Sweden-Number/dlls/dbghelp/elf_module.c

1381 lines
51 KiB
C

/*
* File elf.c - processing of ELF files
*
* Copyright (C) 1996, Eric Youngdale.
* 1999-2004 Eric Pouech
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <fcntl.h>
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#ifndef PATH_MAX
#define PATH_MAX MAX_PATH
#endif
#include "dbghelp_private.h"
#if defined(__svr4__) || defined(__sun)
#define __ELF__
#endif
#ifdef HAVE_ELF_H
# include <elf.h>
#endif
#ifdef HAVE_SYS_ELF32_H
# include <sys/elf32.h>
#endif
#ifdef HAVE_SYS_EXEC_ELF_H
# include <sys/exec_elf.h>
#endif
#if !defined(DT_NUM)
# if defined(DT_COUNT)
# define DT_NUM DT_COUNT
# else
/* this seems to be a satisfactory value on Solaris, which doesn't support this AFAICT */
# define DT_NUM 24
# endif
#endif
#ifdef HAVE_LINK_H
# include <link.h>
#endif
#ifdef HAVE_SYS_LINK_H
# include <sys/link.h>
#endif
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(dbghelp);
struct elf_module_info
{
unsigned long elf_addr;
unsigned short elf_mark : 1,
elf_loader : 1;
};
#ifdef __ELF__
#define ELF_INFO_DEBUG_HEADER 0x0001
#define ELF_INFO_MODULE 0x0002
struct elf_info
{
unsigned flags; /* IN one (or several) of the ELF_INFO constants */
unsigned long dbg_hdr_addr; /* OUT address of debug header (if ELF_INFO_DEBUG_HEADER is set) */
struct module* module; /* OUT loaded module (if ELF_INFO_MODULE is set) */
};
#define NO_MAP ((const void*)0xffffffff)
/* structure holding information while handling an ELF image
* allows one by one section mapping for memory savings
*/
struct elf_file_map
{
Elf32_Ehdr elfhdr;
size_t elf_size;
size_t elf_start;
struct
{
Elf32_Shdr shdr;
const char* mapped;
}* sect;
int fd;
unsigned with_crc;
unsigned long crc;
};
struct symtab_elt
{
struct hash_table_elt ht_elt;
const Elf32_Sym* symp;
const char* filename;
unsigned used;
};
struct thunk_area
{
const char* symname;
THUNK_ORDINAL ordinal;
unsigned long rva_start;
unsigned long rva_end;
};
/******************************************************************
* elf_map_section
*
* Maps a single section into memory from a ELF file
*/
static const char* elf_map_section(struct elf_file_map* fmap, int sidx)
{
unsigned pgsz = getpagesize();
unsigned ofst, size;
if (sidx >= fmap->elfhdr.e_shnum ||
fmap->sect[sidx].shdr.sh_type == SHT_NOBITS)
return NO_MAP;
/* align required information on page size (we assume pagesize is a power of 2) */
ofst = fmap->sect[sidx].shdr.sh_offset & ~(pgsz - 1);
size = (fmap->sect[sidx].shdr.sh_offset + fmap->sect[sidx].shdr.sh_size + pgsz - 1) & ~(pgsz - 1);
fmap->sect[sidx].mapped = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fmap->fd, ofst);
if (fmap->sect[sidx].mapped == NO_MAP) return NO_MAP;
return fmap->sect[sidx].mapped + (fmap->sect[sidx].shdr.sh_offset & (pgsz - 1));
}
/******************************************************************
* elf_unmap_section
*
* Unmaps a single section from memory
*/
static void elf_unmap_section(struct elf_file_map* fmap, int sidx)
{
if (sidx < fmap->elfhdr.e_shnum && fmap->sect[sidx].mapped != NO_MAP)
{
munmap((char*)fmap->sect[sidx].mapped, fmap->sect[sidx].shdr.sh_size);
fmap->sect[sidx].mapped = NO_MAP;
}
}
