Sweden-Number/debugger/stabs.c

1435 lines
35 KiB
C

/* -*- tab-width: 8; c-basic-offset: 2 -*- */
/*
* File stabs.c - read stabs information from the wine executable itself.
*
* Copyright (C) 1996, Eric Youngdale.
* 1999, 2000 Eric Pouech
*/
#include "config.h"
#include <sys/types.h>
#include <fcntl.h>
#include <sys/stat.h>
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#ifndef PATH_MAX
#define PATH_MAX _MAX_PATH
#endif
#include "debugger.h"
#if defined(__svr4__) || defined(__sun)
#define __ELF__
#endif
#ifdef __ELF__
#ifdef HAVE_ELF_H
# include <elf.h>
#endif
#ifdef HAVE_LINK_H
# include <link.h>
#endif
#elif defined(__EMX__)
#ifdef HAVE_A_OUT_H
# include <a_out.h>
#endif
#else
#ifdef HAVE_A_OUT_H
# include <a.out.h>
#endif
#endif
#ifndef N_UNDF
#define N_UNDF 0x00
#endif
#define N_GSYM 0x20
#define N_FUN 0x24
#define N_STSYM 0x26
#define N_LCSYM 0x28
#define N_MAIN 0x2a
#define N_ROSYM 0x2c
#define N_OPT 0x3c
#define N_RSYM 0x40
#define N_SLINE 0x44
#define N_SO 0x64
#define N_LSYM 0x80
#define N_BINCL 0x82
#define N_SOL 0x84
#define N_PSYM 0xa0
#define N_EINCL 0xa2
#define N_LBRAC 0xc0
#define N_EXCL 0xc2
#define N_RBRAC 0xe0
struct stab_nlist {
union {
char *n_name;
struct stab_nlist *n_next;
long n_strx;
} n_un;
unsigned char n_type;
char n_other;
short n_desc;
unsigned long n_value;
};
/*
* This is used to keep track of known datatypes so that we don't redefine
* them over and over again. It sucks up lots of memory otherwise.
*/
struct known_typedef
{
struct known_typedef * next;
char * name;
int ndefs;
struct datatype * types[1];
};
#define NR_STAB_HASH 521
struct known_typedef * ktd_head[NR_STAB_HASH] = {NULL,};
static unsigned int stab_hash( const char * name )
{
unsigned int hash = 0;
unsigned int tmp;
const char * p;
p = name;
while (*p)
{
hash = (hash << 4) + *p++;
if( (tmp = (hash & 0xf0000000)) )
{
hash ^= tmp >> 24;
}
hash &= ~tmp;
}
return hash % NR_STAB_HASH;
}
static void stab_strcpy(char * dest, int sz, const char * source)
{
/*
* A strcpy routine that stops when we hit the ':' character.
* Faster than copying the whole thing, and then nuking the
* ':'.
*/
while(*source != '\0' && *source != ':' && sz-- > 0)
*dest++ = *source++;
*dest = '\0';
assert(sz > 0);
}
typedef struct {
char* name;
unsigned long value;
int idx;
struct datatype** vector;
int nrofentries;
} include_def;
#define MAX_INCLUDES 256
static include_def* include_defs = NULL;
static int num_include_def = 0;
static int num_alloc_include_def = 0;
static int cu_include_stack[MAX_INCLUDES];
static int cu_include_stk_idx = 0;
static struct datatype** cu_vector = NULL;
static int cu_nrofentries = 0;
static
int
DEBUG_CreateInclude(const char* file, unsigned long val)
{
if (num_include_def == num_alloc_include_def)
{
num_alloc_include_def += 256;
include_defs = DBG_realloc(include_defs, sizeof(include_defs[0])*num_alloc_include_def);
memset(include_defs+num_include_def, 0, sizeof(include_defs[0])*256);
}
include_defs[num_include_def].name = DBG_strdup(file);
include_defs[num_include_def].value = val;
include_defs[num_include_def].vector = NULL;
include_defs[num_include_def].nrofentries = 0;
return num_include_def++;
}
static
int
DEBUG_FindInclude(const char* file, unsigned long val)
{
int i;
for (i = 0; i < num_include_def; i++)
{
if (val == include_defs[i].value &&
strcmp(file, include_defs[i].name) == 0)
return i;
}
return -1;
}
static
int
DEBUG_AddInclude(int idx)
{
++cu_include_stk_idx;
/* is this happen, just bump MAX_INCLUDES */
/* we could also handle this as another dynarray */
assert(cu_include_stk_idx < MAX_INCLUDES);
