Sweden-Number/dlls/dbghelp/dwarf.c

4297 lines
153 KiB
C

/*
* File dwarf.c - read dwarf2 information from the ELF modules
*
* Copyright (C) 2005, Raphael Junqueira
* Copyright (C) 2006-2011, Eric Pouech
* Copyright (C) 2010, Alexandre Julliard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#define NONAMELESSUNION
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include <stdarg.h>
#include <zlib.h>
#include "windef.h"
#include "winternl.h"
#include "winbase.h"
#include "winuser.h"
#include "ole2.h"
#include "oleauto.h"
#include "dbghelp_private.h"
#include "image_private.h"
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(dbghelp_dwarf);
/* FIXME:
* - Functions:
* o unspecified parameters
* o inlined functions
* o Debug{Start|End}Point
* o CFA
* - Udt
* o proper types loading (nesting)
*/
#if 0
static void dump(const void* ptr, unsigned len)
{
int i, j;
BYTE msg[128];
static const char hexof[] = "0123456789abcdef";
const BYTE* x = ptr;
for (i = 0; i < len; i += 16)
{
sprintf(msg, "%08x: ", i);
memset(msg + 10, ' ', 3 * 16 + 1 + 16);
for (j = 0; j < min(16, len - i); j++)
{
msg[10 + 3 * j + 0] = hexof[x[i + j] >> 4];
msg[10 + 3 * j + 1] = hexof[x[i + j] & 15];
msg[10 + 3 * j + 2] = ' ';
msg[10 + 3 * 16 + 1 + j] = (x[i + j] >= 0x20 && x[i + j] < 0x7f) ?
x[i + j] : '.';
}
msg[10 + 3 * 16] = ' ';
msg[10 + 3 * 16 + 1 + 16] = '\0';
TRACE("%s\n", msg);
}
}
#endif
/**
*
* Main Specs:
* http://www.eagercon.com/dwarf/dwarf3std.htm
* http://www.eagercon.com/dwarf/dwarf-2.0.0.pdf
*
* dwarf2.h: http://www.hakpetzna.com/b/binutils/dwarf2_8h-source.html
*
* example of projects who do dwarf2 parsing:
* http://www.x86-64.org/cgi-bin/cvsweb.cgi/binutils.dead/binutils/readelf.c?rev=1.1.1.2
* http://elis.ugent.be/diota/log/ltrace_elf.c
*/
#include "dwarf.h"
/**
* Parsers
*/
typedef struct dwarf2_abbrev_entry_attr_s
{
ULONG_PTR attribute;
ULONG_PTR form;
struct dwarf2_abbrev_entry_attr_s* next;
} dwarf2_abbrev_entry_attr_t;
typedef struct dwarf2_abbrev_entry_s
{
ULONG_PTR entry_code;
ULONG_PTR tag;
unsigned char have_child;
unsigned num_attr;
dwarf2_abbrev_entry_attr_t* attrs;
} dwarf2_abbrev_entry_t;
struct dwarf2_block
{
unsigned size;
const unsigned char* ptr;
};
struct attribute
{
ULONG_PTR form;
enum {attr_direct, attr_abstract_origin, attr_specification} gotten_from;
union
{
ULONG_PTR uvalue;
ULONGLONG lluvalue;
LONG_PTR svalue;
const char* string;
struct dwarf2_block block;
} u;
const struct dwarf2_debug_info_s* debug_info;
};
typedef struct dwarf2_debug_info_s
{
const dwarf2_abbrev_entry_t*abbrev;
struct symt* symt;
const unsigned char** data;
struct vector children;
struct dwarf2_debug_info_s* parent;
struct dwarf2_parse_context_s* unit_ctx;
} dwarf2_debug_info_t;
typedef struct dwarf2_section_s
{
BOOL compressed;
const unsigned char* address;
unsigned size;
DWORD_PTR rva;
} dwarf2_section_t;
enum dwarf2_sections {section_debug, section_string, section_abbrev, section_line, section_ranges, section_max};
typedef struct dwarf2_traverse_context_s
{
const unsigned char* data;
const unsigned char* end_data;
} dwarf2_traverse_context_t;
typedef struct dwarf2_cuhead_s
{
unsigned char word_size; /* size of a word on target machine */
unsigned char version;
unsigned char offset_size; /* size of offset inside DWARF */
} dwarf2_cuhead_t;
typedef struct dwarf2_parse_module_context_s
{
ULONG_PTR load_offset;
const dwarf2_section_t* sections;
struct module* module;
const struct elf_thunk_area*thunks;
struct vector unit_contexts;
struct dwarf2_dwz_alternate_s* dwz;
DWORD cu_versions;
} dwarf2_parse_module_context_t;
typedef struct dwarf2_dwz_alternate_s
{
struct image_file_map* fmap;
dwarf2_section_t sections[section_max];
struct image_section_map sectmap[section_max];
dwarf2_parse_module_context_t module_ctx;
} dwarf2_dwz_alternate_t;
enum unit_status
{
UNIT_ERROR,
UNIT_NOTLOADED,
UNIT_LOADED,
UNIT_LOADED_FAIL,
UNIT_BEINGLOADED,
};
/* this is the context used for parsing a compilation unit
* inside an ELF/PE section (likely .debug_info)
*/
typedef struct dwarf2_parse_context_s
{
dwarf2_parse_module_context_t* module_ctx;
unsigned section;
struct pool pool;
struct symt_compiland* compiland;
struct sparse_array abbrev_table;
struct sparse_array debug_info_table;
ULONG_PTR ref_offset;
char* cpp_name;
dwarf2_cuhead_t head;
enum unit_status status;
dwarf2_traverse_context_t traverse_DIE;
unsigned language;
} dwarf2_parse_context_t;
/* stored in the dbghelp's module internal structure for later reuse */
struct dwarf2_module_info_s
{
dwarf2_cuhead_t** cuheads;
unsigned num_cuheads;
dwarf2_section_t debug_loc;
dwarf2_section_t debug_frame;
dwarf2_section_t eh_frame;
unsigned char word_size;
};
#define loc_dwarf2_location_list (loc_user + 0)
#define loc_dwarf2_block (loc_user + 1)
#define loc_dwarf2_frame_cfa (loc_user + 2)
/* forward declarations */
static struct symt* dwarf2_parse_enumeration_type(dwarf2_debug_info_t* entry);
static BOOL dwarf2_parse_compilation_unit(dwarf2_parse_context_t* ctx);
static dwarf2_parse_context_t* dwarf2_locate_cu(dwarf2_parse_module_context_t* module_ctx, ULONG_PTR ref);
static unsigned char dwarf2_get_byte(const unsigned char* ptr)
{
return *ptr;
}
static unsigned char dwarf2_parse_byte(dwarf2_traverse_context_t* ctx)
{
unsigned char uvalue = dwarf2_get_byte(ctx->data);
ctx->data += 1;
return uvalue;
}
static unsigned short dwarf2_get_u2(const unsigned char* ptr)
{
return *(const UINT16*)ptr;
}
static unsigned short dwarf2_parse_u2(dwarf2_traverse_context_t* ctx)
{
unsigned short uvalue = dwarf2_get_u2(ctx->data);
ctx->data += 2;
return uvalue;
}
static ULONG_PTR dwarf2_get_u4(const unsigned char* ptr)
{
return *(const UINT32*)ptr;
}
static ULONG_PTR dwarf2_parse_u4(dwarf2_traverse_context_t* ctx)
{
ULONG_PTR uvalue = dwarf2_get_u4(ctx->data);
ctx->data += 4;
return uvalue;
}
static DWORD64 dwarf2_get_u8(const unsigned char* ptr)
{
return *(const UINT64*)ptr;
}
static DWORD64 dwarf2_parse_u8(dwarf2_traverse_context_t* ctx)
{
DWORD64 uvalue = dwarf2_get_u8(ctx->data);
ctx->data += 8;
return uvalue;
}
static ULONG_PTR dwarf2_get_leb128_as_unsigned(const unsigned char* ptr, const unsigned char** end)
{
ULONG_PTR ret = 0;
unsigned char byte;
unsigned shift = 0;
do
{
byte = dwarf2_get_byte(ptr++);
ret |= (byte & 0x7f) << shift;
shift += 7;
} while (byte & 0x80);
if (end) *end = ptr;
return ret;
}
static ULONG_PTR dwarf2_leb128_as_unsigned(dwarf2_traverse_context_t* ctx)
{
ULONG_PTR ret;
assert(ctx);
ret = dwarf2_get_leb128_as_unsigned(ctx->data, &ctx->data);
return ret;
}
static LONG_PTR dwarf2_get_leb128_as_signed(const unsigned char* ptr, const unsigned char** end)
{
LONG_PTR ret = 0;
unsigned char byte;
unsigned shift = 0;
const unsigned size = sizeof(int) * 8;
do
{
byte = dwarf2_get_byte(ptr++);
ret |= (byte & 0x7f) << shift;
shift += 7;
} while (byte & 0x80);
if (end) *end = ptr;
/* as spec: sign bit of byte is 2nd high order bit (80x40)
* -> 0x80 is used as flag.
*/
if ((shift < size) && (byte & 0x40))
{
ret |= - (1 << shift);
}
return ret;
}
static LONG_PTR dwarf2_leb128_as_signed(dwarf2_traverse_context_t* ctx)
{
LONG_PTR ret = 0;
assert(ctx);
ret = dwarf2_get_leb128_as_signed(ctx->data, &ctx->data);
return ret;
}
static unsigned dwarf2_leb128_length(const dwarf2_traverse_context_t* ctx)
{
unsigned ret;
for (ret = 0; ctx->data[ret] & 0x80; ret++);
return ret + 1;
}
/******************************************************************
* dwarf2_get_addr
*
* Returns an address.
* We assume that in all cases word size from Dwarf matches the size of
* addresses in platform where the exec is compiled.
*/
static ULONG_PTR dwarf2_get_addr(const unsigned char* ptr, unsigned word_size)
{
ULONG_PTR ret;
switch (word_size)
{
case 4:
ret = dwarf2_get_u4(ptr);
break;
case 8:
ret = dwarf2_get_u8(ptr);
break;
default:
FIXME("Unsupported Word Size %u\n", word_size);
ret = 0;
}
return ret;
}
static inline ULONG_PTR dwarf2_parse_addr(dwarf2_traverse_context_t* ctx, unsigned word_size)
{
ULONG_PTR ret = dwarf2_get_addr(ctx->data, word_size);
ctx->data += word_size;
return ret;
}
static inline ULONG_PTR dwarf2_parse_addr_head(dwarf2_traverse_context_t* ctx, const dwarf2_cuhead_t* head)
{
return dwarf2_parse_addr(ctx, head->word_size);
}
static ULONG_PTR dwarf2_parse_offset(dwarf2_traverse_context_t* ctx, unsigned char offset_size)
{
ULONG_PTR ret = dwarf2_get_addr(ctx->data, offset_size);
ctx->data += offset_size;
return ret;
}
static ULONG_PTR dwarf2_parse_3264(dwarf2_traverse_context_t* ctx, unsigned char* ofsz)
{
ULONG_PTR ret = dwarf2_parse_u4(ctx);
if (ret == 0xffffffff)
{
ret = dwarf2_parse_u8(ctx);
*ofsz = 8;
}
else *ofsz = 4;
return ret;
}
static const char* dwarf2_debug_traverse_ctx(const dwarf2_traverse_context_t* ctx)
{
return wine_dbg_sprintf("ctx(%p)", ctx->data);
}
static const char* dwarf2_debug_unit_ctx(const dwarf2_parse_context_t* ctx)
{
return wine_dbg_sprintf("ctx(%p,%s)",
ctx, debugstr_w(ctx->module_ctx->module->modulename));
}
static const char* dwarf2_debug_di(const dwarf2_debug_info_t* di)
{
return wine_dbg_sprintf("debug_info(abbrev:%p,symt:%p) in %s",
di->abbrev, di->symt, dwarf2_debug_unit_ctx(di->unit_ctx));
}
static dwarf2_abbrev_entry_t*
dwarf2_abbrev_table_find_entry(const struct sparse_array* abbrev_table,
ULONG_PTR entry_code)
{
assert( NULL != abbrev_table );
return sparse_array_find(abbrev_table, entry_code);
}
static void dwarf2_parse_abbrev_set(dwarf2_traverse_context_t* abbrev_ctx,
struct sparse_array* abbrev_table,
struct pool* pool)
{
ULONG_PTR entry_code;
dwarf2_abbrev_entry_t* abbrev_entry;
dwarf2_abbrev_entry_attr_t* new = NULL;
dwarf2_abbrev_entry_attr_t* last = NULL;
ULONG_PTR attribute;
ULONG_PTR form;
assert( NULL != abbrev_ctx );
TRACE("%s, end at %p\n",
dwarf2_debug_traverse_ctx(abbrev_ctx), abbrev_ctx->end_data);
sparse_array_init(abbrev_table, sizeof(dwarf2_abbrev_entry_t), 32);
while (abbrev_ctx->data < abbrev_ctx->end_data)
{
TRACE("now at %s\n", dwarf2_debug_traverse_ctx(abbrev_ctx));
entry_code = dwarf2_leb128_as_unsigned(abbrev_ctx);
TRACE("found entry_code %Iu\n", entry_code);
if (!entry_code)
{
TRACE("NULL entry code at %s\n", dwarf2_debug_traverse_ctx(abbrev_ctx));
break;
}
abbrev_entry = sparse_array_add(abbrev_table, entry_code, pool);
assert( NULL != abbrev_entry );
abbrev_entry->entry_code = entry_code;
abbrev_entry->tag = dwarf2_leb128_as_unsigned(abbrev_ctx);
abbrev_entry->have_child = dwarf2_parse_byte(abbrev_ctx);
abbrev_entry->attrs = NULL;
abbrev_entry->num_attr = 0;
TRACE("table:(%p,#%u) entry_code(%Iu) tag(0x%Ix) have_child(%u) -> %p\n",
abbrev_table, sparse_array_length(abbrev_table),
entry_code, abbrev_entry->tag, abbrev_entry->have_child, abbrev_entry);
last = NULL;
while (1)
{
attribute = dwarf2_leb128_as_unsigned(abbrev_ctx);
form = dwarf2_leb128_as_unsigned(abbrev_ctx);
if (!attribute) break;
new = pool_alloc(pool, sizeof(dwarf2_abbrev_entry_attr_t));
assert(new);
new->attribute = attribute;
new->form = form;
new->next = NULL;
if (abbrev_entry->attrs) last->next = new;
else abbrev_entry->attrs = new;
last = new;
abbrev_entry->num_attr++;
}
}
TRACE("found %u entries\n", sparse_array_length(abbrev_table));
}
static void dwarf2_swallow_attribute(dwarf2_traverse_context_t* ctx,
const dwarf2_cuhead_t* head,
const dwarf2_abbrev_entry_attr_t* abbrev_attr)
{
unsigned step;
TRACE("(attr:0x%Ix,form:0x%Ix)\n", abbrev_attr->attribute, abbrev_attr->form);
switch (abbrev_attr->form)
{
case DW_FORM_flag_present: step = 0; break;
case DW_FORM_ref_addr: step = (head->version >= 3) ? head->offset_size : head->word_size; break;
case DW_FORM_addr: step = head->word_size; break;
case DW_FORM_flag:
case DW_FORM_data1:
case DW_FORM_ref1: step = 1; break;
case DW_FORM_data2:
case DW_FORM_ref2: step = 2; break;
case DW_FORM_data4:
case DW_FORM_ref4: step = 4; break;
case DW_FORM_data8:
case DW_FORM_ref8: step = 8; break;
case DW_FORM_sdata:
case DW_FORM_ref_udata:
case DW_FORM_udata: step = dwarf2_leb128_length(ctx); break;
case DW_FORM_string: step = strlen((const char*)ctx->data) + 1; break;
case DW_FORM_exprloc:
case DW_FORM_block: step = dwarf2_leb128_as_unsigned(ctx); break;
case DW_FORM_block1: step = dwarf2_parse_byte(ctx); break;
case DW_FORM_block2: step = dwarf2_parse_u2(ctx); break;
case DW_FORM_block4: step = dwarf2_parse_u4(ctx); break;
case DW_FORM_sec_offset:
case DW_FORM_GNU_ref_alt:
case DW_FORM_GNU_strp_alt:
case DW_FORM_strp: step = head->offset_size; break;
default:
FIXME("Unhandled attribute form %Ix\n", abbrev_attr->form);
return;
}
ctx->data += step;
}
static BOOL dwarf2_fill_attr(const dwarf2_parse_context_t* ctx,
const dwarf2_abbrev_entry_attr_t* abbrev_attr,
const unsigned char* data,
struct attribute* attr)
{
attr->form = abbrev_attr->form;
switch (attr->form)
{
case DW_FORM_ref_addr:
if (ctx->head.version >= 3)
attr->u.uvalue = dwarf2_get_addr(data, ctx->head.offset_size);
else
attr->u.uvalue = dwarf2_get_addr(data, ctx->head.word_size);
TRACE("addr<0x%Ix>\n", attr->u.uvalue);
break;
case DW_FORM_addr:
attr->u.uvalue = dwarf2_get_addr(data, ctx->head.word_size);
TRACE("addr<0x%Ix>\n", attr->u.uvalue);
break;
case DW_FORM_flag:
attr->u.uvalue = dwarf2_get_byte(data);
TRACE("flag<0x%Ix>\n", attr->u.uvalue);
break;
case DW_FORM_flag_present:
attr->u.uvalue = 1;
TRACE("flag_present\n");
break;
case DW_FORM_data1:
attr->u.uvalue = dwarf2_get_byte(data);
TRACE("data1<%Iu>\n", attr->u.uvalue);
break;
case DW_FORM_data2:
attr->u.uvalue = dwarf2_get_u2(data);
TRACE("data2<%Iu>\n", attr->u.uvalue);
break;
case DW_FORM_data4:
attr->u.uvalue = dwarf2_get_u4(data);
TRACE("data4<%Iu>\n", attr->u.uvalue);
break;
case DW_FORM_data8:
attr->u.lluvalue = dwarf2_get_u8(data);
TRACE("data8<%s>\n", wine_dbgstr_longlong(attr->u.uvalue));
break;
case DW_FORM_ref1:
attr->u.uvalue = ctx->ref_offset + dwarf2_get_byte(data);
TRACE("ref1<0x%Ix>\n", attr->u.uvalue);
break;
case DW_FORM_ref2:
attr->u.uvalue = ctx->ref_offset + dwarf2_get_u2(data);
TRACE("ref2<0x%Ix>\n", attr->u.uvalue);
break;
case DW_FORM_ref4:
attr->u.uvalue = ctx->ref_offset + dwarf2_get_u4(data);
TRACE("ref4<0x%Ix>\n", attr->u.uvalue);
break;
case DW_FORM_ref8:
FIXME("Unhandled 64-bit support\n");
break;
case DW_FORM_sdata:
attr->u.svalue = dwarf2_get_leb128_as_signed(data, NULL);
break;
case DW_FORM_ref_udata:
attr->u.uvalue = ctx->ref_offset + dwarf2_get_leb128_as_unsigned(data, NULL);
TRACE("ref_udata<0x%Ix>\n", attr->u.uvalue);
break;
case DW_FORM_udata:
attr->u.uvalue = dwarf2_get_leb128_as_unsigned(data, NULL);
TRACE("udata<0x%Ix>\n", attr->u.uvalue);
break;
case DW_FORM_string:
attr->u.string = (const char *)data;
TRACE("string<%s>\n", debugstr_a(attr->u.string));
break;
case DW_FORM_strp:
{
ULONG_PTR ofs = dwarf2_get_addr(data, ctx->head.offset_size);
if (ofs >= ctx->module_ctx->sections[section_string].size)
{
ERR("Out of bounds string offset (%08Ix)\n", ofs);
attr->u.string = "<<outofbounds-strp>>";
}
else
{
attr->u.string = (const char*)ctx->module_ctx->sections[section_string].address + ofs;
TRACE("strp<%s>\n", debugstr_a(attr->u.string));
}
}
break;
case DW_FORM_block:
case DW_FORM_exprloc:
attr->u.block.size = dwarf2_get_leb128_as_unsigned(data, &attr->u.block.ptr);
TRACE("block<%p,%u>\n", attr->u.block.ptr, attr->u.block.size);
break;
case DW_FORM_block1:
attr->u.block.size = dwarf2_get_byte(data);
attr->u.block.ptr = data + 1;
TRACE("block<%p,%u>\n", attr->u.block.ptr, attr->u.block.size);
break;
case DW_FORM_block2:
attr->u.block.size = dwarf2_get_u2(data);
attr->u.block.ptr = data + 2;
TRACE("block<%p,%u>\n", attr->u.block.ptr, attr->u.block.size);
break;
case DW_FORM_block4:
attr->u.block.size = dwarf2_get_u4(data);
attr->u.block.ptr = data + 4;
TRACE("block<%p,%u>\n", attr->u.block.ptr, attr->u.block.size);
break;
case DW_FORM_sec_offset:
attr->u.lluvalue = dwarf2_get_addr(data, ctx->head.offset_size);
TRACE("sec_offset<%s>\n", wine_dbgstr_longlong(attr->u.lluvalue));
break;
case DW_FORM_GNU_ref_alt:
if (!ctx->module_ctx->dwz)
{
ERR("No DWZ file present for GNU_ref_alt in %s\n", debugstr_w(ctx->module_ctx->module->modulename));
attr->u.uvalue = 0;
return FALSE;
}
attr->u.uvalue = dwarf2_get_addr(data, ctx->head.offset_size);
TRACE("ref_alt<0x%Ix>\n", attr->u.uvalue);
break;
case DW_FORM_GNU_strp_alt:
if (ctx->module_ctx->dwz)
{
ULONG_PTR ofs = dwarf2_get_addr(data, ctx->head.offset_size);
if (ofs < ctx->module_ctx->dwz->sections[section_string].size)
{
attr->u.string = (const char*)ctx->module_ctx->dwz->sections[section_string].address + ofs;
TRACE("strp_alt<%s>\n", debugstr_a(attr->u.string));
}
else
{
ERR("out of bounds strp_alt: 0x%Ix 0x%x (%u)\n", ofs, ctx->module_ctx->dwz->sections[section_string].size, ctx->head.offset_size);
attr->u.string = "<<outofbounds-strpalt>>";
}
}
else
{
ERR("No DWZ file present for GNU_strp_alt in %s\n", debugstr_w(ctx->module_ctx->module->modulename));
attr->u.string = "<<noDWZ-strpalt>>";
}
break;
default:
FIXME("Unhandled attribute form %Ix\n", abbrev_attr->form);
break;
}
return TRUE;
}
static dwarf2_debug_info_t* dwarf2_jump_to_debug_info(struct attribute* attr);
static BOOL dwarf2_find_attribute(const dwarf2_debug_info_t* di,
unsigned at, struct attribute* attr)
{
unsigned i, refidx = 0;
dwarf2_abbrev_entry_attr_t* abbrev_attr;
dwarf2_abbrev_entry_attr_t* ref_abbrev_attr = NULL;
attr->gotten_from = attr_direct;
while (di)
{
ref_abbrev_attr = NULL;
attr->debug_info = di;
for (i = 0, abbrev_attr = di->abbrev->attrs; abbrev_attr; i++, abbrev_attr = abbrev_attr->next)
{
if (abbrev_attr->attribute == at)
{
return dwarf2_fill_attr(di->unit_ctx, abbrev_attr, di->data[i], attr);
}
if ((abbrev_attr->attribute == DW_AT_abstract_origin ||
abbrev_attr->attribute == DW_AT_specification) &&
at != DW_AT_sibling)
{
if (ref_abbrev_attr)
FIXME("two references %Ix and %Ix\n", ref_abbrev_attr->attribute, abbrev_attr->attribute);
ref_abbrev_attr = abbrev_attr;
refidx = i;
attr->gotten_from = (abbrev_attr->attribute == DW_AT_abstract_origin) ?