/******************************************************************
* elf_map_file
*
* Maps a ELF file into memory (and checks it's a real ELF file)
*/
static BOOL elf_map_file(const char* filename, struct elf_file_map* fmap)
{
static const BYTE elf_signature[4] = { ELFMAG0, ELFMAG1, ELFMAG2, ELFMAG3 };
struct stat statbuf;
int i;
Elf32_Phdr phdr;
unsigned tmp, page_mask = getpagesize() - 1;
fmap->fd = -1;
fmap->with_crc = 0;
/* check that the file exists, and that the module hasn't been loaded yet */
if (stat(filename, &statbuf) == -1 || S_ISDIR(statbuf.st_mode)) return FALSE;
/* Now open the file, so that we can mmap() it. */
if ((fmap->fd = open(filename, O_RDONLY)) == -1) return FALSE;
if (read(fmap->fd, &fmap->elfhdr, sizeof(fmap->elfhdr)) != sizeof(fmap->elfhdr))
return FALSE;
/* and check for an ELF header */
if (memcmp(fmap->elfhdr.e_ident,
elf_signature, sizeof(elf_signature))) return FALSE;
fmap->sect = HeapAlloc(GetProcessHeap(), 0, fmap->elfhdr.e_shnum * sizeof(fmap->sect[0]));
if (!fmap->sect) return FALSE;
lseek(fmap->fd, fmap->elfhdr.e_shoff, SEEK_SET);
for (i = 0; i < fmap->elfhdr.e_shnum; i++)
{
read(fmap->fd, &fmap->sect[i].shdr, sizeof(fmap->sect[i].shdr));
fmap->sect[i].mapped = NO_MAP;
}
/* grab size of module once loaded in memory */
lseek(fmap->fd, fmap->elfhdr.e_phoff, SEEK_SET);
fmap->elf_size = 0;
fmap->elf_start = ~0L;
for (i = 0; i < fmap->elfhdr.e_phnum; i++)
{
if (read(fmap->fd, &phdr, sizeof(phdr)) == sizeof(phdr) &&
phdr.p_type == PT_LOAD)
{
tmp = (phdr.p_vaddr + phdr.p_memsz + page_mask) & ~page_mask;
if (fmap->elf_size < tmp) fmap->elf_size = tmp;
if (phdr.p_vaddr < fmap->elf_start) fmap->elf_start = phdr.p_vaddr;
}
}
/* if non relocatable ELF, then remove fixed address from computation
* otherwise, all addresses are zero based and start has no effect
*/
fmap->elf_size -= fmap->elf_start;
return TRUE;
}
/******************************************************************
* elf_unmap_file
*
* Unmaps a ELF file from memory (previously mapped with elf_map_file)
*/
static void elf_unmap_file(struct elf_file_map* fmap)
{
if (fmap->fd != -1)
{
int i;
for (i = 0; i < fmap->elfhdr.e_shnum; i++)
{
elf_unmap_section(fmap, i);
}
HeapFree(GetProcessHeap(), 0, fmap->sect);
close(fmap->fd);
}
}
/******************************************************************
* elf_hash_symtab
*
* creating an internal hash table to ease use ELF symtab information lookup
*/
static void elf_hash_symtab(const struct module* module, struct pool* pool,
struct hash_table* ht_symtab, struct elf_file_map* fmap,
int symtab_idx, struct thunk_area* thunks)
{
int i, j, nsym;
const char* strp;
const char* symname;
const char* filename = NULL;
const char* ptr;
const Elf32_Sym* symp;
struct symtab_elt* ste;
symp = (const Elf32_Sym*)elf_map_section(fmap, symtab_idx);
strp = elf_map_section(fmap, fmap->sect[symtab_idx].shdr.sh_link);
if (symp == NO_MAP || strp == NO_MAP) return;
nsym = fmap->sect[symtab_idx].shdr.sh_size / sizeof(*symp);
for (j = 0; thunks[j].symname; j++)
thunks[j].rva_start = thunks[j].rva_end = 0;
for (i = 0; i < nsym; i++, symp++)
{
/* Ignore certain types of entries which really aren't of that much
* interest.