cu_include_stack[cu_include_stk_idx] = idx;
return cu_include_stk_idx;
}
static
void
DEBUG_ResetIncludes(void)
{
/*
* The datatypes that we would need to use are reset when
* we start a new file. (at least the ones in filenr == 0
*/
cu_include_stk_idx = 0;/* keep 0 as index for the .c file itself */
memset(cu_vector, 0, sizeof(cu_vector[0]) * cu_nrofentries);
}
static
void
DEBUG_FreeIncludes(void)
{
int i;
DEBUG_ResetIncludes();
for (i = 0; i < num_include_def; i++)
{
DBG_free(include_defs[i].name);
DBG_free(include_defs[i].vector);
}
DBG_free(include_defs);
include_defs = NULL;
num_include_def = 0;
num_alloc_include_def = 0;
DBG_free(cu_vector);
cu_vector = NULL;
cu_nrofentries = 0;
}
#define MAX_TD_NESTING 128
static
struct datatype**
DEBUG_FileSubNr2StabEnum(int filenr, int subnr)
{
struct datatype** ret;
/* DEBUG_Printf(DBG_CHN_MESG, "creating type id for (%d,%d)\n", filenr, subnr); */
/* FIXME: I could perhaps create a dummy include_def for each compilation
* unit which would allow not to handle those two cases separately
*/
if (filenr == 0)
{
if (cu_nrofentries <= subnr)
{
cu_vector = DBG_realloc(cu_vector, sizeof(cu_vector[0])*(subnr+1));
memset(cu_vector+cu_nrofentries, 0, sizeof(cu_vector[0])*(subnr+1-cu_nrofentries));
cu_nrofentries = subnr + 1;
}
ret = &cu_vector[subnr];
}
else
{
include_def* idef;
assert(filenr <= cu_include_stk_idx);
idef = &include_defs[cu_include_stack[filenr]];
if (idef->nrofentries <= subnr)
{
idef->vector = DBG_realloc(idef->vector, sizeof(idef->vector[0])*(subnr+1));
memset(idef->vector + idef->nrofentries, 0, sizeof(idef->vector[0])*(subnr+1-idef->nrofentries));
idef->nrofentries = subnr + 1;
}
ret = &idef->vector[subnr];
}
/* DEBUG_Printf(DBG_CHN_MESG,"(%d,%d) is %d\n",filenr,subnr,ret); */
return ret;
}
static
struct datatype**
DEBUG_ReadTypeEnumBackwards(char*x) {
int filenr,subnr;
if (*x==')') {
while (*x!='(')
x--;
x++; /* '(' */
filenr=strtol(x,&x,10); /* <int> */
x++; /* ',' */
subnr=strtol(x,&x,10); /* <int> */
x++; /* ')' */
} else {
while ((*x>='0') && (*x<='9'))
x--;
filenr = 0;
subnr = atol(x+1);
}
return DEBUG_FileSubNr2StabEnum(filenr,subnr);
}
static
struct datatype**
DEBUG_ReadTypeEnum(char **x) {
int filenr,subnr;
if (**x=='(') {
(*x)++; /* '(' */
filenr=strtol(*x,x,10); /* <int> */
(*x)++; /* ',' */
subnr=strtol(*x,x,10); /* <int> */
(*x)++; /* ')' */
} else {
filenr = 0;
subnr = strtol(*x,x,10); /* <int> */
}
return DEBUG_FileSubNr2StabEnum(filenr,subnr);
}
static
int
DEBUG_RegisterTypedef(const char * name, struct datatype ** types, int ndef)
{
int hash;
struct known_typedef * ktd;
if( ndef == 1 )
return TRUE;
ktd = (struct known_typedef *) DBG_alloc(sizeof(struct known_typedef)
+ (ndef - 1) * sizeof(struct datatype *));
hash = stab_hash(name);
ktd->name = DBG_strdup(name);
ktd->ndefs = ndef;
memcpy(&ktd->types[0], types, ndef * sizeof(struct datatype *));
ktd->next = ktd_head[hash];
ktd_head[hash] = ktd;
return TRUE;
}
static
int
DEBUG_HandlePreviousTypedef(const char * name, const char * stab)
{
int count;
enum debug_type expect;
int hash;
struct known_typedef * ktd;
char * ptr;
hash = stab_hash(name);
for(ktd = ktd_head[hash]; ktd; ktd = ktd->next)
if ((ktd->name[0] == name[0]) && (strcmp(name, ktd->name) == 0) )
break;
/*
* Didn't find it. This must be a new one.
*/
if( ktd == NULL )
return FALSE;
/*
* Examine the stab to make sure it has the same number of definitions.
*/
count = 0;
for(ptr = strchr(stab, '='); ptr; ptr = strchr(ptr+1, '='))
{
if( count >= ktd->ndefs )
return FALSE;
/*
* Make sure the types of all of the objects is consistent with
* what we have already parsed.