attr_abstract_origin : attr_specification;
}
}
/* do we have either an abstract origin or a specification debug entry to look into ? */
if (!ref_abbrev_attr || !dwarf2_fill_attr(di->unit_ctx, ref_abbrev_attr, di->data[refidx], attr))
break;
if (!(di = dwarf2_jump_to_debug_info(attr)))
{
FIXME("Should have found the debug info entry\n");
break;
}
}
return FALSE;
}
static dwarf2_debug_info_t* dwarf2_jump_to_debug_info(struct attribute* attr)
{
dwarf2_parse_context_t* ref_ctx = NULL;
BOOL with_other = TRUE;
dwarf2_debug_info_t* ret;
switch (attr->form)
{
case DW_FORM_ref_addr:
ref_ctx = dwarf2_locate_cu(attr->debug_info->unit_ctx->module_ctx, attr->u.uvalue);
break;
case DW_FORM_GNU_ref_alt:
if (attr->debug_info->unit_ctx->module_ctx->dwz)
ref_ctx = dwarf2_locate_cu(&attr->debug_info->unit_ctx->module_ctx->dwz->module_ctx, attr->u.uvalue);
break;
default:
with_other = FALSE;
ref_ctx = attr->debug_info->unit_ctx;
break;
}
if (!ref_ctx) return FALSE;
/* There are cases where we end up with a circular reference between two (or more)
* compilation units. Before this happens, try to see if we can refer to an already
* loaded debug_info in the target compilation unit (even if all the debug_info
* haven't been loaded yet).
*/
if (ref_ctx->status == UNIT_BEINGLOADED &&
(ret = sparse_array_find(&ref_ctx->debug_info_table, attr->u.uvalue)))
return ret;
if (with_other)
{
/* ensure CU is fully loaded */
if (ref_ctx != attr->debug_info->unit_ctx && !dwarf2_parse_compilation_unit(ref_ctx))
return NULL;
}
return sparse_array_find(&ref_ctx->debug_info_table, attr->u.uvalue);
}
static void dwarf2_load_one_entry(dwarf2_debug_info_t*);
#define Wine_DW_no_register 0x7FFFFFFF
static unsigned dwarf2_map_register(int regno, const struct module* module)
{
if (regno == Wine_DW_no_register)
{
FIXME("What the heck map reg 0x%x\n",regno);
return 0;
}
return module->cpu->map_dwarf_register(regno, module, FALSE);
}
static enum location_error
compute_location(const struct module *module, const dwarf2_cuhead_t* head,
dwarf2_traverse_context_t* ctx, struct location* loc,
HANDLE hproc, const struct location* frame)
{
DWORD_PTR tmp, stack[64];
unsigned stk;
unsigned char op;
BOOL piece_found = FALSE;
stack[stk = 0] = 0;
loc->kind = loc_absolute;
loc->reg = Wine_DW_no_register;
while (ctx->data < ctx->end_data)
{
op = dwarf2_parse_byte(ctx);
if (op >= DW_OP_lit0 && op <= DW_OP_lit31)
stack[++stk] = op - DW_OP_lit0;
else if (op >= DW_OP_reg0 && op <= DW_OP_reg31)
{
/* dbghelp APIs don't know how to cope with this anyway
* (for example 'long long' stored in two registers)
* FIXME: We should tell winedbg how to deal with it (sigh)
*/
if (!piece_found)
{
DWORD cvreg = dwarf2_map_register(op - DW_OP_reg0, module);
if (loc->reg != Wine_DW_no_register)
FIXME("Only supporting one reg (%s/%d -> %s/%ld)\n",
module->cpu->fetch_regname(loc->reg), loc->reg,
module->cpu->fetch_regname(cvreg), cvreg);
loc->reg = cvreg;
}
loc->kind = loc_register;
}
else if (op >= DW_OP_breg0 && op <= DW_OP_breg31)
{
/* dbghelp APIs don't know how to cope with this anyway
* (for example 'long long' stored in two registers)
* FIXME: We should tell winedbg how to deal with it (sigh)
*/
if (!piece_found)
{
DWORD cvreg = dwarf2_map_register(op - DW_OP_breg0, module);
if (loc->reg != Wine_DW_no_register)
FIXME("Only supporting one breg (%s/%d -> %s/%ld)\n",
module->cpu->fetch_regname(loc->reg), loc->reg,
module->cpu->fetch_regname(cvreg), cvreg);
loc->reg = cvreg;
}
stack[++stk] = dwarf2_leb128_as_signed(ctx);
loc->kind = loc_regrel;
}
else switch (op)
{
case DW_OP_nop: break;
case DW_OP_addr: stack[++stk] = dwarf2_parse_addr_head(ctx, head); break;
case DW_OP_const1u: stack[++stk] = dwarf2_parse_byte(ctx); break;
case DW_OP_const1s: stack[++stk] = dwarf2_parse_byte(ctx); break;
case DW_OP_const2u: stack[++stk] = dwarf2_parse_u2(ctx); break;
case DW_OP_const2s: stack[++stk] = dwarf2_parse_u2(ctx); break;
case DW_OP_const4u: stack[++stk] = dwarf2_parse_u4(ctx); break;
case DW_OP_const4s: stack[++stk] = dwarf2_parse_u4(ctx); break;
case DW_OP_const8u: stack[++stk] = dwarf2_parse_u8(ctx); break;
case DW_OP_const8s: stack[++stk] = dwarf2_parse_u8(ctx); break;
case DW_OP_constu: stack[++stk] = dwarf2_leb128_as_unsigned(ctx); break;
case DW_OP_consts: stack[++stk] = dwarf2_leb128_as_signed(ctx); break;
case DW_OP_dup: stack[stk + 1] = stack[stk]; stk++; break;
case DW_OP_drop: stk--; break;
case DW_OP_over: stack[stk + 1] = stack[stk - 1]; stk++; break;
case DW_OP_pick: stack[stk + 1] = stack[stk - dwarf2_parse_byte(ctx)]; stk++; break;
case DW_OP_swap: tmp = stack[stk]; stack[stk] = stack[stk-1]; stack[stk-1] = tmp; break;
case DW_OP_rot: tmp = stack[stk]; stack[stk] = stack[stk-1]; stack[stk-1] = stack[stk-2]; stack[stk-2] = tmp; break;
case DW_OP_abs: stack[stk] = sizeof(stack[stk]) == 8 ? llabs((INT64)stack[stk]) : abs((INT32)stack[stk]); break;
case DW_OP_neg: stack[stk] = -stack[stk]; break;
case DW_OP_not: stack[stk] = ~stack[stk]; break;
case DW_OP_and: stack[stk-1] &= stack[stk]; stk--; break;
case DW_OP_or: stack[stk-1] |= stack[stk]; stk--; break;
case DW_OP_minus: stack[stk-1] -= stack[stk]; stk--; break;
case DW_OP_mul: stack[stk-1] *= stack[stk]; stk--; break;
case DW_OP_plus: stack[stk-1] += stack[stk]; stk--; break;
case DW_OP_xor: stack[stk-1] ^= stack[stk]; stk--; break;
case DW_OP_shl: stack[stk-1] <<= stack[stk]; stk--; break;
case DW_OP_shr: stack[stk-1] >>= stack[stk]; stk--; break;
case DW_OP_plus_uconst: stack[stk] += dwarf2_leb128_as_unsigned(ctx); break;
case DW_OP_shra: stack[stk-1] = stack[stk-1] / (1 << stack[stk]); stk--; break;
case DW_OP_div: stack[stk-1] = stack[stk-1] / stack[stk]; stk--; break;
case DW_OP_mod: stack[stk-1] = stack[stk-1] % stack[stk]; stk--; break;
case DW_OP_ge: stack[stk-1] = (stack[stk-1] >= stack[stk]); stk--; break;
case DW_OP_gt: stack[stk-1] = (stack[stk-1] > stack[stk]); stk--; break;
case DW_OP_le: stack[stk-1] = (stack[stk-1] <= stack[stk]); stk--; break;
case DW_OP_lt: stack[stk-1] = (stack[stk-1] < stack[stk]); stk--; break;
case DW_OP_eq: stack[stk-1] = (stack[stk-1] == stack[stk]); stk--; break;
case DW_OP_ne: stack[stk-1] = (stack[stk-1] != stack[stk]); stk--; break;
case DW_OP_skip: tmp = dwarf2_parse_u2(ctx); ctx->data += tmp; break;
case DW_OP_bra:
tmp = dwarf2_parse_u2(ctx);
if (!stack[stk--]) ctx->data += tmp;
break;
case DW_OP_regx:
tmp = dwarf2_leb128_as_unsigned(ctx);
if (!piece_found)
{
if (loc->reg != Wine_DW_no_register)
FIXME("Only supporting one reg\n");
loc->reg = dwarf2_map_register(tmp, module);
}
loc->kind = loc_register;
break;
case DW_OP_bregx:
tmp = dwarf2_leb128_as_unsigned(ctx);
if (loc->reg != Wine_DW_no_register)
FIXME("Only supporting one regx\n");
loc->reg = dwarf2_map_register(tmp, module);
stack[++stk] = dwarf2_leb128_as_signed(ctx);
loc->kind = loc_regrel;
break;
case DW_OP_fbreg:
if (loc->reg != Wine_DW_no_register)
FIXME("Only supporting one reg (%s/%d -> -2)\n",
module->cpu->fetch_regname(loc->reg), loc->reg);
if (frame && frame->kind == loc_register)
{
loc->kind = loc_regrel;
loc->reg = frame->reg;
stack[++stk] = dwarf2_leb128_as_signed(ctx);
}
else if (frame && frame->kind == loc_regrel)
{
loc->kind = loc_regrel;
loc->reg = frame->reg;
stack[++stk] = dwarf2_leb128_as_signed(ctx) + frame->offset;
}
else
{
/* FIXME: this could be later optimized by not recomputing
* this very location expression
*/
loc->kind = loc_dwarf2_block;
stack[++stk] = dwarf2_leb128_as_signed(ctx);
}
break;
case DW_OP_piece:
{
unsigned sz = dwarf2_leb128_as_unsigned(ctx);
WARN("Not handling OP_piece (size=%d)\n", sz);
piece_found = TRUE;
}
break;
case DW_OP_deref:
if (!stk)
{
FIXME("Unexpected empty stack\n");
return loc_err_internal;
}
if (loc->reg != Wine_DW_no_register)
{
WARN("Too complex expression for deref\n");
return loc_err_too_complex;
}
if (hproc)
{
DWORD_PTR addr = stack[stk--];
DWORD_PTR deref = 0;
if (!ReadProcessMemory(hproc, (void*)addr, &deref, head->word_size, NULL))
{
WARN("Couldn't read memory at %Ix\n", addr);
return loc_err_cant_read;
}
stack[++stk] = deref;
}
else
{
loc->kind = loc_dwarf2_block;
}
break;
case DW_OP_deref_size:
if (!stk)
{
FIXME("Unexpected empty stack\n");
return loc_err_internal;
}
if (loc->reg != Wine_DW_no_register)
{
WARN("Too complex expression for deref\n");
return loc_err_too_complex;
}
if (hproc)
{
DWORD_PTR addr = stack[stk--];
BYTE derefsize = dwarf2_parse_byte(ctx);
DWORD64 deref;
if (!ReadProcessMemory(hproc, (void*)addr, &deref, derefsize, NULL))
{
WARN("Couldn't read memory at %Ix\n", addr);
return loc_err_cant_read;
}
switch (derefsize)
{
case 1: stack[++stk] = *(unsigned char*)&deref; break;
case 2: stack[++stk] = *(unsigned short*)&deref; break;
case 4: stack[++stk] = *(DWORD*)&deref; break;
case 8: if (head->word_size >= derefsize) stack[++stk] = deref; break;
}
}
else
{
dwarf2_parse_byte(ctx);
loc->kind = loc_dwarf2_block;
}
break;
case DW_OP_stack_value:
/* Expected behaviour is that this is the last instruction of this
* expression and just the "top of stack" value should be put to loc->offset. */
break;
default:
if (op < DW_OP_lo_user) /* as DW_OP_hi_user is 0xFF, we don't need to test against it */
FIXME("Unhandled attr op: %x\n", op);
/* FIXME else unhandled extension */
return loc_err_internal;
}
}
loc->offset = stack[stk];
return 0;
}
static BOOL dwarf2_compute_location_attr(dwarf2_parse_context_t* ctx,
const dwarf2_debug_info_t* di,
ULONG_PTR dw,
struct location* loc,
const struct location* frame)
{
struct attribute xloc;
if (!dwarf2_find_attribute(di, dw, &xloc)) return FALSE;
switch (xloc.form)
{
case DW_FORM_data4:
if (ctx->head.version < 4)
{
loc->kind = loc_dwarf2_location_list;
loc->reg = Wine_DW_no_register;
loc->offset = xloc.u.uvalue;
return TRUE;
}
/* fall through */
case DW_FORM_data1: case DW_FORM_data2:
case DW_FORM_udata: case DW_FORM_sdata:
loc->kind = loc_absolute;
loc->reg = 0;
loc->offset = xloc.u.uvalue;
return TRUE;
case DW_FORM_data8:
if (ctx->head.version >= 4)
{
loc->kind = loc_absolute;
loc->reg = 0;
loc->offset = xloc.u.lluvalue;
return TRUE;
}
/* fall through */
case DW_FORM_sec_offset:
loc->kind = loc_dwarf2_location_list;
loc->reg = Wine_DW_no_register;
loc->offset = xloc.u.lluvalue;
return TRUE;
case DW_FORM_block:
case DW_FORM_block1:
case DW_FORM_block2:
case DW_FORM_block4:
case DW_FORM_exprloc:
break;
default: FIXME("Unsupported yet form %Ix\n", xloc.form);
return FALSE;
}
/* assume we have a block form */
if (dw == DW_AT_frame_base && xloc.u.block.size == 1 && *xloc.u.block.ptr == DW_OP_call_frame_cfa)
{
loc->kind = loc_dwarf2_frame_cfa;
loc->reg = Wine_DW_no_register;
loc->offset = 0;
}
else if (xloc.u.block.size)
{
dwarf2_traverse_context_t lctx;
enum location_error err;
lctx.data = xloc.u.block.ptr;
lctx.end_data = xloc.u.block.ptr + xloc.u.block.size;
err = compute_location(ctx->module_ctx->module, &ctx->head, &lctx, loc, NULL, frame);
if (err < 0)
{
loc->kind = loc_error;
loc->reg = err;
}
else if (loc->kind == loc_dwarf2_block)
{
unsigned* ptr = pool_alloc(&ctx->module_ctx->module->pool,
sizeof(unsigned) + xloc.u.block.size);
*ptr = xloc.u.block.size;
memcpy(ptr + 1, xloc.u.block.ptr, xloc.u.block.size);
loc->offset = (ULONG_PTR)ptr;
}
}
return TRUE;
}
static struct symt* dwarf2_lookup_type(const dwarf2_debug_info_t* di)
{
struct attribute attr;
dwarf2_debug_info_t* type;
if (!dwarf2_find_attribute(di, DW_AT_type, &attr))
/* this is only valid if current language of CU is C or C++ */
return &symt_get_basic(btVoid, 0)->symt;
if (!(type = dwarf2_jump_to_debug_info(&attr)))
return &symt_get_basic(btNoType, 0)->symt;
if (type == di)
{
FIXME("Reference to itself\n");
return &symt_get_basic(btNoType, 0)->symt;
}
if (!type->symt)
{
/* load the debug info entity */
dwarf2_load_one_entry(type);
if (!type->symt)
{
FIXME("Unable to load forward reference for tag %Ix\n", type->abbrev->tag);
return &symt_get_basic(btNoType, 0)->symt;
}
}
return type->symt;
}
static const char* dwarf2_get_cpp_name(dwarf2_debug_info_t* di, const char* name)
{
char* last;
struct attribute diname;
struct attribute spec;
if (di->abbrev->tag == DW_TAG_compile_unit || di->abbrev->tag == DW_TAG_partial_unit) return name;
/* if the di is a definition, but has also a (previous) declaration, then scope must
* be gotten from declaration not definition
*/
if (dwarf2_find_attribute(di, DW_AT_specification, &spec) && spec.gotten_from == attr_direct)
{
di = dwarf2_jump_to_debug_info(&spec);
if (!di)
{
FIXME("Should have found the debug info entry\n");
return NULL;
}
}
if (!di->unit_ctx->cpp_name)
di->unit_ctx->cpp_name = pool_alloc(&di->unit_ctx->pool, MAX_SYM_NAME);
last = di->unit_ctx->cpp_name + MAX_SYM_NAME - strlen(name) - 1;
strcpy(last, name);
for (di = di->parent; di; di = di->parent)
{
switch (di->abbrev->tag)
{
case DW_TAG_namespace:
case DW_TAG_structure_type:
case DW_TAG_class_type:
case DW_TAG_interface_type:
case DW_TAG_union_type:
if (dwarf2_find_attribute(di, DW_AT_name, &diname))
{
size_t len = strlen(diname.u.string);
last -= 2 + len;
if (last < di->unit_ctx->cpp_name) return NULL;
memcpy(last, diname.u.string, len);
last[len] = last[len + 1] = ':';
}
break;
default:
break;
}
}
return last;
}
/******************************************************************
* dwarf2_read_range
*
* read a range for a given debug_info (either using AT_range attribute, in which
* case we don't return all the details, or using AT_low_pc & AT_high_pc attributes)
* in all cases, range is relative to beginning of compilation unit
*/
static BOOL dwarf2_read_range(dwarf2_parse_context_t* ctx, const dwarf2_debug_info_t* di,
ULONG_PTR* plow, ULONG_PTR* phigh)
{
struct attribute range;
if (dwarf2_find_attribute(di, DW_AT_ranges, &range))
{
dwarf2_traverse_context_t traverse;
ULONG_PTR low, high;
const ULONG_PTR UMAX = ~(ULONG_PTR)0u;
traverse.data = ctx->module_ctx->sections[section_ranges].address + range.u.uvalue;
traverse.end_data = ctx->module_ctx->sections[section_ranges].address +
ctx->module_ctx->sections[section_ranges].size;
*plow = UMAX;
*phigh = 0;
while (traverse.data + 2 * ctx->head.word_size < traverse.end_data)
{
low = dwarf2_parse_addr_head(&traverse, &ctx->head);
high = dwarf2_parse_addr_head(&traverse, &ctx->head);
if (low == 0 && high == 0) break;
if (low == (ctx->head.word_size == 8 ? (~(DWORD64)0u) : (DWORD64)(~0u)))
FIXME("unsupported yet (base address selection)\n");
/* range values are relative to start of compilation unit */
low += ctx->compiland->address - ctx->module_ctx->load_offset;
high += ctx->compiland->address - ctx->module_ctx->load_offset;
if (low < *plow) *plow = low;
if (high > *phigh) *phigh = high;
}
if (*plow == UMAX || *phigh == 0) {WARN("no entry found\n"); return FALSE;}
if (*plow == *phigh) {WARN("entry found, but low=high %Ix %Ix\n", low, high); return FALSE;}
return TRUE;
}
else
{
struct attribute low_pc;
struct attribute high_pc;
if (!dwarf2_find_attribute(di, DW_AT_low_pc, &low_pc) ||
!dwarf2_find_attribute(di, DW_AT_high_pc, &high_pc))
return FALSE;
*plow = low_pc.u.uvalue;
*phigh = high_pc.u.uvalue;
if (ctx->head.version >= 4)