*/
if ((ELF32_ST_TYPE(symp->st_info) != STT_FILE &&
ELF32_ST_TYPE(symp->st_info) != STT_OBJECT &&
ELF32_ST_TYPE(symp->st_info) != STT_FUNC) ||
symp->st_shndx == SHN_UNDEF)
{
continue;
}
symname = strp + symp->st_name;
if (ELF32_ST_TYPE(symp->st_info) == STT_FILE)
{
filename = symname;
continue;
}
for (j = 0; thunks[j].symname; j++)
{
if (!strcmp(symname, thunks[j].symname))
{
thunks[j].rva_start = symp->st_value;
thunks[j].rva_end = symp->st_value + symp->st_size;
break;
}
}
if (thunks[j].symname) continue;
/* FIXME: we don't need to handle them (GCC internals)
* Moreover, they screw up our symbol lookup :-/
*/
if (symname[0] == '.' && symname[1] == 'L' && isdigit(symname[2]))
continue;
ste = pool_alloc(pool, sizeof(*ste));
ste->ht_elt.name = symname;
/* GCC emits, in some cases, a .<digit>+ suffix.
* This is used for static variable inside functions, so
* that we can have several such variables with same name in
* the same compilation unit
* We simply ignore that suffix when present (we also get rid
* of it in stabs parsing)
*/
ptr = symname + strlen(symname) - 1;
if (isdigit(*ptr))
{
while (isdigit(*ptr) && ptr >= symname) ptr--;
if (ptr > symname && *ptr == '.')
{
char* n = pool_alloc(pool, ptr - symname + 1);
memcpy(n, symname, ptr - symname + 1);
n[ptr - symname] = '\0';
ste->ht_elt.name = n;
}
}
ste->symp = symp;
ste->filename = filename;
ste->used = 0;
hash_table_add(ht_symtab, &ste->ht_elt);
}
/* as we added in the ht_symtab pointers to the symbols themselves,
* we cannot unmap yet the sections, it will be done when we're over
* with this ELF file
*/
}
/******************************************************************
* elf_lookup_symtab
*
* lookup a symbol by name in our internal hash table for the symtab
*/
static const Elf32_Sym* elf_lookup_symtab(const struct module* module,
const struct hash_table* ht_symtab,
const char* name, struct symt* compiland)
{
struct symtab_elt* weak_result = NULL; /* without compiland name */
struct symtab_elt* result = NULL;
struct hash_table_iter hti;
struct symtab_elt* ste;
const char* compiland_name;
const char* compiland_basename;
const char* base;
/* we need weak match up (at least) when symbols of same name,
* defined several times in different compilation units,
* are merged in a single one (hence a different filename for c.u.)
*/
if (compiland)
{
compiland_name = source_get(module,
((struct symt_compiland*)compiland)->source);
compiland_basename = strrchr(compiland_name, '/');
if (!compiland_basename++) compiland_basename = compiland_name;
}
else compiland_name = compiland_basename = NULL;
hash_table_iter_init(ht_symtab, &hti, name);
while ((ste = hash_table_iter_up(&hti)))
{
if (ste->used || strcmp(ste->ht_elt.name, name)) continue;
weak_result = ste;
if ((ste->filename && !compiland_name) || (!ste->filename && compiland_name))
continue;
if (ste->filename && compiland_name)
{
if (strcmp(ste->filename, compiland_name))
{
base = strrchr(ste->filename, '/');
if (!base++) base = ste->filename;
if (strcmp(base, compiland_basename)) continue;
}
}
if (result)
{
FIXME("Already found symbol %s (%s) in symtab %s @%08x and %s @%08x\n",
name, compiland_name, result->filename, result->symp->st_value,
ste->filename, ste->symp->st_value);
}
else
{
result = ste;
ste->used = 1;
}
}
if (!result && !(result = weak_result))
{
FIXME("Couldn't find symbol %s!%s in symtab\n",
module->module.ModuleName, name);
return NULL;
}
return result->symp;
}
/******************************************************************
* elf_finish_stabs_info
*
* - get any relevant information (address & size) from the bits we got from the
* stabs debugging information
*/
static void elf_finish_stabs_info(struct module* module, struct hash_table* symtab)
{
struct hash_table_iter hti;
void* ptr;
struct symt_ht* sym;
const Elf32_Sym* symp;
hash_table_iter_init(&module->ht_symbols, &hti, NULL);
while ((ptr = hash_table_iter_up(&hti)))
{
sym = GET_ENTRY(ptr, struct symt_ht, hash_elt);
switch (sym->symt.tag)
{
case SymTagFunction:
if (((struct symt_function*)sym)->address != module->elf_info->elf_addr &&
((struct symt_function*)sym)->size)
{
break;
}