*/
switch(ptr[1])
{
case '*':
expect = DT_POINTER;
break;
case 's':
case 'u':
expect = DT_STRUCT;
break;
case 'a':
expect = DT_ARRAY;
break;
case '(': /* it's mainly a ref to another typedef, skip it */
expect = -1;
break;
case '1':
case 'r':
expect = DT_BASIC;
break;
case 'x':
expect = DT_STRUCT;
break;
case 'e':
expect = DT_ENUM;
break;
case 'f':
expect = DT_FUNC;
break;
default:
DEBUG_Printf(DBG_CHN_FIXME, "Unknown type (%c).\n",ptr[1]);
return FALSE;
}
if( expect != -1 && expect != DEBUG_GetType(ktd->types[count]) )
return FALSE;
count++;
}
if( ktd->ndefs != count )
return FALSE;
/*
* Go through, dig out all of the type numbers, and substitute the
* appropriate things.
*/
count = 0;
for(ptr = strchr(stab, '='); ptr; ptr = strchr(ptr+1, '='))
*DEBUG_ReadTypeEnumBackwards(ptr-1) = ktd->types[count++];
return TRUE;
}
static int DEBUG_FreeRegisteredTypedefs(void)
{
int count;
int j;
struct known_typedef * ktd;
struct known_typedef * next;
count = 0;
for(j=0; j < NR_STAB_HASH; j++ )
{
for(ktd = ktd_head[j]; ktd; ktd = next)
{
count++;
next = ktd->next;
DBG_free(ktd->name);
DBG_free(ktd);
}
ktd_head[j] = NULL;
}
return TRUE;
}
static
int
DEBUG_ParseTypedefStab(char * ptr, const char * typename)
{
int arrmax;
int arrmin;
char * c;
struct datatype * curr_type;
struct datatype * datatype;
struct datatype * curr_types[MAX_TD_NESTING];
char element_name[1024];
int ntypes = 0, ntp;
int offset;
const char * orig_typename;
int size;
char * tc;
char * tc2;
int failure;
orig_typename = typename;
if( DEBUG_HandlePreviousTypedef(typename, ptr) )
return TRUE;
/*
* Go from back to front. First we go through and figure out what
* type numbers we need, and register those types. Then we go in
* and fill the details.
*/
for( c = strchr(ptr, '='); c != NULL; c = strchr(c + 1, '=') )
{
/*
* Back up until we get to a non-numeric character, to get datatype
*/
struct datatype** dt = DEBUG_ReadTypeEnumBackwards(c-1);
if( ntypes >= MAX_TD_NESTING )
{
/*
* If this ever happens, just bump the counter.
*/
DEBUG_Printf(DBG_CHN_MESG, "Typedef nesting overflow\n");
return FALSE;
}
switch(c[1])
{
case '*':
*dt = DEBUG_NewDataType(DT_POINTER, NULL);
curr_types[ntypes++] = *dt;
break;
case 's':
case 'u':
*dt = DEBUG_NewDataType(DT_STRUCT, typename);
curr_types[ntypes++] = *dt;
break;
case 'a':
*dt = DEBUG_NewDataType(DT_ARRAY, NULL);
curr_types[ntypes++] = *dt;
break;
case '(':
/* will be handled in next loop,
* just a ref to another type
*/
curr_types[ntypes++] = NULL;
break;
case '1':
case 'r':
*dt = DEBUG_NewDataType(DT_BASIC, typename);
curr_types[ntypes++] = *dt;
break;
case 'x':
stab_strcpy(element_name, sizeof(element_name), c + 3);
*dt = DEBUG_NewDataType(DT_STRUCT, element_name);
curr_types[ntypes++] = *dt;
break;
case 'e':
*dt = DEBUG_NewDataType(DT_ENUM, NULL);
curr_types[ntypes++] = *dt;
break;
case 'f':
*dt = DEBUG_NewDataType(DT_FUNC, NULL);
curr_types[ntypes++] = *dt;
break;
default:
DEBUG_Printf(DBG_CHN_FIXME, "Unknown type (%c).\n",c[1]);
return FALSE;
}
typename = NULL;
}
ntp = ntypes - 1;
/*
* OK, now take a second sweep through. Now we will be digging
* out the definitions of the various components, and storing
* them in the skeletons that we have already allocated. We take
* a right-to left search as this is much easier to parse.
*/
for( c = strrchr(ptr, '='); c != NULL; c = strrchr(ptr, '=') )
{
struct datatype** dt = DEBUG_ReadTypeEnumBackwards(c-1);
struct datatype** dt2;
curr_type = *dt;
switch(c[1])
{
case 'x':
ntp--;
tc = c + 3;
while( *tc != ':' )
tc++;
tc++;
if( *tc == '\0' )
*c = '\0';
else
strcpy(c, tc);
break;
case '*':
case 'f':
ntp--;
tc = c + 2;
datatype = *DEBUG_ReadTypeEnum(&tc);
DEBUG_SetPointerType(curr_type, datatype);
if( *tc == '\0' )
*c = '\0';
else
strcpy(c, tc);
break;
case '(':
tc = c + 1;
dt2 = DEBUG_ReadTypeEnum(&tc);
if (!*dt && *dt2)
{
*dt = *dt2;
}
else if (!*dt && !*dt2)
{
/* this should be a basic type, define it */
*dt2 = *dt = DEBUG_NewDataType(DT_BASIC, typename);
}
else
{
DEBUG_Printf(DBG_CHN_MESG, "Unknown condition %p %p (%s)\n", *dt, *dt2, ptr);
}
if( *tc == '\0' )
*c = '\0';
else
strcpy(c, tc);
curr_types[ntp--] = *dt;
break;
case '1':
case 'r':
ntp--;
/*
* We have already handled these above.
