Sweden-Number/dlls/msvcrt/math.c

3717 lines
97 KiB
C

/*
* msvcrt.dll math functions
*
* Copyright 2000 Jon Griffiths
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "config.h"
#include "wine/port.h"
#include <stdio.h>
#define __USE_ISOC9X 1
#define __USE_ISOC99 1
#include <math.h>
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif
#include "msvcrt.h"
#include "wine/asm.h"
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(msvcrt);
#ifndef HAVE_FINITEF
#define finitef(x) isfinite(x)
#endif
/* FIXME: Does not work with -NAN and -0. */
#ifndef signbit
#define signbit(x) ((x) < 0)
#endif
#define _DOMAIN 1 /* domain error in argument */
#define _SING 2 /* singularity */
#define _OVERFLOW 3 /* range overflow */
#define _UNDERFLOW 4 /* range underflow */
typedef int (CDECL *MSVCRT_matherr_func)(struct MSVCRT__exception *);
typedef double LDOUBLE; /* long double is just a double */
static MSVCRT_matherr_func MSVCRT_default_matherr_func = NULL;
static BOOL sse2_supported;
static BOOL sse2_enabled;
void msvcrt_init_math(void)
{
sse2_supported = sse2_enabled = IsProcessorFeaturePresent( PF_XMMI64_INSTRUCTIONS_AVAILABLE );
}
/*********************************************************************
* _matherr (CRTDLL.@)
*/
int CDECL MSVCRT__matherr(struct MSVCRT__exception *e)
{
return 0;
}
static void math_error(int type, const char *name, double arg1, double arg2, double retval)
{
TRACE("(%d, %s, %g, %g, %g)\n", type, debugstr_a(name), arg1, arg2, retval);
if (MSVCRT_default_matherr_func)
{
struct MSVCRT__exception exception = {type, (char *)name, arg1, arg2, retval};
if (MSVCRT_default_matherr_func(&exception)) return;
}
switch (type)
{
case _DOMAIN:
*MSVCRT__errno() = MSVCRT_EDOM;
break;
case _SING:
case _OVERFLOW:
*MSVCRT__errno() = MSVCRT_ERANGE;
break;
case _UNDERFLOW:
/* don't set errno */
break;
default:
ERR("Unhandled math error!\n");
}
}
/*********************************************************************
* __setusermatherr (MSVCRT.@)
*/
void CDECL MSVCRT___setusermatherr(MSVCRT_matherr_func func)
{
MSVCRT_default_matherr_func = func;
TRACE("new matherr handler %p\n", func);
}
/*********************************************************************
* _set_SSE2_enable (MSVCRT.@)
*/
int CDECL MSVCRT__set_SSE2_enable(int flag)
{
sse2_enabled = flag && sse2_supported;
return sse2_enabled;
}
#if defined(_WIN64)
# if _MSVCR_VER>=140
/*********************************************************************
* _get_FMA3_enable (UCRTBASE.@)
*/
int CDECL MSVCRT__get_FMA3_enable(void)
{
FIXME("() stub\n");
return 0;
}
# endif
# if _MSVCR_VER>=120
/*********************************************************************
* _set_FMA3_enable (MSVCR120.@)
*/
int CDECL MSVCRT__set_FMA3_enable(int flag)
{
FIXME("(%x) stub\n", flag);
return 0;
}
# endif
#endif
#if !defined(__i386__) || _MSVCR_VER>=120
/*********************************************************************
* _chgsignf (MSVCRT.@)
*/
float CDECL MSVCRT__chgsignf( float num )
{
/* FIXME: +-infinity,Nan not tested */
return -num;
}
/*********************************************************************
* _copysignf (MSVCRT.@)
*/
float CDECL MSVCRT__copysignf( float num, float sign )
{
if (signbit(sign))
return signbit(num) ? num : -num;
return signbit(num) ? -num : num;
}
/*********************************************************************
* _nextafterf (MSVCRT.@)
*/
float CDECL MSVCRT__nextafterf( float num, float next )
{
if (!finitef(num) || !finitef(next)) *MSVCRT__errno() = MSVCRT_EDOM;
return nextafterf( num, next );
}
/*********************************************************************
* _logbf (MSVCRT.@)
*/
float CDECL MSVCRT__logbf( float num )
{
float ret = logbf(num);
if (isnan(num)) math_error(_DOMAIN, "_logbf", num, 0, ret);
else if (!num) math_error(_SING, "_logbf", num, 0, ret);
return ret;
}
#endif
#ifndef __i386__
/*********************************************************************
* _finitef (MSVCRT.@)
*/
int CDECL MSVCRT__finitef( float num )
{
return finitef(num) != 0; /* See comment for _isnan() */
}
/*********************************************************************
* _isnanf (MSVCRT.@)
*/
INT CDECL MSVCRT__isnanf( float num )
{
/* Some implementations return -1 for true(glibc), msvcrt/crtdll return 1.
* Do the same, as the result may be used in calculations
*/
return isnan(num) != 0;
}
/*********************************************************************
* MSVCRT_acosf (MSVCRT.@)
*/
float CDECL MSVCRT_acosf( float x )
{
/* glibc implements acos() as the FPU equivalent of atan2(sqrt(1 - x ^ 2), x).
* asin() uses a similar construction. This is bad because as x gets nearer to
* 1 the error in the expression "1 - x^2" can get relatively large due to
* cancellation. The sqrt() makes things worse. A safer way to calculate
* acos() is to use atan2(sqrt((1 - x) * (1 + x)), x). */
float ret = atan2f(sqrtf((1 - x) * (1 + x)), x);
if (x < -1.0 || x > 1.0 || !finitef(x)) math_error(_DOMAIN, "acosf", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_asinf (MSVCRT.@)
*/
float CDECL MSVCRT_asinf( float x )
{
float ret = atan2f(x, sqrtf((1 - x) * (1 + x)));
if (x < -1.0 || x > 1.0 || !finitef(x)) math_error(_DOMAIN, "asinf", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_atanf (MSVCRT.@)
*/
float CDECL MSVCRT_atanf( float x )
{
float ret = atanf(x);
if (!finitef(x)) math_error(_DOMAIN, "atanf", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_atan2f (MSVCRT.@)
*/
float CDECL MSVCRT_atan2f( float x, float y )
{
float ret = atan2f(x, y);
if (isnan(x)) math_error(_DOMAIN, "atan2f", x, y, ret);
return ret;
}
/*********************************************************************
* MSVCRT_cosf (MSVCRT.@)
*/
float CDECL MSVCRT_cosf( float x )
{
float ret = cosf(x);
if (!finitef(x)) math_error(_DOMAIN, "cosf", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_coshf (MSVCRT.@)
*/
float CDECL MSVCRT_coshf( float x )
{
float ret = coshf(x);
if (isnan(x)) math_error(_DOMAIN, "coshf", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_expf (MSVCRT.@)
*/
float CDECL MSVCRT_expf( float x )
{
float ret = expf(x);
if (isnan(x)) math_error(_DOMAIN, "expf", x, 0, ret);
else if (finitef(x) && !ret) math_error(_UNDERFLOW, "expf", x, 0, ret);
else if (finitef(x) && !finitef(ret)) math_error(_OVERFLOW, "expf", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_fmodf (MSVCRT.@)
*/
float CDECL MSVCRT_fmodf( float x, float y )
{
float ret = fmodf(x, y);
if (!finitef(x) || !finitef(y)) math_error(_DOMAIN, "fmodf", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_logf (MSVCRT.@)
*/
float CDECL MSVCRT_logf( float x )
{
float ret = logf(x);
if (x < 0.0) math_error(_DOMAIN, "logf", x, 0, ret);
else if (x == 0.0) math_error(_SING, "logf", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_log10f (MSVCRT.@)
*/
float CDECL MSVCRT_log10f( float x )
{
float ret = log10f(x);
if (x < 0.0) math_error(_DOMAIN, "log10f", x, 0, ret);
else if (x == 0.0) math_error(_SING, "log10f", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_powf (MSVCRT.@)
*/
float CDECL MSVCRT_powf( float x, float y )
{
float z = powf(x,y);
if (x < 0 && y != floorf(y)) math_error(_DOMAIN, "powf", x, y, z);
else if (!x && finitef(y) && y < 0) math_error(_SING, "powf", x, y, z);
else if (finitef(x) && finitef(y) && !finitef(z)) math_error(_OVERFLOW, "powf", x, y, z);
else if (x && finitef(x) && finitef(y) && !z) math_error(_UNDERFLOW, "powf", x, y, z);
return z;
}
/*********************************************************************
* MSVCRT_sinf (MSVCRT.@)
*/
float CDECL MSVCRT_sinf( float x )
{
float ret = sinf(x);
if (!finitef(x)) math_error(_DOMAIN, "sinf", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_sinhf (MSVCRT.@)
*/
float CDECL MSVCRT_sinhf( float x )
{
float ret = sinhf(x);
if (isnan(x)) math_error(_DOMAIN, "sinhf", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_sqrtf (MSVCRT.@)
*/
float CDECL MSVCRT_sqrtf( float x )
{
float ret = sqrtf(x);
if (x < 0.0) math_error(_DOMAIN, "sqrtf", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_tanf (MSVCRT.@)
*/
float CDECL MSVCRT_tanf( float x )
{
float ret = tanf(x);
if (!finitef(x)) math_error(_DOMAIN, "tanf", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_tanhf (MSVCRT.@)
*/
float CDECL MSVCRT_tanhf( float x )
{
float ret = tanhf(x);
if (!finitef(x)) math_error(_DOMAIN, "tanhf", x, 0, ret);
return ret;
}
/*********************************************************************
* ceilf (MSVCRT.@)
*/
float CDECL MSVCRT_ceilf( float x )
{
return ceilf(x);
}
/*********************************************************************
* fabsf (MSVCRT.@)
*/
float CDECL MSVCRT_fabsf( float x )
{
return fabsf(x);
}
/*********************************************************************
* floorf (MSVCRT.@)
*/
float CDECL MSVCRT_floorf( float x )
{
return floorf(x);
}
/*********************************************************************
* frexpf (MSVCRT.@)
*/
float CDECL MSVCRT_frexpf( float x, int *exp )
{
return frexpf( x, exp );
}
/*********************************************************************
* modff (MSVCRT.@)
*/
float CDECL MSVCRT_modff( float x, float *iptr )
{
return modff( x, iptr );
}
#endif
/*********************************************************************
* MSVCRT_acos (MSVCRT.@)
*/
double CDECL MSVCRT_acos( double x )
{
/* glibc implements acos() as the FPU equivalent of atan2(sqrt(1 - x ^ 2), x).