switch (high_pc.form)
{
case DW_FORM_addr:
break;
case DW_FORM_data1:
case DW_FORM_data2:
case DW_FORM_data4:
case DW_FORM_data8:
case DW_FORM_sdata:
case DW_FORM_udata:
/* From dwarf4 on, when FORM's class is constant, high_pc is an offset from low_pc */
*phigh += *plow;
break;
default:
FIXME("Unsupported class for high_pc\n");
break;
}
return TRUE;
}
}
static struct addr_range* dwarf2_get_ranges(const dwarf2_debug_info_t* di, unsigned* num_ranges)
{
struct attribute range;
struct addr_range* ranges;
struct addr_range* new_ranges;
if (dwarf2_find_attribute(di, DW_AT_ranges, &range))
{
dwarf2_traverse_context_t traverse;
unsigned alloc = 16;
ranges = malloc(sizeof(struct addr_range) * alloc);
if (!ranges) return NULL;
*num_ranges = 0;
traverse.data = di->unit_ctx->module_ctx->sections[section_ranges].address + range.u.uvalue;
traverse.end_data = di->unit_ctx->module_ctx->sections[section_ranges].address +
di->unit_ctx->module_ctx->sections[section_ranges].size;
while (traverse.data + 2 * di->unit_ctx->head.word_size < traverse.end_data)
{
ULONG_PTR low = dwarf2_parse_addr_head(&traverse, &di->unit_ctx->head);
ULONG_PTR high = dwarf2_parse_addr_head(&traverse, &di->unit_ctx->head);
if (low == 0 && high == 0) break;
if (low == (di->unit_ctx->head.word_size == 8 ? (~(DWORD64)0u) : (DWORD64)(~0u)))
FIXME("unsupported yet (base address selection)\n");
if (*num_ranges >= alloc)
{
alloc *= 2;
new_ranges = realloc(ranges, sizeof(struct addr_range) * alloc);
if (!new_ranges)
{
free(ranges);
return NULL;
}
ranges = new_ranges;
}
ranges[*num_ranges].low = di->unit_ctx->compiland->address + low;
ranges[*num_ranges].high = di->unit_ctx->compiland->address + high;
(*num_ranges)++;
}
}
else
{
struct attribute low_pc;
struct attribute high_pc;
if (!dwarf2_find_attribute(di, DW_AT_low_pc, &low_pc) ||
!dwarf2_find_attribute(di, DW_AT_high_pc, &high_pc))
return NULL;
if (di->unit_ctx->head.version >= 4)
switch (high_pc.form)
{
case DW_FORM_addr:
break;
case DW_FORM_data1:
case DW_FORM_data2:
case DW_FORM_data4:
case DW_FORM_data8:
case DW_FORM_sdata:
case DW_FORM_udata:
/* From dwarf4 on, when FORM's class is constant, high_pc is an offset from low_pc */
high_pc.u.uvalue += low_pc.u.uvalue;
break;
default:
FIXME("Unsupported class for high_pc\n");
break;
}
ranges = malloc(sizeof(struct addr_range));
if (!ranges) return NULL;
ranges[0].low = di->unit_ctx->module_ctx->load_offset + low_pc.u.uvalue;
ranges[0].high = di->unit_ctx->module_ctx->load_offset + high_pc.u.uvalue;
*num_ranges = 1;
}
return ranges;
}
/******************************************************************
* dwarf2_read_one_debug_info
*
* Loads into memory one debug info entry, and recursively its children (if any)
*/
static BOOL dwarf2_read_one_debug_info(dwarf2_parse_context_t* ctx,
dwarf2_traverse_context_t* traverse,
dwarf2_debug_info_t* parent_di,
dwarf2_debug_info_t** pdi)
{
const dwarf2_abbrev_entry_t*abbrev;
ULONG_PTR entry_code;
ULONG_PTR offset;
dwarf2_debug_info_t* di;
dwarf2_debug_info_t* child;
dwarf2_debug_info_t** where;
dwarf2_abbrev_entry_attr_t* attr;
unsigned i;
struct attribute sibling;
offset = traverse->data - ctx->module_ctx->sections[ctx->section].address;
entry_code = dwarf2_leb128_as_unsigned(traverse);
TRACE("found entry_code %Iu at 0x%Ix\n", entry_code, offset);
if (!entry_code)
{
*pdi = NULL;
return TRUE;
}
abbrev = dwarf2_abbrev_table_find_entry(&ctx->abbrev_table, entry_code);
if (!abbrev)
{
WARN("Cannot find abbrev entry for %Iu at 0x%Ix\n", entry_code, offset);
return FALSE;
}
di = sparse_array_add(&ctx->debug_info_table, offset, &ctx->pool);
if (!di) return FALSE;
di->abbrev = abbrev;
di->symt = NULL;
di->parent = parent_di;
di->unit_ctx = ctx;
if (abbrev->num_attr)
{
di->data = pool_alloc(&ctx->pool, abbrev->num_attr * sizeof(const char*));
for (i = 0, attr = abbrev->attrs; attr; i++, attr = attr->next)
{
di->data[i] = traverse->data;
dwarf2_swallow_attribute(traverse, &ctx->head, attr);
}
}
else di->data = NULL;
if (abbrev->have_child)
{
vector_init(&di->children, sizeof(dwarf2_debug_info_t*), 16);
while (traverse->data < traverse->end_data)
{
if (!dwarf2_read_one_debug_info(ctx, traverse, di, &child)) return FALSE;
if (!child) break;
where = vector_add(&di->children, &ctx->pool);
if (!where) return FALSE;
*where = child;
}
}
if (dwarf2_find_attribute(di, DW_AT_sibling, &sibling) &&
traverse->data != ctx->module_ctx->sections[ctx->section].address + sibling.u.uvalue)
{
if (sibling.u.uvalue >= ctx->module_ctx->sections[ctx->section].size)
{
FIXME("cursor sibling after section end %s: 0x%Ix 0x%x\n",
dwarf2_debug_unit_ctx(ctx), sibling.u.uvalue, ctx->module_ctx->sections[ctx->section].size);
return FALSE;
}
WARN("setting cursor for %s to next sibling <0x%Ix>\n",
dwarf2_debug_traverse_ctx(traverse), sibling.u.uvalue);
traverse->data = ctx->module_ctx->sections[ctx->section].address + sibling.u.uvalue;
}
*pdi = di;
return TRUE;
}
static struct vector* dwarf2_get_di_children(dwarf2_debug_info_t* di)
{
struct attribute spec;
while (di)
{
if (di->abbrev->have_child)
return &di->children;
if (!dwarf2_find_attribute(di, DW_AT_specification, &spec)) break;
if (!(di = dwarf2_jump_to_debug_info(&spec)))
FIXME("Should have found the debug info entry\n");
}
return NULL;
}
/* reconstruct whether integer is long (contains 'long' only once) */
static BOOL is_long(const char* name)
{
/* we assume name is made only of basic C keywords:
* int long short unsigned signed void float double char _Bool _Complex
*/
const char* p = strstr(name, "long");
return p && strstr(p + 4, "long") == NULL;
}
static BOOL is_c_language(dwarf2_parse_context_t* unit_ctx)
{
return unit_ctx->language == DW_LANG_C ||
unit_ctx->language == DW_LANG_C89 ||
unit_ctx->language == DW_LANG_C99;
}
static BOOL is_cpp_language(dwarf2_parse_context_t* unit_ctx)
{
return unit_ctx->language == DW_LANG_C_plus_plus;
}
static struct symt* dwarf2_parse_base_type(dwarf2_debug_info_t* di)
{
struct attribute name;
struct attribute size;
struct attribute encoding;
enum BasicType bt;
BOOL c_language, cpp_language;
if (di->symt) return di->symt;
TRACE("%s\n", dwarf2_debug_di(di));
c_language = is_c_language(di->unit_ctx);
cpp_language = is_cpp_language(di->unit_ctx);
if (!dwarf2_find_attribute(di, DW_AT_name, &name))
name.u.string = NULL;
if (!dwarf2_find_attribute(di, DW_AT_byte_size, &size)) size.u.uvalue = 0;
if (!dwarf2_find_attribute(di, DW_AT_encoding, &encoding)) encoding.u.uvalue = DW_ATE_void;
switch (encoding.u.uvalue)
{
case DW_ATE_void: bt = btVoid; break;
case DW_ATE_address: bt = btULong; break;
case DW_ATE_boolean: bt = btBool; break;
case DW_ATE_complex_float: bt = btComplex; break;
case DW_ATE_float: bt = btFloat; break;
case DW_ATE_signed: bt = ((c_language || cpp_language) && is_long(name.u.string)) ? btLong : btInt; break;
case DW_ATE_unsigned:
if ((c_language || cpp_language) && is_long(name.u.string)) bt = btULong;
else if (cpp_language && !strcmp(name.u.string, "wchar_t")) bt = btWChar;
else if (cpp_language && !strcmp(name.u.string, "char8_t")) bt = btChar8;
else if (cpp_language && !strcmp(name.u.string, "char16_t")) bt = btChar16;
else if (cpp_language && !strcmp(name.u.string, "char32_t")) bt = btChar32;
else bt = btUInt;
break;
/* on Windows, in C, char == signed char, but not in C++ */
case DW_ATE_signed_char: bt = (cpp_language && !strcmp(name.u.string, "signed char")) ? btInt : btChar; break;
case DW_ATE_unsigned_char: bt = btUInt; break;
case DW_ATE_UTF: bt = (size.u.uvalue == 1) ? btChar8 : (size.u.uvalue == 2 ? btChar16 : btChar32); break;
default: bt = btNoType; break;
}
di->symt = &symt_get_basic(bt, size.u.uvalue)->symt;
if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n");
return di->symt;
}
static struct symt* dwarf2_parse_typedef(dwarf2_debug_info_t* di)
{
struct symt* ref_type;
struct attribute name;
if (di->symt) return di->symt;
TRACE("%s\n", dwarf2_debug_di(di));
if (!dwarf2_find_attribute(di, DW_AT_name, &name)) name.u.string = NULL;
ref_type = dwarf2_lookup_type(di);
if (name.u.string)
{
/* Note: The MS C compiler has tweaks for WCHAR support.
* Even if WCHAR is a typedef to wchar_t, wchar_t is emitted as btUInt/2 (it's defined as
* unsigned short, so far so good), while WCHAR is emitted as btWChar/2).
*/
if ((is_c_language(di->unit_ctx) || is_cpp_language(di->unit_ctx)) && !strcmp(name.u.string, "WCHAR"))
ref_type = &symt_get_basic(btWChar, 2)->symt;
di->symt = &symt_new_typedef(di->unit_ctx->module_ctx->module, ref_type, name.u.string)->symt;
}
if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n");
return di->symt;
}
static struct symt* dwarf2_parse_pointer_type(dwarf2_debug_info_t* di)
{
struct symt* ref_type;
struct attribute size;
if (di->symt) return di->symt;
TRACE("%s\n", dwarf2_debug_di(di));
if (!dwarf2_find_attribute(di, DW_AT_byte_size, &size)) size.u.uvalue = di->unit_ctx->module_ctx->module->cpu->word_size;
ref_type = dwarf2_lookup_type(di);
di->symt = &symt_new_pointer(di->unit_ctx->module_ctx->module, ref_type, size.u.uvalue)->symt;
if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n");
return di->symt;
}
static struct symt* dwarf2_parse_subrange_type(dwarf2_debug_info_t* di)
{
struct symt* ref_type;
struct attribute name;
struct attribute dummy;
if (di->symt) return di->symt;
TRACE("%s\n", dwarf2_debug_di(di));
if (dwarf2_find_attribute(di, DW_AT_name, &name)) FIXME("Found name for subrange %s\n", name.u.string);
if (dwarf2_find_attribute(di, DW_AT_byte_size, &dummy)) FIXME("Found byte_size %Iu\n", dummy.u.uvalue);
if (dwarf2_find_attribute(di, DW_AT_bit_size, &dummy)) FIXME("Found bit_size %Iu\n", dummy.u.uvalue);
/* for now, we don't support the byte_size nor bit_size about the subrange, and pretend the two
* types are the same (FIXME)
*/
ref_type = dwarf2_lookup_type(di);
di->symt = ref_type;
if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n");
return di->symt;
}
static struct symt* dwarf2_parse_array_type(dwarf2_debug_info_t* di)
{
struct symt* ref_type;
struct symt* idx_type = NULL;
struct symt* symt = NULL;
struct attribute min, max, cnt;
dwarf2_debug_info_t* child;
unsigned int i, j;
const struct vector* children;
if (di->symt) return di->symt;
TRACE("%s\n", dwarf2_debug_di(di));
ref_type = dwarf2_lookup_type(di);
if (!(children = dwarf2_get_di_children(di)))
{
/* fake an array with unknown size */
/* FIXME: int4 even on 64bit machines??? */
idx_type = &symt_get_basic(btInt, 4)->symt;
min.u.uvalue = 0;
cnt.u.uvalue = 0;
}
else for (i = 0; i < vector_length(children); i++)
{
child = *(dwarf2_debug_info_t**)vector_at(children, i);
if (child->symt == &symt_get_basic(btNoType, 0)->symt) continue;
switch (child->abbrev->tag)
{
case DW_TAG_subrange_type:
idx_type = dwarf2_lookup_type(child);
if (!dwarf2_find_attribute(child, DW_AT_lower_bound, &min))
min.u.uvalue = 0;
if (dwarf2_find_attribute(child, DW_AT_upper_bound, &max))
cnt.u.uvalue = max.u.uvalue + 1 - min.u.uvalue;
else if (!dwarf2_find_attribute(child, DW_AT_count, &cnt))
cnt.u.uvalue = 0;
break;
case DW_TAG_enumeration_type:
symt = dwarf2_parse_enumeration_type(child);
if (symt_check_tag(symt, SymTagEnum))
{
struct symt_enum* enum_symt = (struct symt_enum*)symt;
idx_type = enum_symt->base_type;
min.u.uvalue = ~0U;
max.u.uvalue = ~0U;
for (j = 0; j < enum_symt->vchildren.num_elts; ++j)
{
struct symt** pc = vector_at(&enum_symt->vchildren, j);
if (pc && symt_check_tag(*pc, SymTagData))
{
struct symt_data* elt = (struct symt_data*)(*pc);
if (elt->u.value.n1.n2.n3.lVal < min.u.uvalue)
min.u.uvalue = elt->u.value.n1.n2.n3.lVal;
if (elt->u.value.n1.n2.n3.lVal > max.u.uvalue)
max.u.uvalue = elt->u.value.n1.n2.n3.lVal;
}
}
}
break;
default:
FIXME("Unhandled Tag type 0x%Ix at %s\n",
child->abbrev->tag, dwarf2_debug_di(di));
break;
}
}
di->symt = &symt_new_array(di->unit_ctx->module_ctx->module, min.u.uvalue, cnt.u.uvalue, ref_type, idx_type)->symt;
return di->symt;
}
static struct symt* dwarf2_parse_const_type(dwarf2_debug_info_t* di)
{
struct symt* ref_type;
if (di->symt) return di->symt;
TRACE("%s\n", dwarf2_debug_di(di));
ref_type = dwarf2_lookup_type(di);
if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n");
di->symt = ref_type;
return ref_type;
}
static struct symt* dwarf2_parse_volatile_type(dwarf2_debug_info_t* di)
{
struct symt* ref_type;
if (di->symt) return di->symt;
TRACE("%s\n", dwarf2_debug_di(di));
ref_type = dwarf2_lookup_type(di);
if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n");
di->symt = ref_type;
return ref_type;
}
static struct symt* dwarf2_parse_restrict_type(dwarf2_debug_info_t* di)
{
struct symt* ref_type;
if (di->symt) return di->symt;
TRACE("%s\n", dwarf2_debug_di(di));
ref_type = dwarf2_lookup_type(di);
if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n");
di->symt = ref_type;
return ref_type;
}
static struct symt* dwarf2_parse_unspecified_type(dwarf2_debug_info_t* di)
{
struct attribute name;
struct symt* basic;
TRACE("%s\n", dwarf2_debug_di(di));
if (di->symt) return di->symt;
basic = &symt_get_basic(btVoid, 0)->symt;
if (dwarf2_find_attribute(di, DW_AT_name, &name))
/* define the missing type as a typedef to void... */
di->symt = &symt_new_typedef(di->unit_ctx->module_ctx->module, basic, name.u.string)->symt;
else /* or use void if it doesn't even have a name */
di->symt = basic;
if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n");
return di->symt;
}
static struct symt* dwarf2_parse_reference_type(dwarf2_debug_info_t* di)
{
struct symt* ref_type = NULL;
if (di->symt) return di->symt;
TRACE("%s\n", dwarf2_debug_di(di));
ref_type = dwarf2_lookup_type(di);
/* FIXME: for now, we hard-wire C++ references to pointers */
di->symt = &symt_new_pointer(di->unit_ctx->module_ctx->module, ref_type,
di->unit_ctx->module_ctx->module->cpu->word_size)->symt;
if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n");
return di->symt;
}
static void dwarf2_parse_udt_member(dwarf2_debug_info_t* di,
struct symt_udt* parent)
{
struct symt* elt_type;
struct attribute name;
struct attribute bit_size;
struct attribute bit_offset;
struct location loc;
assert(parent);
TRACE("%s\n", dwarf2_debug_di(di));
if (!dwarf2_find_attribute(di, DW_AT_name, &name)) name.u.string = NULL;
elt_type = dwarf2_lookup_type(di);
if (dwarf2_compute_location_attr(di->unit_ctx, di, DW_AT_data_member_location, &loc, NULL))
{
if (loc.kind != loc_absolute)
{
FIXME("Unexpected offset computation for member %s in %ls!%s\n",
name.u.string, di->unit_ctx->module_ctx->module->modulename, parent->hash_elt.name);
loc.offset = 0;
}
else
TRACE("found member_location at %s -> %Iu\n",
dwarf2_debug_di(di), loc.offset);
}
else
loc.offset = 0;
if (!dwarf2_find_attribute(di, DW_AT_bit_size, &bit_size))
bit_size.u.uvalue = 0;
if (dwarf2_find_attribute(di, DW_AT_bit_offset, &bit_offset))
{
/* FIXME: we should only do this when implementation is LSB (which is
* the case on i386 processors)
*/
struct attribute nbytes;
if (!dwarf2_find_attribute(di, DW_AT_byte_size, &nbytes))
{
DWORD64 size;
nbytes.u.uvalue = symt_get_info(di->unit_ctx->module_ctx->module, elt_type, TI_GET_LENGTH, &size) ?