*/
*c = '\0';
break;
case 'a':
ntp--;
/* ar<typeinfo_nodef>;<int>;<int>;<typeinfo>,<int>,<int>;; */
tc = c + 3;
/* 'r' */
DEBUG_ReadTypeEnum(&tc);
tc++; /* ';' */
arrmin = strtol(tc, &tc, 10); /* <int> */
tc++; /* ';' */
arrmax = strtol(tc, &tc, 10); /* <int> */
tc++; /* ';' */
datatype = *DEBUG_ReadTypeEnum(&tc); /* <typeinfo> */
if( *tc == '\0' )
*c = '\0';
else
strcpy(c, tc);
DEBUG_SetArrayParams(curr_type, arrmin, arrmax, datatype);
break;
case 's':
case 'u':
ntp--;
failure = 0;
tc = c + 2;
if( DEBUG_SetStructSize(curr_type, strtol(tc, &tc, 10)) == FALSE )
{
/*
* We have already filled out this structure. Nothing to do,
* so just skip forward to the end of the definition.
*/
while( tc[0] != ';' && tc[1] != ';' )
tc++;
tc += 2;
if( *tc == '\0' )
*c = '\0';
else
strcpy(c, tc + 1);
continue;
}
/*
* Now parse the individual elements of the structure/union.
*/
while(*tc != ';')
{
char *ti;
tc2 = element_name;
while(*tc != ':')
*tc2++ = *tc++;
tc++;
*tc2++ = '\0';
ti=tc;
datatype = *DEBUG_ReadTypeEnum(&tc);
*tc='\0';
tc++;
offset = strtol(tc, &tc, 10);
tc++;
size = strtol(tc, &tc, 10);
tc++;
if (datatype)
DEBUG_AddStructElement(curr_type, element_name, datatype,
offset, size);
else
{
failure = 1;
/* ... but proceed parsing to the end of the stab */
DEBUG_Printf(DBG_CHN_MESG, "failure on %s %s\n", ptr, ti);
}
}
if (failure)
{
/* if we had a undeclared value this one is undeclared too.
* remove it from the stab_types.
* I just set it to NULL to detect bugs in my thoughtprocess.
* FIXME: leaks the memory for the structure elements.
* FIXME: such structures should have been optimized away
* by ld.
*/
*dt = NULL;
}
if( *tc == '\0' )
*c = '\0';
else
strcpy(c, tc + 1);
break;
case 'e':
ntp--;
tc = c + 2;
/*
* Now parse the individual elements of the structure/union.
*/
while(*tc != ';')
{
tc2 = element_name;
while(*tc != ':')
*tc2++ = *tc++;
tc++;
*tc2++ = '\0';
offset = strtol(tc, &tc, 10);
tc++;
DEBUG_AddStructElement(curr_type, element_name, NULL, offset, 0);
}
if( *tc == '\0' )
*c = '\0';
else
strcpy(c, tc + 1);
break;
default:
DEBUG_Printf(DBG_CHN_FIXME, "Unknown type (%c).\n",c[1]);
return FALSE;
}
}
/*
* Now register the type so that if we encounter it again, we will know
* what to do.
*/
DEBUG_RegisterTypedef(orig_typename, curr_types, ntypes);
return TRUE;
}
static struct datatype *
DEBUG_ParseStabType(const char * stab)
{
char * c;
/*
* Look through the stab definition, and figure out what datatype
* this represents. If we have something we know about, assign the
* type.
*/
c = strchr(stab, ':');
if( c == NULL )
return NULL;
c++;
/*
* The next character says more about the type (i.e. data, function, etc)
* of symbol. Skip it.
*/
if (*c != '(')
c++;
/*
* The next is either an integer or a (integer,integer).
* The DEBUG_ReadTypeEnum takes care that stab_types is large enough.
*/
return *DEBUG_ReadTypeEnum(&c);
}
int
DEBUG_ParseStabs(char * addr, unsigned int load_offset,
unsigned int staboff, int stablen,
unsigned int strtaboff, int strtablen)
{
struct name_hash * curr_func = NULL;
struct wine_locals * curr_loc = NULL;
struct name_hash * curr_sym = NULL;
char currpath[PATH_MAX];
int i;
int in_external_file = FALSE;
int last_nso = -1;
int len;
DBG_VALUE new_value;
int nstab;
char * ptr;
char * stabbuff;
int stabbufflen;
struct stab_nlist * stab_ptr;
char * strs;
int strtabinc;
char * subpath = NULL;
char symname[4096];
nstab = stablen / sizeof(struct stab_nlist);
stab_ptr = (struct stab_nlist *) (addr + staboff);
strs = (char *) (addr + strtaboff);
memset(currpath, 0, sizeof(currpath));
/*
* Allocate a buffer into which we can build stab strings for cases
* where the stab is continued over multiple lines.