symp = elf_lookup_symtab(module, symtab, sym->hash_elt.name,
((struct symt_function*)sym)->container);
if (symp)
{
if (((struct symt_function*)sym)->address != module->elf_info->elf_addr &&
((struct symt_function*)sym)->address != module->elf_info->elf_addr + symp->st_value)
FIXME("Changing address for %p/%s!%s from %08lx to %08lx\n",
sym, module->module.ModuleName, sym->hash_elt.name,
((struct symt_function*)sym)->address, module->elf_info->elf_addr + symp->st_value);
if (((struct symt_function*)sym)->size && ((struct symt_function*)sym)->size != symp->st_size)
FIXME("Changing size for %p/%s!%s from %08lx to %08x\n",
sym, module->module.ModuleName, sym->hash_elt.name,
((struct symt_function*)sym)->size, symp->st_size);
((struct symt_function*)sym)->address = module->elf_info->elf_addr +
symp->st_value;
((struct symt_function*)sym)->size = symp->st_size;
} else FIXME("Couldn't find %s!%s\n", module->module.ModuleName, sym->hash_elt.name);
break;
case SymTagData:
switch (((struct symt_data*)sym)->kind)
{
case DataIsGlobal:
case DataIsFileStatic:
if (((struct symt_data*)sym)->u.address != module->elf_info->elf_addr)
break;
symp = elf_lookup_symtab(module, symtab, sym->hash_elt.name,
((struct symt_data*)sym)->container);
if (symp)
{
if (((struct symt_data*)sym)->u.address != module->elf_info->elf_addr &&
((struct symt_data*)sym)->u.address != module->elf_info->elf_addr + symp->st_value)
FIXME("Changing address for %p/%s!%s from %08lx to %08lx\n",
sym, module->module.ModuleName, sym->hash_elt.name,
((struct symt_function*)sym)->address, module->elf_info->elf_addr + symp->st_value);
((struct symt_data*)sym)->u.address = module->elf_info->elf_addr +
symp->st_value;
((struct symt_data*)sym)->kind = (ELF32_ST_BIND(symp->st_info) == STB_LOCAL) ?
DataIsFileStatic : DataIsGlobal;
} else FIXME("Couldn't find %s!%s\n", module->module.ModuleName, sym->hash_elt.name);
break;
default:;
}
break;
default:
FIXME("Unsupported tag %u\n", sym->symt.tag);
break;
}
}
/* since we may have changed some addresses & sizes, mark the module to be resorted */
module->sortlist_valid = FALSE;
}
/******************************************************************
* elf_load_wine_thunks
*
* creating the thunk objects for a wine native DLL
*/
static int elf_new_wine_thunks(struct module* module, struct hash_table* ht_symtab,
unsigned num_areas, struct thunk_area* thunks)
{
int j;
struct symt_compiland* compiland = NULL;
const char* compiland_name = NULL;
struct hash_table_iter hti;
struct symtab_elt* ste;
DWORD addr;
int idx;
hash_table_iter_init(ht_symtab, &hti, NULL);
while ((ste = hash_table_iter_up(&hti)))
{
if (ste->used) continue;
/* FIXME: this is not a good idea anyway... we are creating several
* compiland objects for a same compilation unit
* We try to cache the last compiland used, but it's not enough
* (we should here only create compilands if they are not yet
* defined)
*/
if (!compiland_name || compiland_name != ste->filename)
compiland = symt_new_compiland(module,
compiland_name = ste->filename);
addr = module->elf_info->elf_addr + ste->symp->st_value;
for (j = 0; j < num_areas; j++)
{
if (ste->symp->st_value >= thunks[j].rva_start &&
ste->symp->st_value < thunks[j].rva_end)
break;
}
if (j < num_areas) /* thunk found */
{
symt_new_thunk(module, compiland, ste->ht_elt.name, thunks[j].ordinal,
addr, ste->symp->st_size);
}
else
{
ULONG64 ref_addr;
idx = symt_find_nearest(module, addr);
if (idx != -1)
symt_get_info(&module->addr_sorttab[idx]->symt,
TI_GET_ADDRESS, &ref_addr);
if (idx == -1 || addr != ref_addr)
{
/* creating public symbols for all the ELF symbols which haven't been
* used yet (ie we have no debug information on them)
* That's the case, for example, of the .spec.c files
*/
switch (ELF32_ST_TYPE(ste->symp->st_info))
{
case STT_FUNC:
symt_new_function(module, compiland, ste->ht_elt.name,
addr, ste->symp->st_size, NULL);
break;
case STT_OBJECT:
symt_new_global_variable(module, compiland, ste->ht_elt.name,
ELF32_ST_BIND(ste->symp->st_info) == STB_LOCAL,
addr, ste->symp->st_size, NULL);
break;
default:
FIXME("Shouldn't happen\n");
break;
}
/* FIXME: this is a hack !!!