(ULONG_PTR)size : 0;
}
bit_offset.u.uvalue = nbytes.u.uvalue * 8 - bit_offset.u.uvalue - bit_size.u.uvalue;
}
else bit_offset.u.uvalue = 0;
symt_add_udt_element(di->unit_ctx->module_ctx->module, parent, name.u.string, elt_type,
loc.offset, bit_offset.u.uvalue,
bit_size.u.uvalue);
if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n");
}
static struct symt* dwarf2_parse_subprogram(dwarf2_debug_info_t* di);
static struct symt* dwarf2_parse_udt_type(dwarf2_debug_info_t* di,
enum UdtKind udt)
{
struct attribute name;
struct attribute size;
struct vector* children;
dwarf2_debug_info_t*child;
unsigned int i;
if (di->symt) return di->symt;
TRACE("%s\n", dwarf2_debug_di(di));
/* quirk... FIXME provide real support for anonymous UDTs */
if (!dwarf2_find_attribute(di, DW_AT_name, &name))
name.u.string = "zz_anon_zz";
if (!dwarf2_find_attribute(di, DW_AT_byte_size, &size)) size.u.uvalue = 0;
di->symt = &symt_new_udt(di->unit_ctx->module_ctx->module, dwarf2_get_cpp_name(di, name.u.string),
size.u.uvalue, udt)->symt;
children = dwarf2_get_di_children(di);
if (children) for (i = 0; i < vector_length(children); i++)
{
child = *(dwarf2_debug_info_t**)vector_at(children, i);
switch (child->abbrev->tag)
{
case DW_TAG_array_type:
dwarf2_parse_array_type(child);
break;
case DW_TAG_member:
/* FIXME: should I follow the sibling stuff ?? */
if (symt_check_tag(di->symt, SymTagUDT))
dwarf2_parse_udt_member(child, (struct symt_udt*)di->symt);
break;
case DW_TAG_enumeration_type:
dwarf2_parse_enumeration_type(child);
break;
case DW_TAG_subprogram:
dwarf2_parse_subprogram(child);
break;
case DW_TAG_const_type:
dwarf2_parse_const_type(child);
break;
case DW_TAG_volatile_type:
dwarf2_parse_volatile_type(child);
break;
case DW_TAG_pointer_type:
dwarf2_parse_pointer_type(child);
break;
case DW_TAG_subrange_type:
dwarf2_parse_subrange_type(child);
break;
case DW_TAG_structure_type:
case DW_TAG_class_type:
case DW_TAG_union_type:
case DW_TAG_typedef:
/* FIXME: we need to handle nested udt definitions */
case DW_TAG_inheritance:
case DW_TAG_interface_type:
case DW_TAG_template_type_param:
case DW_TAG_template_value_param:
case DW_TAG_variable:
case DW_TAG_imported_declaration:
case DW_TAG_ptr_to_member_type:
case DW_TAG_GNU_template_template_param:
case DW_TAG_GNU_template_parameter_pack:
case DW_TAG_GNU_formal_parameter_pack:
/* FIXME: some C++ related stuff */
break;
default:
FIXME("Unhandled Tag type 0x%Ix at %s\n",
child->abbrev->tag, dwarf2_debug_di(di));
break;
}
}
return di->symt;
}
static void dwarf2_parse_enumerator(dwarf2_debug_info_t* di,
struct symt_enum* parent)
{
struct attribute name;
struct attribute value;
TRACE("%s\n", dwarf2_debug_di(di));
if (!dwarf2_find_attribute(di, DW_AT_name, &name)) return;
if (!dwarf2_find_attribute(di, DW_AT_const_value, &value)) value.u.svalue = 0;
symt_add_enum_element(di->unit_ctx->module_ctx->module, parent, name.u.string, value.u.svalue);
if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n");
}
static struct symt* dwarf2_parse_enumeration_type(dwarf2_debug_info_t* di)
{
struct attribute name;
struct attribute attrtype;
dwarf2_debug_info_t*ditype;
struct symt* type;
struct vector* children;
dwarf2_debug_info_t*child;
unsigned int i;
if (di->symt) return di->symt;
TRACE("%s\n", dwarf2_debug_di(di));
if (!dwarf2_find_attribute(di, DW_AT_name, &name)) name.u.string = NULL;
if (dwarf2_find_attribute(di, DW_AT_type, &attrtype) && (ditype = dwarf2_jump_to_debug_info(&attrtype)) != NULL)
type = ditype->symt;
else /* no type found for this enumeration, construct it from size */
{
struct attribute size;
struct symt_basic* basetype;
if (!dwarf2_find_attribute(di, DW_AT_byte_size, &size)) size.u.uvalue = 4;
switch (size.u.uvalue) /* FIXME: that's wrong */
{
case 1: basetype = symt_get_basic(btInt, 1); break;
case 2: basetype = symt_get_basic(btInt, 2); break;
default:
case 4: basetype = symt_get_basic(btInt, 4); break;
}
type = &basetype->symt;
}
di->symt = &symt_new_enum(di->unit_ctx->module_ctx->module, name.u.string, type)->symt;
children = dwarf2_get_di_children(di);
if (children) for (i = 0; i < vector_length(children); i++)
{
child = *(dwarf2_debug_info_t**)vector_at(children, i);
switch (child->abbrev->tag)
{
case DW_TAG_enumerator:
if (symt_check_tag(di->symt, SymTagEnum))
dwarf2_parse_enumerator(child, (struct symt_enum*)di->symt);
break;
default:
FIXME("Unhandled Tag type 0x%Ix at %s\n",
di->abbrev->tag, dwarf2_debug_di(di));
}
}
return di->symt;
}
/* structure used to pass information around when parsing a subprogram */
typedef struct dwarf2_subprogram_s
{
dwarf2_parse_context_t* ctx;
struct symt_function* top_func;
struct symt_function* current_func; /* either symt_function* or symt_inlinesite* */
struct symt_block* current_block;
BOOL non_computed_variable;
struct location frame;
} dwarf2_subprogram_t;
/******************************************************************
* dwarf2_parse_variable
*
* Parses any variable (parameter, local/global variable)
*/
static void dwarf2_parse_variable(dwarf2_subprogram_t* subpgm,
dwarf2_debug_info_t* di)
{
struct symt* param_type;
struct attribute name, value;
struct location loc;
BOOL is_pmt;
TRACE("%s\n", dwarf2_debug_di(di));
is_pmt = !subpgm->current_block && di->abbrev->tag == DW_TAG_formal_parameter;
param_type = dwarf2_lookup_type(di);
if (!dwarf2_find_attribute(di, DW_AT_name, &name)) {
/* cannot do much without the name, the functions below won't like it. */
return;
}
if (dwarf2_compute_location_attr(subpgm->ctx, di, DW_AT_location,
&loc, &subpgm->frame))
{
struct attribute ext;
TRACE("found parameter %s (kind=%d, offset=%Id, reg=%d) at %s\n",
debugstr_a(name.u.string), loc.kind, loc.offset, loc.reg,
dwarf2_debug_unit_ctx(subpgm->ctx));
switch (loc.kind)
{
case loc_error:
break;
case loc_absolute:
/* it's a global variable */
/* FIXME: we don't handle its scope yet */
if (!dwarf2_find_attribute(di, DW_AT_external, &ext))
ext.u.uvalue = 0;
loc.offset += subpgm->ctx->module_ctx->load_offset;
symt_new_global_variable(subpgm->ctx->module_ctx->module, subpgm->ctx->compiland,
dwarf2_get_cpp_name(di, name.u.string), !ext.u.uvalue,
loc, 0, param_type);
break;
default:
subpgm->non_computed_variable = TRUE;
/* fall through */
case loc_register:
case loc_regrel:
/* either a pmt/variable relative to frame pointer or
* pmt/variable in a register
*/
if (subpgm->current_func)
symt_add_func_local(subpgm->ctx->module_ctx->module, subpgm->current_func,
is_pmt ? DataIsParam : DataIsLocal,
&loc, subpgm->current_block, param_type, name.u.string);
break;
}
}
else if (dwarf2_find_attribute(di, DW_AT_const_value, &value))
{
VARIANT v;
switch (value.form)
{
case DW_FORM_data1:
case DW_FORM_data2:
case DW_FORM_data4:
case DW_FORM_udata:
case DW_FORM_addr:
V_VT(&v) = VT_UI4;
V_UI4(&v) = value.u.uvalue;
break;
case DW_FORM_data8:
case DW_FORM_sec_offset:
V_VT(&v) = VT_UI8;
V_UI8(&v) = value.u.lluvalue;
break;
case DW_FORM_sdata:
V_VT(&v) = VT_I4;
V_I4(&v) = value.u.svalue;
break;
case DW_FORM_strp:
case DW_FORM_string:
/* FIXME: native doesn't report const strings from here !!
* however, the value of the string is in the code somewhere
*/
V_VT(&v) = VT_BYREF;
V_BYREF(&v) = pool_strdup(&subpgm->ctx->module_ctx->module->pool, value.u.string);
break;
case DW_FORM_block:
case DW_FORM_block1:
case DW_FORM_block2:
case DW_FORM_block4:
case DW_FORM_exprloc:
V_VT(&v) = VT_I4;
switch (value.u.block.size)
{
case 1: V_I4(&v) = *(BYTE*)value.u.block.ptr; break;
case 2: V_I4(&v) = *(USHORT*)value.u.block.ptr; break;
case 4: V_I4(&v) = *(DWORD*)value.u.block.ptr; break;
default:
V_VT(&v) = VT_BYREF;
V_BYREF(&v) = pool_alloc(&subpgm->ctx->module_ctx->module->pool, value.u.block.size);
memcpy(V_BYREF(&v), value.u.block.ptr, value.u.block.size);
}
break;
default:
FIXME("Unsupported form for const value %s (%Ix)\n",
debugstr_a(name.u.string), value.form);
V_VT(&v) = VT_EMPTY;
}
if (subpgm->current_func)
{
if (is_pmt) WARN("Constant parameter %s reported as local variable in function '%s'\n",
debugstr_a(name.u.string), subpgm->current_func->hash_elt.name);
di->symt = &symt_add_func_constant(subpgm->ctx->module_ctx->module,
subpgm->current_func, subpgm->current_block,
param_type, name.u.string, &v)->symt;
}
else
di->symt = &symt_new_constant(subpgm->ctx->module_ctx->module, subpgm->ctx->compiland,
name.u.string, param_type, &v)->symt;
}
else
{
if (subpgm->current_func)
{
/* local variable has been optimized away... report anyway */
loc.kind = loc_error;
loc.reg = loc_err_no_location;
symt_add_func_local(subpgm->ctx->module_ctx->module, subpgm->current_func,
is_pmt ? DataIsParam : DataIsLocal,
&loc, subpgm->current_block, param_type, name.u.string);
}
else
{
struct attribute is_decl;
/* only warn when di doesn't represent a declaration */
if (!dwarf2_find_attribute(di, DW_AT_declaration, &is_decl) ||
!is_decl.u.uvalue || is_decl.gotten_from != attr_direct)
WARN("dropping global variable %s which has been optimized away\n", debugstr_a(name.u.string));
}
}
if (is_pmt && subpgm->current_func && symt_check_tag(subpgm->current_func->type, SymTagFunctionType))
symt_add_function_signature_parameter(subpgm->ctx->module_ctx->module,
(struct symt_function_signature*)subpgm->current_func->type,
param_type);
if (dwarf2_get_di_children(di)) FIXME("Unsupported children\n");
}
static void dwarf2_parse_subprogram_label(dwarf2_subprogram_t* subpgm,
const dwarf2_debug_info_t* di)
{
struct attribute name;
struct attribute low_pc;
struct location loc;
TRACE("%s\n", dwarf2_debug_di(di));
if (!dwarf2_find_attribute(di, DW_AT_name, &name))
name.u.string = NULL;
if (dwarf2_find_attribute(di, DW_AT_low_pc, &low_pc))
{
loc.kind = loc_absolute;
loc.offset = subpgm->ctx->module_ctx->load_offset + low_pc.u.uvalue - subpgm->top_func->address;
symt_add_function_point(subpgm->ctx->module_ctx->module, subpgm->top_func, SymTagLabel,
&loc, name.u.string);
}
else
WARN("Label %s inside function %s doesn't have an address... don't register it\n",
name.u.string, subpgm->top_func->hash_elt.name);
}
static void dwarf2_parse_subprogram_block(dwarf2_subprogram_t* subpgm,
dwarf2_debug_info_t* di);
static struct symt* dwarf2_parse_subroutine_type(dwarf2_debug_info_t* di);
static void dwarf2_parse_inlined_subroutine(dwarf2_subprogram_t* subpgm,
dwarf2_debug_info_t* di)
{
struct attribute name;
ULONG_PTR low_pc, high_pc;
struct symt* ret_type;
struct symt_function_signature* sig_type;
struct symt_inlinesite* inlined;
struct vector* children;
dwarf2_debug_info_t*child;
unsigned int i;
struct addr_range* adranges;
unsigned num_adranges;
TRACE("%s\n", dwarf2_debug_di(di));
if (!dwarf2_read_range(subpgm->ctx, di, &low_pc, &high_pc))
{
WARN("cannot read range\n");
return;
}
if (!dwarf2_find_attribute(di, DW_AT_name, &name))
{
FIXME("No name for function... dropping function\n");
return;
}
ret_type = dwarf2_lookup_type(di);
/* FIXME: assuming C source code */
sig_type = symt_new_function_signature(subpgm->ctx->module_ctx->module, ret_type, CV_CALL_FAR_C);
inlined = symt_new_inlinesite(subpgm->ctx->module_ctx->module,
subpgm->top_func,
subpgm->current_block ? &subpgm->current_block->symt : &subpgm->current_func->symt,
dwarf2_get_cpp_name(di, name.u.string),
subpgm->ctx->module_ctx->load_offset + low_pc,
&sig_type->symt);
subpgm->current_func = (struct symt_function*)inlined;
subpgm->current_block = NULL;
if ((adranges = dwarf2_get_ranges(di, &num_adranges)) != NULL)
{
for (i = 0; i < num_adranges; ++i)
symt_add_inlinesite_range(subpgm->ctx->module_ctx->module, inlined,
adranges[i].low, adranges[i].high);
free(adranges);
}
else
WARN("cannot read ranges\n");
children = dwarf2_get_di_children(di);
if (children) for (i = 0; i < vector_length(children); i++)
{
child = *(dwarf2_debug_info_t**)vector_at(children, i);
switch (child->abbrev->tag)
{
case DW_TAG_formal_parameter:
case DW_TAG_variable:
dwarf2_parse_variable(subpgm, child);
break;
case DW_TAG_lexical_block:
dwarf2_parse_subprogram_block(subpgm, child);
break;
case DW_TAG_inlined_subroutine:
dwarf2_parse_inlined_subroutine(subpgm, child);
break;
case DW_TAG_label:
dwarf2_parse_subprogram_label(subpgm, child);
break;
case DW_TAG_GNU_call_site:
/* this isn't properly supported by dbghelp interface. skip it for now */
break;
default:
FIXME("Unhandled Tag type 0x%Ix at %s\n",
child->abbrev->tag, dwarf2_debug_di(di));
}
}
subpgm->current_block = symt_check_tag(subpgm->current_func->container, SymTagBlock) ?