*/
stabbufflen = 65536;
stabbuff = (char *) DBG_alloc(stabbufflen);
strtabinc = 0;
stabbuff[0] = '\0';
for(i=0; i < nstab; i++, stab_ptr++ )
{
ptr = strs + (unsigned int) stab_ptr->n_un.n_name;
if( ptr[strlen(ptr) - 1] == '\\' )
{
/*
* Indicates continuation. Append this to the buffer, and go onto the
* next record. Repeat the process until we find a stab without the
* '/' character, as this indicates we have the whole thing.
*/
len = strlen(ptr);
if( strlen(stabbuff) + len > stabbufflen )
{
stabbufflen += 65536;
stabbuff = (char *) DBG_realloc(stabbuff, stabbufflen);
}
strncat(stabbuff, ptr, len - 1);
continue;
}
else if( stabbuff[0] != '\0' )
{
strcat( stabbuff, ptr);
ptr = stabbuff;
}
if( strchr(ptr, '=') != NULL )
{
/*
* The stabs aren't in writable memory, so copy it over so we are
* sure we can scribble on it.
*/
if( ptr != stabbuff )
{
strcpy(stabbuff, ptr);
ptr = stabbuff;
}
stab_strcpy(symname, sizeof(symname), ptr);
if (!DEBUG_ParseTypedefStab(ptr, symname)) {
/* skip this definition */
stabbuff[0] = '\0';
continue;
}
}
switch(stab_ptr->n_type)
{
case N_GSYM:
/*
* These are useless with ELF. They have no value, and you have to
* read the normal symbol table to get the address. Thus we
* ignore them, and when we process the normal symbol table
* we should do the right thing.
*
* With a.out or mingw, they actually do make some amount of sense.
*/
new_value.addr.seg = 0;
new_value.type = DEBUG_ParseStabType(ptr);
new_value.addr.off = load_offset + stab_ptr->n_value;
new_value.cookie = DV_TARGET;
stab_strcpy(symname, sizeof(symname), ptr);
#ifdef __ELF__
curr_sym = DEBUG_AddSymbol( symname, &new_value, currpath,
SYM_WINE | SYM_DATA | SYM_INVALID );
#else
curr_sym = DEBUG_AddSymbol( symname, &new_value, currpath,
SYM_WINE | SYM_DATA );
#endif
break;
case N_RBRAC:
case N_LBRAC:
/*
* We need to keep track of these so we get symbol scoping
* right for local variables. For now, we just ignore them.
* The hooks are already there for dealing with this however,
* so all we need to do is to keep count of the nesting level,
* and find the RBRAC for each matching LBRAC.
*/
break;
case N_LCSYM:
case N_STSYM:
/*
* These are static symbols and BSS symbols.
*/
new_value.addr.seg = 0;
new_value.type = DEBUG_ParseStabType(ptr);
new_value.addr.off = load_offset + stab_ptr->n_value;
new_value.cookie = DV_TARGET;
stab_strcpy(symname, sizeof(symname), ptr);
curr_sym = DEBUG_AddSymbol( symname, &new_value, currpath,
SYM_WINE | SYM_DATA );
break;
case N_PSYM:
/*
* These are function parameters.
*/
if( curr_func != NULL && !in_external_file )
{
stab_strcpy(symname, sizeof(symname), ptr);
curr_loc = DEBUG_AddLocal( curr_func, 0,
stab_ptr->n_value, 0, 0, symname );
DEBUG_SetLocalSymbolType( curr_loc, DEBUG_ParseStabType(ptr) );
}
break;
case N_RSYM:
if( curr_func != NULL && !in_external_file )
{
stab_strcpy(symname, sizeof(symname), ptr);
curr_loc = DEBUG_AddLocal( curr_func, stab_ptr->n_value + 1,
0, 0, 0, symname );
DEBUG_SetLocalSymbolType( curr_loc, DEBUG_ParseStabType(ptr) );
}
break;
case N_LSYM:
if( curr_func != NULL && !in_external_file )
{
stab_strcpy(symname, sizeof(symname), ptr);
curr_loc = DEBUG_AddLocal( curr_func, 0,
stab_ptr->n_value, 0, 0, symname );
DEBUG_SetLocalSymbolType( curr_loc, DEBUG_ParseStabType(ptr) );
}
break;
case N_SLINE:
/*
* This is a line number. These are always relative to the start
* of the function (N_FUN), and this makes the lookup easier.