* we are adding new symbols, but as we're parsing a symbol table
* (hopefully without duplicate symbols) we delay rebuilding the sorted
* module table until we're done with the symbol table
* Otherwise, as we intertwine symbols's add and lookup, performance
* is rather bad
*/
module->sortlist_valid = TRUE;
}
else if (strcmp(ste->ht_elt.name, module->addr_sorttab[idx]->hash_elt.name))
{
ULONG64 xaddr = 0;
DWORD xsize = 0, kind = -1;
symt_get_info(&module->addr_sorttab[idx]->symt, TI_GET_ADDRESS, &xaddr);
symt_get_info(&module->addr_sorttab[idx]->symt, TI_GET_LENGTH, &xsize);
symt_get_info(&module->addr_sorttab[idx]->symt, TI_GET_DATAKIND, &kind);
/* If none of symbols has a correct size, we consider they are both markers
* Hence, we can silence this warning
* Also, we check that we don't have two symbols, one local, the other
* global which is legal
*/
if ((xsize || ste->symp->st_size) &&
(kind == (ELF32_ST_BIND(ste->symp->st_info) == STB_LOCAL) ? DataIsFileStatic : DataIsGlobal))
FIXME("Duplicate in %s: %s<%08lx-%08x> %s<%s-%08lx>\n",
module->module.ModuleName,
ste->ht_elt.name, addr, ste->symp->st_size,
module->addr_sorttab[idx]->hash_elt.name,
wine_dbgstr_longlong(xaddr), xsize);
}
}
}
/* see comment above */
module->sortlist_valid = FALSE;
return TRUE;
}
/******************************************************************
* elf_new_public_symbols
*
* Creates a set of public symbols from an ELF symtab
*/
static int elf_new_public_symbols(struct module* module, struct hash_table* symtab)
{
struct symt_compiland* compiland = NULL;
const char* compiland_name = NULL;
struct hash_table_iter hti;
struct symtab_elt* ste;
if (dbghelp_options & SYMOPT_NO_PUBLICS) return TRUE;
/* FIXME: we're missing the ELF entry point here */
hash_table_iter_init(symtab, &hti, NULL);
while ((ste = hash_table_iter_up(&hti)))
{
/* FIXME: this is not a good idea anyway... we are creating several
* compiland objects for a same compilation unit
* We try to cache the last compiland used, but it's not enough
* (we should here only create compilands if they are not yet
* defined)
*/
if (!compiland_name || compiland_name != ste->filename)
compiland = symt_new_compiland(module,
compiland_name = ste->filename);
symt_new_public(module, compiland, ste->ht_elt.name,
module->elf_info->elf_addr + ste->symp->st_value,
ste->symp->st_size, TRUE /* FIXME */,
ELF32_ST_TYPE(ste->symp->st_info) == STT_FUNC);
}
return TRUE;
}
/* Copyright (C) 1986 Gary S. Brown. Modified by Robert Shearman. You may use
the following calc_crc32 code or tables extracted from it, as desired without
restriction. */
/**********************************************************************\
|* Demonstration program to compute the 32-bit CRC used as the frame *|
|* check sequence in ADCCP (ANSI X3.66, also known as FIPS PUB 71 *|
|* and FED-STD-1003, the U.S. versions of CCITT's X.25 link-level *|
|* protocol). The 32-bit FCS was added via the Federal Register, *|
|* 1 June 1982, p.23798. I presume but don't know for certain that *|
|* this polynomial is or will be included in CCITT V.41, which *|
|* defines the 16-bit CRC (often called CRC-CCITT) polynomial. FIPS *|
|* PUB 78 says that the 32-bit FCS reduces otherwise undetected *|
|* errors by a factor of 10^-5 over 16-bit FCS. *|
\**********************************************************************/
/* First, the polynomial itself and its table of feedback terms. The */
/* polynomial is */
/* X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0 */
/* Note that we take it "backwards" and put the highest-order term in */
/* the lowest-order bit. The X^32 term is "implied"; the LSB is the */
/* X^31 term, etc. The X^0 term (usually shown as "+1") results in */
/* the MSB being 1. */
/* Note that the usual hardware shift register implementation, which */
/* is what we're using (we're merely optimizing it by doing eight-bit */
/* chunks at a time) shifts bits into the lowest-order term. In our */
