 0x24, 0x0c, /**/0x00,/**/ 0x33,
0x06, 0x80, /**/0x00,/**/ 0x02, 0x46, 0x0b, /**/0x00,/**/ 0x6d,
0x5b, 0xca, /**/0x00,/**/ 0x9a, 0x10, 0xf0, /**/0x00,/**/ 0x05,
0x19, 0xd0, /**/0x00,/**/ 0x2c, 0xf6, 0x27, /**/0x00,/**/ 0xaa,
0x7c, 0x6f, /**/0x00,/**/ 0xb9, 0xd8, 0x72, /**/0x00,/**/ 0x03,
0xf3, 0x81, /**/0x00,/**/ 0xfa, 0xe8, 0x26, /**/0x00,/**/ 0xca
};
TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
hProv, dwParam, pbData, pdwDataLen, dwFlags);
if (!pdwDataLen) {
SetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
if (!(pKeyContainer = get_key_container(hProv)))
{
/* MSDN: hProv not containing valid context handle */
return FALSE;
}
switch (dwParam)
{
case PP_CONTAINER:
case PP_UNIQUE_CONTAINER:/* MSDN says we can return the same value as PP_CONTAINER */
return copy_param(pbData, pdwDataLen, (const BYTE*)pKeyContainer->szName,
strlen(pKeyContainer->szName)+1);
case PP_NAME:
return copy_param(pbData, pdwDataLen, (const BYTE*)pKeyContainer->szProvName,
strlen(pKeyContainer->szProvName)+1);
case PP_PROVTYPE:
dwTemp = PROV_RSA_FULL;
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
case PP_KEYSPEC:
dwTemp = AT_SIGNATURE | AT_KEYEXCHANGE;
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
case PP_KEYSET_TYPE:
dwTemp = pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET;
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
case PP_KEYSTORAGE:
dwTemp = CRYPT_SEC_DESCR;
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
case PP_SIG_KEYSIZE_INC:
case PP_KEYX_KEYSIZE_INC:
dwTemp = 8;
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
case PP_IMPTYPE:
dwTemp = CRYPT_IMPL_SOFTWARE;
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
case PP_VERSION:
dwTemp = 0x00000200;
return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
case PP_ENUMCONTAINERS:
if ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) pKeyContainer->dwEnumContainersCtr = 0;
if (!pbData) {
*pdwDataLen = (DWORD)MAX_PATH + 1;
return TRUE;
}
if (!open_container_key("", dwFlags, KEY_READ, &hKey))
{
SetLastError(ERROR_NO_MORE_ITEMS);
return FALSE;
}
dwTemp = *pdwDataLen;
switch (RegEnumKeyExA(hKey, pKeyContainer->dwEnumContainersCtr, (LPSTR)pbData, &dwTemp,
NULL, NULL, NULL, NULL))
{
case ERROR_MORE_DATA:
*pdwDataLen = (DWORD)MAX_PATH + 1;
case ERROR_SUCCESS:
pKeyContainer->dwEnumContainersCtr++;
RegCloseKey(hKey);
return TRUE;
case ERROR_NO_MORE_ITEMS:
default:
SetLastError(ERROR_NO_MORE_ITEMS);
RegCloseKey(hKey);
return FALSE;
}
case PP_ENUMALGS:
case PP_ENUMALGS_EX:
if (((pKeyContainer->dwEnumAlgsCtr >= RSAENH_MAX_ENUMALGS-1) ||
(!aProvEnumAlgsEx[pKeyContainer->dwPersonality]
[pKeyContainer->dwEnumAlgsCtr+1].aiAlgid)) &&
((dwFlags & CRYPT_FIRST) != CRYPT_FIRST))
{
SetLastError(ERROR_NO_MORE_ITEMS);
return FALSE;
}
if (dwParam == PP_ENUMALGS) {
if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS)))
pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ?