*/
if( curr_func != NULL && !in_external_file )
{
#ifdef __ELF__
DEBUG_AddLineNumber(curr_func, stab_ptr->n_desc,
stab_ptr->n_value);
#else
#if 0
/*
* This isn't right. The order of the stabs is different under
* a.out, and as a result we would end up attaching the line
* number to the wrong function.
*/
DEBUG_AddLineNumber(curr_func, stab_ptr->n_desc,
stab_ptr->n_value - curr_func->addr.off);
#endif
#endif
}
break;
case N_FUN:
/*
* First, clean up the previous function we were working on.
*/
DEBUG_Normalize(curr_func);
/*
* For now, just declare the various functions. Later
* on, we will add the line number information and the
* local symbols.
*/
if( !in_external_file)
{
stab_strcpy(symname, sizeof(symname), ptr);
if (*symname)
{
new_value.addr.seg = 0;
new_value.type = DEBUG_ParseStabType(ptr);
new_value.addr.off = load_offset + stab_ptr->n_value;
new_value.cookie = DV_TARGET;
/*
* Copy the string to a temp buffer so we
* can kill everything after the ':'. We do
* it this way because otherwise we end up dirtying
* all of the pages related to the stabs, and that
* sucks up swap space like crazy.
*/
curr_func = DEBUG_AddSymbol( symname, &new_value, currpath,
SYM_WINE | SYM_FUNC);
}
else
{
/* some GCC seem to use a N_FUN "" to mark the end of a function */
curr_func = NULL;
}
}
else
{
/*
* Don't add line number information for this function
* any more.
*/
curr_func = NULL;
}
break;
case N_SO:
/*
* This indicates a new source file. Append the records
* together, to build the correct path name.
*/
#ifndef __ELF__
/*
* With a.out, there is no NULL string N_SO entry at the end of
* the file. Thus when we find non-consecutive entries,
* we consider that a new file is started.
*/
if( last_nso < i-1 )
{
currpath[0] = '\0';
DEBUG_Normalize(curr_func);
curr_func = NULL;
}
#endif
if( *ptr == '\0' )
{
/*
* Nuke old path.
*/
currpath[0] = '\0';
DEBUG_Normalize(curr_func);
curr_func = NULL;
}
else
{
if (*ptr != '/')
strcat(currpath, ptr);
else
strcpy(currpath, ptr);
subpath = ptr;
DEBUG_ResetIncludes();
}
last_nso = i;
break;
case N_SOL:
/*
* This indicates we are including stuff from an include file.
* If this is the main source, enable the debug stuff, otherwise
* ignore it.
*/
in_external_file = !(subpath == NULL || strcmp(ptr, subpath) == 0);
break;
case N_UNDF:
strs += strtabinc;
strtabinc = stab_ptr->n_value;
DEBUG_Normalize(curr_func);
curr_func = NULL;
break;
case N_OPT:
/*
* Ignore this. We don't care what it points to.
*/
break;
case N_BINCL:
DEBUG_AddInclude(DEBUG_CreateInclude(ptr, stab_ptr->n_value));
break;
case N_EINCL:
break;
case N_EXCL:
DEBUG_AddInclude(DEBUG_FindInclude(ptr, stab_ptr->n_value));
break;
case N_MAIN:
/*
* Always ignore these. GCC doesn't even generate them.
*/
break;
default:
DEBUG_Printf(DBG_CHN_MESG, "Unkown stab type 0x%02x\n", stab_ptr->n_type);
break;
}
stabbuff[0] = '\0';
#if 0
DEBUG_Printf(DBG_CHN_MESG, "%d %x %s\n", stab_ptr->n_type,
(unsigned int) stab_ptr->n_value,
strs + (unsigned int) stab_ptr->n_un.n_name);
#endif
}
DEBUG_FreeRegisteredTypedefs();
DEBUG_FreeIncludes();
return TRUE;
}
#ifdef __ELF__
/*
* Walk through the entire symbol table and add any symbols we find there.
* This can be used in cases where we have stripped ELF shared libraries,
* or it can be used in cases where we have data symbols for which the address
* isn't encoded in the stabs.
*
* This is all really quite easy, since we don't have to worry about line
* numbers or local data variables.
*/
static
int
DEBUG_ProcessElfSymtab(char * addr, unsigned int load_offset,
Elf32_Shdr * symtab, Elf32_Shdr * strtab)
{
char * curfile = NULL;
struct name_hash * curr_sym = NULL;
int flags;
int i;
DBG_VALUE new_value;
int nsym;
char * strp;
char * symname;
Elf32_Sym * symp;
symp = (Elf32_Sym *) (addr + symtab->sh_offset);
nsym = symtab->sh_size / sizeof(*symp);
strp = (char *) (addr + strtab->sh_offset);
for(i=0; i < nsym; i++, symp++)
{
/*
* Ignore certain types of entries which really aren't of that much
* interest.