/* implementation, that means shifting towards the right. Why do we */
/* do it this way? Because the calculated CRC must be transmitted in */
/* order from highest-order term to lowest-order term. UARTs transmit */
/* characters in order from LSB to MSB. By storing the CRC this way, */
/* we hand it to the UART in the order low-byte to high-byte; the UART */
/* sends each low-bit to hight-bit; and the result is transmission bit */
/* by bit from highest- to lowest-order term without requiring any bit */
/* shuffling on our part. Reception works similarly. */
/* The feedback terms table consists of 256, 32-bit entries. Notes: */
/* */
/* 1. The table can be generated at runtime if desired; code to do so */
/* is shown later. It might not be obvious, but the feedback */
/* terms simply represent the results of eight shift/xor opera- */
/* tions for all combinations of data and CRC register values. */
/* */
/* 2. The CRC accumulation logic is the same for all CRC polynomials, */
/* be they sixteen or thirty-two bits wide. You simply choose the */
/* appropriate table. Alternatively, because the table can be */
/* generated at runtime, you can start by generating the table for */
/* the polynomial in question and use exactly the same "updcrc", */
/* if your application needn't simultaneously handle two CRC */
/* polynomials. (Note, however, that XMODEM is strange.) */
/* */
/* 3. For 16-bit CRCs, the table entries need be only 16 bits wide; */
/* of course, 32-bit entries work OK if the high 16 bits are zero. */
/* */
/* 4. The values must be right-shifted by eight bits by the "updcrc" */
/* logic; the shift must be unsigned (bring in zeroes). On some */
/* hardware you could probably optimize the shift in assembler by */
/* using byte-swap instructions. */
static DWORD calc_crc32(struct elf_file_map* fmap)
{
#define UPDC32(octet,crc) (crc_32_tab[((crc) ^ (octet)) & 0xff] ^ ((crc) >> 8))
static const DWORD crc_32_tab[] =
{ /* CRC polynomial 0xedb88320 */
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};
int i, r;
unsigned char buffer[256];
DWORD crc = ~0;
lseek(fmap->fd, 0, SEEK_SET);
while ((r = read(fmap->fd, buffer, sizeof(buffer))) > 0)
{
for (i = 0; i < r; i++) crc = UPDC32(buffer[i], crc);
}
return ~crc;
#undef UPDC32
}
/******************************************************************
* elf_load_debug_info_from_map
*
* Loads the symbolic information from ELF module which mapping is described
* in fmap
* the module has been loaded at 'load_offset' address, so symbols' address
* relocation is performed.
* CRC is checked if fmap->with_crc is TRUE
* returns
* 0 if the file doesn't contain symbolic info (or this info cannot be
* read or parsed)
* 1 on success
*/
static BOOL elf_load_debug_info_from_map(struct module* module,
struct elf_file_map* fmap,
struct pool* pool,
struct hash_table* ht_symtab)
{
BOOL ret = FALSE;
const char* shstrtab;
int i;
int symtab_sect, dynsym_sect, stab_sect, stabstr_sect, debug_sect, debuglink_sect;
struct thunk_area thunks[] =
{
{"__wine_spec_import_thunks", THUNK_ORDINAL_NOTYPE, 0, 0}, /* inter DLL calls */
{"__wine_spec_delayed_import_loaders", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */
{"__wine_spec_delayed_import_thunks", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */
{"__wine_delay_load", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */
{"__wine_spec_thunk_text_16", -16, 0, 0}, /* 16 => 32 thunks */
{"__wine_spec_thunk_data_16", -16, 0, 0}, /* 16 => 32 thunks */
{"__wine_spec_thunk_text_32", -32, 0, 0}, /* 32 => 16 thunks */
{"__wine_spec_thunk_data_32", -32, 0, 0}, /* 32 => 16 thunks */
{NULL, 0, 0, 0}
};
if (fmap->with_crc && (fmap->crc != calc_crc32(fmap)))
{
ERR("Bad CRC for module %s (got %08lx while expecting %08lx)\n",
module->module.ImageName, calc_crc32(fmap), fmap->crc);
/* we don't tolerate mis-matched files */
return FALSE;
}
/*
* Next, we need to find a few of the internal ELF headers within
* this thing. We need the main executable header, and the section
* table.