* asin() uses a similar construction. This is bad because as x gets nearer to
* 1 the error in the expression "1 - x^2" can get relatively large due to
* cancellation. The sqrt() makes things worse. A safer way to calculate
* acos() is to use atan2(sqrt((1 - x) * (1 + x)), x). */
double ret = atan2(sqrt((1 - x) * (1 + x)), x);
if (x < -1.0 || x > 1.0 || !isfinite(x)) math_error(_DOMAIN, "acos", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_asin (MSVCRT.@)
*/
double CDECL MSVCRT_asin( double x )
{
double ret = atan2(x, sqrt((1 - x) * (1 + x)));
if (x < -1.0 || x > 1.0 || !isfinite(x)) math_error(_DOMAIN, "asin", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_atan (MSVCRT.@)
*/
double CDECL MSVCRT_atan( double x )
{
double ret = atan(x);
if (isnan(x)) math_error(_DOMAIN, "atan", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_atan2 (MSVCRT.@)
*/
double CDECL MSVCRT_atan2( double x, double y )
{
double ret = atan2(x, y);
if (isnan(x)) math_error(_DOMAIN, "atan2", x, y, ret);
return ret;
}
/*********************************************************************
* MSVCRT_cos (MSVCRT.@)
*/
double CDECL MSVCRT_cos( double x )
{
double ret = cos(x);
if (!isfinite(x)) math_error(_DOMAIN, "cos", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_cosh (MSVCRT.@)
*/
double CDECL MSVCRT_cosh( double x )
{
double ret = cosh(x);
if (isnan(x)) math_error(_DOMAIN, "cosh", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_exp (MSVCRT.@)
*/
double CDECL MSVCRT_exp( double x )
{
double ret = exp(x);
if (isnan(x)) math_error(_DOMAIN, "exp", x, 0, ret);
else if (isfinite(x) && !ret) math_error(_UNDERFLOW, "exp", x, 0, ret);
else if (isfinite(x) && !isfinite(ret)) math_error(_OVERFLOW, "exp", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_fmod (MSVCRT.@)
*/
double CDECL MSVCRT_fmod( double x, double y )
{
double ret = fmod(x, y);
if (!isfinite(x) || !isfinite(y)) math_error(_DOMAIN, "fmod", x, y, ret);
return ret;
}
/*********************************************************************
* MSVCRT_log (MSVCRT.@)
*/
double CDECL MSVCRT_log( double x )
{
double ret = log(x);
if (x < 0.0) math_error(_DOMAIN, "log", x, 0, ret);
else if (x == 0.0) math_error(_SING, "log", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_log10 (MSVCRT.@)
*/
double CDECL MSVCRT_log10( double x )
{
double ret = log10(x);
if (x < 0.0) math_error(_DOMAIN, "log10", x, 0, ret);
else if (x == 0.0) math_error(_SING, "log10", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_pow (MSVCRT.@)
*/
double CDECL MSVCRT_pow( double x, double y )
{
double z = pow(x,y);
if (x < 0 && y != floor(y)) math_error(_DOMAIN, "pow", x, y, z);
else if (!x && isfinite(y) && y < 0) math_error(_SING, "pow", x, y, z);
else if (isfinite(x) && isfinite(y) && !isfinite(z)) math_error(_OVERFLOW, "pow", x, y, z);
else if (x && isfinite(x) && isfinite(y) && !z) math_error(_UNDERFLOW, "pow", x, y, z);
return z;
}
/*********************************************************************
* MSVCRT_sin (MSVCRT.@)
*/
double CDECL MSVCRT_sin( double x )
{
double ret = sin(x);
if (!isfinite(x)) math_error(_DOMAIN, "sin", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_sinh (MSVCRT.@)
*/
double CDECL MSVCRT_sinh( double x )
{
double ret = sinh(x);
if (isnan(x)) math_error(_DOMAIN, "sinh", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_sqrt (MSVCRT.@)
*/
double CDECL MSVCRT_sqrt( double x )
{
double ret = sqrt(x);
if (x < 0.0) math_error(_DOMAIN, "sqrt", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_tan (MSVCRT.@)
*/
double CDECL MSVCRT_tan( double x )
{
double ret = tan(x);
if (!isfinite(x)) math_error(_DOMAIN, "tan", x, 0, ret);
return ret;
}
/*********************************************************************
* MSVCRT_tanh (MSVCRT.@)
*/
double CDECL MSVCRT_tanh( double x )
{
double ret = tanh(x);
if (isnan(x)) math_error(_DOMAIN, "tanh", x, 0, ret);
return ret;
}
#if defined(__GNUC__) && defined(__i386__)
#define CREATE_FPU_FUNC1(name, call) \
__ASM_GLOBAL_FUNC(name, \
"pushl %ebp\n\t" \
__ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \
__ASM_CFI(".cfi_rel_offset %ebp,0\n\t") \
"movl %esp, %ebp\n\t" \
__ASM_CFI(".cfi_def_cfa_register %ebp\n\t") \
"subl $68, %esp\n\t" /* sizeof(double)*8 + sizeof(int) */ \
"fstpl (%esp)\n\t" /* store function argument */ \
"fwait\n\t" \
"movl $1, %ecx\n\t" /* empty FPU stack */ \
"1:\n\t" \
"fxam\n\t" \
"fstsw %ax\n\t" \
"and $0x4500, %ax\n\t" \
"cmp $0x4100, %ax\n\t" \
"je 2f\n\t" \
"fstpl (%esp,%ecx,8)\n\t" \
"fwait\n\t" \
"incl %ecx\n\t" \
"jmp 1b\n\t" \
"2:\n\t" \
"movl %ecx, -4(%ebp)\n\t" \
"call " __ASM_NAME( #call ) "\n\t" \
"movl -4(%ebp), %ecx\n\t" \
"fstpl (%esp)\n\t" /* save result */ \
"3:\n\t" /* restore FPU stack */ \
"decl %ecx\n\t" \
"fldl (%esp,%ecx,8)\n\t" \
"cmpl $0, %ecx\n\t" \
"jne 3b\n\t" \
"leave\n\t" \
__ASM_CFI(".cfi_def_cfa %esp,4\n\t") \
__ASM_CFI(".cfi_same_value %ebp\n\t") \
"ret")
#define CREATE_FPU_FUNC2(name, call) \
__ASM_GLOBAL_FUNC(name, \
"pushl %ebp\n\t" \
__ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \
__ASM_CFI(".cfi_rel_offset %ebp,0\n\t") \
"movl %esp, %ebp\n\t" \
__ASM_CFI(".cfi_def_cfa_register %ebp\n\t") \
"subl $68, %esp\n\t" /* sizeof(double)*8 + sizeof(int) */ \
"fstpl 8(%esp)\n\t" /* store function argument */ \
"fwait\n\t" \
"fstpl (%esp)\n\t" \
"fwait\n\t" \
"movl $2, %ecx\n\t" /* empty FPU stack */ \
"1:\n\t" \
"fxam\n\t" \
"fstsw %ax\n\t" \
"and $0x4500, %ax\n\t" \
"cmp $0x4100, %ax\n\t" \
"je 2f\n\t" \
"fstpl (%esp,%ecx,8)\n\t" \
"fwait\n\t" \
"incl %ecx\n\t" \
"jmp 1b\n\t" \
"2:\n\t" \
"movl %ecx, -4(%ebp)\n\t" \
"call " __ASM_NAME( #call ) "\n\t" \
"movl -4(%ebp), %ecx\n\t" \
"fstpl 8(%esp)\n\t" /* save result */ \
"3:\n\t" /* restore FPU stack */ \
"decl %ecx\n\t" \
"fldl (%esp,%ecx,8)\n\t" \
"cmpl $1, %ecx\n\t" \
"jne 3b\n\t" \
"leave\n\t" \
__ASM_CFI(".cfi_def_cfa %esp,4\n\t") \
__ASM_CFI(".cfi_same_value %ebp\n\t") \
"ret")
CREATE_FPU_FUNC1(_CIacos, MSVCRT_acos)
CREATE_FPU_FUNC1(_CIasin, MSVCRT_asin)
CREATE_FPU_FUNC1(_CIatan, MSVCRT_atan)
CREATE_FPU_FUNC2(_CIatan2, MSVCRT_atan2)
CREATE_FPU_FUNC1(_CIcos, MSVCRT_cos)
CREATE_FPU_FUNC1(_CIcosh, MSVCRT_cosh)
CREATE_FPU_FUNC1(_CIexp, MSVCRT_exp)
CREATE_FPU_FUNC2(_CIfmod, MSVCRT_fmod)
CREATE_FPU_FUNC1(_CIlog, MSVCRT_log)
CREATE_FPU_FUNC1(_CIlog10, MSVCRT_log10)
CREATE_FPU_FUNC2(_CIpow, MSVCRT_pow)
CREATE_FPU_FUNC1(_CIsin, MSVCRT_sin)
CREATE_FPU_FUNC1(_CIsinh, MSVCRT_sinh)
CREATE_FPU_FUNC1(_CIsqrt, MSVCRT_sqrt)
CREATE_FPU_FUNC1(_CItan, MSVCRT_tan)
CREATE_FPU_FUNC1(_CItanh, MSVCRT_tanh)
__ASM_GLOBAL_FUNC(MSVCRT__ftol,
"pushl %ebp\n\t"
__ASM_CFI(".cfi_adjust_cfa_offset 4\n\t")
__ASM_CFI(".cfi_rel_offset %ebp,0\n\t")
"movl %esp, %ebp\n\t"
__ASM_CFI(".cfi_def_cfa_register %ebp\n\t")
"subl $12, %esp\n\t" /* sizeof(LONGLONG) + 2*sizeof(WORD) */
"fnstcw (%esp)\n\t"
"mov (%esp), %ax\n\t"
"or $0xc00, %ax\n\t"
"mov %ax, 2(%esp)\n\t"
"fldcw 2(%esp)\n\t"
"fistpq 4(%esp)\n\t"
"fldcw (%esp)\n\t"
"movl 4(%esp), %eax\n\t"
"movl 8(%esp), %edx\n\t"
"leave\n\t"
__ASM_CFI(".cfi_def_cfa %esp,4\n\t")
__ASM_CFI(".cfi_same_value %ebp\n\t")
"ret")
#endif /* defined(__GNUC__) && defined(__i386__) */
/*********************************************************************
* _fpclass (MSVCRT.@)
*/
int CDECL MSVCRT__fpclass(double num)
{
#if defined(HAVE_FPCLASS) || defined(fpclass)
switch (fpclass( num ))
{
case FP_SNAN: return MSVCRT__FPCLASS_SNAN;
case FP_QNAN: return MSVCRT__FPCLASS_QNAN;
case FP_NINF: return MSVCRT__FPCLASS_NINF;
case FP_PINF: return MSVCRT__FPCLASS_PINF;
case FP_NDENORM: return MSVCRT__FPCLASS_ND;
case FP_PDENORM: return MSVCRT__FPCLASS_PD;
case FP_NZERO: return MSVCRT__FPCLASS_NZ;
case FP_PZERO: return MSVCRT__FPCLASS_PZ;
case FP_NNORM: return MSVCRT__FPCLASS_NN;
case FP_PNORM: return MSVCRT__FPCLASS_PN;
default: return MSVCRT__FPCLASS_PN;
}
#elif defined (fpclassify)
switch (fpclassify( num ))
{
case FP_NAN: return MSVCRT__FPCLASS_QNAN;
case FP_INFINITE: return signbit(num) ? MSVCRT__FPCLASS_NINF : MSVCRT__FPCLASS_PINF;
case FP_SUBNORMAL: return signbit(num) ?MSVCRT__FPCLASS_ND : MSVCRT__FPCLASS_PD;
case FP_ZERO: return signbit(num) ? MSVCRT__FPCLASS_NZ : MSVCRT__FPCLASS_PZ;
}
return signbit(num) ? MSVCRT__FPCLASS_NN : MSVCRT__FPCLASS_PN;
#else
if (!isfinite(num))
return MSVCRT__FPCLASS_QNAN;
return num == 0.0 ? MSVCRT__FPCLASS_PZ : (num < 0 ? MSVCRT__FPCLASS_NN : MSVCRT__FPCLASS_PN);
#endif
}
/*********************************************************************
* _rotl (MSVCRT.@)
*/
unsigned int CDECL _rotl(unsigned int num, int shift)
{
shift &= 31;
return (num << shift) | (num >> (32-shift));
}
/*********************************************************************
* _lrotl (MSVCRT.@)
*/
MSVCRT_ulong CDECL MSVCRT__lrotl(MSVCRT_ulong num, int shift)
{
shift &= 0x1f;
return (num << shift) | (num >> (32-shift));
}
/*********************************************************************
* _lrotr (MSVCRT.@)
*/
MSVCRT_ulong CDECL MSVCRT__lrotr(MSVCRT_ulong num, int shift)
{
shift &= 0x1f;
return (num >> shift) | (num << (32-shift));
}
/*********************************************************************
* _rotr (MSVCRT.@)
*/
unsigned int CDECL _rotr(unsigned int num, int shift)
{
shift &= 0x1f;
return (num >> shift) | (num << (32-shift));
}
/*********************************************************************
* _rotl64 (MSVCRT.@)
*/
unsigned __int64 CDECL _rotl64(unsigned __int64 num, int shift)
{
shift &= 63;
return (num << shift) | (num >> (64-shift));
}
/*********************************************************************
* _rotr64 (MSVCRT.@)
*/
unsigned __int64 CDECL _rotr64(unsigned __int64 num, int shift)
{
shift &= 63;
return (num >> shift) | (num << (64-shift));
}
/*********************************************************************
* abs (MSVCRT.@)
*/
int CDECL MSVCRT_abs( int n )
{
return n >= 0 ? n : -n;
}
/*********************************************************************
* labs (MSVCRT.@)
*/
MSVCRT_long CDECL MSVCRT_labs( MSVCRT_long n )
{
return n >= 0 ? n : -n;
}
#if _MSVCR_VER>=100
/*********************************************************************
* llabs (MSVCR100.@)
*/
MSVCRT_longlong CDECL MSVCRT_llabs( MSVCRT_longlong n )
{
return n >= 0 ? n : -n;
}
#endif
/*********************************************************************
* _abs64 (MSVCRT.@)
*/
__int64 CDECL _abs64( __int64 n )
{
return n >= 0 ? n : -n;
}
/*********************************************************************
* _logb (MSVCRT.@)
*/
double CDECL MSVCRT__logb(double num)
{
double ret = logb(num);
if (isnan(num)) math_error(_DOMAIN, "_logb", num, 0, ret);
else if (!num) math_error(_SING, "_logb", num, 0, ret);
return ret;
}
/*********************************************************************
* _hypot (MSVCRT.@)
*/
double CDECL _hypot(double x, double y)
{
/* FIXME: errno handling */
return hypot( x, y );
}
/*********************************************************************
* _hypotf (MSVCRT.@)
*/
float CDECL MSVCRT__hypotf(float x, float y)
{
/* FIXME: errno handling */
return hypotf( x, y );
}
/*********************************************************************
* ceil (MSVCRT.@)
*/
double CDECL MSVCRT_ceil( double x )
{
return ceil(x);
}
/*********************************************************************
* floor (MSVCRT.@)
*/
double CDECL MSVCRT_floor( double x )
{
return floor(x);
}
/*********************************************************************
* fma (MSVCRT.@)
*/
double CDECL MSVCRT_fma( double x, double y, double z )
{
#ifdef HAVE_FMA
double w = fma(x, y, z);
#else
double w = x * y + z;
#endif
if ((isinf(x) && y == 0) || (x == 0 && isinf(y))) *MSVCRT__errno() = MSVCRT_EDOM;
else if (isinf(x) && isinf(z) && x != z) *MSVCRT__errno() = MSVCRT_EDOM;
else if (isinf(y) && isinf(z) && y != z) *MSVCRT__errno() = MSVCRT_EDOM;
return w;
}
/*********************************************************************
* fmaf (MSVCRT.@)
*/
float CDECL MSVCRT_fmaf( float x, float y, float z )
{
#ifdef HAVE_FMAF
float w = fmaf(x, y, z);
#else
float w = x * y + z;
#endif
if ((isinf(x) && y == 0) || (x == 0 && isinf(y))) *MSVCRT__errno() = MSVCRT_EDOM;
else if (isinf(x) && isinf(z) && x != z) *MSVCRT__errno() = MSVCRT_EDOM;
else if (isinf(y) && isinf(z) && y != z) *MSVCRT__errno() = MSVCRT_EDOM;
return w;
}
/*********************************************************************
* fabs (MSVCRT.@)
*/
double CDECL MSVCRT_fabs( double x )
{
return fabs(x);
}
/*********************************************************************
* frexp (MSVCRT.@)
*/
double CDECL MSVCRT_frexp( double x, int *exp )
{
return frexp( x, exp );
}
/*********************************************************************
* modf (MSVCRT.@)
*/
double CDECL MSVCRT_modf( double x, double *iptr )
{
return modf( x, iptr );
}
/**********************************************************************
* _statusfp2 (MSVCRT.@)
*
* Not exported by native msvcrt, added in msvcr80.