0 : pKeyContainer->dwEnumAlgsCtr+1;
provEnumalgs.aiAlgid = aProvEnumAlgsEx
[pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].aiAlgid;
provEnumalgs.dwBitLen = aProvEnumAlgsEx
[pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwDefaultLen;
provEnumalgs.dwNameLen = aProvEnumAlgsEx
[pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwNameLen;
memcpy(provEnumalgs.szName, aProvEnumAlgsEx
[pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].szName,
20*sizeof(CHAR));
return copy_param(pbData, pdwDataLen, (const BYTE*)&provEnumalgs,
sizeof(PROV_ENUMALGS));
} else {
if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS_EX)))
pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ?
0 : pKeyContainer->dwEnumAlgsCtr+1;
return copy_param(pbData, pdwDataLen,
(const BYTE*)&aProvEnumAlgsEx
[pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr],
sizeof(PROV_ENUMALGS_EX));
}
case PP_CRYPT_COUNT_KEY_USE: /* Asked for by IE About dialog */
return copy_param(pbData, pdwDataLen, abWTF, sizeof(abWTF));
case PP_KEYSET_SEC_DESCR:
{
SECURITY_DESCRIPTOR *sd;
DWORD err, len, flags = (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET);
if (!open_container_key(pKeyContainer->szName, flags, KEY_READ, &hKey))
{
SetLastError(NTE_BAD_KEYSET);
return FALSE;
}
err = GetSecurityInfo(hKey, SE_REGISTRY_KEY, dwFlags, NULL, NULL, NULL, NULL, (void **)&sd);
RegCloseKey(hKey);
if (err)
{
SetLastError(err);
return FALSE;
}
len = GetSecurityDescriptorLength(sd);
if (*pdwDataLen >= len) memcpy(pbData, sd, len);
else SetLastError(ERROR_INSUFFICIENT_BUFFER);
*pdwDataLen = len;
LocalFree(sd);
return TRUE;
}
default:
/* MSDN: Unknown parameter number in dwParam */
SetLastError(NTE_BAD_TYPE);
return FALSE;
}
}
/******************************************************************************
* CPDeriveKey (RSAENH.@)
*
* Derives a key from a hash value.
*
* PARAMS
* hProv [I] Key container for which a key is to be generated.
* Algid [I] Crypto algorithm identifier for the key to be generated.
* hBaseData [I] Hash from whose value the key will be derived.
* dwFlags [I] See Notes.
* phKey [O] The generated key.
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*
* NOTES
* Defined flags:
* - CRYPT_EXPORTABLE: Key can be exported.
* - CRYPT_NO_SALT: No salt is used for 40 bit keys.
* - CRYPT_CREATE_SALT: Use remaining bits as salt value.
*/
BOOL WINAPI RSAENH_CPDeriveKey(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTHASH hBaseData,
DWORD dwFlags, HCRYPTKEY *phKey)
{
CRYPTKEY *pCryptKey, *pMasterKey;
CRYPTHASH *pCryptHash;
BYTE abHashValue[RSAENH_MAX_HASH_SIZE*2];
DWORD dwLen;
TRACE("(hProv=%08lx, Algid=%d, hBaseData=%08lx, dwFlags=%08x phKey=%p)\n", hProv, Algid,
hBaseData, dwFlags, phKey);
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
{
SetLastError(NTE_BAD_UID);
return FALSE;
}
if (!lookup_handle(&handle_table, hBaseData, RSAENH_MAGIC_HASH,
(OBJECTHDR**)&pCryptHash))
{
SetLastError(NTE_BAD_HASH);
return FALSE;
}
if (!phKey)
{
SetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
switch (GET_ALG_CLASS(Algid))
{
case ALG_CLASS_DATA_ENCRYPT:
{
int need_padding, copy_len;
*phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
/*
* We derive the key material from the hash.
* If the hash value is not large enough for the claimed key, we have to construct
* a larger binary value based on the hash. This is documented in MSDN: CryptDeriveKey.
*/
dwLen = RSAENH_MAX_HASH_SIZE;
RSAENH_CPGetHashParam(pCryptHash->hProv, hBaseData, HP_HASHVAL, abHashValue, &dwLen, 0);
/*
* The usage of padding seems to vary from algorithm to algorithm.
* For now the only different case found was for AES with 128 bit key.