*/
shstrtab = elf_map_section(fmap, fmap->elfhdr.e_shstrndx);
if (shstrtab == NO_MAP) return FALSE;
symtab_sect = dynsym_sect = stab_sect = stabstr_sect = debug_sect = debuglink_sect = -1;
for (i = 0; i < fmap->elfhdr.e_shnum; i++)
{
if (strcmp(shstrtab + fmap->sect[i].shdr.sh_name, ".stab") == 0)
stab_sect = i;
if (strcmp(shstrtab + fmap->sect[i].shdr.sh_name, ".stabstr") == 0)
stabstr_sect = i;
if (strcmp(shstrtab + fmap->sect[i].shdr.sh_name, ".debug_info") == 0)
debug_sect = i;
if (strcmp(shstrtab + fmap->sect[i].shdr.sh_name, ".gnu_debuglink") == 0)
debuglink_sect = i;
if ((strcmp(shstrtab + fmap->sect[i].shdr.sh_name, ".symtab") == 0) &&
(fmap->sect[i].shdr.sh_type == SHT_SYMTAB))
symtab_sect = i;
if ((strcmp(shstrtab + fmap->sect[i].shdr.sh_name, ".dynsym") == 0) &&
(fmap->sect[i].shdr.sh_type == SHT_DYNSYM))
dynsym_sect = i;
}
elf_unmap_section(fmap, fmap->elfhdr.e_shstrndx);
shstrtab = NULL;
if (symtab_sect == -1)
{
/* if we don't have a symtab but a dynsym, process the dynsym
* section instead. It'll contain less (relevant) information,
* but it'll be better than nothing
*/
if (dynsym_sect == -1) return FALSE;
symtab_sect = dynsym_sect;
}
module->module.SymType = SymExport;
/* create a hash table for the symtab */
elf_hash_symtab(module, pool, ht_symtab, fmap, symtab_sect, thunks);
if (!(dbghelp_options & SYMOPT_PUBLICS_ONLY))
{
if (stab_sect != -1 && stabstr_sect != -1)
{
const char* stab;
const char* stabstr;
stab = elf_map_section(fmap, stab_sect);
stabstr = elf_map_section(fmap, stabstr_sect);
if (stab != NO_MAP && stabstr != NO_MAP)
{
/* OK, now just parse all of the stabs. */
ret = stabs_parse(module, module->elf_info->elf_addr,
stab, fmap->sect[stab_sect].shdr.sh_size,
stabstr, fmap->sect[stabstr_sect].shdr.sh_size);
}
elf_unmap_section(fmap, stab_sect);
elf_unmap_section(fmap, stabstr_sect);
if (!ret)
{
WARN("Couldn't correctly read stabs\n");
return FALSE;
}
/* and fill in the missing information for stabs */
elf_finish_stabs_info(module, ht_symtab);
}
else if (debug_sect != -1)
{
/* Dwarf 2 debug information */
FIXME("Unsupported Dwarf2 information for %s\n", module->module.ModuleName);
}
else if (debuglink_sect != -1)
{
const char* dbg_link;
struct elf_file_map fmap_link;
dbg_link = elf_map_section(fmap, debuglink_sect);
/* The content of a debug link section is:
* 1/ a NULL terminated string, containing the file name for the debug info
* 2/ padding on 4 byte boundary
* 3/ CRC of the linked ELF file
*/
if (dbg_link != NO_MAP && elf_map_file(dbg_link, &fmap_link))
{
fmap_link.crc = *(const DWORD*)(dbg_link + ((DWORD_PTR)(strlen(dbg_link) + 4) & ~3));
fmap_link.with_crc = 1;
ret = elf_load_debug_info_from_map(module, &fmap_link, pool, ht_symtab);
if (!ret)
WARN("Couldn't load debug information from %s\n", dbg_link);
}
else WARN("Couldn't load linked debug file for %s\n", module->module.ModuleName);
elf_unmap_file(&fmap_link);
}
}
if (strstr(module->module.ModuleName, "<elf>") ||
!strcmp(module->module.ModuleName, "<wine-loader>"))
{
/* add the thunks for native libraries */
if (!(dbghelp_options & SYMOPT_PUBLICS_ONLY))
elf_new_wine_thunks(module, ht_symtab,
sizeof(thunks) / sizeof(thunks[0]), thunks);
}
/* add all the public symbols from symtab */
if (elf_new_public_symbols(module, ht_symtab) && !ret) ret = TRUE;
return ret;
}
/******************************************************************
* elf_load_debug_info
*
* Loads ELF debugging information from the module image file.