*/
#if defined(__i386__) || defined(__x86_64__)
void CDECL _statusfp2( unsigned int *x86_sw, unsigned int *sse2_sw )
{
#ifdef __GNUC__
unsigned int flags;
unsigned long fpword;
if (x86_sw)
{
__asm__ __volatile__( "fstsw %0" : "=m" (fpword) );
flags = 0;
if (fpword & 0x1) flags |= MSVCRT__SW_INVALID;
if (fpword & 0x2) flags |= MSVCRT__SW_DENORMAL;
if (fpword & 0x4) flags |= MSVCRT__SW_ZERODIVIDE;
if (fpword & 0x8) flags |= MSVCRT__SW_OVERFLOW;
if (fpword & 0x10) flags |= MSVCRT__SW_UNDERFLOW;
if (fpword & 0x20) flags |= MSVCRT__SW_INEXACT;
*x86_sw = flags;
}
if (!sse2_sw) return;
if (sse2_supported)
{
__asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
flags = 0;
if (fpword & 0x1) flags |= MSVCRT__SW_INVALID;
if (fpword & 0x2) flags |= MSVCRT__SW_DENORMAL;
if (fpword & 0x4) flags |= MSVCRT__SW_ZERODIVIDE;
if (fpword & 0x8) flags |= MSVCRT__SW_OVERFLOW;
if (fpword & 0x10) flags |= MSVCRT__SW_UNDERFLOW;
if (fpword & 0x20) flags |= MSVCRT__SW_INEXACT;
*sse2_sw = flags;
}
else *sse2_sw = 0;
#else
FIXME( "not implemented\n" );
#endif
}
#endif
/**********************************************************************
* _statusfp (MSVCRT.@)
*/
unsigned int CDECL _statusfp(void)
{
unsigned int flags = 0;
#if defined(__i386__) || defined(__x86_64__)
unsigned int x86_sw, sse2_sw;
_statusfp2( &x86_sw, &sse2_sw );
/* FIXME: there's no definition for ambiguous status, just return all status bits for now */
flags = x86_sw | sse2_sw;
#elif defined(__aarch64__)
unsigned long fpsr;
__asm__ __volatile__( "mrs %0, fpsr" : "=r" (fpsr) );
if (fpsr & 0x1) flags |= MSVCRT__SW_INVALID;
if (fpsr & 0x2) flags |= MSVCRT__SW_ZERODIVIDE;
if (fpsr & 0x4) flags |= MSVCRT__SW_OVERFLOW;
if (fpsr & 0x8) flags |= MSVCRT__SW_UNDERFLOW;
if (fpsr & 0x10) flags |= MSVCRT__SW_INEXACT;
if (fpsr & 0x80) flags |= MSVCRT__SW_DENORMAL;
#else
FIXME( "not implemented\n" );
#endif
return flags;
}
/*********************************************************************
* _clearfp (MSVCRT.@)
*/
unsigned int CDECL _clearfp(void)
{
unsigned int flags = 0;
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
unsigned long fpword;
__asm__ __volatile__( "fnstsw %0; fnclex" : "=m" (fpword) );
if (fpword & 0x1) flags |= MSVCRT__SW_INVALID;
if (fpword & 0x2) flags |= MSVCRT__SW_DENORMAL;
if (fpword & 0x4) flags |= MSVCRT__SW_ZERODIVIDE;
if (fpword & 0x8) flags |= MSVCRT__SW_OVERFLOW;
if (fpword & 0x10) flags |= MSVCRT__SW_UNDERFLOW;
if (fpword & 0x20) flags |= MSVCRT__SW_INEXACT;
if (sse2_supported)
{
__asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
if (fpword & 0x1) flags |= MSVCRT__SW_INVALID;
if (fpword & 0x2) flags |= MSVCRT__SW_DENORMAL;
if (fpword & 0x4) flags |= MSVCRT__SW_ZERODIVIDE;
if (fpword & 0x8) flags |= MSVCRT__SW_OVERFLOW;
if (fpword & 0x10) flags |= MSVCRT__SW_UNDERFLOW;
if (fpword & 0x20) flags |= MSVCRT__SW_INEXACT;
fpword &= ~0x3f;
__asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) );
}
#elif defined(__aarch64__)
unsigned long fpsr;
__asm__ __volatile__( "mrs %0, fpsr" : "=r" (fpsr) );
if (fpsr & 0x1) flags |= MSVCRT__SW_INVALID;
if (fpsr & 0x2) flags |= MSVCRT__SW_ZERODIVIDE;
if (fpsr & 0x4) flags |= MSVCRT__SW_OVERFLOW;
if (fpsr & 0x8) flags |= MSVCRT__SW_UNDERFLOW;
if (fpsr & 0x10) flags |= MSVCRT__SW_INEXACT;
if (fpsr & 0x80) flags |= MSVCRT__SW_DENORMAL;
fpsr &= ~0x9f;
__asm__ __volatile__( "msr fpsr, %0" :: "r" (fpsr) );
#else
FIXME( "not implemented\n" );
#endif
return flags;
}
/*********************************************************************
* __fpecode (MSVCRT.@)
*/
int * CDECL __fpecode(void)
{
return &msvcrt_get_thread_data()->fpecode;
}
/*********************************************************************
* ldexp (MSVCRT.@)
*/
double CDECL MSVCRT_ldexp(double num, MSVCRT_long exp)
{
double z = ldexp(num,exp);
if (isfinite(num) && !isfinite(z))
math_error(_OVERFLOW, "ldexp", num, exp, z);
else if (num && isfinite(num) && !z)
math_error(_UNDERFLOW, "ldexp", num, exp, z);
else if (z == 0 && signbit(z))
z = 0.0; /* Convert -0 -> +0 */
return z;
}
/*********************************************************************
* _cabs (MSVCRT.@)
*/
double CDECL MSVCRT__cabs(struct MSVCRT__complex num)
{
return sqrt(num.x * num.x + num.y * num.y);
}
/*********************************************************************
* _chgsign (MSVCRT.@)
*/
double CDECL MSVCRT__chgsign(double num)
{
/* FIXME: +-infinity,Nan not tested */
return -num;
}
/*********************************************************************
* __control87_2 (MSVCR80.@)
*
* Not exported by native msvcrt, added in msvcr80.