*/
switch(Algid)
{
case CALG_AES_128:
/* To reduce the chance of regressions we will only deviate
* from the old behavior for the tested hash lengths */
if (dwLen == 16 || dwLen == 20)
{
need_padding = 1;
break;
}
default:
need_padding = dwLen < pCryptKey->dwKeyLen;
}
copy_len = pCryptKey->dwKeyLen;
if (need_padding)
{
BYTE pad1[RSAENH_HMAC_DEF_PAD_LEN], pad2[RSAENH_HMAC_DEF_PAD_LEN];
BYTE old_hashval[RSAENH_MAX_HASH_SIZE];
DWORD i;
memcpy(old_hashval, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE);
for (i=0; i<RSAENH_HMAC_DEF_PAD_LEN; i++) {
pad1[i] = RSAENH_HMAC_DEF_IPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
pad2[i] = RSAENH_HMAC_DEF_OPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
}
init_hash(pCryptHash);
update_hash(pCryptHash, pad1, RSAENH_HMAC_DEF_PAD_LEN);
finalize_hash(pCryptHash);
memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
init_hash(pCryptHash);
update_hash(pCryptHash, pad2, RSAENH_HMAC_DEF_PAD_LEN);
finalize_hash(pCryptHash);
memcpy(abHashValue+pCryptHash->dwHashSize, pCryptHash->abHashValue,
pCryptHash->dwHashSize);
memcpy(pCryptHash->abHashValue, old_hashval, RSAENH_MAX_HASH_SIZE);
}
/*
* Padding was not required, we have more hash than needed.
* Do we need to use the remaining hash as salt?
*/
else if((dwFlags & CRYPT_CREATE_SALT) &&
(Algid == CALG_RC2 || Algid == CALG_RC4))
{
copy_len += pCryptKey->dwSaltLen;
}
memcpy(pCryptKey->abKeyValue, abHashValue,
RSAENH_MIN(copy_len, sizeof(pCryptKey->abKeyValue)));
break;
}
case ALG_CLASS_MSG_ENCRYPT:
if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
(OBJECTHDR**)&pMasterKey))
{
SetLastError(NTE_FAIL); /* FIXME error code */
return FALSE;
}
switch (Algid)
{
/* See RFC 2246, chapter 6.3 Key calculation */
case CALG_SCHANNEL_ENC_KEY:
if (!pMasterKey->siSChannelInfo.saEncAlg.Algid ||
!pMasterKey->siSChannelInfo.saEncAlg.cBits)
{
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
*phKey = new_key(hProv, pMasterKey->siSChannelInfo.saEncAlg.Algid,
MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saEncAlg.cBits),
&pCryptKey);
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
memcpy(pCryptKey->abKeyValue,
pCryptHash->abHashValue + (
2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
((dwFlags & CRYPT_SERVER) ?
(pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) : 0)),
pMasterKey->siSChannelInfo.saEncAlg.cBits / 8);
memcpy(pCryptKey->abInitVector,
pCryptHash->abHashValue + (
2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
2 * (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) +
((dwFlags & CRYPT_SERVER) ? pCryptKey->dwBlockLen : 0)),
pCryptKey->dwBlockLen);
break;
case CALG_SCHANNEL_MAC_KEY:
*phKey = new_key(hProv, Algid,
MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saMACAlg.cBits),
&pCryptKey);
if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
memcpy(pCryptKey->abKeyValue,
pCryptHash->abHashValue + ((dwFlags & CRYPT_SERVER) ?
pMasterKey->siSChannelInfo.saMACAlg.cBits / 8 : 0),
pMasterKey->siSChannelInfo.saMACAlg.cBits / 8);
break;
default:
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
break;
default:
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
setup_key(pCryptKey);
return TRUE;
}
/******************************************************************************
* CPGetUserKey (RSAENH.@)
*
* Returns a handle to the user's private key-exchange- or signature-key.
*
* PARAMS
* hProv [I] The key container from which a user key is requested.
* dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
* phUserKey [O] Handle to the requested key or INVALID_HANDLE_VALUE in case of failure.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*
* NOTE
* A newly created key container does not contain private user key. Create them with CPGenKey.