*/
if( ELF32_ST_TYPE(symp->st_info) == STT_SECTION ||
symp->st_shndx == STN_UNDEF )
{
continue;
}
symname = strp + symp->st_name;
/*
* Save the name of the current file, so we have a way of tracking
* static functions/data.
*/
if( ELF32_ST_TYPE(symp->st_info) == STT_FILE )
{
curfile = symname;
continue;
}
/*
* See if we already have something for this symbol.
* If so, ignore this entry, because it would have come from the
* stabs or from a previous symbol. If the value is different,
* we will have to keep the darned thing, because there can be
* multiple local symbols by the same name.
*/
if( (DEBUG_GetSymbolValue(symname, -1, &new_value, FALSE ) == TRUE)
&& (new_value.addr.off == (load_offset + symp->st_value)) )
continue;
new_value.addr.seg = 0;
new_value.type = NULL;
new_value.addr.off = load_offset + symp->st_value;
new_value.cookie = DV_TARGET;
flags = SYM_WINE | (ELF32_ST_BIND(symp->st_info) == STT_FUNC
? SYM_FUNC : SYM_DATA);
if( ELF32_ST_BIND(symp->st_info) == STB_GLOBAL )
curr_sym = DEBUG_AddSymbol( symname, &new_value, NULL, flags );
else
curr_sym = DEBUG_AddSymbol( symname, &new_value, curfile, flags );
/*
* Record the size of the symbol. This can come in handy in
* some cases. Not really used yet, however.
*/
if( symp->st_size != 0 )
DEBUG_SetSymbolSize(curr_sym, symp->st_size);
}
return TRUE;
}
int
DEBUG_ProcessElfObject(const char * filename, unsigned int load_offset)
{
int rtn = FALSE;
char * addr = (char*)0xffffffff;
int fd = -1;
struct stat statbuf;
Elf32_Ehdr * ehptr;
Elf32_Shdr * spnt;
char * shstrtab;
int nsect;
int i;
int stabsect;
int stabstrsect;
/*
* Make sure we can stat and open this file.
*/
if( filename == NULL )
goto leave;
if (stat(filename, &statbuf) == -1)
{
char *s,*t,*fn,*paths;
if (strchr(filename,'/'))
goto leave;
paths = DBG_strdup(getenv("PATH"));
s = paths;
while (s && *s) {
t = strchr(s,':');
if (t) *t='\0';
fn = (char*)DBG_alloc(strlen(filename)+1+strlen(s)+1);
strcpy(fn,s);
strcat(fn,"/");
strcat(fn,filename);
if ((rtn = DEBUG_ProcessElfObject(fn,load_offset))) {
DBG_free(fn);
DBG_free(paths);
goto leave;
}
DBG_free(fn);
if (t) s = t+1; else break;
}
if (!s || !*s) DEBUG_Printf(DBG_CHN_MESG," not found");
DBG_free(paths);
goto leave;
}
if (DEBUG_FindModuleByName(filename, DM_TYPE_ELF))
goto leave;
DEBUG_Printf(DBG_CHN_MESG, "Loading stabs debug symbols from %s (0x%08lx)\n",
filename, load_offset);
/*
* Now open the file, so that we can mmap() it.
*/
if ((fd = open(filename, O_RDONLY)) == -1)
goto leave;
/*
* Now mmap() the file.
*/
addr = mmap(0, statbuf.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
if (addr == (char*)0xffffffff)
goto leave;
/*
* Next, we need to find a few of the internal ELF headers within
* this thing. We need the main executable header, and the section
* table.
*/
ehptr = (Elf32_Ehdr *) addr;
if( load_offset == 0 )
DEBUG_RegisterELFModule(ehptr->e_entry, filename);
else
DEBUG_RegisterELFModule(load_offset, filename);
spnt = (Elf32_Shdr *) (addr + ehptr->e_shoff);
nsect = ehptr->e_shnum;
shstrtab = (addr + spnt[ehptr->e_shstrndx].sh_offset);
stabsect = stabstrsect = -1;
for(i=0; i < nsect; i++)
{
if( strcmp(shstrtab + spnt[i].sh_name, ".stab") == 0 )
stabsect = i;
if( strcmp(shstrtab + spnt[i].sh_name, ".stabstr") == 0 )
stabstrsect = i;
}
if( stabsect == -1 || stabstrsect == -1 ) {
DEBUG_Printf(DBG_CHN_WARN, "no .stab section\n");
goto leave;
}
/*
* OK, now just parse all of the stabs.