*/
#ifdef __i386__
int CDECL __control87_2( unsigned int newval, unsigned int mask,
unsigned int *x86_cw, unsigned int *sse2_cw )
{
#ifdef __GNUC__
unsigned long fpword;
unsigned int flags;
unsigned int old_flags;
if (x86_cw)
{
__asm__ __volatile__( "fstcw %0" : "=m" (fpword) );
/* Convert into mask constants */
flags = 0;
if (fpword & 0x1) flags |= MSVCRT__EM_INVALID;
if (fpword & 0x2) flags |= MSVCRT__EM_DENORMAL;
if (fpword & 0x4) flags |= MSVCRT__EM_ZERODIVIDE;
if (fpword & 0x8) flags |= MSVCRT__EM_OVERFLOW;
if (fpword & 0x10) flags |= MSVCRT__EM_UNDERFLOW;
if (fpword & 0x20) flags |= MSVCRT__EM_INEXACT;
switch (fpword & 0xc00)
{
case 0xc00: flags |= MSVCRT__RC_UP|MSVCRT__RC_DOWN; break;
case 0x800: flags |= MSVCRT__RC_UP; break;
case 0x400: flags |= MSVCRT__RC_DOWN; break;
}
switch (fpword & 0x300)
{
case 0x0: flags |= MSVCRT__PC_24; break;
case 0x200: flags |= MSVCRT__PC_53; break;
case 0x300: flags |= MSVCRT__PC_64; break;
}
if (fpword & 0x1000) flags |= MSVCRT__IC_AFFINE;
TRACE( "x86 flags=%08x newval=%08x mask=%08x\n", flags, newval, mask );
if (mask)
{
flags = (flags & ~mask) | (newval & mask);
/* Convert (masked) value back to fp word */
fpword = 0;
if (flags & MSVCRT__EM_INVALID) fpword |= 0x1;
if (flags & MSVCRT__EM_DENORMAL) fpword |= 0x2;
if (flags & MSVCRT__EM_ZERODIVIDE) fpword |= 0x4;
if (flags & MSVCRT__EM_OVERFLOW) fpword |= 0x8;
if (flags & MSVCRT__EM_UNDERFLOW) fpword |= 0x10;
if (flags & MSVCRT__EM_INEXACT) fpword |= 0x20;
switch (flags & MSVCRT__MCW_RC)
{
case MSVCRT__RC_UP|MSVCRT__RC_DOWN: fpword |= 0xc00; break;
case MSVCRT__RC_UP: fpword |= 0x800; break;
case MSVCRT__RC_DOWN: fpword |= 0x400; break;
}
switch (flags & MSVCRT__MCW_PC)
{
case MSVCRT__PC_64: fpword |= 0x300; break;
case MSVCRT__PC_53: fpword |= 0x200; break;
case MSVCRT__PC_24: fpword |= 0x0; break;
}
if (flags & MSVCRT__IC_AFFINE) fpword |= 0x1000;
__asm__ __volatile__( "fldcw %0" : : "m" (fpword) );
}
*x86_cw = flags;
}
if (!sse2_cw) return 1;
if (sse2_supported)
{
__asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
/* Convert into mask constants */
flags = 0;
if (fpword & 0x80) flags |= MSVCRT__EM_INVALID;
if (fpword & 0x100) flags |= MSVCRT__EM_DENORMAL;
if (fpword & 0x200) flags |= MSVCRT__EM_ZERODIVIDE;
if (fpword & 0x400) flags |= MSVCRT__EM_OVERFLOW;
if (fpword & 0x800) flags |= MSVCRT__EM_UNDERFLOW;
if (fpword & 0x1000) flags |= MSVCRT__EM_INEXACT;
switch (fpword & 0x6000)
{
case 0x6000: flags |= MSVCRT__RC_UP|MSVCRT__RC_DOWN; break;
case 0x4000: flags |= MSVCRT__RC_UP; break;
case 0x2000: flags |= MSVCRT__RC_DOWN; break;
}
switch (fpword & 0x8040)
{
case 0x0040: flags |= MSVCRT__DN_FLUSH_OPERANDS_SAVE_RESULTS; break;
case 0x8000: flags |= MSVCRT__DN_SAVE_OPERANDS_FLUSH_RESULTS; break;
case 0x8040: flags |= MSVCRT__DN_FLUSH; break;
}
TRACE( "sse2 flags=%08x newval=%08x mask=%08x\n", flags, newval, mask );
if (mask)
{
old_flags = flags;
mask &= MSVCRT__MCW_EM | MSVCRT__MCW_RC | MSVCRT__MCW_DN;
flags = (flags & ~mask) | (newval & mask);
if (flags != old_flags)
{
/* Convert (masked) value back to fp word */
fpword = 0;
if (flags & MSVCRT__EM_INVALID) fpword |= 0x80;
if (flags & MSVCRT__EM_DENORMAL) fpword |= 0x100;
if (flags & MSVCRT__EM_ZERODIVIDE) fpword |= 0x200;
if (flags & MSVCRT__EM_OVERFLOW) fpword |= 0x400;
if (flags & MSVCRT__EM_UNDERFLOW) fpword |= 0x800;
if (flags & MSVCRT__EM_INEXACT) fpword |= 0x1000;
switch (flags & MSVCRT__MCW_RC)
{
case MSVCRT__RC_UP|MSVCRT__RC_DOWN: fpword |= 0x6000; break;
case MSVCRT__RC_UP: fpword |= 0x4000; break;
case MSVCRT__RC_DOWN: fpword |= 0x2000; break;
}
switch (flags & MSVCRT__MCW_DN)
{
case MSVCRT__DN_FLUSH_OPERANDS_SAVE_RESULTS: fpword |= 0x0040; break;
case MSVCRT__DN_SAVE_OPERANDS_FLUSH_RESULTS: fpword |= 0x8000; break;
case MSVCRT__DN_FLUSH: fpword |= 0x8040; break;
}
__asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) );
}
}
*sse2_cw = flags;
}
else *sse2_cw = 0;
return 1;
#else
FIXME( "not implemented\n" );
return 0;
#endif
}
#endif
/*********************************************************************
* _control87 (MSVCRT.@)
*/
unsigned int CDECL _control87(unsigned int newval, unsigned int mask)
{
unsigned int flags = 0;
#ifdef __i386__
unsigned int sse2_cw;
__control87_2( newval, mask, &flags, &sse2_cw );
if ((flags ^ sse2_cw) & (MSVCRT__MCW_EM | MSVCRT__MCW_RC)) flags |= MSVCRT__EM_AMBIGUOUS;
flags |= sse2_cw;
#elif defined(__x86_64__)
unsigned long fpword;
unsigned int old_flags;
__asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
if (fpword & 0x80) flags |= MSVCRT__EM_INVALID;
if (fpword & 0x100) flags |= MSVCRT__EM_DENORMAL;
if (fpword & 0x200) flags |= MSVCRT__EM_ZERODIVIDE;
if (fpword & 0x400) flags |= MSVCRT__EM_OVERFLOW;
if (fpword & 0x800) flags |= MSVCRT__EM_UNDERFLOW;
if (fpword & 0x1000) flags |= MSVCRT__EM_INEXACT;
switch (fpword & 0x6000)
{
case 0x6000: flags |= MSVCRT__RC_CHOP; break;
case 0x4000: flags |= MSVCRT__RC_UP; break;
case 0x2000: flags |= MSVCRT__RC_DOWN; break;
}
switch (fpword & 0x8040)
{
case 0x0040: flags |= MSVCRT__DN_FLUSH_OPERANDS_SAVE_RESULTS; break;
case 0x8000: flags |= MSVCRT__DN_SAVE_OPERANDS_FLUSH_RESULTS; break;
case 0x8040: flags |= MSVCRT__DN_FLUSH; break;
}
old_flags = flags;
mask &= MSVCRT__MCW_EM | MSVCRT__MCW_RC | MSVCRT__MCW_DN;
flags = (flags & ~mask) | (newval & mask);
if (flags != old_flags)
{
fpword = 0;
if (flags & MSVCRT__EM_INVALID) fpword |= 0x80;
if (flags & MSVCRT__EM_DENORMAL) fpword |= 0x100;
if (flags & MSVCRT__EM_ZERODIVIDE) fpword |= 0x200;
if (flags & MSVCRT__EM_OVERFLOW) fpword |= 0x400;
if (flags & MSVCRT__EM_UNDERFLOW) fpword |= 0x800;
if (flags & MSVCRT__EM_INEXACT) fpword |= 0x1000;
switch (flags & MSVCRT__MCW_RC)
{
case MSVCRT__RC_CHOP: fpword |= 0x6000; break;
case MSVCRT__RC_UP: fpword |= 0x4000; break;
case MSVCRT__RC_DOWN: fpword |= 0x2000; break;
}
switch (flags & MSVCRT__MCW_DN)
{
case MSVCRT__DN_FLUSH_OPERANDS_SAVE_RESULTS: fpword |= 0x0040; break;
case MSVCRT__DN_SAVE_OPERANDS_FLUSH_RESULTS: fpword |= 0x8000; break;
case MSVCRT__DN_FLUSH: fpword |= 0x8040; break;
}
__asm__ __volatile__( "ldmxcsr %0" :: "m" (fpword) );
}
#elif defined(__aarch64__)
unsigned long fpcr;
__asm__ __volatile__( "mrs %0, fpcr" : "=r" (fpcr) );
if (!(fpcr & 0x100)) flags |= MSVCRT__EM_INVALID;
if (!(fpcr & 0x200)) flags |= MSVCRT__EM_ZERODIVIDE;
if (!(fpcr & 0x400)) flags |= MSVCRT__EM_OVERFLOW;
if (!(fpcr & 0x800)) flags |= MSVCRT__EM_UNDERFLOW;
if (!(fpcr & 0x1000)) flags |= MSVCRT__EM_INEXACT;
if (!(fpcr & 0x8000)) flags |= MSVCRT__EM_DENORMAL;
switch (fpcr & 0xc00000)
{
case 0x400000: flags |= MSVCRT__RC_UP; break;
case 0x800000: flags |= MSVCRT__RC_DOWN; break;
case 0xc00000: flags |= MSVCRT__RC_CHOP; break;
}
flags = (flags & ~mask) | (newval & mask);
fpcr &= ~0xc09f00ul;
if (!(flags & MSVCRT__EM_INVALID)) fpcr |= 0x100;
if (!(flags & MSVCRT__EM_ZERODIVIDE)) fpcr |= 0x200;
if (!(flags & MSVCRT__EM_OVERFLOW)) fpcr |= 0x400;
if (!(flags & MSVCRT__EM_UNDERFLOW)) fpcr |= 0x800;
if (!(flags & MSVCRT__EM_INEXACT)) fpcr |= 0x1000;
if (!(flags & MSVCRT__EM_DENORMAL)) fpcr |= 0x8000;
switch (flags & MSVCRT__MCW_RC)
{
case MSVCRT__RC_CHOP: fpcr |= 0xc00000; break;
case MSVCRT__RC_UP: fpcr |= 0x400000; break;
case MSVCRT__RC_DOWN: fpcr |= 0x800000; break;
}
__asm__ __volatile__( "msr fpcr, %0" :: "r" (fpcr) );
#else
FIXME( "not implemented\n" );
#endif
return flags;
}
/*********************************************************************
* _controlfp (MSVCRT.@)
*/
unsigned int CDECL _controlfp(unsigned int newval, unsigned int mask)
{
return _control87( newval, mask & ~MSVCRT__EM_DENORMAL );
}
/*********************************************************************
* _set_controlfp (MSVCRT.@)
*/
void CDECL _set_controlfp( unsigned int newval, unsigned int mask )
{
_controlfp( newval, mask );
}
/*********************************************************************
* _controlfp_s (MSVCRT.@)
*/
int CDECL _controlfp_s(unsigned int *cur, unsigned int newval, unsigned int mask)
{
static const unsigned int all_flags = (MSVCRT__MCW_EM | MSVCRT__MCW_IC | MSVCRT__MCW_RC |
MSVCRT__MCW_PC | MSVCRT__MCW_DN);
unsigned int val;
if (!MSVCRT_CHECK_PMT( !(newval & mask & ~all_flags) ))
{
if (cur) *cur = _controlfp( 0, 0 ); /* retrieve it anyway */
return MSVCRT_EINVAL;
}
val = _controlfp( newval, mask );
if (cur) *cur = val;
return 0;
}
#if _MSVCR_VER>=120
/*********************************************************************
* fegetenv (MSVCR120.@)
*/
int CDECL MSVCRT_fegetenv(MSVCRT_fenv_t *env)
{
env->control = _controlfp(0, 0) & (MSVCRT__EM_INEXACT | MSVCRT__EM_UNDERFLOW |
MSVCRT__EM_OVERFLOW | MSVCRT__EM_ZERODIVIDE | MSVCRT__EM_INVALID);
env->status = _statusfp();
return 0;
}
#endif
#if _MSVCR_VER>=140
/*********************************************************************
* __fpe_flt_rounds (UCRTBASE.@)
*/
int CDECL __fpe_flt_rounds(void)
{
unsigned int fpc = _controlfp(0, 0) & MSVCRT__RC_CHOP;
TRACE("()\n");
switch(fpc) {
case MSVCRT__RC_CHOP: return 0;
case MSVCRT__RC_NEAR: return 1;
case MSVCRT__RC_UP: return 2;
default: return 3;
}
}
#endif
#if _MSVCR_VER>=120
/*********************************************************************
* fegetround (MSVCR120.@)
*/
int CDECL MSVCRT_fegetround(void)
{
return _controlfp(0, 0) & MSVCRT__RC_CHOP;
}
/*********************************************************************
* fesetround (MSVCR120.@)
*/
int CDECL MSVCRT_fesetround(int round_mode)
{
if (round_mode & (~MSVCRT__RC_CHOP))
return 1;
_controlfp(round_mode, MSVCRT__RC_CHOP);
return 0;
}
#endif /* _MSVCR_VER>=120 */
/*********************************************************************
* _copysign (MSVCRT.@)
*/
double CDECL MSVCRT__copysign(double num, double sign)
{
if (signbit(sign))
return signbit(num) ? num : -num;
return signbit(num) ? -num : num;
}
/*********************************************************************
* _finite (MSVCRT.@)
*/
int CDECL MSVCRT__finite(double num)
{
return isfinite(num) != 0; /* See comment for _isnan() */
}
/*********************************************************************
* _fpreset (MSVCRT.@)
*/
void CDECL _fpreset(void)
{
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
const unsigned int x86_cw = 0x27f;
__asm__ __volatile__( "fninit; fldcw %0" : : "m" (x86_cw) );
if (sse2_supported)
{
const unsigned long sse2_cw = 0x1f80;
__asm__ __volatile__( "ldmxcsr %0" : : "m" (sse2_cw) );
}
#else
FIXME( "not implemented\n" );
#endif
}
#if _MSVCR_VER>=120
/*********************************************************************
* fesetenv (MSVCR120.@)
*/
int CDECL MSVCRT_fesetenv(const MSVCRT_fenv_t *env)
{
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
struct {
WORD control_word;
WORD unused1;
WORD status_word;
WORD unused2;
WORD tag_word;
WORD unused3;
DWORD instruction_pointer;
WORD code_segment;
WORD unused4;
DWORD operand_addr;
WORD data_segment;
WORD unused5;
} fenv;
TRACE( "(%p)\n", env );
if (!env->control && !env->status) {
_fpreset();
return 0;
}
__asm__ __volatile__( "fnstenv %0" : "=m" (fenv) );
fenv.control_word &= ~0x3d;
if (env->control & MSVCRT__EM_INVALID) fenv.control_word |= 0x1;
if (env->control & MSVCRT__EM_ZERODIVIDE) fenv.control_word |= 0x4;
if (env->control & MSVCRT__EM_OVERFLOW) fenv.control_word |= 0x8;
if (env->control & MSVCRT__EM_UNDERFLOW) fenv.control_word |= 0x10;
if (env->control & MSVCRT__EM_INEXACT) fenv.control_word |= 0x20;
fenv.status_word &= ~0x3d;
if (env->status & MSVCRT__SW_INVALID) fenv.status_word |= 0x1;
if (env->status & MSVCRT__SW_ZERODIVIDE) fenv.status_word |= 0x4;
if (env->status & MSVCRT__SW_OVERFLOW) fenv.status_word |= 0x8;
if (env->status & MSVCRT__SW_UNDERFLOW) fenv.status_word |= 0x10;
if (env->status & MSVCRT__SW_INEXACT) fenv.status_word |= 0x20;
__asm__ __volatile__( "fldenv %0" : : "m" (fenv) : "st", "st(1)",
"st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)" );
if (sse2_supported)
{
DWORD fpword;
__asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
fpword &= ~0x1e80;
if (env->control & MSVCRT__EM_INVALID) fpword |= 0x80;
if (env->control & MSVCRT__EM_ZERODIVIDE) fpword |= 0x200;
if (env->control & MSVCRT__EM_OVERFLOW) fpword |= 0x400;
if (env->control & MSVCRT__EM_UNDERFLOW) fpword |= 0x800;
if (env->control & MSVCRT__EM_INEXACT) fpword |= 0x1000;
__asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) );
}
return 0;
#else
FIXME( "not implemented\n" );
#endif
return 1;
}
#endif
/*********************************************************************
* _isnan (MSVCRT.@)
*/
INT CDECL MSVCRT__isnan(double num)
{
/* Some implementations return -1 for true(glibc), msvcrt/crtdll return 1.