*/
BOOL WINAPI RSAENH_CPGetUserKey(HCRYPTPROV hProv, DWORD dwKeySpec, HCRYPTKEY *phUserKey)
{
KEYCONTAINER *pKeyContainer;
TRACE("(hProv=%08lx, dwKeySpec=%08x, phUserKey=%p)\n", hProv, dwKeySpec, phUserKey);
if (!(pKeyContainer = get_key_container(hProv)))
{
/* MSDN: hProv not containing valid context handle */
return FALSE;
}
switch (dwKeySpec)
{
case AT_KEYEXCHANGE:
copy_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY,
phUserKey);
break;
case AT_SIGNATURE:
copy_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY,
phUserKey);
break;
default:
*phUserKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
}
if (*phUserKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
{
/* MSDN: dwKeySpec parameter specifies nonexistent key */
SetLastError(NTE_NO_KEY);
return FALSE;
}
return TRUE;
}
/******************************************************************************
* CPHashData (RSAENH.@)
*
* Updates a hash object with the given data.
*
* PARAMS
* hProv [I] Key container to which the hash object belongs.
* hHash [I] Hash object which is to be updated.
* pbData [I] Pointer to data with which the hash object is to be updated.
* dwDataLen [I] Length of the data.
* dwFlags [I] Currently none defined.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*
* NOTES
* The actual hash value is queried with CPGetHashParam, which will finalize
* the hash. Updating a finalized hash will fail with a last error NTE_BAD_HASH_STATE.
*/
BOOL WINAPI RSAENH_CPHashData(HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbData,
DWORD dwDataLen, DWORD dwFlags)
{
CRYPTHASH *pCryptHash;
TRACE("(hProv=%08lx, hHash=%08lx, pbData=%p, dwDataLen=%d, dwFlags=%08x)\n",
hProv, hHash, pbData, dwDataLen, dwFlags);
if (dwFlags & ~CRYPT_USERDATA)
{
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
(OBJECTHDR**)&pCryptHash))
{
SetLastError(NTE_BAD_HASH);
return FALSE;
}
if (!get_algid_info(hProv, pCryptHash->aiAlgid) || pCryptHash->aiAlgid == CALG_SSL3_SHAMD5)
{
SetLastError(NTE_BAD_ALGID);
return FALSE;
}
if (pCryptHash->dwState != RSAENH_HASHSTATE_HASHING)
{
SetLastError(NTE_BAD_HASH_STATE);
return FALSE;
}
update_hash(pCryptHash, pbData, dwDataLen);
return TRUE;
}
/******************************************************************************
* CPHashSessionKey (RSAENH.@)
*
* Updates a hash object with the binary representation of a symmetric key.
*
* PARAMS
* hProv [I] Key container to which the hash object belongs.
* hHash [I] Hash object which is to be updated.
* hKey [I] The symmetric key, whose binary value will be added to the hash.
* dwFlags [I] CRYPT_LITTLE_ENDIAN, if the binary key value shall be interpreted as little endian.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*/
BOOL WINAPI RSAENH_CPHashSessionKey(HCRYPTPROV hProv, HCRYPTHASH hHash, HCRYPTKEY hKey,
DWORD dwFlags)
{
BYTE abKeyValue[RSAENH_MAX_KEY_SIZE], bTemp;
CRYPTKEY *pKey;
DWORD i;
TRACE("(hProv=%08lx, hHash=%08lx, hKey=%08lx, dwFlags=%08x)\n", hProv, hHash, hKey, dwFlags);
if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey) ||
(GET_ALG_CLASS(pKey->aiAlgid) != ALG_CLASS_DATA_ENCRYPT))
{
SetLastError(NTE_BAD_KEY);
return FALSE;
}
if (dwFlags & ~CRYPT_LITTLE_ENDIAN) {
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
memcpy(abKeyValue, pKey->abKeyValue, pKey->dwKeyLen);
if (!(dwFlags & CRYPT_LITTLE_ENDIAN)) {
for (i=0; i<pKey->dwKeyLen/2; i++) {
bTemp = abKeyValue[i];
abKeyValue[i] = abKeyValue[pKey->dwKeyLen-i-1];
abKeyValue[pKey->dwKeyLen-i-1] = bTemp;
}
}
return RSAENH_CPHashData(hProv, hHash, abKeyValue, pKey->dwKeyLen, 0);
}
/******************************************************************************
* CPReleaseContext (RSAENH.@)
*
* Release a key container.