*/
if (!(rtn = DEBUG_ParseStabs(addr, load_offset,
spnt[stabsect].sh_offset,
spnt[stabsect].sh_size,
spnt[stabstrsect].sh_offset,
spnt[stabstrsect].sh_size))) {
DEBUG_Printf(DBG_CHN_WARN, "bad stabs\n");
goto leave;
}
for(i=0; i < nsect; i++)
{
if( (strcmp(shstrtab + spnt[i].sh_name, ".symtab") == 0)
&& (spnt[i].sh_type == SHT_SYMTAB) )
DEBUG_ProcessElfSymtab(addr, load_offset,
spnt + i, spnt + spnt[i].sh_link);
if( (strcmp(shstrtab + spnt[i].sh_name, ".dynsym") == 0)
&& (spnt[i].sh_type == SHT_DYNSYM) )
DEBUG_ProcessElfSymtab(addr, load_offset,
spnt + i, spnt + spnt[i].sh_link);
}
leave:
if (addr != (char*)0xffffffff)
munmap(addr, statbuf.st_size);
if (fd != -1) close(fd);
return rtn;
}
static BOOL DEBUG_WalkList(struct r_debug* dbg_hdr)
{
u_long lm_addr;
struct link_map lm;
Elf32_Ehdr ehdr;
char bufstr[256];
/*
* Now walk the linked list. In all known ELF implementations,
* the dynamic loader maintains this linked list for us. In some
* cases the first entry doesn't appear with a name, in other cases it
* does.
*/
for (lm_addr = (u_long)dbg_hdr->r_map; lm_addr; lm_addr = (u_long)lm.l_next) {
if (!DEBUG_READ_MEM_VERBOSE((void*)lm_addr, &lm, sizeof(lm)))
return FALSE;
if (lm.l_addr != 0 &&
DEBUG_READ_MEM_VERBOSE((void*)lm.l_addr, &ehdr, sizeof(ehdr)) &&
ehdr.e_type == ET_DYN && /* only look at dynamic modules */
lm.l_name != NULL &&
DEBUG_READ_MEM_VERBOSE(lm.l_name, bufstr, sizeof(bufstr))) {
bufstr[sizeof(bufstr) - 1] = '\0';
DEBUG_ProcessElfObject(bufstr, lm.l_addr);
}
}
return TRUE;
}
static BOOL DEBUG_RescanElf(void)
{
struct r_debug dbg_hdr;
if (!DEBUG_CurrProcess ||
!DEBUG_READ_MEM_VERBOSE((void*)DEBUG_CurrProcess->dbg_hdr_addr, &dbg_hdr, sizeof(dbg_hdr)))
return FALSE;
switch (dbg_hdr.r_state) {
case RT_CONSISTENT:
DEBUG_WalkList(&dbg_hdr);
break;
case RT_ADD:
break;
case RT_DELETE:
/*FIXME: this is not currently handled, would need some kind of mark&sweep algo */
break;
}
return FALSE;
}
int
DEBUG_ReadExecutableDbgInfo(const char* exe_name)
{
Elf32_Dyn dyn;
struct r_debug dbg_hdr;
int rtn = FALSE;
DBG_VALUE val;
/*
* Make sure we can stat and open this file.
*/
if (exe_name == NULL) goto leave;
DEBUG_ProcessElfObject(exe_name, 0);
/* previous step should have loaded symbol _DYNAMIC if it exists inside
* the main executable
*/
if (!DEBUG_GetSymbolValue("_DYNAMIC", -1, &val, FALSE)) {
DEBUG_Printf(DBG_CHN_WARN, "Can't find symbol _DYNAMIC\n");
goto leave;
}
do {
if (!DEBUG_READ_MEM_VERBOSE((void*)val.addr.off, &dyn, sizeof(dyn)))
goto leave;
val.addr.off += sizeof(dyn);
} while (dyn.d_tag != DT_DEBUG && dyn.d_tag != DT_NULL);
if (dyn.d_tag == DT_NULL) goto leave;
/*
* OK, now dig into the actual tables themselves.
*/
if (!DEBUG_READ_MEM_VERBOSE((void*)dyn.d_un.d_ptr, &dbg_hdr, sizeof(dbg_hdr)))
goto leave;
assert(!DEBUG_CurrProcess->dbg_hdr_addr);
DEBUG_CurrProcess->dbg_hdr_addr = (u_long)dyn.d_un.d_ptr;
if (dbg_hdr.r_brk) {
DBG_VALUE value;
DEBUG_Printf(DBG_CHN_TRACE, "Setting up a breakpoint on r_brk(%lx)\n",
dbg_hdr.r_brk);
DEBUG_SetBreakpoints(FALSE);
value.type = NULL;
value.cookie = DV_TARGET;
value.addr.seg = 0;
value.addr.off = dbg_hdr.r_brk;
DEBUG_AddBreakpoint(&value, DEBUG_RescanElf);
DEBUG_SetBreakpoints(TRUE);
}
rtn = DEBUG_WalkList(&dbg_hdr);
leave:
return rtn;
}
#else /* !__ELF__ */
int
DEBUG_ProcessElfObject(const char * filename, unsigned int load_offset)
{
return FALSE;
}
int
DEBUG_ReadExecutableDbgInfo(const char* exe_name)
{
return FALSE;
}
#endif /* __ELF__ */