* Do the same, as the result may be used in calculations
*/
return isnan(num) != 0;
}
/*********************************************************************
* _j0 (MSVCRT.@)
*/
double CDECL MSVCRT__j0(double num)
{
/* FIXME: errno handling */
#ifdef HAVE_J0
return j0(num);
#else
FIXME("not implemented\n");
return 0;
#endif
}
/*********************************************************************
* _j1 (MSVCRT.@)
*/
double CDECL MSVCRT__j1(double num)
{
/* FIXME: errno handling */
#ifdef HAVE_J1
return j1(num);
#else
FIXME("not implemented\n");
return 0;
#endif
}
/*********************************************************************
* _jn (MSVCRT.@)
*/
double CDECL MSVCRT__jn(int n, double num)
{
/* FIXME: errno handling */
#ifdef HAVE_JN
return jn(n, num);
#else
FIXME("not implemented\n");
return 0;
#endif
}
/*********************************************************************
* _y0 (MSVCRT.@)
*/
double CDECL MSVCRT__y0(double num)
{
double retval;
if (!isfinite(num)) *MSVCRT__errno() = MSVCRT_EDOM;
#ifdef HAVE_Y0
retval = y0(num);
if (MSVCRT__fpclass(retval) == MSVCRT__FPCLASS_NINF)
{
*MSVCRT__errno() = MSVCRT_EDOM;
retval = NAN;
}
#else
FIXME("not implemented\n");
retval = 0;
#endif
return retval;
}
/*********************************************************************
* _y1 (MSVCRT.@)
*/
double CDECL MSVCRT__y1(double num)
{
double retval;
if (!isfinite(num)) *MSVCRT__errno() = MSVCRT_EDOM;
#ifdef HAVE_Y1
retval = y1(num);
if (MSVCRT__fpclass(retval) == MSVCRT__FPCLASS_NINF)
{
*MSVCRT__errno() = MSVCRT_EDOM;
retval = NAN;
}
#else
FIXME("not implemented\n");
retval = 0;
#endif
return retval;
}
/*********************************************************************
* _yn (MSVCRT.@)
*/
double CDECL MSVCRT__yn(int order, double num)
{
double retval;
if (!isfinite(num)) *MSVCRT__errno() = MSVCRT_EDOM;
#ifdef HAVE_YN
retval = yn(order,num);
if (MSVCRT__fpclass(retval) == MSVCRT__FPCLASS_NINF)
{
*MSVCRT__errno() = MSVCRT_EDOM;
retval = NAN;
}
#else
FIXME("not implemented\n");
retval = 0;
#endif
return retval;
}
#if _MSVCR_VER>=120
/*********************************************************************
* _nearbyint (MSVCR120.@)
*/
double CDECL MSVCRT_nearbyint(double num)
{
#ifdef HAVE_NEARBYINT
return nearbyint(num);
#else
return num >= 0 ? floor(num + 0.5) : ceil(num - 0.5);
#endif
}
/*********************************************************************
* _nearbyintf (MSVCR120.@)
*/
float CDECL MSVCRT_nearbyintf(float num)
{
#ifdef HAVE_NEARBYINTF
return nearbyintf(num);
#else
return MSVCRT_nearbyint(num);
#endif
}
/*********************************************************************
* nexttoward (MSVCR120.@)
*/
double CDECL MSVCRT_nexttoward(double num, double next)
{
#ifdef HAVE_NEXTTOWARD
double ret = nexttoward(num, next);
if (!(MSVCRT__fpclass(ret) & (MSVCRT__FPCLASS_PN | MSVCRT__FPCLASS_NN
| MSVCRT__FPCLASS_SNAN | MSVCRT__FPCLASS_QNAN)) && !isinf(num))
{
*MSVCRT__errno() = MSVCRT_ERANGE;
}
return ret;
#else
FIXME("not implemented\n");
return 0;
#endif
}
/*********************************************************************
* nexttowardf (MSVCR120.@)
*/
float CDECL MSVCRT_nexttowardf(float num, double next)
{
#ifdef HAVE_NEXTTOWARDF
float ret = nexttowardf(num, next);
if (!(MSVCRT__fpclass(ret) & (MSVCRT__FPCLASS_PN | MSVCRT__FPCLASS_NN
| MSVCRT__FPCLASS_SNAN | MSVCRT__FPCLASS_QNAN)) && !isinf(num))
{
*MSVCRT__errno() = MSVCRT_ERANGE;
}
return ret;
#else
FIXME("not implemented\n");
return 0;
#endif
}
#endif /* _MSVCR_VER>=120 */
/*********************************************************************
* _nextafter (MSVCRT.@)
*/
double CDECL MSVCRT__nextafter(double num, double next)
{
double retval;
if (!isfinite(num) || !isfinite(next)) *MSVCRT__errno() = MSVCRT_EDOM;
retval = nextafter(num,next);
return retval;
}
/*********************************************************************
* _ecvt (MSVCRT.@)
*/
char * CDECL MSVCRT__ecvt( double number, int ndigits, int *decpt, int *sign )
{
int prec, len;
thread_data_t *data = msvcrt_get_thread_data();
/* FIXME: check better for overflow (native supports over 300 chars) */
ndigits = min( ndigits, 80 - 7); /* 7 : space for dec point, 1 for "e",
* 4 for exponent and one for
* terminating '\0' */
if (!data->efcvt_buffer)
data->efcvt_buffer = MSVCRT_malloc( 80 ); /* ought to be enough */
if( number < 0) {
*sign = TRUE;
number = -number;
} else
*sign = FALSE;
/* handle cases with zero ndigits or less */
prec = ndigits;
if( prec < 1) prec = 2;
len = MSVCRT__snprintf(data->efcvt_buffer, 80, "%.*le", prec - 1, number);
/* take the decimal "point away */
if( prec != 1)
memmove( data->efcvt_buffer + 1, data->efcvt_buffer + 2, len - 1 );
/* take the exponential "e" out */
data->efcvt_buffer[ prec] = '\0';
/* read the exponent */
sscanf( data->efcvt_buffer + prec + 1, "%d", decpt);
(*decpt)++;
/* adjust for some border cases */
if( data->efcvt_buffer[0] == '0')/* value is zero */
*decpt = 0;
/* handle cases with zero ndigits or less */
if( ndigits < 1){
if( data->efcvt_buffer[ 0] >= '5')
(*decpt)++;
data->efcvt_buffer[ 0] = '\0';
}
TRACE("out=\"%s\"\n",data->efcvt_buffer);
return data->efcvt_buffer;
}
/*********************************************************************
* _ecvt_s (MSVCRT.@)
*/
int CDECL MSVCRT__ecvt_s( char *buffer, MSVCRT_size_t length, double number, int ndigits, int *decpt, int *sign )
{
int prec, len;
char *result;
const char infret[] = "1#INF";
if (!MSVCRT_CHECK_PMT(buffer != NULL)) return MSVCRT_EINVAL;
if (!MSVCRT_CHECK_PMT(decpt != NULL)) return MSVCRT_EINVAL;
if (!MSVCRT_CHECK_PMT(sign != NULL)) return MSVCRT_EINVAL;
if (!MSVCRT_CHECK_PMT_ERR( length > 2, MSVCRT_ERANGE )) return MSVCRT_ERANGE;
if (!MSVCRT_CHECK_PMT_ERR(ndigits < (int)length - 1, MSVCRT_ERANGE )) return MSVCRT_ERANGE;
/* special case - inf */
if(number == HUGE_VAL || number == -HUGE_VAL)
{
memset(buffer, '0', ndigits);
memcpy(buffer, infret, min(ndigits, sizeof(infret) - 1 ) );
buffer[ndigits] = '\0';
(*decpt) = 1;
if(number == -HUGE_VAL)
(*sign) = 1;
else
(*sign) = 0;
return 0;
}
/* handle cases with zero ndigits or less */
prec = ndigits;
if( prec < 1) prec = 2;
result = MSVCRT_malloc(prec + 7);
if( number < 0) {
*sign = TRUE;
number = -number;
} else
*sign = FALSE;
len = MSVCRT__snprintf(result, prec + 7, "%.*le", prec - 1, number);
/* take the decimal "point away */
if( prec != 1)
memmove( result + 1, result + 2, len - 1 );
/* take the exponential "e" out */
result[ prec] = '\0';
/* read the exponent */
sscanf( result + prec + 1, "%d", decpt);
(*decpt)++;
/* adjust for some border cases */
if( result[0] == '0')/* value is zero */
*decpt = 0;
/* handle cases with zero ndigits or less */
if( ndigits < 1){
if( result[ 0] >= '5')
(*decpt)++;
result[ 0] = '\0';
}
memcpy( buffer, result, max(ndigits + 1, 1) );
MSVCRT_free( result );
return 0;
}
/***********************************************************************
* _fcvt (MSVCRT.@)
*/
char * CDECL MSVCRT__fcvt( double number, int ndigits, int *decpt, int *sign )
{
thread_data_t *data = msvcrt_get_thread_data();
int stop, dec1, dec2;
char *ptr1, *ptr2, *first;
char buf[80]; /* ought to be enough */
if (!data->efcvt_buffer)
data->efcvt_buffer = MSVCRT_malloc( 80 ); /* ought to be enough */
if (number < 0)
{
*sign = 1;
number = -number;
} else *sign = 0;
stop = MSVCRT__snprintf(buf, 80, "%.*f", ndigits < 0 ? 0 : ndigits, number);
ptr1 = buf;
ptr2 = data->efcvt_buffer;
first = NULL;
dec1 = 0;
dec2 = 0;
/* For numbers below the requested resolution, work out where
the decimal point will be rather than finding it in the string */
if (number < 1.0 && number > 0.0) {
dec2 = log10(number + 1e-10);
if (-dec2 <= ndigits) dec2 = 0;
}
/* If requested digits is zero or less, we will need to truncate
* the returned string */
if (ndigits < 1) {
stop += ndigits;
}
while (*ptr1 == '0') ptr1++; /* Skip leading zeroes */
while (*ptr1 != '\0' && *ptr1 != '.') {
if (!first) first = ptr2;
if ((ptr1 - buf) < stop) {
*ptr2++ = *ptr1++;
} else {
ptr1++;
}
dec1++;
}
if (ndigits > 0) {
ptr1++;
if (!first) {
while (*ptr1 == '0') { /* Process leading zeroes */
*ptr2++ = *ptr1++;
dec1--;
}
}
while (*ptr1 != '\0') {
if (!first) first = ptr2;
*ptr2++ = *ptr1++;
}
}
*ptr2 = '\0';
/* We never found a non-zero digit, then our number is either
* smaller than the requested precision, or 0.0 */
if (!first) {
if (number > 0.0) {
first = ptr2;
} else {
first = data->efcvt_buffer;
dec1 = 0;
}
}
*decpt = dec2 ? dec2 : dec1;
return first;
}
/***********************************************************************
* _fcvt_s (MSVCRT.@)
*/
int CDECL MSVCRT__fcvt_s(char* outbuffer, MSVCRT_size_t size, double number, int ndigits, int *decpt, int *sign)
{
int stop, dec1, dec2;
char *ptr1, *ptr2, *first;
char buf[80]; /* ought to be enough */
if (!outbuffer || !decpt || !sign || size == 0)
{
*MSVCRT__errno() = MSVCRT_EINVAL;
return MSVCRT_EINVAL;
}
if (number < 0)
{
*sign = 1;
number = -number;
} else *sign = 0;
stop = MSVCRT__snprintf(buf, 80, "%.*f", ndigits < 0 ? 0 : ndigits, number);
ptr1 = buf;
ptr2 = outbuffer;
first = NULL;
dec1 = 0;
dec2 = 0;
/* For numbers below the requested resolution, work out where
the decimal point will be rather than finding it in the string */
if (number < 1.0 && number > 0.0) {
dec2 = log10(number + 1e-10);
if (-dec2 <= ndigits) dec2 = 0;
}
/* If requested digits is zero or less, we will need to truncate
* the returned string */
if (ndigits < 1) {
stop += ndigits;
}
while (*ptr1 == '0') ptr1++; /* Skip leading zeroes */
while (*ptr1 != '\0' && *ptr1 != '.') {
if (!first) first = ptr2;
if ((ptr1 - buf) < stop) {
if (size > 1) {
*ptr2++ = *ptr1++;
size--;
}
} else {
ptr1++;
}
dec1++;
}
if (ndigits > 0) {
ptr1++;
if (!first) {
while (*ptr1 == '0') { /* Process leading zeroes */
if (number == 0.0 && size > 1) {
*ptr2++ = '0';
size--;
}
ptr1++;
dec1--;
}
}
while (*ptr1 != '\0') {
if (!first) first = ptr2;
if (size > 1) {
*ptr2++ = *ptr1++;
size--;
}
}
}
*ptr2 = '\0';
/* We never found a non-zero digit, then our number is either
* smaller than the requested precision, or 0.0 */
if (!first && (number <= 0.0))
dec1 = 0;
*decpt = dec2 ? dec2 : dec1;
return 0;
}
/***********************************************************************
* _gcvt (MSVCRT.@)
*/
char * CDECL MSVCRT__gcvt( double number, int ndigit, char *buff )
{
if(!buff) {
*MSVCRT__errno() = MSVCRT_EINVAL;
return NULL;
}
if(ndigit < 0) {
*MSVCRT__errno() = MSVCRT_ERANGE;
return NULL;
}
MSVCRT_sprintf(buff, "%.*g", ndigit, number);
return buff;
}
/***********************************************************************
* _gcvt_s (MSVCRT.@)
*/
int CDECL MSVCRT__gcvt_s(char *buff, MSVCRT_size_t size, double number, int digits)
{
int len;
if(!buff) {
*MSVCRT__errno() = MSVCRT_EINVAL;
return MSVCRT_EINVAL;
}
if( digits<0 || digits>=size) {