*
* PARAMS
* hProv [I] Key container to be released.
* dwFlags [I] Currently none defined.
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*/
BOOL WINAPI RSAENH_CPReleaseContext(HCRYPTPROV hProv, DWORD dwFlags)
{
TRACE("(hProv=%08lx, dwFlags=%08x)\n", hProv, dwFlags);
if (!release_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
{
/* MSDN: hProv not containing valid context handle */
SetLastError(NTE_BAD_UID);
return FALSE;
}
if (dwFlags) {
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
return TRUE;
}
/******************************************************************************
* CPSetHashParam (RSAENH.@)
*
* Set a parameter of a hash object
*
* PARAMS
* hProv [I] The key container to which the key belongs.
* hHash [I] The hash object for which a parameter is to be set.
* dwParam [I] Parameter type. See Notes.
* pbData [I] Pointer to the parameter value.
* dwFlags [I] Currently none defined.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*
* NOTES
* Currently only the HP_HMAC_INFO dwParam type is defined.
* The HMAC_INFO struct will be deep copied into the hash object.
* See Internet RFC 2104 for details on the HMAC algorithm.
*/
BOOL WINAPI RSAENH_CPSetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam,
BYTE *pbData, DWORD dwFlags)
{
CRYPTHASH *pCryptHash;
CRYPTKEY *pCryptKey;
DWORD i;
TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n",
hProv, hHash, dwParam, pbData, dwFlags);
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
{
SetLastError(NTE_BAD_UID);
return FALSE;
}
if (dwFlags) {
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
(OBJECTHDR**)&pCryptHash))
{
SetLastError(NTE_BAD_HASH);
return FALSE;
}
switch (dwParam) {
case HP_HMAC_INFO:
free_hmac_info(pCryptHash->pHMACInfo);
if (!copy_hmac_info(&pCryptHash->pHMACInfo, (PHMAC_INFO)pbData)) return FALSE;
if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
(OBJECTHDR**)&pCryptKey))
{
SetLastError(NTE_FAIL); /* FIXME: correct error code? */
return FALSE;
}
if (pCryptKey->aiAlgid == CALG_HMAC && !pCryptKey->dwKeyLen) {
HCRYPTHASH hKeyHash;
DWORD keyLen;
if (!RSAENH_CPCreateHash(hProv, ((PHMAC_INFO)pbData)->HashAlgid, 0, 0,
&hKeyHash))
return FALSE;
if (!RSAENH_CPHashData(hProv, hKeyHash, pCryptKey->blobHmacKey.pbData,
pCryptKey->blobHmacKey.cbData, 0))
{
RSAENH_CPDestroyHash(hProv, hKeyHash);
return FALSE;
}
keyLen = sizeof(pCryptKey->abKeyValue);
if (!RSAENH_CPGetHashParam(hProv, hKeyHash, HP_HASHVAL, pCryptKey->abKeyValue,
&keyLen, 0))
{
RSAENH_CPDestroyHash(hProv, hKeyHash);
return FALSE;
}
pCryptKey->dwKeyLen = keyLen;
RSAENH_CPDestroyHash(hProv, hKeyHash);
}
for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbInnerString); i++) {
pCryptHash->pHMACInfo->pbInnerString[i] ^= pCryptKey->abKeyValue[i];
}
for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbOuterString); i++) {
pCryptHash->pHMACInfo->pbOuterString[i] ^= pCryptKey->abKeyValue[i];
}
init_hash(pCryptHash);
return TRUE;
case HP_HASHVAL:
memcpy(pCryptHash->abHashValue, pbData, pCryptHash->dwHashSize);
pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
return TRUE;
case HP_TLS1PRF_SEED:
return copy_data_blob(&pCryptHash->tpPRFParams.blobSeed, (PCRYPT_DATA_BLOB)pbData);
case HP_TLS1PRF_LABEL:
return copy_data_blob(&pCryptHash->tpPRFParams.blobLabel, (PCRYPT_DATA_BLOB)pbData);
default:
SetLastError(NTE_BAD_TYPE);
return FALSE;
}
}
/******************************************************************************
* CPSetProvParam (RSAENH.@)
*/
BOOL WINAPI RSAENH_CPSetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD dwFlags)
{
KEYCONTAINER *pKeyContainer;
HKEY hKey;
TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, dwParam, pbData, dwFlags);