(struct symt_block*)subpgm->current_func->container : NULL;
subpgm->current_func = (struct symt_function*)symt_get_upper_inlined((struct symt_inlinesite*)subpgm->current_func);
}
static void dwarf2_parse_subprogram_block(dwarf2_subprogram_t* subpgm,
dwarf2_debug_info_t* di)
{
ULONG_PTR low_pc, high_pc;
struct vector* children;
dwarf2_debug_info_t*child;
unsigned int i;
TRACE("%s\n", dwarf2_debug_di(di));
if (!dwarf2_read_range(subpgm->ctx, di, &low_pc, &high_pc))
{
WARN("no range\n");
return;
}
subpgm->current_block = symt_open_func_block(subpgm->ctx->module_ctx->module, subpgm->current_func, subpgm->current_block,
subpgm->ctx->module_ctx->load_offset + low_pc - subpgm->current_func->address,
high_pc - low_pc);
children = dwarf2_get_di_children(di);
if (children) for (i = 0; i < vector_length(children); i++)
{
child = *(dwarf2_debug_info_t**)vector_at(children, i);
switch (child->abbrev->tag)
{
case DW_TAG_inlined_subroutine:
dwarf2_parse_inlined_subroutine(subpgm, child);
break;
case DW_TAG_variable:
dwarf2_parse_variable(subpgm, child);
break;
case DW_TAG_pointer_type:
dwarf2_parse_pointer_type(child);
break;
case DW_TAG_subroutine_type:
dwarf2_parse_subroutine_type(child);
break;
case DW_TAG_const_type:
dwarf2_parse_const_type(child);
break;
case DW_TAG_lexical_block:
dwarf2_parse_subprogram_block(subpgm, child);
break;
case DW_TAG_subprogram:
/* FIXME: likely a declaration (to be checked)
* skip it for now
*/
break;
case DW_TAG_formal_parameter:
/* FIXME: likely elements for exception handling (GCC flavor)
* Skip it for now
*/
break;
case DW_TAG_imported_module:
/* C++ stuff to be silenced (for now) */
break;
case DW_TAG_GNU_call_site:
/* this isn't properly supported by dbghelp interface. skip it for now */
break;
case DW_TAG_label:
dwarf2_parse_subprogram_label(subpgm, child);
break;
case DW_TAG_class_type:
case DW_TAG_structure_type:
case DW_TAG_union_type:
case DW_TAG_enumeration_type:
case DW_TAG_typedef:
/* the type referred to will be loaded when we need it, so skip it */
break;
default:
FIXME("Unhandled Tag type 0x%Ix at %s\n",
child->abbrev->tag, dwarf2_debug_di(di));
}
}
symt_close_func_block(subpgm->ctx->module_ctx->module, subpgm->current_func, subpgm->current_block, 0);
subpgm->current_block = symt_check_tag(subpgm->current_block->container, SymTagBlock) ?
(struct symt_block*)subpgm->current_block->container : NULL;
}
static struct symt* dwarf2_parse_subprogram(dwarf2_debug_info_t* di)
{
struct attribute name;
struct addr_range* addr_ranges;
unsigned num_addr_ranges;
struct attribute is_decl;
struct attribute inline_flags;
struct symt* ret_type;
struct symt_function_signature* sig_type;
dwarf2_subprogram_t subpgm;
struct vector* children;
dwarf2_debug_info_t* child;
unsigned int i;
if (di->symt) return di->symt;
TRACE("%s\n", dwarf2_debug_di(di));
if (!dwarf2_find_attribute(di, DW_AT_name, &name))
{
WARN("No name for function... dropping function\n");
return NULL;
}
/* if it's an abstract representation of an inline function, there should be
* a concrete object that we'll handle
*/
if (dwarf2_find_attribute(di, DW_AT_inline, &inline_flags) &&
inline_flags.gotten_from == attr_direct &&
inline_flags.u.uvalue != DW_INL_not_inlined)
{
TRACE("Function %s declared as inlined (%Id)... skipping\n",
debugstr_a(name.u.string), inline_flags.u.uvalue);
return NULL;
}
if (dwarf2_find_attribute(di, DW_AT_declaration, &is_decl) &&
is_decl.u.uvalue && is_decl.gotten_from == attr_direct)
{
/* it's a real declaration, skip it */
return NULL;
}
if ((addr_ranges = dwarf2_get_ranges(di, &num_addr_ranges)) == NULL)
{
WARN("cannot get range for %s\n", debugstr_a(name.u.string));
return NULL;
}
/* As functions (defined as inline assembly) get debug info with dwarf
* (not the case for stabs), we just drop Wine's thunks here...
* Actual thunks will be created in elf_module from the symbol table
*/
if (elf_is_in_thunk_area(di->unit_ctx->module_ctx->load_offset + addr_ranges[0].low, di->unit_ctx->module_ctx->thunks) >= 0)
{
free(addr_ranges);
return NULL;
}
ret_type = dwarf2_lookup_type(di);
/* FIXME: assuming C source code */
sig_type = symt_new_function_signature(di->unit_ctx->module_ctx->module, ret_type, CV_CALL_FAR_C);
subpgm.top_func = symt_new_function(di->unit_ctx->module_ctx->module, di->unit_ctx->compiland,
dwarf2_get_cpp_name(di, name.u.string),
addr_ranges[0].low, addr_ranges[0].high - addr_ranges[0].low, &sig_type->symt);
if (num_addr_ranges > 1)
WARN("Function %s has multiple address ranges, only using the first one\n", name.u.string);
free(addr_ranges);
subpgm.current_func = subpgm.top_func;
di->symt = &subpgm.top_func->symt;
subpgm.ctx = di->unit_ctx;
if (!dwarf2_compute_location_attr(di->unit_ctx, di, DW_AT_frame_base,
&subpgm.frame, NULL))
{
/* on stack !! */
subpgm.frame.kind = loc_regrel;
subpgm.frame.reg = di->unit_ctx->module_ctx->module->cpu->frame_regno;
subpgm.frame.offset = 0;
}
subpgm.non_computed_variable = FALSE;
subpgm.current_block = NULL;
children = dwarf2_get_di_children(di);
if (children) for (i = 0; i < vector_length(children); i++)
{
child = *(dwarf2_debug_info_t**)vector_at(children, i);
switch (child->abbrev->tag)
{
case DW_TAG_variable:
case DW_TAG_formal_parameter:
dwarf2_parse_variable(&subpgm, child);
break;
case DW_TAG_lexical_block:
dwarf2_parse_subprogram_block(&subpgm, child);
break;
case DW_TAG_inlined_subroutine:
dwarf2_parse_inlined_subroutine(&subpgm, child);
break;
case DW_TAG_pointer_type:
dwarf2_parse_pointer_type(child);
break;
case DW_TAG_const_type:
dwarf2_parse_const_type(child);
break;
case DW_TAG_subprogram:
/* FIXME: likely a declaration (to be checked)
* skip it for now
*/
break;
case DW_TAG_label:
dwarf2_parse_subprogram_label(&subpgm, child);
break;
case DW_TAG_class_type:
case DW_TAG_structure_type:
case DW_TAG_union_type:
case DW_TAG_enumeration_type:
case DW_TAG_typedef:
/* the type referred to will be loaded when we need it, so skip it */
break;
case DW_TAG_unspecified_parameters:
case DW_TAG_template_type_param:
case DW_TAG_template_value_param:
case DW_TAG_GNU_call_site:
case DW_TAG_GNU_template_parameter_pack:
case DW_TAG_GNU_formal_parameter_pack:
/* FIXME: no support in dbghelp's internals so far */
break;
default:
FIXME("Unhandled Tag type 0x%Ix at %s\n",
child->abbrev->tag, dwarf2_debug_di(di));
}
}
if (subpgm.non_computed_variable || subpgm.frame.kind >= loc_user)
{
symt_add_function_point(di->unit_ctx->module_ctx->module, subpgm.top_func, SymTagCustom,
&subpgm.frame, NULL);
}
return di->symt;
}
static struct symt* dwarf2_parse_subroutine_type(dwarf2_debug_info_t* di)
{
struct symt* ret_type;
struct symt_function_signature* sig_type;
struct vector* children;
dwarf2_debug_info_t* child;
unsigned int i;
if (di->symt) return di->symt;
TRACE("%s\n", dwarf2_debug_di(di));
ret_type = dwarf2_lookup_type(di);
/* FIXME: assuming C source code */
sig_type = symt_new_function_signature(di->unit_ctx->module_ctx->module, ret_type, CV_CALL_FAR_C);
children = dwarf2_get_di_children(di);
if (children) for (i = 0; i < vector_length(children); i++)
{
child = *(dwarf2_debug_info_t**)vector_at(children, i);
switch (child->abbrev->tag)
{
case DW_TAG_formal_parameter:
symt_add_function_signature_parameter(di->unit_ctx->module_ctx->module, sig_type,
dwarf2_lookup_type(child));
break;
case DW_TAG_unspecified_parameters:
WARN("Unsupported unspecified parameters\n");
break;
}
}
return di->symt = &sig_type->symt;
}
static void dwarf2_parse_namespace(dwarf2_debug_info_t* di)
{
struct vector* children;
dwarf2_debug_info_t* child;
unsigned int i;
if (di->symt) return;
TRACE("%s\n", dwarf2_debug_di(di));
di->symt = &symt_get_basic(btVoid, 0)->symt;
children = dwarf2_get_di_children(di);
if (children) for (i = 0; i < vector_length(children); i++)
{
child = *(dwarf2_debug_info_t**)vector_at(children, i);
dwarf2_load_one_entry(child);
}
}
static void dwarf2_parse_imported_unit(dwarf2_debug_info_t* di)
{
struct attribute imp;
if (di->symt) return;
TRACE("%s\n", dwarf2_debug_di(di));
if (dwarf2_find_attribute(di, DW_AT_import, &imp))
{
dwarf2_debug_info_t* jmp = dwarf2_jump_to_debug_info(&imp);
if (jmp) di->symt = jmp->symt;
else FIXME("Couldn't load imported CU\n");
}
else
FIXME("Couldn't find import attribute\n");
}
static void dwarf2_load_one_entry(dwarf2_debug_info_t* di)
{
switch (di->abbrev->tag)
{
case DW_TAG_typedef:
dwarf2_parse_typedef(di);
break;
case DW_TAG_base_type:
dwarf2_parse_base_type(di);
break;
case DW_TAG_pointer_type:
dwarf2_parse_pointer_type(di);
break;
case DW_TAG_class_type:
dwarf2_parse_udt_type(di, UdtClass);
break;
case DW_TAG_structure_type:
dwarf2_parse_udt_type(di, UdtStruct);
break;
case DW_TAG_union_type:
dwarf2_parse_udt_type(di, UdtUnion);
break;
case DW_TAG_array_type:
dwarf2_parse_array_type(di);
break;
case DW_TAG_const_type:
dwarf2_parse_const_type(di);
break;
case DW_TAG_volatile_type:
dwarf2_parse_volatile_type(di);
break;
case DW_TAG_restrict_type:
dwarf2_parse_restrict_type(di);
break;
case DW_TAG_unspecified_type:
dwarf2_parse_unspecified_type(di);
break;
case DW_TAG_reference_type:
case DW_TAG_rvalue_reference_type:
dwarf2_parse_reference_type(di);
break;
case DW_TAG_enumeration_type:
dwarf2_parse_enumeration_type(di);
break;
case DW_TAG_subprogram:
dwarf2_parse_subprogram(di);
break;
case DW_TAG_subroutine_type:
dwarf2_parse_subroutine_type(di);
break;
case DW_TAG_variable:
{
dwarf2_subprogram_t subpgm;
subpgm.ctx = di->unit_ctx;
subpgm.top_func = subpgm.current_func = NULL;
subpgm.current_block = NULL;
subpgm.frame.kind = loc_absolute;
subpgm.frame.offset = 0;
subpgm.frame.reg = Wine_DW_no_register;
dwarf2_parse_variable(&subpgm, di);
}
break;
case DW_TAG_namespace:
dwarf2_parse_namespace(di);
break;
case DW_TAG_subrange_type:
dwarf2_parse_subrange_type(di);
break;
case DW_TAG_imported_unit:
dwarf2_parse_imported_unit(di);
break;
/* keep it silent until we need DW_OP_call_xxx support */
case DW_TAG_dwarf_procedure:
/* silence a couple of non-C language defines (mainly C++ but others too) */
case DW_TAG_imported_module:
case DW_TAG_imported_declaration:
case DW_TAG_interface_type:
case DW_TAG_module:
case DW_TAG_ptr_to_member_type:
break;
default:
FIXME("Unhandled Tag type 0x%Ix at %s\n",
di->abbrev->tag, dwarf2_debug_di(di));
}
}
static void dwarf2_set_line_number(struct module* module, ULONG_PTR address,
const struct vector* v, unsigned file, unsigned line)
{
struct symt_function* func;
struct symt_inlinesite* inlined;
struct symt_ht* symt;
unsigned* psrc;
if (!file || !(psrc = vector_at(v, file - 1))) return;
TRACE("%s %Ix %s %u\n",
debugstr_w(module->modulename), address, debugstr_a(source_get(module, *psrc)), line);
symt = symt_find_symbol_at(module, address);
if (symt_check_tag(&symt->symt, SymTagFunction))
{
func = (struct symt_function*)symt;
for (inlined = func->next_inlinesite; inlined; inlined = inlined->func.next_inlinesite)
{
int i;
for (i = 0; i < inlined->vranges.num_elts; ++i)
{
struct addr_range* ar = (struct addr_range*)vector_at(&inlined->vranges, i);
if (ar->low <= address && address < ar->high)
{
symt_add_func_line(module, &inlined->func, *psrc, line, address);
return; /* only add to lowest matching inline site */
}
}
}
symt_add_func_line(module, func, *psrc, line, address);
}
}
static BOOL dwarf2_parse_line_numbers(dwarf2_parse_context_t* ctx,
const char* compile_dir,
ULONG_PTR offset)
{
dwarf2_traverse_context_t traverse;
ULONG_PTR length;
unsigned insn_size, version, default_stmt;
unsigned line_range, opcode_base;
int line_base;
unsigned char offset_size;
const unsigned char* opcode_len;
struct vector dirs;
struct vector files;
const char** p;
/* section with line numbers stripped */
if (ctx->module_ctx->sections[section_line].address == IMAGE_NO_MAP)
return FALSE;
if (offset + 4 > ctx->module_ctx->sections[section_line].size)
{
WARN("out of bounds offset\n");
return FALSE;
}
traverse.data = ctx->module_ctx->sections[section_line].address + offset;
traverse.end_data = ctx->module_ctx->sections[section_line].address + ctx->module_ctx->sections[section_line].size;
length = dwarf2_parse_3264(&traverse, &offset_size);
if (offset_size != ctx->head.offset_size)
{
WARN("Mismatch in 32/64 bit format\n");
return FALSE;
}
traverse.end_data = traverse.data + length;
if (traverse.end_data > ctx->module_ctx->sections[section_line].address + ctx->module_ctx->sections[section_line].size)
{
WARN("out of bounds header\n");
return FALSE;
}
version = dwarf2_parse_u2(&traverse);
dwarf2_parse_offset(&traverse, offset_size); /* header_len */
insn_size = dwarf2_parse_byte(&traverse);
if (version >= 4)
dwarf2_parse_byte(&traverse); /* max_operations_per_instructions */
default_stmt = dwarf2_parse_byte(&traverse);
line_base = (signed char)dwarf2_parse_byte(&traverse);
line_range = dwarf2_parse_byte(&traverse);
opcode_base = dwarf2_parse_byte(&traverse);
opcode_len = traverse.data;
traverse.data += opcode_base - 1;
vector_init(&dirs, sizeof(const char*), 4);
p = vector_add(&dirs, &ctx->pool);
*p = compile_dir ? compile_dir : ".";
while (traverse.data < traverse.end_data && *traverse.data)
{
const char* rel = (const char*)traverse.data;
unsigned rellen = strlen(rel);
TRACE("Got include %s\n", debugstr_a(rel));
traverse.data += rellen + 1;
p = vector_add(&dirs, &ctx->pool);
if (*rel == '/' || !compile_dir || !*compile_dir)
*p = rel;
else
{
/* include directory relative to compile directory */
unsigned baselen = strlen(compile_dir);
char* tmp = pool_alloc(&ctx->pool, baselen + 1 + rellen + 1);
strcpy(tmp, compile_dir);
if (baselen && tmp[baselen - 1] != '/') tmp[baselen++] = '/';
strcpy(&tmp[baselen], rel);
*p = tmp;
}
}
traverse.data++;
vector_init(&files, sizeof(unsigned), 16);
while (traverse.data < traverse.end_data && *traverse.data)
{
unsigned int dir_index, mod_time;
const char* name;
const char* dir;
unsigned* psrc;
name = (const char*)traverse.data;
traverse.data += strlen(name) + 1;
dir_index = dwarf2_leb128_as_unsigned(&traverse);
mod_time = dwarf2_leb128_as_unsigned(&traverse);
length = dwarf2_leb128_as_unsigned(&traverse);
dir = *(const char**)vector_at(&dirs, dir_index);
TRACE("Got file %s/%s (%u,%Iu)\n", debugstr_a(dir), debugstr_a(name), mod_time, length);
psrc = vector_add(&files, &ctx->pool);
*psrc = source_new(ctx->module_ctx->module, dir, name);
}
traverse.data++;
while (traverse.data < traverse.end_data && *traverse.data)
{
ULONG_PTR address = 0;
unsigned file = 1;
unsigned line = 1;
unsigned is_stmt = default_stmt;
BOOL end_sequence = FALSE;
unsigned opcode, extopcode, i;
while (!end_sequence)
{
opcode = dwarf2_parse_byte(&traverse);
TRACE("Got opcode %x\n", opcode);
if (opcode >= opcode_base)
{
unsigned delta = opcode - opcode_base;
address += (delta / line_range) * insn_size;
line += line_base + (delta % line_range);
dwarf2_set_line_number(ctx->module_ctx->module, address, &files, file, line);
}
else
{
switch (opcode)
{
case DW_LNS_copy:
dwarf2_set_line_number(ctx->module_ctx->module, address, &files, file, line);
break;
case DW_LNS_advance_pc:
address += insn_size * dwarf2_leb128_as_unsigned(&traverse);
break;
case DW_LNS_advance_line:
line += dwarf2_leb128_as_signed(&traverse);
break;
case DW_LNS_set_file:
file = dwarf2_leb128_as_unsigned(&traverse);
break;
case DW_LNS_set_column:
dwarf2_leb128_as_unsigned(&traverse);
break;
case DW_LNS_negate_stmt:
is_stmt = !is_stmt;
break;
case DW_LNS_set_basic_block:
break;
case DW_LNS_const_add_pc:
address += ((255 - opcode_base) / line_range) * insn_size;
break;
case DW_LNS_fixed_advance_pc:
address += dwarf2_parse_u2(&traverse);
break;
case DW_LNS_extended_op:
dwarf2_leb128_as_unsigned(&traverse);
extopcode = dwarf2_parse_byte(&traverse);
switch (extopcode)
{
case DW_LNE_end_sequence:
dwarf2_set_line_number(ctx->module_ctx->module, address, &files, file, line);
end_sequence = TRUE;
break;
case DW_LNE_set_address:
address = ctx->module_ctx->load_offset + dwarf2_parse_addr_head(&traverse, &ctx->head);
break;
case DW_LNE_define_file:
FIXME("not handled define file %s\n", debugstr_a((char *)traverse.data));
traverse.data += strlen((const char *)traverse.data) + 1;
dwarf2_leb128_as_unsigned(&traverse);
dwarf2_leb128_as_unsigned(&traverse);
dwarf2_leb128_as_unsigned(&traverse);
break;
case DW_LNE_set_discriminator:
{
unsigned descr;
descr = dwarf2_leb128_as_unsigned(&traverse);
WARN("not handled discriminator %x\n", descr);
}
break;
default:
FIXME("Unsupported extended opcode %x\n", extopcode);
break;
}
break;
default:
WARN("Unsupported opcode %x\n", opcode);