if(size)
buff[0] = '\0';
*MSVCRT__errno() = MSVCRT_ERANGE;
return MSVCRT_ERANGE;
}
len = MSVCRT__scprintf("%.*g", digits, number);
if(len > size) {
buff[0] = '\0';
*MSVCRT__errno() = MSVCRT_ERANGE;
return MSVCRT_ERANGE;
}
MSVCRT_sprintf(buff, "%.*g", digits, number);
return 0;
}
#include <stdlib.h> /* div_t, ldiv_t */
/*********************************************************************
* div (MSVCRT.@)
* VERSION
* [i386] Windows binary compatible - returns the struct in eax/edx.
*/
#ifdef __i386__
unsigned __int64 CDECL MSVCRT_div(int num, int denom)
{
div_t dt = div(num,denom);
return ((unsigned __int64)dt.rem << 32) | (unsigned int)dt.quot;
}
#else
/*********************************************************************
* div (MSVCRT.@)
* VERSION
* [!i386] Non-x86 can't run win32 apps so we don't need binary compatibility
*/
MSVCRT_div_t CDECL MSVCRT_div(int num, int denom)
{
div_t dt = div(num,denom);
MSVCRT_div_t ret;
ret.quot = dt.quot;
ret.rem = dt.rem;
return ret;
}
#endif /* ifdef __i386__ */
/*********************************************************************
* ldiv (MSVCRT.@)
* VERSION
* [i386] Windows binary compatible - returns the struct in eax/edx.
*/
#ifdef __i386__
unsigned __int64 CDECL MSVCRT_ldiv(MSVCRT_long num, MSVCRT_long denom)
{
ldiv_t ldt = ldiv(num,denom);
return ((unsigned __int64)ldt.rem << 32) | (MSVCRT_ulong)ldt.quot;
}
#else
/*********************************************************************
* ldiv (MSVCRT.@)
* VERSION
* [!i386] Non-x86 can't run win32 apps so we don't need binary compatibility
*/
MSVCRT_ldiv_t CDECL MSVCRT_ldiv(MSVCRT_long num, MSVCRT_long denom)
{
ldiv_t result = ldiv(num,denom);
MSVCRT_ldiv_t ret;
ret.quot = result.quot;
ret.rem = result.rem;
return ret;
}
#endif /* ifdef __i386__ */
#if _MSVCR_VER>=100
/*********************************************************************
* lldiv (MSVCR100.@)
*/
MSVCRT_lldiv_t* CDECL MSVCRT_lldiv(MSVCRT_lldiv_t *ret,
MSVCRT_longlong num, MSVCRT_longlong denom)
{
ret->quot = num / denom;
ret->rem = num % denom;
return ret;
}
#endif
#ifdef __i386__
/*********************************************************************
* _adjust_fdiv (MSVCRT.@)
* Used by the MSVC compiler to work around the Pentium FDIV bug.
*/
int MSVCRT__adjust_fdiv = 0;
/***********************************************************************
* _adj_fdiv_m16i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m16i( short arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_m32 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m32( unsigned int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_m32i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m32i( int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_m64 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m64( unsigned __int64 arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_r (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fdiv_r(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m16i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m16i( short arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m32 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m32( unsigned int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m32i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m32i( int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m64 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m64( unsigned __int64 arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fpatan (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fpatan(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fprem (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fprem(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fprem1 (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fprem1(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fptan (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fptan(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fdiv (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fdiv(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fdivr (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fdivr(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fprem (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fprem(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fprem1 (MSVCRT.@)
*
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fprem1(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* __libm_sse2_acos (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_acos(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = acos( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_acosf (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_acosf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = acosf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_asin (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_asin(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = asin( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_asinf (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_asinf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = asinf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_atan (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_atan(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = atan( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_atan2 (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_atan2(void)
{
double d1, d2;
__asm__ __volatile__( "movq %%xmm0,%0; movq %%xmm1,%1 " : "=m" (d1), "=m" (d2) );
d1 = atan2( d1, d2 );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d1) );
}
/***********************************************************************
* __libm_sse2_atanf (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_atanf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = atanf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_cos (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_cos(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = cos( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_cosf (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_cosf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = cosf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_exp (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_exp(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = exp( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_expf (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_expf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = expf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_log (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_log(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = log( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_log10 (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_log10(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = log10( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_log10f (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_log10f(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = log10f( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_logf (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_logf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = logf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_pow (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_pow(void)
{
double d1, d2;
__asm__ __volatile__( "movq %%xmm0,%0; movq %%xmm1,%1 " : "=m" (d1), "=m" (d2) );
d1 = pow( d1, d2 );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d1) );
}
/***********************************************************************
* __libm_sse2_powf (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_powf(void)
{
float f1, f2;
__asm__ __volatile__( "movd %%xmm0,%0; movd %%xmm1,%1" : "=g" (f1), "=g" (f2) );
f1 = powf( f1, f2 );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f1) );
}
/***********************************************************************
* __libm_sse2_sin (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_sin(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = sin( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_sinf (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_sinf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = sinf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_tan (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_tan(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = tan( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_tanf (MSVCRT.@)
*/
void __cdecl MSVCRT___libm_sse2_tanf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = tanf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_sqrt_precise (MSVCR110.@)
*/
void __cdecl MSVCRT___libm_sse2_sqrt_precise(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = sqrt( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
#endif /* __i386__ */
/*********************************************************************
* cbrt (MSVCR120.@)
*/
double CDECL MSVCR120_cbrt(double x)
{
#ifdef HAVE_CBRT
return cbrt(x);
#else
return x < 0 ? -pow(-x, 1.0 / 3.0) : pow(x, 1.0 / 3.0);
#endif
}
/*********************************************************************
* cbrtf (MSVCR120.@)
*/
float CDECL MSVCR120_cbrtf(float x)
{
#ifdef HAVE_CBRTF
return cbrtf(x);
#else
return MSVCR120_cbrt(x);
#endif
}
/*********************************************************************
* cbrtl (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_cbrtl(LDOUBLE x)
{
return MSVCR120_cbrt(x);
}
/*********************************************************************
* exp2 (MSVCR120.@)
*/
double CDECL MSVCR120_exp2(double x)
{
#ifdef HAVE_EXP2
double ret = exp2(x);
#else
double ret = pow(2, x);
#endif
if (isfinite(x) && !isfinite(ret)) *MSVCRT__errno() = MSVCRT_ERANGE;
return ret;
}
/*********************************************************************
* exp2f (MSVCR120.@)
*/
float CDECL MSVCR120_exp2f(float x)
{
#ifdef HAVE_EXP2F
float ret = exp2f(x);
if (finitef(x) && !finitef(ret)) *MSVCRT__errno() = MSVCRT_ERANGE;
return ret;
#else
return MSVCR120_exp2(x);
#endif
}
/*********************************************************************
* exp2l (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_exp2l(LDOUBLE x)
{
return MSVCR120_exp2(x);
}
/*********************************************************************
* expm1 (MSVCR120.@)
*/
double CDECL MSVCR120_expm1(double x)
{
#ifdef HAVE_EXPM1
double ret = expm1(x);
#else
double ret = exp(x) - 1;
#endif
if (isfinite(x) && !isfinite(ret)) *MSVCRT__errno() = MSVCRT_ERANGE;
return ret;
}
/*********************************************************************
* expm1f (MSVCR120.@)
*/
float CDECL MSVCR120_expm1f(float x)
{
#ifdef HAVE_EXPM1F