if (!(pKeyContainer = get_key_container(hProv)))
return FALSE;
switch (dwParam)
{
case PP_KEYSET_SEC_DESCR:
{
SECURITY_DESCRIPTOR *sd = (SECURITY_DESCRIPTOR *)pbData;
DWORD err, flags = (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET);
BOOL def, present;
REGSAM access = WRITE_DAC | WRITE_OWNER | ACCESS_SYSTEM_SECURITY;
PSID owner = NULL, group = NULL;
PACL dacl = NULL, sacl = NULL;
if (!open_container_key(pKeyContainer->szName, flags, access, &hKey))
{
SetLastError(NTE_BAD_KEYSET);
return FALSE;
}
if ((dwFlags & OWNER_SECURITY_INFORMATION && !GetSecurityDescriptorOwner(sd, &owner, &def)) ||
(dwFlags & GROUP_SECURITY_INFORMATION && !GetSecurityDescriptorGroup(sd, &group, &def)) ||
(dwFlags & DACL_SECURITY_INFORMATION && !GetSecurityDescriptorDacl(sd, &present, &dacl, &def)) ||
(dwFlags & SACL_SECURITY_INFORMATION && !GetSecurityDescriptorSacl(sd, &present, &sacl, &def)))
{
RegCloseKey(hKey);
return FALSE;
}
err = SetSecurityInfo(hKey, SE_REGISTRY_KEY, dwFlags, owner, group, dacl, sacl);
RegCloseKey(hKey);
if (err)
{
SetLastError(err);
return FALSE;
}
return TRUE;
}
default:
FIXME("unimplemented parameter %08x\n", dwParam);
return FALSE;
}
}
/******************************************************************************
* CPSignHash (RSAENH.@)
*
* Sign a hash object
*
* PARAMS
* hProv [I] The key container, to which the hash object belongs.
* hHash [I] The hash object to be signed.
* dwKeySpec [I] AT_SIGNATURE or AT_KEYEXCHANGE: Key used to generate the signature.
* sDescription [I] Should be NULL for security reasons.
* dwFlags [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
* pbSignature [O] Buffer, to which the signature will be stored. May be NULL to query SigLen.
* pdwSigLen [I/O] Size of the buffer (in), Length of the signature (out)
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*/
BOOL WINAPI RSAENH_CPSignHash(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwKeySpec,
LPCWSTR sDescription, DWORD dwFlags, BYTE *pbSignature,
DWORD *pdwSigLen)
{
HCRYPTKEY hCryptKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
CRYPTKEY *pCryptKey;
DWORD dwHashLen;
BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
ALG_ID aiAlgid;
BOOL ret = FALSE;
TRACE("(hProv=%08lx, hHash=%08lx, dwKeySpec=%08x, sDescription=%s, dwFlags=%08x, "
"pbSignature=%p, pdwSigLen=%p)\n", hProv, hHash, dwKeySpec, debugstr_w(sDescription),
dwFlags, pbSignature, pdwSigLen);
if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
if (!RSAENH_CPGetUserKey(hProv, dwKeySpec, &hCryptKey)) return FALSE;
if (!lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
(OBJECTHDR**)&pCryptKey))
{
SetLastError(NTE_NO_KEY);
goto out;
}
if (!pbSignature) {
*pdwSigLen = pCryptKey->dwKeyLen;
ret = TRUE;
goto out;
}
if (pCryptKey->dwKeyLen > *pdwSigLen)
{
SetLastError(ERROR_MORE_DATA);
*pdwSigLen = pCryptKey->dwKeyLen;
goto out;
}
*pdwSigLen = pCryptKey->dwKeyLen;
if (sDescription) {
if (!RSAENH_CPHashData(hProv, hHash, (const BYTE*)sDescription,
(DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
{
goto out;
}
}
dwHashLen = sizeof(DWORD);
if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) goto out;
dwHashLen = RSAENH_MAX_HASH_SIZE;
if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) goto out;
if (!build_hash_signature(pbSignature, *pdwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
goto out;
}
ret = encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbSignature, pbSignature, RSAENH_ENCRYPT);
out:
RSAENH_CPDestroyKey(hProv, hCryptKey);
return ret;
}
/******************************************************************************
* CPVerifySignature (RSAENH.@)
*
* Verify the signature of a hash object.