for (i = 0; i < opcode_len[opcode]; i++)
dwarf2_leb128_as_unsigned(&traverse);
break;
}
}
}
}
return TRUE;
}
unsigned dwarf2_cache_cuhead(struct dwarf2_module_info_s* module, struct symt_compiland* c, const dwarf2_cuhead_t* head)
{
dwarf2_cuhead_t* ah;
unsigned i;
for (i = 0; i < module->num_cuheads; ++i)
{
if (memcmp(module->cuheads[i], head, sizeof(*head)) == 0)
{
c->user = module->cuheads[i];
return TRUE;
}
}
if (!(ah = pool_alloc(&c->container->module->pool, sizeof(*head)))) return FALSE;
memcpy(ah, head, sizeof(*head));
module->cuheads = realloc(module->cuheads, ++module->num_cuheads * sizeof(head));
module->cuheads[module->num_cuheads - 1] = ah;
c->user = ah;
return TRUE;
}
static dwarf2_parse_context_t* dwarf2_locate_cu(dwarf2_parse_module_context_t* module_ctx, ULONG_PTR ref)
{
unsigned i;
dwarf2_parse_context_t* ctx;
const BYTE* where;
for (i = 0; i < module_ctx->unit_contexts.num_elts; ++i)
{
ctx = vector_at(&module_ctx->unit_contexts, i);
where = module_ctx->sections[ctx->section].address + ref;
if (where >= ctx->traverse_DIE.data && where < ctx->traverse_DIE.end_data)
return ctx;
}
FIXME("Couldn't find ref 0x%Ix inside sect\n", ref);
return NULL;
}
static BOOL dwarf2_parse_compilation_unit_head(dwarf2_parse_context_t* ctx,
dwarf2_traverse_context_t* mod_ctx)
{
dwarf2_traverse_context_t abbrev_ctx;
const unsigned char* comp_unit_start = mod_ctx->data;
ULONG_PTR cu_length;
ULONG_PTR cu_abbrev_offset;
/* FIXME this is a temporary configuration while adding support for dwarf3&4 bits */
static LONG max_supported_dwarf_version = 0;
cu_length = dwarf2_parse_3264(mod_ctx, &ctx->head.offset_size);
ctx->traverse_DIE.data = mod_ctx->data;
ctx->traverse_DIE.end_data = mod_ctx->data + cu_length;
mod_ctx->data += cu_length;
ctx->head.version = dwarf2_parse_u2(&ctx->traverse_DIE);
cu_abbrev_offset = dwarf2_parse_offset(&ctx->traverse_DIE, ctx->head.offset_size);
ctx->head.word_size = dwarf2_parse_byte(&ctx->traverse_DIE);
ctx->status = UNIT_ERROR;
TRACE("Compilation Unit Header found at 0x%x:\n",
(int)(comp_unit_start - ctx->module_ctx->sections[section_debug].address));
TRACE("- length: %Iu\n", cu_length);
TRACE("- version: %u\n", ctx->head.version);
TRACE("- abbrev_offset: %Iu\n", cu_abbrev_offset);
TRACE("- word_size: %u\n", ctx->head.word_size);
TRACE("- offset_size: %u\n", ctx->head.offset_size);
if (ctx->head.version >= 2)
ctx->module_ctx->cu_versions |= 1 << (ctx->head.version - 2);
if (max_supported_dwarf_version == 0)
{
char* env = getenv("DBGHELP_DWARF_VERSION");
LONG v = env ? atol(env) : 4;
max_supported_dwarf_version = (v >= 2 && v <= 4) ? v : 4;
}
if (ctx->head.version < 2 || ctx->head.version > max_supported_dwarf_version)
{
WARN("DWARF version %d isn't supported. Wine dbghelp only supports DWARF 2 up to %lu.\n",
ctx->head.version, max_supported_dwarf_version);
return FALSE;
}
pool_init(&ctx->pool, 65536);
ctx->section = section_debug;
ctx->ref_offset = comp_unit_start - ctx->module_ctx->sections[section_debug].address;
ctx->cpp_name = NULL;
ctx->status = UNIT_NOTLOADED;
abbrev_ctx.data = ctx->module_ctx->sections[section_abbrev].address + cu_abbrev_offset;
abbrev_ctx.end_data = ctx->module_ctx->sections[section_abbrev].address + ctx->module_ctx->sections[section_abbrev].size;
dwarf2_parse_abbrev_set(&abbrev_ctx, &ctx->abbrev_table, &ctx->pool);
sparse_array_init(&ctx->debug_info_table, sizeof(dwarf2_debug_info_t), 128);
return TRUE;
}
static BOOL dwarf2_parse_compilation_unit(dwarf2_parse_context_t* ctx)
{
dwarf2_debug_info_t* di;
dwarf2_traverse_context_t cu_ctx = ctx->traverse_DIE;
BOOL ret = FALSE;
switch (ctx->status)
{
case UNIT_ERROR: return FALSE;
case UNIT_BEINGLOADED:
FIXME("Circular deps on CU\n");
/* fall through */
case UNIT_LOADED:
case UNIT_LOADED_FAIL:
return TRUE;
case UNIT_NOTLOADED: break;
}
ctx->status = UNIT_BEINGLOADED;
if (dwarf2_read_one_debug_info(ctx, &cu_ctx, NULL, &di))
{
if (di->abbrev->tag == DW_TAG_compile_unit || di->abbrev->tag == DW_TAG_partial_unit)
{
struct attribute name;
struct vector* children;
dwarf2_debug_info_t* child = NULL;
unsigned int i;
struct attribute stmt_list, low_pc;
struct attribute comp_dir;
struct attribute language;
if (!dwarf2_find_attribute(di, DW_AT_name, &name))
name.u.string = NULL;
/* get working directory of current compilation unit */
if (!dwarf2_find_attribute(di, DW_AT_comp_dir, &comp_dir))
comp_dir.u.string = NULL;
if (!dwarf2_find_attribute(di, DW_AT_low_pc, &low_pc))
low_pc.u.uvalue = 0;
if (!dwarf2_find_attribute(di, DW_AT_language, &language))
language.u.uvalue = DW_LANG_C;
ctx->language = language.u.uvalue;
ctx->compiland = symt_new_compiland(ctx->module_ctx->module, ctx->module_ctx->load_offset + low_pc.u.uvalue,
source_new(ctx->module_ctx->module, comp_dir.u.string, name.u.string));
dwarf2_cache_cuhead(ctx->module_ctx->module->format_info[DFI_DWARF]->u.dwarf2_info, ctx->compiland, &ctx->head);
di->symt = &ctx->compiland->symt;
children = dwarf2_get_di_children(di);
if (children) for (i = 0; i < vector_length(children); i++)
{
child = *(dwarf2_debug_info_t**)vector_at(children, i);
dwarf2_load_one_entry(child);
}
if (dwarf2_find_attribute(di, DW_AT_stmt_list, &stmt_list))
{
if (dwarf2_parse_line_numbers(ctx, comp_dir.u.string, stmt_list.u.uvalue))
ctx->module_ctx->module->module.LineNumbers = TRUE;
}
ctx->status = UNIT_LOADED;
ret = TRUE;
}
else FIXME("Should have a compilation unit here %Iu\n", di->abbrev->tag);
}
if (ctx->status == UNIT_BEINGLOADED) ctx->status = UNIT_LOADED_FAIL;
return ret;
}
static BOOL dwarf2_lookup_loclist(const struct module_format* modfmt, const dwarf2_cuhead_t* head,
const BYTE* start, ULONG_PTR ip, dwarf2_traverse_context_t* lctx)
{
DWORD_PTR beg, end;
const BYTE* ptr = start;
DWORD len;
while (ptr < modfmt->u.dwarf2_info->debug_loc.address + modfmt->u.dwarf2_info->debug_loc.size)
{
beg = dwarf2_get_addr(ptr, head->word_size); ptr += head->word_size;
end = dwarf2_get_addr(ptr, head->word_size); ptr += head->word_size;
if (!beg && !end) break;
len = dwarf2_get_u2(ptr); ptr += 2;
if (beg <= ip && ip < end)
{
lctx->data = ptr;
lctx->end_data = ptr + len;
return TRUE;
}
ptr += len;
}
WARN("Couldn't find ip in location list\n");
return FALSE;
}
static const dwarf2_cuhead_t* get_cuhead_from_func(const struct symt_function* func)
{
if (symt_check_tag(&func->symt, SymTagInlineSite))
func = symt_get_function_from_inlined((struct symt_inlinesite*)func);
if (symt_check_tag(&func->symt, SymTagFunction) && symt_check_tag(func->container, SymTagCompiland))
{
struct symt_compiland* c = (struct symt_compiland*)func->container;
return (const dwarf2_cuhead_t*)c->user;
}
FIXME("Should have a compilation unit head\n");
return NULL;
}
static BOOL compute_call_frame_cfa(struct module* module, ULONG_PTR ip, struct location* frame);
static enum location_error loc_compute_frame(struct process* pcs,
const struct module_format* modfmt,
const struct symt_function* func,
DWORD_PTR ip, const dwarf2_cuhead_t* head,
struct location* frame)
{
struct symt** psym = NULL;
struct location* pframe;
dwarf2_traverse_context_t lctx;
enum location_error err;
unsigned int i;
for (i=0; i<vector_length(&func->vchildren); i++)
{
psym = vector_at(&func->vchildren, i);
if (psym && symt_check_tag(*psym, SymTagCustom))
{
pframe = &((struct symt_hierarchy_point*)*psym)->loc;
/* First, recompute the frame information, if needed */
switch (pframe->kind)
{
case loc_regrel:
case loc_register:
*frame = *pframe;
break;
case loc_dwarf2_location_list:
WARN("Searching loclist for %s\n", debugstr_a(func->hash_elt.name));
if (!dwarf2_lookup_loclist(modfmt, head,
modfmt->u.dwarf2_info->debug_loc.address + pframe->offset,
ip, &lctx))
return loc_err_out_of_scope;
if ((err = compute_location(modfmt->module, head,
&lctx, frame, pcs->handle, NULL)) < 0) return err;
if (frame->kind >= loc_user)
{
WARN("Couldn't compute runtime frame location\n");
return loc_err_too_complex;
}
break;
case loc_dwarf2_frame_cfa:
if (!compute_call_frame_cfa(modfmt->module, ip + ((struct symt_compiland*)func->container)->address, frame)) return loc_err_internal;
break;
default:
WARN("Unsupported frame kind %d\n", pframe->kind);
return loc_err_internal;
}
return 0;
}
}
WARN("Couldn't find Custom function point, whilst location list offset is searched\n");
return loc_err_internal;
}
enum reg_rule
{
RULE_UNSET, /* not set at all */
RULE_UNDEFINED, /* undefined value */
RULE_SAME, /* same value as previous frame */
RULE_CFA_OFFSET, /* stored at cfa offset */
RULE_OTHER_REG, /* stored in other register */
RULE_EXPRESSION, /* address specified by expression */
RULE_VAL_EXPRESSION /* value specified by expression */
};
/* make it large enough for all CPUs */
#define NB_FRAME_REGS 64
#define MAX_SAVED_STATES 16
struct frame_state
{
ULONG_PTR cfa_offset;
unsigned char cfa_reg;
enum reg_rule cfa_rule;
enum reg_rule rules[NB_FRAME_REGS];
ULONG_PTR regs[NB_FRAME_REGS];
};
struct frame_info
{
ULONG_PTR ip;
ULONG_PTR code_align;
LONG_PTR data_align;
unsigned char retaddr_reg;
unsigned char fde_encoding;
unsigned char lsda_encoding;
unsigned char signal_frame;
unsigned char aug_z_format;
unsigned char state_sp;
struct frame_state state;
struct frame_state state_stack[MAX_SAVED_STATES];
};
static ULONG_PTR dwarf2_parse_augmentation_ptr(dwarf2_traverse_context_t* ctx, unsigned char encoding, unsigned char word_size)
{
ULONG_PTR base;
if (encoding == DW_EH_PE_omit) return 0;
switch (encoding & 0xf0)
{
case DW_EH_PE_abs:
base = 0;
break;
case DW_EH_PE_pcrel:
base = (ULONG_PTR)ctx->data;
break;
default:
FIXME("unsupported encoding %02x\n", encoding);
return 0;
}
switch (encoding & 0x0f)
{
case DW_EH_PE_native:
return base + dwarf2_parse_addr(ctx, word_size);
case DW_EH_PE_leb128:
return base + dwarf2_leb128_as_unsigned(ctx);
case DW_EH_PE_data2:
return base + dwarf2_parse_u2(ctx);
case DW_EH_PE_data4:
return base + dwarf2_parse_u4(ctx);
case DW_EH_PE_data8:
return base + dwarf2_parse_u8(ctx);
case DW_EH_PE_signed|DW_EH_PE_leb128:
return base + dwarf2_leb128_as_signed(ctx);
case DW_EH_PE_signed|DW_EH_PE_data2:
return base + (signed short)dwarf2_parse_u2(ctx);
case DW_EH_PE_signed|DW_EH_PE_data4:
return base + (signed int)dwarf2_parse_u4(ctx);
case DW_EH_PE_signed|DW_EH_PE_data8:
return base + (LONG64)dwarf2_parse_u8(ctx);
default:
FIXME("unsupported encoding %02x\n", encoding);
return 0;
}
}
static BOOL parse_cie_details(dwarf2_traverse_context_t* ctx, struct frame_info* info, unsigned char word_size)
{
unsigned char version;
const char* augmentation;
const unsigned char* end;
ULONG_PTR len;
memset(info, 0, sizeof(*info));
info->lsda_encoding = DW_EH_PE_omit;
info->aug_z_format = 0;
/* parse the CIE first */
version = dwarf2_parse_byte(ctx);
if (version != 1 && version != 3 && version != 4)
{
FIXME("unknown CIE version %u at %p\n", version, ctx->data - 1);
return FALSE;
}
augmentation = (const char*)ctx->data;
ctx->data += strlen(augmentation) + 1;
switch (version)
{
case 4:
/* skip 'address_size' and 'segment_size' */
ctx->data += 2;
/* fallthrough */
case 1:
case 3:
info->code_align = dwarf2_leb128_as_unsigned(ctx);
info->data_align = dwarf2_leb128_as_signed(ctx);
info->retaddr_reg = version == 1 ? dwarf2_parse_byte(ctx) :dwarf2_leb128_as_unsigned(ctx);
break;
default:
;
}
info->state.cfa_rule = RULE_CFA_OFFSET;
end = NULL;
TRACE("\tparsing augmentation %s\n", debugstr_a(augmentation));
if (*augmentation) do
{
switch (*augmentation)
{
case 'z':
len = dwarf2_leb128_as_unsigned(ctx);
end = ctx->data + len;
info->aug_z_format = 1;
continue;
case 'L':
info->lsda_encoding = dwarf2_parse_byte(ctx);
continue;
case 'P':
{
unsigned char encoding = dwarf2_parse_byte(ctx);
/* throw away the indirect bit, as we don't care for the result */
encoding &= ~DW_EH_PE_indirect;
dwarf2_parse_augmentation_ptr(ctx, encoding, word_size); /* handler */
continue;
}
case 'R':
info->fde_encoding = dwarf2_parse_byte(ctx);
continue;
case 'S':
info->signal_frame = 1;
continue;
}
FIXME("unknown augmentation '%c'\n", *augmentation);
if (!end) return FALSE;
break;
} while (*++augmentation);
if (end) ctx->data = end;
return TRUE;
}
static BOOL dwarf2_get_cie(ULONG_PTR addr, struct module* module, DWORD_PTR delta,
dwarf2_traverse_context_t* fde_ctx, dwarf2_traverse_context_t* cie_ctx,
struct frame_info* info, BOOL in_eh_frame)
{
const unsigned char* ptr_blk;
const unsigned char* cie_ptr;
const unsigned char* last_cie_ptr = (const unsigned char*)~0;
ULONG_PTR len, id;
ULONG_PTR start, range;
ULONG_PTR cie_id;
const BYTE* start_data = fde_ctx->data;
unsigned char word_size = module->format_info[DFI_DWARF]->u.dwarf2_info->word_size;
unsigned char offset_size;
/* skip 0-padding at beginning of section (alignment) */
while (fde_ctx->data + 2 * 4 < fde_ctx->end_data)
{
if (dwarf2_parse_u4(fde_ctx))
{
fde_ctx->data -= 4;
break;
}
}
for (; fde_ctx->data + 2 * 4 < fde_ctx->end_data; fde_ctx->data = ptr_blk)
{
const unsigned char* st = fde_ctx->data;
/* find the FDE for address addr (skip CIE) */
len = dwarf2_parse_3264(fde_ctx, &offset_size);
cie_id = in_eh_frame ? 0 : (offset_size == 4 ? DW_CIE_ID : (ULONG_PTR)DW64_CIE_ID);
ptr_blk = fde_ctx->data + len;
id = dwarf2_parse_offset(fde_ctx, offset_size);
if (id == cie_id)
{
last_cie_ptr = st;
/* we need some bits out of the CIE in order to parse all contents */
if (!parse_cie_details(fde_ctx, info, word_size)) return FALSE;
cie_ctx->data = fde_ctx->data;
cie_ctx->end_data = ptr_blk;
continue;
}
cie_ptr = (in_eh_frame) ? fde_ctx->data - id - 4 : start_data + id;
if (cie_ptr != last_cie_ptr)
{
last_cie_ptr = cie_ptr;
cie_ctx->data = cie_ptr;
cie_ctx->end_data = cie_ptr + (offset_size == 4 ? 4 : 4 + 8);
cie_ctx->end_data += dwarf2_parse_3264(cie_ctx, &offset_size);
if (dwarf2_parse_offset(cie_ctx, in_eh_frame ? word_size : offset_size) != cie_id)
{
FIXME("wrong CIE pointer at %x from FDE %x\n",
(unsigned)(cie_ptr - start_data),
(unsigned)(fde_ctx->data - start_data));
return FALSE;
}
if (!parse_cie_details(cie_ctx, info, word_size)) return FALSE;
}
start = delta + dwarf2_parse_augmentation_ptr(fde_ctx, info->fde_encoding, word_size);
range = dwarf2_parse_augmentation_ptr(fde_ctx, info->fde_encoding & 0x0F, word_size);
if (addr >= start && addr < start + range)
{
/* reset the FDE context */
fde_ctx->end_data = ptr_blk;
info->ip = start;
return TRUE;
}
}
return FALSE;
}
static int valid_reg(ULONG_PTR reg)
{
if (reg >= NB_FRAME_REGS) FIXME("unsupported reg %Ix\n", reg);
return (reg < NB_FRAME_REGS);
}
static void execute_cfa_instructions(struct module* module, dwarf2_traverse_context_t* ctx,
ULONG_PTR last_ip, struct frame_info *info)
{
while (ctx->data < ctx->end_data && info->ip <= last_ip + info->signal_frame)
{
enum dwarf_call_frame_info op = dwarf2_parse_byte(ctx);
if (op & 0xc0)
{
switch (op & 0xc0)
{
case DW_CFA_advance_loc:
{
ULONG_PTR offset = (op & 0x3f) * info->code_align;
TRACE("%Ix: DW_CFA_advance_loc %Iu\n", info->ip, offset);
info->ip += offset;
break;
}
case DW_CFA_offset:
{
ULONG_PTR reg = op & 0x3f;
LONG_PTR offset = dwarf2_leb128_as_unsigned(ctx) * info->data_align;
if (!valid_reg(reg)) break;
TRACE("%Ix: DW_CFA_offset %s, %Id\n",
info->ip,
module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)),
offset);
info->state.regs[reg] = offset;
info->state.rules[reg] = RULE_CFA_OFFSET;
break;
}
case DW_CFA_restore:
{
ULONG_PTR reg = op & 0x3f;
if (!valid_reg(reg)) break;
TRACE("%Ix: DW_CFA_restore %s\n",
info->ip,
module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)));
info->state.rules[reg] = RULE_UNSET;
break;
}
}
}
else switch (op)
{
case DW_CFA_nop:
break;
case DW_CFA_set_loc:
{
ULONG_PTR loc = dwarf2_parse_augmentation_ptr(ctx, info->fde_encoding,
module->format_info[DFI_DWARF]->u.dwarf2_info->word_size);
TRACE("%Ix: DW_CFA_set_loc %Ix\n", info->ip, loc);
info->ip = loc;
break;
}
case DW_CFA_advance_loc1:
{
ULONG_PTR offset = dwarf2_parse_byte(ctx) * info->code_align;
TRACE("%Ix: DW_CFA_advance_loc1 %Iu\n", info->ip, offset);
info->ip += offset;
break;
}
case DW_CFA_advance_loc2:
{
ULONG_PTR offset = dwarf2_parse_u2(ctx) * info->code_align;
TRACE("%Ix: DW_CFA_advance_loc2 %Iu\n", info->ip, offset);
info->ip += offset;
break;
}
case DW_CFA_advance_loc4:
{
ULONG_PTR offset = dwarf2_parse_u4(ctx) * info->code_align;
TRACE("%Ix: DW_CFA_advance_loc4 %Iu\n", info->ip, offset);
info->ip += offset;
break;
}
case DW_CFA_offset_extended:
case DW_CFA_offset_extended_sf:
{
ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx);