float ret = expm1f(x);
#else
float ret = exp(x) - 1;
#endif
if (finitef(x) && !finitef(ret)) *MSVCRT__errno() = MSVCRT_ERANGE;
return ret;
}
/*********************************************************************
* expm1l (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_expm1l(LDOUBLE x)
{
return MSVCR120_expm1(x);
}
/*********************************************************************
* log1p (MSVCR120.@)
*/
double CDECL MSVCR120_log1p(double x)
{
if (x < -1) *MSVCRT__errno() = MSVCRT_EDOM;
else if (x == -1) *MSVCRT__errno() = MSVCRT_ERANGE;
#ifdef HAVE_LOG1P
return log1p(x);
#else
return log(1 + x);
#endif
}
/*********************************************************************
* log1pf (MSVCR120.@)
*/
float CDECL MSVCR120_log1pf(float x)
{
if (x < -1) *MSVCRT__errno() = MSVCRT_EDOM;
else if (x == -1) *MSVCRT__errno() = MSVCRT_ERANGE;
#ifdef HAVE_LOG1PF
return log1pf(x);
#else
return log(1 + x);
#endif
}
/*********************************************************************
* log1pl (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_log1pl(LDOUBLE x)
{
return MSVCR120_log1p(x);
}
/*********************************************************************
* log2 (MSVCR120.@)
*/
double CDECL MSVCR120_log2(double x)
{
if (x < 0) *MSVCRT__errno() = MSVCRT_EDOM;
else if (x == 0) *MSVCRT__errno() = MSVCRT_ERANGE;
#ifdef HAVE_LOG2
return log2(x);
#else
return log(x) / log(2);
#endif
}
/*********************************************************************
* log2f (MSVCR120.@)
*/
float CDECL MSVCR120_log2f(float x)
{
#ifdef HAVE_LOG2F
if (x < 0) *MSVCRT__errno() = MSVCRT_EDOM;
else if (x == 0) *MSVCRT__errno() = MSVCRT_ERANGE;
return log2f(x);
#else
return MSVCR120_log2(x);
#endif
}
/*********************************************************************
* log2l (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_log2l(LDOUBLE x)
{
return MSVCR120_log2(x);
}
/*********************************************************************
* rint (MSVCR120.@)
*/
double CDECL MSVCR120_rint(double x)
{
return rint(x);
}
/*********************************************************************
* rintf (MSVCR120.@)
*/
float CDECL MSVCR120_rintf(float x)
{
return rintf(x);
}
/*********************************************************************
* rintl (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_rintl(LDOUBLE x)
{
return MSVCR120_rint(x);
}
/*********************************************************************
* lrint (MSVCR120.@)
*/
MSVCRT_long CDECL MSVCR120_lrint(double x)
{
return lrint(x);
}
/*********************************************************************
* lrintf (MSVCR120.@)
*/
MSVCRT_long CDECL MSVCR120_lrintf(float x)
{
return lrintf(x);
}
/*********************************************************************
* lrintl (MSVCR120.@)
*/
MSVCRT_long CDECL MSVCR120_lrintl(LDOUBLE x)
{
return MSVCR120_lrint(x);
}
/*********************************************************************
* llrint (MSVCR120.@)
*/
MSVCRT_longlong CDECL MSVCR120_llrint(double x)
{
return llrint(x);
}
/*********************************************************************
* llrintf (MSVCR120.@)
*/
MSVCRT_longlong CDECL MSVCR120_llrintf(float x)
{
return llrintf(x);
}
/*********************************************************************
* rintl (MSVCR120.@)
*/
MSVCRT_longlong CDECL MSVCR120_llrintl(LDOUBLE x)
{
return MSVCR120_llrint(x);
}
#if _MSVCR_VER>=120
/*********************************************************************
* round (MSVCR120.@)
*/
double CDECL MSVCR120_round(double x)
{
#ifdef HAVE_ROUND
return round(x);
#else
return MSVCR120_rint(x);
#endif
}
/*********************************************************************
* roundf (MSVCR120.@)
*/
float CDECL MSVCR120_roundf(float x)
{
#ifdef HAVE_ROUNDF
return roundf(x);
#else
return MSVCR120_round(x);
#endif
}
/*********************************************************************
* roundl (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_roundl(LDOUBLE x)
{
return MSVCR120_round(x);
}
/*********************************************************************
* lround (MSVCR120.@)
*/
MSVCRT_long CDECL MSVCR120_lround(double x)
{
#ifdef HAVE_LROUND
return lround(x);
#else
return MSVCR120_round(x);
#endif
}
/*********************************************************************
* lroundf (MSVCR120.@)
*/
MSVCRT_long CDECL MSVCR120_lroundf(float x)
{
#ifdef HAVE_LROUNDF
return lroundf(x);
#else
return MSVCR120_lround(x);
#endif
}
/*********************************************************************
* lroundl (MSVCR120.@)
*/
MSVCRT_long CDECL MSVCR120_lroundl(LDOUBLE x)
{
return MSVCR120_lround(x);
}
/*********************************************************************
* llround (MSVCR120.@)
*/
MSVCRT_longlong CDECL MSVCR120_llround(double x)
{
#ifdef HAVE_LLROUND
return llround(x);
#else
return MSVCR120_round(x);
#endif
}
/*********************************************************************
* llroundf (MSVCR120.@)
*/
MSVCRT_longlong CDECL MSVCR120_llroundf(float x)
{
#ifdef HAVE_LLROUNDF
return llroundf(x);
#else
return MSVCR120_llround(x);
#endif
}
/*********************************************************************
* roundl (MSVCR120.@)
*/
MSVCRT_longlong CDECL MSVCR120_llroundl(LDOUBLE x)
{
return MSVCR120_llround(x);
}
/*********************************************************************
* trunc (MSVCR120.@)
*/
double CDECL MSVCR120_trunc(double x)
{
#ifdef HAVE_TRUNC
return trunc(x);
#else
return (x > 0) ? floor(x) : ceil(x);
#endif
}
/*********************************************************************
* truncf (MSVCR120.@)
*/
float CDECL MSVCR120_truncf(float x)
{
#ifdef HAVE_TRUNCF
return truncf(x);
#else
return MSVCR120_trunc(x);
#endif
}
/*********************************************************************
* truncl (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_truncl(LDOUBLE x)
{
return MSVCR120_trunc(x);
}
/*********************************************************************
* _dclass (MSVCR120.@)
*/
short CDECL MSVCR120__dclass(double x)
{
switch (MSVCRT__fpclass(x)) {
case MSVCRT__FPCLASS_QNAN:
case MSVCRT__FPCLASS_SNAN:
return MSVCRT_FP_NAN;
case MSVCRT__FPCLASS_NINF:
case MSVCRT__FPCLASS_PINF:
return MSVCRT_FP_INFINITE;
case MSVCRT__FPCLASS_ND:
case MSVCRT__FPCLASS_PD:
return MSVCRT_FP_SUBNORMAL;
case MSVCRT__FPCLASS_NN:
case MSVCRT__FPCLASS_PN:
default:
return MSVCRT_FP_NORMAL;
case MSVCRT__FPCLASS_NZ:
case MSVCRT__FPCLASS_PZ:
return MSVCRT_FP_ZERO;
}
}
/*********************************************************************
* _fdclass (MSVCR120.@)
*/
short CDECL MSVCR120__fdclass(float x)
{
return MSVCR120__dclass(x);
}
/*********************************************************************
* _ldclass (MSVCR120.@)
*/
short CDECL MSVCR120__ldclass(LDOUBLE x)
{
return MSVCR120__dclass(x);
}
/*********************************************************************
* _dtest (MSVCR120.@)
*/
short CDECL MSVCR120__dtest(double *x)
{
return MSVCR120__dclass(*x);
}
/*********************************************************************
* _fdtest (MSVCR120.@)
*/
short CDECL MSVCR120__fdtest(float *x)
{
return MSVCR120__dclass(*x);
}
/*********************************************************************
* _ldtest (MSVCR120.@)
*/
short CDECL MSVCR120__ldtest(LDOUBLE *x)
{
return MSVCR120__dclass(*x);
}
/*********************************************************************
* erf (MSVCR120.@)
*/
double CDECL MSVCR120_erf(double x)
{
#ifdef HAVE_ERF
return erf(x);
#else
/* Abramowitz and Stegun approximation, maximum error: 1.5*10^-7 */
double t, y;
int sign = signbit(x);
if (sign) x = -x;
t = 1 / (1 + 0.3275911 * x);
y = ((((1.061405429*t - 1.453152027)*t + 1.421413741)*t - 0.284496736)*t + 0.254829592)*t;
y = 1.0 - y*exp(-x*x);
return sign ? -y : y;
#endif
}
/*********************************************************************
* erff (MSVCR120.@)
*/
float CDECL MSVCR120_erff(float x)
{
#ifdef HAVE_ERFF
return erff(x);
#else
return MSVCR120_erf(x);
#endif
}
/*********************************************************************
* erfl (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_erfl(LDOUBLE x)
{
return MSVCR120_erf(x);
}
/*********************************************************************
* erfc (MSVCR120.@)
*/
double CDECL MSVCR120_erfc(double x)
{
#ifdef HAVE_ERFC
return erfc(x);
#else
return 1 - MSVCR120_erf(x);
#endif
}
/*********************************************************************
* erfcf (MSVCR120.@)
*/
float CDECL MSVCR120_erfcf(float x)
{
#ifdef HAVE_ERFCF
return erfcf(x);
#else
return MSVCR120_erfc(x);
#endif
}
/*********************************************************************
* erfcl (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_erfcl(LDOUBLE x)
{
return MSVCR120_erfc(x);
}
/*********************************************************************
* fmaxf (MSVCR120.@)
*/
float CDECL MSVCR120_fmaxf(float x, float y)
{
if(isnan(x))
return y;
if(isnan(y))
return x;
if(x==0 && y==0)
return signbit(x) ? y : x;
return x<y ? y : x;
}
/*********************************************************************
* fmax (MSVCR120.@)
*/
double CDECL MSVCR120_fmax(double x, double y)
{
if(isnan(x))
return y;
if(isnan(y))
return x;
if(x==0 && y==0)
return signbit(x) ? y : x;
return x<y ? y : x;
}
/*********************************************************************
* fdimf (MSVCR120.@)
*/
float CDECL MSVCR120_fdimf(float x, float y)
{
if(isnan(x))
return x;
if(isnan(y))
return y;
return x>y ? x-y : 0;
}
/*********************************************************************
* fdim (MSVCR120.@)
*/
double CDECL MSVCR120_fdim(double x, double y)
{
if(isnan(x))
return x;
if(isnan(y))
return y;
return x>y ? x-y : 0;
}
/*********************************************************************
* _fdsign (MSVCR120.@)
*/
int CDECL MSVCR120__fdsign(float x)
{
return signbit(x) ? 0x8000 : 0;
}
/*********************************************************************
* _dsign (MSVCR120.@)
*/
int CDECL MSVCR120__dsign(double x)
{
return signbit(x) ? 0x8000 : 0;
}
/*********************************************************************
* _dpcomp (MSVCR120.@)
*/
int CDECL MSVCR120__dpcomp(double x, double y)
{
if(isnan(x) || isnan(y))
return 0;
if(x == y) return 2;
return x < y ? 1 : 4;
}
/*********************************************************************
* _fdpcomp (MSVCR120.@)
*/
int CDECL MSVCR120__fdpcomp(float x, float y)
{
return MSVCR120__dpcomp(x, y);
}
/*********************************************************************
* fminf (MSVCR120.@)
*/
float CDECL MSVCR120_fminf(float x, float y)
{
if(isnan(x))
return y;
if(isnan(y))
return x;
if(x==0 && y==0)
return signbit(x) ? x : y;
return x<y ? x : y;
}
/*********************************************************************