*
* PARAMS
* hProv [I] The key container, to which the hash belongs.
* hHash [I] The hash for which the signature is verified.
* pbSignature [I] The binary signature.
* dwSigLen [I] Length of the signature BLOB.
* hPubKey [I] Public key used to verify the signature.
* sDescription [I] Should be NULL for security reasons.
* dwFlags [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
*
* RETURNS
* Success: TRUE (Signature is valid)
* Failure: FALSE (GetLastError() == NTE_BAD_SIGNATURE, if signature is invalid)
*/
BOOL WINAPI RSAENH_CPVerifySignature(HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbSignature,
DWORD dwSigLen, HCRYPTKEY hPubKey, LPCWSTR sDescription,
DWORD dwFlags)
{
BYTE *pbConstructed = NULL, *pbDecrypted = NULL;
CRYPTKEY *pCryptKey;
DWORD dwHashLen;
ALG_ID aiAlgid;
BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
BOOL res = FALSE;
TRACE("(hProv=%08lx, hHash=%08lx, pbSignature=%p, dwSigLen=%d, hPubKey=%08lx, sDescription=%s, "
"dwFlags=%08x)\n", hProv, hHash, pbSignature, dwSigLen, hPubKey, debugstr_w(sDescription),
dwFlags);
if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
SetLastError(NTE_BAD_FLAGS);
return FALSE;
}
if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
{
SetLastError(NTE_BAD_UID);
return FALSE;
}
if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY,
(OBJECTHDR**)&pCryptKey))
{
SetLastError(NTE_BAD_KEY);
return FALSE;
}
/* in Microsoft implementation, the signature length is checked before
* the signature pointer.
*/
if (dwSigLen != pCryptKey->dwKeyLen)
{
SetLastError(NTE_BAD_SIGNATURE);
return FALSE;
}
if (!hHash || !pbSignature)
{
SetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
if (sDescription) {
if (!RSAENH_CPHashData(hProv, hHash, (const BYTE*)sDescription,
(DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
{
return FALSE;
}
}
dwHashLen = sizeof(DWORD);
if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
dwHashLen = RSAENH_MAX_HASH_SIZE;
if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
pbConstructed = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
if (!pbConstructed) {
SetLastError(NTE_NO_MEMORY);
goto cleanup;
}
pbDecrypted = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
if (!pbDecrypted) {
SetLastError(NTE_NO_MEMORY);
goto cleanup;
}
if (!encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbSignature, pbDecrypted,
RSAENH_DECRYPT))
{
goto cleanup;
}
if (build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags) &&
!memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
res = TRUE;
goto cleanup;
}
if (!(dwFlags & CRYPT_NOHASHOID) &&
build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags|CRYPT_NOHASHOID) &&
!memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
res = TRUE;
goto cleanup;
}
SetLastError(NTE_BAD_SIGNATURE);
cleanup:
HeapFree(GetProcessHeap(), 0, pbConstructed);
HeapFree(GetProcessHeap(), 0, pbDecrypted);
return res;
}
/******************************************************************************
* DllRegisterServer (RSAENH.@)
*/
HRESULT WINAPI DllRegisterServer(void)
{
return __wine_register_resources( instance );
}
/******************************************************************************
* DllUnregisterServer (RSAENH.@)
*/
HRESULT WINAPI DllUnregisterServer(void)
{
return __wine_unregister_resources( instance );
}