LONG_PTR offset = (op == DW_CFA_offset_extended) ? dwarf2_leb128_as_unsigned(ctx) * info->data_align
: dwarf2_leb128_as_signed(ctx) * info->data_align;
if (!valid_reg(reg)) break;
TRACE("%Ix: DW_CFA_offset_extended %s, %Id\n",
info->ip,
module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)),
offset);
info->state.regs[reg] = offset;
info->state.rules[reg] = RULE_CFA_OFFSET;
break;
}
case DW_CFA_restore_extended:
{
ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx);
if (!valid_reg(reg)) break;
TRACE("%Ix: DW_CFA_restore_extended %s\n",
info->ip,
module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)));
info->state.rules[reg] = RULE_UNSET;
break;
}
case DW_CFA_undefined:
{
ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx);
if (!valid_reg(reg)) break;
TRACE("%Ix: DW_CFA_undefined %s\n",
info->ip,
module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)));
info->state.rules[reg] = RULE_UNDEFINED;
break;
}
case DW_CFA_same_value:
{
ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx);
if (!valid_reg(reg)) break;
TRACE("%Ix: DW_CFA_same_value %s\n",
info->ip,
module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)));
info->state.regs[reg] = reg;
info->state.rules[reg] = RULE_SAME;
break;
}
case DW_CFA_register:
{
ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx);
ULONG_PTR reg2 = dwarf2_leb128_as_unsigned(ctx);
if (!valid_reg(reg) || !valid_reg(reg2)) break;
TRACE("%Ix: DW_CFA_register %s == %s\n",
info->ip,
module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)),
module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg2, module, TRUE)));
info->state.regs[reg] = reg2;
info->state.rules[reg] = RULE_OTHER_REG;
break;
}
case DW_CFA_remember_state:
TRACE("%Ix: DW_CFA_remember_state\n", info->ip);
if (info->state_sp >= MAX_SAVED_STATES)
FIXME("%Ix: DW_CFA_remember_state too many nested saves\n", info->ip);
else
info->state_stack[info->state_sp++] = info->state;
break;
case DW_CFA_restore_state:
TRACE("%Ix: DW_CFA_restore_state\n", info->ip);
if (!info->state_sp)
FIXME("%Ix: DW_CFA_restore_state without corresponding save\n", info->ip);
else
info->state = info->state_stack[--info->state_sp];
break;
case DW_CFA_def_cfa:
case DW_CFA_def_cfa_sf:
{
ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx);
ULONG_PTR offset = (op == DW_CFA_def_cfa) ? dwarf2_leb128_as_unsigned(ctx)
: dwarf2_leb128_as_signed(ctx) * info->data_align;
if (!valid_reg(reg)) break;
TRACE("%Ix: DW_CFA_def_cfa %s, %Id\n",
info->ip,
module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)),
offset);
info->state.cfa_reg = reg;
info->state.cfa_offset = offset;
info->state.cfa_rule = RULE_CFA_OFFSET;
break;
}
case DW_CFA_def_cfa_register:
{
ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx);
if (!valid_reg(reg)) break;
TRACE("%Ix: DW_CFA_def_cfa_register %s\n",
info->ip,
module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)));
info->state.cfa_reg = reg;
info->state.cfa_rule = RULE_CFA_OFFSET;
break;
}
case DW_CFA_def_cfa_offset:
case DW_CFA_def_cfa_offset_sf:
{
ULONG_PTR offset = (op == DW_CFA_def_cfa_offset) ? dwarf2_leb128_as_unsigned(ctx)
: dwarf2_leb128_as_signed(ctx) * info->data_align;
TRACE("%Ix: DW_CFA_def_cfa_offset %Id\n", info->ip, offset);
info->state.cfa_offset = offset;
info->state.cfa_rule = RULE_CFA_OFFSET;
break;
}
case DW_CFA_def_cfa_expression:
{
ULONG_PTR expr = (ULONG_PTR)ctx->data;
ULONG_PTR len = dwarf2_leb128_as_unsigned(ctx);
TRACE("%Ix: DW_CFA_def_cfa_expression %Ix-%Ix\n", info->ip, expr, expr+len);
info->state.cfa_offset = expr;
info->state.cfa_rule = RULE_VAL_EXPRESSION;
ctx->data += len;
break;
}
case DW_CFA_expression:
case DW_CFA_val_expression:
{
ULONG_PTR reg = dwarf2_leb128_as_unsigned(ctx);
ULONG_PTR expr = (ULONG_PTR)ctx->data;
ULONG_PTR len = dwarf2_leb128_as_unsigned(ctx);
if (!valid_reg(reg)) break;
TRACE("%Ix: DW_CFA_%sexpression %s %Ix-%Ix\n",
info->ip, (op == DW_CFA_expression) ? "" : "val_",
module->cpu->fetch_regname(module->cpu->map_dwarf_register(reg, module, TRUE)),
expr, expr + len);
info->state.regs[reg] = expr;
info->state.rules[reg] = (op == DW_CFA_expression) ? RULE_EXPRESSION : RULE_VAL_EXPRESSION;
ctx->data += len;
break;
}
case DW_CFA_GNU_args_size:
/* FIXME: should check that GCC is the compiler for this CU */
{
ULONG_PTR args = dwarf2_leb128_as_unsigned(ctx);
TRACE("%Ix: DW_CFA_GNU_args_size %Iu\n", info->ip, args);
/* ignored */
break;
}
default:
FIXME("%Ix: unknown CFA opcode %02x\n", info->ip, op);
break;
}
}
}
/* retrieve a context register from its dwarf number */
static DWORD64 get_context_reg(const struct module* module, struct cpu_stack_walk *csw, union ctx *context,
ULONG_PTR dw_reg)
{
unsigned regno = csw->cpu->map_dwarf_register(dw_reg, module, TRUE), sz;
void* ptr = csw->cpu->fetch_context_reg(context, regno, &sz);
if (csw->cpu != module->cpu) FIXME("mismatch in cpu\n");
if (sz == 8)
return *(DWORD64 *)ptr;
else if (sz == 4)
return *(DWORD *)ptr;
FIXME("unhandled size %d\n", sz);
return 0;
}
/* set a context register from its dwarf number */
static void set_context_reg(const struct module* module, struct cpu_stack_walk* csw, union ctx *context,
ULONG_PTR dw_reg, ULONG_PTR val, BOOL isdebuggee)
{
unsigned regno = csw->cpu->map_dwarf_register(dw_reg, module, TRUE), sz;
ULONG_PTR* ptr = csw->cpu->fetch_context_reg(context, regno, &sz);
if (csw->cpu != module->cpu) FIXME("mismatch in cpu\n");
if (isdebuggee)
{
char tmp[16];
if (sz > sizeof(tmp))
{
FIXME("register %Iu/%u size is too wide: %u\n", dw_reg, regno, sz);
return;
}
if (!sw_read_mem(csw, val, tmp, sz))
{
WARN("Couldn't read memory at %p\n", (void*)val);
return;
}
memcpy(ptr, tmp, sz);
}
else
{
if (sz != sizeof(ULONG_PTR))
{
FIXME("assigning to register %Iu/%u of wrong size %u\n", dw_reg, regno, sz);
return;
}
*ptr = val;
}
}
/* copy a register from one context to another using dwarf number */
static void copy_context_reg(const struct module* module, struct cpu_stack_walk *csw,
union ctx *dstcontext, ULONG_PTR dwregdst,
union ctx *srccontext, ULONG_PTR dwregsrc)
{
unsigned regdstno = csw->cpu->map_dwarf_register(dwregdst, module, TRUE), szdst;
unsigned regsrcno = csw->cpu->map_dwarf_register(dwregsrc, module, TRUE), szsrc;
ULONG_PTR* ptrdst = csw->cpu->fetch_context_reg(dstcontext, regdstno, &szdst);
ULONG_PTR* ptrsrc = csw->cpu->fetch_context_reg(srccontext, regsrcno, &szsrc);
if (csw->cpu != module->cpu) FIXME("mismatch in cpu\n");
if (szdst != szsrc)
{
FIXME("Cannot copy register %Iu/%u => %Iu/%u because of size mismatch (%u => %u)\n",
dwregsrc, regsrcno, dwregdst, regdstno, szsrc, szdst);
return;
}
memcpy(ptrdst, ptrsrc, szdst);
}
static ULONG_PTR eval_expression(const struct module* module, struct cpu_stack_walk* csw,
const unsigned char* zp, union ctx *context)
{
dwarf2_traverse_context_t ctx;
ULONG_PTR reg, sz, tmp;
DWORD64 stack[64];
int sp = -1;
ULONG_PTR len;
if (csw->cpu != module->cpu) FIXME("mismatch in cpu\n");
ctx.data = zp;
ctx.end_data = zp + 4;
len = dwarf2_leb128_as_unsigned(&ctx);
ctx.end_data = ctx.data + len;
while (ctx.data < ctx.end_data)
{
unsigned char opcode = dwarf2_parse_byte(&ctx);
if (opcode >= DW_OP_lit0 && opcode <= DW_OP_lit31)
stack[++sp] = opcode - DW_OP_lit0;
else if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31)
stack[++sp] = get_context_reg(module, csw, context, opcode - DW_OP_reg0);
else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31)
stack[++sp] = get_context_reg(module, csw, context, opcode - DW_OP_breg0)
+ dwarf2_leb128_as_signed(&ctx);
else switch (opcode)
{
case DW_OP_nop: break;
case DW_OP_addr: stack[++sp] = dwarf2_parse_addr(&ctx, module->format_info[DFI_DWARF]->u.dwarf2_info->word_size); break;
case DW_OP_const1u: stack[++sp] = dwarf2_parse_byte(&ctx); break;
case DW_OP_const1s: stack[++sp] = (signed char)dwarf2_parse_byte(&ctx); break;
case DW_OP_const2u: stack[++sp] = dwarf2_parse_u2(&ctx); break;
case DW_OP_const2s: stack[++sp] = (short)dwarf2_parse_u2(&ctx); break;
case DW_OP_const4u: stack[++sp] = dwarf2_parse_u4(&ctx); break;
case DW_OP_const4s: stack[++sp] = (signed int)dwarf2_parse_u4(&ctx); break;
case DW_OP_const8u: stack[++sp] = dwarf2_parse_u8(&ctx); break;
case DW_OP_const8s: stack[++sp] = (LONG_PTR)dwarf2_parse_u8(&ctx); break;
case DW_OP_constu: stack[++sp] = dwarf2_leb128_as_unsigned(&ctx); break;
case DW_OP_consts: stack[++sp] = dwarf2_leb128_as_signed(&ctx); break;
case DW_OP_deref:
tmp = 0;
if (!sw_read_mem(csw, stack[sp], &tmp, module->format_info[DFI_DWARF]->u.dwarf2_info->word_size))
{
ERR("Couldn't read memory at %s\n", wine_dbgstr_longlong(stack[sp]));
tmp = 0;
}
stack[sp] = tmp;
break;
case DW_OP_dup: stack[sp + 1] = stack[sp]; sp++; break;
case DW_OP_drop: sp--; break;
case DW_OP_over: stack[sp + 1] = stack[sp - 1]; sp++; break;
case DW_OP_pick: stack[sp + 1] = stack[sp - dwarf2_parse_byte(&ctx)]; sp++; break;
case DW_OP_swap: tmp = stack[sp]; stack[sp] = stack[sp-1]; stack[sp-1] = tmp; break;
case DW_OP_rot: tmp = stack[sp]; stack[sp] = stack[sp-1]; stack[sp-1] = stack[sp-2]; stack[sp-2] = tmp; break;
case DW_OP_abs: stack[sp] = sizeof(stack[sp]) == 8 ? llabs((INT64)stack[sp]) : abs((INT32)stack[sp]); break;
case DW_OP_neg: stack[sp] = -stack[sp]; break;
case DW_OP_not: stack[sp] = ~stack[sp]; break;
case DW_OP_and: stack[sp-1] &= stack[sp]; sp--; break;
case DW_OP_or: stack[sp-1] |= stack[sp]; sp--; break;
case DW_OP_minus: stack[sp-1] -= stack[sp]; sp--; break;
case DW_OP_mul: stack[sp-1] *= stack[sp]; sp--; break;
case DW_OP_plus: stack[sp-1] += stack[sp]; sp--; break;
case DW_OP_xor: stack[sp-1] ^= stack[sp]; sp--; break;
case DW_OP_shl: stack[sp-1] <<= stack[sp]; sp--; break;
case DW_OP_shr: stack[sp-1] >>= stack[sp]; sp--; break;
case DW_OP_plus_uconst: stack[sp] += dwarf2_leb128_as_unsigned(&ctx); break;
case DW_OP_shra: stack[sp-1] = (LONG_PTR)stack[sp-1] / (1 << stack[sp]); sp--; break;
case DW_OP_div: stack[sp-1] = (LONG_PTR)stack[sp-1] / (LONG_PTR)stack[sp]; sp--; break;
case DW_OP_mod: stack[sp-1] = (LONG_PTR)stack[sp-1] % (LONG_PTR)stack[sp]; sp--; break;
case DW_OP_ge: stack[sp-1] = ((LONG_PTR)stack[sp-1] >= (LONG_PTR)stack[sp]); sp--; break;
case DW_OP_gt: stack[sp-1] = ((LONG_PTR)stack[sp-1] > (LONG_PTR)stack[sp]); sp--; break;
case DW_OP_le: stack[sp-1] = ((LONG_PTR)stack[sp-1] <= (LONG_PTR)stack[sp]); sp--; break;
case DW_OP_lt: stack[sp-1] = ((LONG_PTR)stack[sp-1] < (LONG_PTR)stack[sp]); sp--; break;
case DW_OP_eq: stack[sp-1] = (stack[sp-1] == stack[sp]); sp--; break;
case DW_OP_ne: stack[sp-1] = (stack[sp-1] != stack[sp]); sp--; break;
case DW_OP_skip: tmp = (short)dwarf2_parse_u2(&ctx); ctx.data += tmp; break;
case DW_OP_bra: tmp = (short)dwarf2_parse_u2(&ctx); if (!stack[sp--]) ctx.data += tmp; break;
case DW_OP_GNU_encoded_addr:
tmp = dwarf2_parse_byte(&ctx);
stack[++sp] = dwarf2_parse_augmentation_ptr(&ctx, tmp, module->format_info[DFI_DWARF]->u.dwarf2_info->word_size);
break;
case DW_OP_regx:
stack[++sp] = get_context_reg(module, csw, context, dwarf2_leb128_as_unsigned(&ctx));
break;
case DW_OP_bregx:
reg = dwarf2_leb128_as_unsigned(&ctx);
tmp = dwarf2_leb128_as_signed(&ctx);
stack[++sp] = get_context_reg(module, csw, context, reg) + tmp;
break;
case DW_OP_deref_size:
sz = dwarf2_parse_byte(&ctx);
if (!sw_read_mem(csw, stack[sp], &tmp, sz))
{
ERR("Couldn't read memory at %s\n", wine_dbgstr_longlong(stack[sp]));
tmp = 0;
}
/* do integral promotion */
switch (sz)
{
case 1: stack[sp] = *(unsigned char*)&tmp; break;
case 2: stack[sp] = *(unsigned short*)&tmp; break;
case 4: stack[sp] = *(unsigned int*)&tmp; break;
case 8: stack[sp] = tmp; break; /* FIXME: won't work on 32bit platform */
default: FIXME("Unknown size for deref 0x%Ix\n", sz);
}
break;
default:
FIXME("unhandled opcode %02x\n", opcode);
}
}
return stack[sp];
}
static void apply_frame_state(const struct module* module, struct cpu_stack_walk* csw,
union ctx *context, struct frame_state *state, DWORD64 *cfa)
{
unsigned int i;
ULONG_PTR value;
union ctx new_context = *context;
if (csw->cpu != module->cpu) FIXME("mismatch in cpu\n");
switch (state->cfa_rule)
{
case RULE_EXPRESSION:
*cfa = eval_expression(module, csw, (const unsigned char*)state->cfa_offset, context);
if (!sw_read_mem(csw, *cfa, cfa, csw->cpu->word_size))
{
WARN("Couldn't read memory at %s\n", wine_dbgstr_longlong(*cfa));
return;
}
break;
case RULE_VAL_EXPRESSION:
*cfa = eval_expression(module, csw, (const unsigned char*)state->cfa_offset, context);
break;
default:
*cfa = get_context_reg(module, csw, context, state->cfa_reg) + state->cfa_offset;
break;
}
if (!*cfa) return;
for (i = 0; i < NB_FRAME_REGS; i++)
{
switch (state->rules[i])
{
case RULE_UNSET:
case RULE_UNDEFINED:
case RULE_SAME:
break;
case RULE_CFA_OFFSET:
set_context_reg(module, csw, &new_context, i, *cfa + state->regs[i], TRUE);
break;
case RULE_OTHER_REG:
copy_context_reg(module, csw, &new_context, i, context, state->regs[i]);
break;
case RULE_EXPRESSION:
value = eval_expression(module, csw, (const unsigned char*)state->regs[i], context);
set_context_reg(module, csw, &new_context, i, value, TRUE);
break;
case RULE_VAL_EXPRESSION:
value = eval_expression(module, csw, (const unsigned char*)state->regs[i], context);
set_context_reg(module, csw, &new_context, i, value, FALSE);
break;
}
}
*context = new_context;
}
static BOOL dwarf2_fetch_frame_info(struct module* module, struct cpu* cpu, LONG_PTR ip, struct frame_info* info)
{
dwarf2_traverse_context_t cie_ctx, fde_ctx;
struct module_format* modfmt;
const unsigned char* end;
DWORD_PTR delta;
modfmt = module->format_info[DFI_DWARF];
if (!modfmt) return FALSE;
memset(info, 0, sizeof(*info));
fde_ctx.data = modfmt->u.dwarf2_info->eh_frame.address;
fde_ctx.end_data = fde_ctx.data + modfmt->u.dwarf2_info->eh_frame.size;
/* let offsets relative to the eh_frame sections be correctly computed, as we'll map
* in this process the IMAGE section at a different address as the one expected by
* the image
*/
delta = module->module.BaseOfImage + modfmt->u.dwarf2_info->eh_frame.rva -
(DWORD_PTR)modfmt->u.dwarf2_info->eh_frame.address;
if (!dwarf2_get_cie(ip, module, delta, &fde_ctx, &cie_ctx, info, TRUE))
{
fde_ctx.data = modfmt->u.dwarf2_info->debug_frame.address;
fde_ctx.end_data = fde_ctx.data + modfmt->u.dwarf2_info->debug_frame.size;
delta = module->reloc_delta;
if (modfmt->u.dwarf2_info->debug_frame.address == IMAGE_NO_MAP ||
!dwarf2_get_cie(ip, module, delta, &fde_ctx, &cie_ctx, info, FALSE))
{
TRACE("Couldn't find information for %Ix\n", ip);
return FALSE;
}
}
TRACE("function %Ix/%Ix code_align %Iu data_align %Id retaddr %s\n",
ip, info->ip, info->code_align, info->data_align,
cpu->fetch_regname(cpu->map_dwarf_register(info->retaddr_reg, module, TRUE)));
if (ip != info->ip)
{
execute_cfa_instructions(module, &cie_ctx, ip, info);
if (info->aug_z_format) /* get length of augmentation data */
{
ULONG_PTR len = dwarf2_leb128_as_unsigned(&fde_ctx);
end = fde_ctx.data + len;
}
else end = NULL;
dwarf2_parse_augmentation_ptr(&fde_ctx, info->lsda_encoding, modfmt->u.dwarf2_info->word_size); /* handler_data */
if (end) fde_ctx.data = end;
execute_cfa_instructions(module, &fde_ctx, ip, info);
}
return TRUE;
}
/***********************************************************************
* dwarf2_virtual_unwind
*
*/
BOOL dwarf2_virtual_unwind(struct cpu_stack_walk *csw, ULONG_PTR ip,
union ctx *context, DWORD64 *cfa)
{
struct module_pair pair;
struct frame_info info;
if (!module_init_pair(&pair, csw->hProcess, ip)) return FALSE;
if (csw->cpu != pair.effective->cpu) FIXME("mismatch in cpu\n");
if (!dwarf2_fetch_frame_info(pair.effective, csw->cpu, ip, &info)) return FALSE;
/* if at very beginning of function, return and use default unwinder */
if (ip == info.ip) return FALSE;
/* if there is no information about retaddr, use default unwinder */
if (info.state.rules[info.retaddr_reg] == RULE_UNSET) return FALSE;
apply_frame_state(pair.effective, csw, context, &info.state, cfa);
return TRUE;
}
static BOOL compute_call_frame_cfa(struct module* module, ULONG_PTR ip, struct location* frame)
{
struct frame_info info;
if (!dwarf2_fetch_frame_info(module, module->cpu, ip, &info)) return FALSE;
/* beginning of function, or no available dwarf information ? */
if (ip == info.ip || info.state.rules[info.retaddr_reg] == RULE_UNSET)
{
/* fake the default unwinder */
frame->kind = loc_regrel;
frame->reg = module->cpu->frame_regno;
frame->offset = module->cpu->word_size; /* FIXME stack direction */
}
else
{
/* we expect to translate the call_frame_cfa into a regrel location...