* fmin (MSVCR120.@)
*/
double CDECL MSVCR120_fmin(double x, double y)
{
if(isnan(x))
return y;
if(isnan(y))
return x;
if(x==0 && y==0)
return signbit(x) ? x : y;
return x<y ? x : y;
}
/*********************************************************************
* asinh (MSVCR120.@)
*/
double CDECL MSVCR120_asinh(double x)
{
#ifdef HAVE_ASINH
return asinh(x);
#else
if (!isfinite(x*x+1)) {
if (x > 0) return log(2) + log(x);
else return -log(2) - log(-x);
}
return log(x + sqrt(x*x+1));
#endif
}
/*********************************************************************
* asinhf (MSVCR120.@)
*/
float CDECL MSVCR120_asinhf(float x)
{
#ifdef HAVE_ASINHF
return asinhf(x);
#else
return MSVCR120_asinh(x);
#endif
}
/*********************************************************************
* asinhl (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_asinhl(LDOUBLE x)
{
return MSVCR120_asinh(x);
}
/*********************************************************************
* acosh (MSVCR120.@)
*/
double CDECL MSVCR120_acosh(double x)
{
if (x < 1) *MSVCRT__errno() = MSVCRT_EDOM;
#ifdef HAVE_ACOSH
return acosh(x);
#else
if (x < 1) {
MSVCRT_fenv_t env;
MSVCRT_fegetenv(&env);
env.status |= MSVCRT__SW_INVALID;
MSVCRT_fesetenv(&env);
return NAN;
}
if (!isfinite(x*x)) return log(2) + log(x);
return log(x + sqrt(x*x-1));
#endif
}
/*********************************************************************
* acoshf (MSVCR120.@)
*/
float CDECL MSVCR120_acoshf(float x)
{
#ifdef HAVE_ACOSHF
if (x < 1) *MSVCRT__errno() = MSVCRT_EDOM;
return acoshf(x);
#else
return MSVCR120_acosh(x);
#endif
}
/*********************************************************************
* acoshl (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_acoshl(LDOUBLE x)
{
return MSVCR120_acosh(x);
}
/*********************************************************************
* atanh (MSVCR120.@)
*/
double CDECL MSVCR120_atanh(double x)
{
double ret;
if (x > 1 || x < -1) {
MSVCRT_fenv_t env;
*MSVCRT__errno() = MSVCRT_EDOM;
/* on Linux atanh returns -NAN in this case */
MSVCRT_fegetenv(&env);
env.status |= MSVCRT__SW_INVALID;
MSVCRT_fesetenv(&env);
return NAN;
}
#ifdef HAVE_ATANH
ret = atanh(x);
#else
if (-1e-6 < x && x < 1e-6) ret = x + x*x*x/3;
else ret = (log(1+x) - log(1-x)) / 2;
#endif
if (!isfinite(ret)) *MSVCRT__errno() = MSVCRT_ERANGE;
return ret;
}
/*********************************************************************
* atanhf (MSVCR120.@)
*/
float CDECL MSVCR120_atanhf(float x)
{
#ifdef HAVE_ATANHF
float ret;
if (x > 1 || x < -1) {
MSVCRT_fenv_t env;
*MSVCRT__errno() = MSVCRT_EDOM;
MSVCRT_fegetenv(&env);
env.status |= MSVCRT__SW_INVALID;
MSVCRT_fesetenv(&env);
return NAN;
}
ret = atanhf(x);
if (!finitef(ret)) *MSVCRT__errno() = MSVCRT_ERANGE;
return ret;
#else
return MSVCR120_atanh(x);
#endif
}
/*********************************************************************
* atanhl (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_atanhl(LDOUBLE x)
{
return MSVCR120_atanh(x);
}
#endif /* _MSVCR_VER>=120 */
/*********************************************************************
* _scalb (MSVCRT.@)
* scalbn (MSVCR120.@)
* scalbln (MSVCR120.@)
*/
double CDECL MSVCRT__scalb(double num, MSVCRT_long power)
{
return MSVCRT_ldexp(num, power);
}
/*********************************************************************
* _scalbf (MSVCRT.@)
* scalbnf (MSVCR120.@)
* scalblnf (MSVCR120.@)
*/
float CDECL MSVCRT__scalbf(float num, MSVCRT_long power)
{
return MSVCRT_ldexp(num, power);
}
#if _MSVCR_VER>=120
/*********************************************************************
* scalbnl (MSVCR120.@)
* scalblnl (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_scalbnl(LDOUBLE num, MSVCRT_long power)
{
return MSVCRT__scalb(num, power);
}
/*********************************************************************
* remainder (MSVCR120.@)
*/
double CDECL MSVCR120_remainder(double x, double y)
{
#ifdef HAVE_REMAINDER
/* this matches 64-bit Windows. 32-bit Windows is slightly different */
if(!finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
if(isnan(y) || y==0.0) *MSVCRT__errno() = MSVCRT_EDOM;
return remainder(x, y);
#else
FIXME( "not implemented\n" );
return 0.0;
#endif
}
/*********************************************************************
* remainderf (MSVCR120.@)
*/
float CDECL MSVCR120_remainderf(float x, float y)
{
#ifdef HAVE_REMAINDERF
/* this matches 64-bit Windows. 32-bit Windows is slightly different */
if(!finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
if(isnan(y) || y==0.0f) *MSVCRT__errno() = MSVCRT_EDOM;
return remainderf(x, y);
#else
FIXME( "not implemented\n" );
return 0.0f;
#endif
}
/*********************************************************************
* remainderl (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_remainderl(LDOUBLE x, LDOUBLE y)
{
return MSVCR120_remainder(x, y);
}
/*********************************************************************
* remquo (MSVCR120.@)
*/
double CDECL MSVCR120_remquo(double x, double y, int *quo)
{
#ifdef HAVE_REMQUO
if(!finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
if(isnan(y) || y==0.0) *MSVCRT__errno() = MSVCRT_EDOM;
return remquo(x, y, quo);
#else
FIXME( "not implemented\n" );
return 0.0;
#endif
}
/*********************************************************************
* remquof (MSVCR120.@)
*/
float CDECL MSVCR120_remquof(float x, float y, int *quo)
{
#ifdef HAVE_REMQUOF
if(!finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
if(isnan(y) || y==0.0f) *MSVCRT__errno() = MSVCRT_EDOM;
return remquof(x, y, quo);
#else
FIXME( "not implemented\n" );
return 0.0f;
#endif
}
/*********************************************************************
* remquol (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_remquol(LDOUBLE x, LDOUBLE y, int *quo)
{
return MSVCR120_remquo(x, y, quo);
}
/*********************************************************************
* lgamma (MSVCR120.@)
*/
double CDECL MSVCR120_lgamma(double x)
{
#ifdef HAVE_LGAMMA
return lgamma(x);
#else
FIXME( "not implemented\n" );
return 0.0;
#endif
}
/*********************************************************************
* lgammaf (MSVCR120.@)
*/
float CDECL MSVCR120_lgammaf(float x)
{
#ifdef HAVE_LGAMMAF
return lgammaf(x);
#else
FIXME( "not implemented\n" );
return 0.0f;
#endif
}
/*********************************************************************
* lgammal (MSVCR120.@)
*/
LDOUBLE CDECL MSVCR120_lgammal(LDOUBLE x)
{
return MSVCR120_lgamma(x);
}
/*********************************************************************
* tgamma (MSVCR120.@)
*/
double CDECL MSVCR120_tgamma(double x)
{
#ifdef HAVE_TGAMMA
if(x==0.0) *MSVCRT__errno() = MSVCRT_ERANGE;
if(x<0.0f) {
double integral;
if (modf(x, &integral) == 0)
*MSVCRT__errno() = MSVCRT_EDOM;
}
return tgamma(x);
#else
FIXME( "not implemented\n" );
return 0.0;
#endif
}
/*********************************************************************
* tgammaf (MSVCR120.@)
*/
float CDECL MSVCR120_tgammaf(float x)
{
#ifdef HAVE_TGAMMAF
if(x==0.0f) *MSVCRT__errno() = MSVCRT_ERANGE;
if(x<0.0f) {
float integral;
if (modff(x, &integral) == 0)
*MSVCRT__errno() = MSVCRT_EDOM;
}
return tgammaf(x);
#else
FIXME( "not implemented\n" );
return 0.0f;
#endif
}
/*********************************************************************
* nan (MSVCR120.@)
*/
double CDECL MSVCR120_nan(const char *tagp)
{
/* Windows ignores input (MSDN) */
return NAN;
}
/*********************************************************************
* nanf (MSVCR120.@)
*/
float CDECL MSVCR120_nanf(const char *tagp)
{
return NAN;
}
/*********************************************************************
* _except1 (MSVCR120.@)
* TODO:
* - find meaning of ignored cw and operation bits
* - unk parameter
*/
double CDECL _except1(DWORD fpe, _FP_OPERATION_CODE op, double arg, double res, DWORD cw, void *unk)
{
ULONG_PTR exception_arg;
DWORD exception = 0;
MSVCRT_fenv_t env;
DWORD fpword = 0;
WORD operation;
TRACE("(%x %x %lf %lf %x %p)\n", fpe, op, arg, res, cw, unk);
#ifdef _WIN64
cw = ((cw >> 7) & 0x3f) | ((cw >> 3) & 0xc00);
#endif
operation = op << 5;
exception_arg = (ULONG_PTR)&operation;
MSVCRT_fegetenv(&env);
if (fpe & 0x1) { /* overflow */
if ((fpe == 0x1 && (cw & 0x8)) || (fpe==0x11 && (cw & 0x28))) {
/* 32-bit version also sets SW_INEXACT here */
env.status |= MSVCRT__SW_OVERFLOW;
if (fpe & 0x10) env.status |= MSVCRT__SW_INEXACT;
res = signbit(res) ? -INFINITY : INFINITY;
} else {
exception = EXCEPTION_FLT_OVERFLOW;
}
} else if (fpe & 0x2) { /* underflow */
if ((fpe == 0x2 && (cw & 0x10)) || (fpe==0x12 && (cw & 0x30))) {
env.status |= MSVCRT__SW_UNDERFLOW;
if (fpe & 0x10) env.status |= MSVCRT__SW_INEXACT;
res = signbit(res) ? -0.0 : 0.0;
} else {
exception = EXCEPTION_FLT_UNDERFLOW;
}
} else if (fpe & 0x4) { /* zerodivide */
if ((fpe == 0x4 && (cw & 0x4)) || (fpe==0x14 && (cw & 0x24))) {
env.status |= MSVCRT__SW_ZERODIVIDE;
if (fpe & 0x10) env.status |= MSVCRT__SW_INEXACT;
} else {
exception = EXCEPTION_FLT_DIVIDE_BY_ZERO;
}
} else if (fpe & 0x8) { /* invalid */
if (fpe == 0x8 && (cw & 0x1)) {
env.status |= MSVCRT__SW_INVALID;
} else {
exception = EXCEPTION_FLT_INVALID_OPERATION;
}
} else if (fpe & 0x10) { /* inexact */
if (fpe == 0x10 && (cw & 0x20)) {
env.status |= MSVCRT__SW_INEXACT;
} else {
exception = EXCEPTION_FLT_INEXACT_RESULT;
}
}
if (exception)
env.status = 0;
MSVCRT_fesetenv(&env);
if (exception)
RaiseException(exception, 0, 1, &exception_arg);
if (cw & 0x1) fpword |= MSVCRT__EM_INVALID;
if (cw & 0x2) fpword |= MSVCRT__EM_DENORMAL;
if (cw & 0x4) fpword |= MSVCRT__EM_ZERODIVIDE;
if (cw & 0x8) fpword |= MSVCRT__EM_OVERFLOW;
if (cw & 0x10) fpword |= MSVCRT__EM_UNDERFLOW;
if (cw & 0x20) fpword |= MSVCRT__EM_INEXACT;
switch (cw & 0xc00)
{
case 0xc00: fpword |= MSVCRT__RC_UP|MSVCRT__RC_DOWN; break;
case 0x800: fpword |= MSVCRT__RC_UP; break;
case 0x400: fpword |= MSVCRT__RC_DOWN; break;
}
switch (cw & 0x300)
{
case 0x0: fpword |= MSVCRT__PC_24; break;
case 0x200: fpword |= MSVCRT__PC_53; break;
case 0x300: fpword |= MSVCRT__PC_64; break;
}
if (cw & 0x1000) fpword |= MSVCRT__IC_AFFINE;
_control87(fpword, 0xffffffff);
return res;
}
_Dcomplex* CDECL MSVCR120__Cbuild(_Dcomplex *ret, double r, double i)
{
ret->x = r;
ret->y = i;
return ret;
}
double CDECL MSVCR120_creal(_Dcomplex z)
{
return z.x;
}
int CDECL MSVCR120_ilogb(double x)
{
if (!x) return MSVCRT_FP_ILOGB0;
if (isnan(x)) return MSVCRT_FP_ILOGBNAN;
if (isinf(x)) return MSVCRT_INT_MAX;
#ifdef HAVE_ILOGB
return ilogb(x);
#else
return logb(x);
#endif
}
int CDECL MSVCR120_ilogbf(float x)
{
if (!x) return MSVCRT_FP_ILOGB0;
if (isnan(x)) return MSVCRT_FP_ILOGBNAN;
if (isinf(x)) return MSVCRT_INT_MAX;
#ifdef HAVE_ILOGBF
return ilogbf(x);
#else
return logbf(x);
#endif
}
int CDECL MSVCR120_ilogbl(LDOUBLE x)
{
return MSVCR120_ilogb(x);
}
#endif /* _MSVCR_VER>=120 */