* that should cover most of the cases
*/
switch (info.state.cfa_rule)
{
case RULE_EXPRESSION:
FIXME("Too complex expression for frame_CFA resolution (RULE_EXPRESSION)\n");
return FALSE;
case RULE_VAL_EXPRESSION:
FIXME("Too complex expression for frame_CFA resolution (RULE_VAL_EXPRESSION)\n");
return FALSE;
default:
frame->kind = loc_regrel;
frame->reg = module->cpu->map_dwarf_register(info.state.cfa_reg, module, TRUE);
frame->offset = info.state.cfa_offset;
break;
}
}
return TRUE;
}
static void dwarf2_location_compute(struct process* pcs,
const struct module_format* modfmt,
const struct symt_function* func,
struct location* loc)
{
struct location frame;
DWORD_PTR ip;
int err;
dwarf2_traverse_context_t lctx;
const dwarf2_cuhead_t* head = get_cuhead_from_func(func);
if (!head)
{
WARN("We'd expect function %s's container to be a valid compiland with dwarf inforamation\n",
debugstr_a(func->hash_elt.name));
err = loc_err_internal;
}
else
{
/* instruction pointer relative to compiland's start */
ip = pcs->localscope_pc - ((struct symt_compiland*)func->container)->address;
if ((err = loc_compute_frame(pcs, modfmt, func, ip, head, &frame)) == 0)
{
switch (loc->kind)
{
case loc_dwarf2_location_list:
/* Then, if the variable has a location list, find it !! */
if (dwarf2_lookup_loclist(modfmt, head,
modfmt->u.dwarf2_info->debug_loc.address + loc->offset,
ip, &lctx))
goto do_compute;
err = loc_err_out_of_scope;
break;
case loc_dwarf2_block:
/* or if we have a copy of an existing block, get ready for it */
{
unsigned* ptr = (unsigned*)loc->offset;
lctx.data = (const BYTE*)(ptr + 1);
lctx.end_data = lctx.data + *ptr;
}
do_compute:
/* now get the variable */
err = compute_location(modfmt->module, head,
&lctx, loc, pcs->handle, &frame);
break;
case loc_register:
case loc_regrel:
/* nothing to do */
break;
default:
WARN("Unsupported local kind %d\n", loc->kind);
err = loc_err_internal;
}
}
}
if (err < 0)
{
loc->kind = loc_register;
loc->reg = err;
}
}
static void *zalloc(void *priv, uInt items, uInt sz)
{
return HeapAlloc(GetProcessHeap(), 0, items * sz);
}
static void zfree(void *priv, void *addr)
{
HeapFree(GetProcessHeap(), 0, addr);
}
static inline BOOL dwarf2_init_zsection(dwarf2_section_t* section,
const char* zsectname,
struct image_section_map* ism)
{
z_stream z;
LARGE_INTEGER li;
int res;
BOOL ret = FALSE;
BYTE *addr, *sect = (BYTE *)image_map_section(ism);
size_t sz = image_get_map_size(ism);
if (sz <= 12 || memcmp(sect, "ZLIB", 4))
{
ERR("invalid compressed section %s\n", debugstr_a(zsectname));
goto out;
}
#ifdef WORDS_BIGENDIAN
li.u.HighPart = *(DWORD*)&sect[4];
li.u.LowPart = *(DWORD*)&sect[8];
#else
li.u.HighPart = RtlUlongByteSwap(*(DWORD*)&sect[4]);
li.u.LowPart = RtlUlongByteSwap(*(DWORD*)&sect[8]);
#endif
addr = HeapAlloc(GetProcessHeap(), 0, li.QuadPart);
if (!addr)
goto out;
z.next_in = &sect[12];
z.avail_in = sz - 12;
z.opaque = NULL;
z.zalloc = zalloc;
z.zfree = zfree;
res = inflateInit(&z);
if (res != Z_OK)
{
FIXME("inflateInit failed with %i / %s\n", res, debugstr_a(z.msg));
goto out_free;
}
do {
z.next_out = addr + z.total_out;
z.avail_out = li.QuadPart - z.total_out;
res = inflate(&z, Z_FINISH);
} while (z.avail_in && res == Z_STREAM_END);
if (res != Z_STREAM_END)
{
FIXME("Decompression failed with %i / %s\n", res, debugstr_a(z.msg));
goto out_end;
}
ret = TRUE;
section->compressed = TRUE;
section->address = addr;
section->rva = image_get_map_rva(ism);
section->size = z.total_out;
out_end:
inflateEnd(&z);
out_free:
if (!ret)
HeapFree(GetProcessHeap(), 0, addr);
out:
image_unmap_section(ism);
return ret;
}
static inline BOOL dwarf2_init_section(dwarf2_section_t* section, struct image_file_map* fmap,
const char* sectname, const char* zsectname,
struct image_section_map* ism)
{
struct image_section_map local_ism;
if (!ism) ism = &local_ism;
section->compressed = FALSE;
if (image_find_section(fmap, sectname, ism))
{
section->address = (const BYTE*)image_map_section(ism);
section->size = image_get_map_size(ism);
section->rva = image_get_map_rva(ism);
return TRUE;
}
section->address = NULL;
section->size = 0;
section->rva = 0;
if (zsectname && image_find_section(fmap, zsectname, ism))
{
return dwarf2_init_zsection(section, zsectname, ism);
}
return FALSE;
}
static inline void dwarf2_fini_section(dwarf2_section_t* section)
{
if (section->compressed)
HeapFree(GetProcessHeap(), 0, (void*)section->address);
}
static void dwarf2_module_remove(struct process* pcs, struct module_format* modfmt)
{
dwarf2_fini_section(&modfmt->u.dwarf2_info->debug_loc);
dwarf2_fini_section(&modfmt->u.dwarf2_info->debug_frame);
free(modfmt->u.dwarf2_info->cuheads);
HeapFree(GetProcessHeap(), 0, modfmt);
}
static BOOL dwarf2_load_CU_module(dwarf2_parse_module_context_t* module_ctx, struct module* module,
dwarf2_section_t* sections, ULONG_PTR load_offset,
const struct elf_thunk_area* thunks, BOOL is_dwz)
{
dwarf2_traverse_context_t mod_ctx;
unsigned i;
module_ctx->sections = sections;
module_ctx->module = module;
module_ctx->thunks = thunks;
module_ctx->load_offset = load_offset;
vector_init(&module_ctx->unit_contexts, sizeof(dwarf2_parse_context_t), 16);
module_ctx->cu_versions = 0;
/* phase I: parse all CU heads */
mod_ctx.data = sections[section_debug].address;
mod_ctx.end_data = mod_ctx.data + sections[section_debug].size;
while (mod_ctx.data < mod_ctx.end_data)
{
dwarf2_parse_context_t* unit_ctx = vector_add(&module_ctx->unit_contexts, &module_ctx->module->pool);
unit_ctx->module_ctx = module_ctx;
dwarf2_parse_compilation_unit_head(unit_ctx, &mod_ctx);
}
/* phase2: load content of all CU
* If this is a DWZ alternate module, don't load all debug_info at once
* wait for main module to ask for them (it's likely it won't need them all)
* Doing this can lead to a huge performance improvement.
*/
if (!is_dwz)
for (i = 0; i < module_ctx->unit_contexts.num_elts; ++i)
dwarf2_parse_compilation_unit((dwarf2_parse_context_t*)vector_at(&module_ctx->unit_contexts, i));
return TRUE;
}
static dwarf2_dwz_alternate_t* dwarf2_load_dwz(struct image_file_map* fmap, struct module* module)
{
struct image_file_map* fmap_dwz;
dwarf2_dwz_alternate_t* dwz;
fmap_dwz = image_load_debugaltlink(fmap, module);
if (!fmap_dwz) return NULL;
if (!(dwz = HeapAlloc(GetProcessHeap(), 0, sizeof(*dwz))))
{
image_unmap_file(fmap_dwz);
HeapFree(GetProcessHeap(), 0, fmap_dwz);
return NULL;
}
dwz->fmap = fmap_dwz;
dwarf2_init_section(&dwz->sections[section_debug], fmap_dwz, ".debug_info", ".zdebug_info", &dwz->sectmap[section_debug]);
dwarf2_init_section(&dwz->sections[section_abbrev], fmap_dwz, ".debug_abbrev", ".zdebug_abbrev", &dwz->sectmap[section_abbrev]);
dwarf2_init_section(&dwz->sections[section_string], fmap_dwz, ".debug_str", ".zdebug_str", &dwz->sectmap[section_string]);
dwarf2_init_section(&dwz->sections[section_line], fmap_dwz, ".debug_line", ".zdebug_line", &dwz->sectmap[section_line]);
dwarf2_init_section(&dwz->sections[section_ranges], fmap_dwz, ".debug_ranges", ".zdebug_ranges", &dwz->sectmap[section_ranges]);
dwz->module_ctx.dwz = NULL;
dwarf2_load_CU_module(&dwz->module_ctx, module, dwz->sections, 0/*FIXME*/, NULL, TRUE);
return dwz;
}
static void dwarf2_unload_dwz(dwarf2_dwz_alternate_t* dwz)
{
if (!dwz) return;
dwarf2_fini_section(&dwz->sections[section_debug]);
dwarf2_fini_section(&dwz->sections[section_abbrev]);
dwarf2_fini_section(&dwz->sections[section_string]);
dwarf2_fini_section(&dwz->sections[section_line]);
dwarf2_fini_section(&dwz->sections[section_ranges]);
image_unmap_section(&dwz->sectmap[section_debug]);
image_unmap_section(&dwz->sectmap[section_abbrev]);
image_unmap_section(&dwz->sectmap[section_string]);
image_unmap_section(&dwz->sectmap[section_line]);
image_unmap_section(&dwz->sectmap[section_ranges]);
HeapFree(GetProcessHeap(), 0, dwz);
}
static BOOL dwarf2_unload_CU_module(dwarf2_parse_module_context_t* module_ctx)
{
unsigned i;
for (i = 0; i < module_ctx->unit_contexts.num_elts; ++i)
{
dwarf2_parse_context_t* unit = vector_at(&module_ctx->unit_contexts, i);
if (unit->status != UNIT_ERROR)
pool_destroy(&unit->pool);
}
dwarf2_unload_dwz(module_ctx->dwz);
return TRUE;
}
BOOL dwarf2_parse(struct module* module, ULONG_PTR load_offset,
const struct elf_thunk_area* thunks,
struct image_file_map* fmap)
{
dwarf2_section_t eh_frame, section[section_max];
struct image_section_map debug_sect, debug_str_sect, debug_abbrev_sect,
debug_line_sect, debug_ranges_sect, eh_frame_sect;
BOOL ret = TRUE;
struct module_format* dwarf2_modfmt;
dwarf2_parse_module_context_t module_ctx;
if (!dwarf2_init_section(&eh_frame, fmap, ".eh_frame", NULL, &eh_frame_sect))
/* lld produces .eh_fram to avoid generating a long name */
dwarf2_init_section(&eh_frame, fmap, ".eh_fram", NULL, &eh_frame_sect);
dwarf2_init_section(&section[section_debug], fmap, ".debug_info", ".zdebug_info", &debug_sect);
dwarf2_init_section(&section[section_abbrev], fmap, ".debug_abbrev", ".zdebug_abbrev", &debug_abbrev_sect);
dwarf2_init_section(&section[section_string], fmap, ".debug_str", ".zdebug_str", &debug_str_sect);
dwarf2_init_section(&section[section_line], fmap, ".debug_line", ".zdebug_line", &debug_line_sect);
dwarf2_init_section(&section[section_ranges], fmap, ".debug_ranges", ".zdebug_ranges", &debug_ranges_sect);
/* to do anything useful we need either .eh_frame or .debug_info */
if ((!eh_frame.address || eh_frame.address == IMAGE_NO_MAP) &&
(!section[section_debug].address || section[section_debug].address == IMAGE_NO_MAP))
{
ret = FALSE;
goto leave;
}
if (fmap->modtype == DMT_ELF && debug_sect.fmap)
{
/* debug info might have a different base address than .so file
* when elf file is prelinked after splitting off debug info
* adjust symbol base addresses accordingly
*/
load_offset += fmap->u.elf.elf_start - debug_sect.fmap->u.elf.elf_start;
}
TRACE("Loading Dwarf2 information for %s\n", debugstr_w(module->modulename));
dwarf2_modfmt = HeapAlloc(GetProcessHeap(), 0,
sizeof(*dwarf2_modfmt) + sizeof(*dwarf2_modfmt->u.dwarf2_info));
if (!dwarf2_modfmt)
{
ret = FALSE;
goto leave;
}
dwarf2_modfmt->module = module;
dwarf2_modfmt->remove = dwarf2_module_remove;
dwarf2_modfmt->loc_compute = dwarf2_location_compute;
dwarf2_modfmt->u.dwarf2_info = (struct dwarf2_module_info_s*)(dwarf2_modfmt + 1);
dwarf2_modfmt->u.dwarf2_info->word_size = fmap->addr_size / 8; /* set the word_size for eh_frame parsing */
dwarf2_modfmt->module->format_info[DFI_DWARF] = dwarf2_modfmt;
/* As we'll need later some sections' content, we won't unmap these
* sections upon existing this function
*/
dwarf2_init_section(&dwarf2_modfmt->u.dwarf2_info->debug_loc, fmap, ".debug_loc", ".zdebug_loc", NULL);
dwarf2_init_section(&dwarf2_modfmt->u.dwarf2_info->debug_frame, fmap, ".debug_frame", ".zdebug_frame", NULL);
dwarf2_modfmt->u.dwarf2_info->eh_frame = eh_frame;
dwarf2_modfmt->u.dwarf2_info->cuheads = NULL;
dwarf2_modfmt->u.dwarf2_info->num_cuheads = 0;
module_ctx.dwz = dwarf2_load_dwz(fmap, module);
dwarf2_load_CU_module(&module_ctx, module, section, load_offset, thunks, FALSE);
dwarf2_modfmt->module->module.SymType = SymDia;
/* hide dwarf versions in CVSig
* bits 24-31 will be set according to found dwarf version
* different CU can have different dwarf version, so use a bit per version (version 2 => b24)
*/
dwarf2_modfmt->module->module.CVSig = 'D' | ('W' << 8) | ('F' << 16) | ((module_ctx.cu_versions & 0xFF) << 24);
/* FIXME: we could have a finer grain here */
dwarf2_modfmt->module->module.GlobalSymbols = TRUE;
dwarf2_modfmt->module->module.TypeInfo = TRUE;
dwarf2_modfmt->module->module.SourceIndexed = TRUE;
dwarf2_modfmt->module->module.Publics = TRUE;
dwarf2_unload_CU_module(&module_ctx);
leave:
dwarf2_fini_section(&section[section_debug]);
dwarf2_fini_section(&section[section_abbrev]);
dwarf2_fini_section(&section[section_string]);
dwarf2_fini_section(&section[section_line]);
dwarf2_fini_section(&section[section_ranges]);
image_unmap_section(&debug_sect);
image_unmap_section(&debug_abbrev_sect);
image_unmap_section(&debug_str_sect);
image_unmap_section(&debug_line_sect);
image_unmap_section(&debug_ranges_sect);
if (!ret) image_unmap_section(&eh_frame_sect);
return ret;
}