*/
BOOL elf_load_debug_info(struct module* module, struct elf_file_map* fmap)
{
BOOL ret = TRUE;
struct pool pool;
struct hash_table ht_symtab;
struct elf_file_map my_fmap;
if (module->type != DMT_ELF || !module->elf_info)
{
ERR("Bad elf module '%s'\n", module->module.LoadedImageName);
return FALSE;
}
pool_init(&pool, 65536);
hash_table_init(&pool, &ht_symtab, 256);
if (!fmap)
{
fmap = &my_fmap;
ret = elf_map_file(module->module.LoadedImageName, fmap);
}
if (ret)
ret = elf_load_debug_info_from_map(module, fmap, &pool, &ht_symtab);
pool_destroy(&pool);
if (fmap == &my_fmap) elf_unmap_file(fmap);
return ret;
}
/******************************************************************
* is_dt_flag_valid
* returns true iff the section tag is valid
*/
static unsigned is_dt_flag_valid(unsigned d_tag)
{
#ifndef DT_PROCNUM
#define DT_PROCNUM 0
#endif
#ifndef DT_EXTRANUM
#define DT_EXTRANUM 0
#endif
return (d_tag >= 0 && d_tag < DT_NUM + DT_PROCNUM + DT_EXTRANUM)
#if defined(DT_LOOS) && defined(DT_HIOS)
|| (d_tag >= DT_LOOS && d_tag < DT_HIOS)
#endif
#if defined(DT_LOPROC) && defined(DT_HIPROC)
|| (d_tag >= DT_LOPROC && d_tag < DT_HIPROC)
#endif
;
}
/******************************************************************
* elf_load_file
*
* Loads the information for ELF module stored in 'filename'
* the module has been loaded at 'load_offset' address
* returns
* -1 if the file cannot be found/opened
* 0 if the file doesn't contain symbolic info (or this info cannot be
* read or parsed)
* 1 on success
*/
static BOOL elf_load_file(struct process* pcs, const char* filename,
unsigned long load_offset, struct elf_info* elf_info)
{
BOOL ret = FALSE;
struct elf_file_map fmap;
int i;
TRACE("Processing elf file '%s' at %08lx\n", filename, load_offset);
if (!elf_map_file(filename, &fmap)) goto leave;
/* Next, we need to find a few of the internal ELF headers within
* this thing. We need the main executable header, and the section
* table.
*/
if (!fmap.elf_start && !load_offset)
ERR("Relocatable ELF %s, but no load address. Loading at 0x0000000\n",
filename);
if (fmap.elf_start && load_offset)
{
WARN("Non-relocatable ELF %s, but load address of 0x%08lx supplied. "
"Assuming load address is corrupt\n", filename, load_offset);
load_offset = 0;
}
if (elf_info->flags & ELF_INFO_DEBUG_HEADER)
{
const char* shstrtab = elf_map_section(&fmap, fmap.elfhdr.e_shstrndx);
if (shstrtab == NO_MAP) goto leave;
for (i = 0; i < fmap.elfhdr.e_shnum; i++)
{
if (strcmp(shstrtab + fmap.sect[i].shdr.sh_name, ".dynamic") == 0 &&
fmap.sect[i].shdr.sh_type == SHT_DYNAMIC)
{
Elf32_Dyn dyn;
char* ptr = (char*)fmap.sect[i].shdr.sh_addr;
unsigned long len;
do
{
if (!ReadProcessMemory(pcs->handle, ptr, &dyn, sizeof(dyn), &len) ||
len != sizeof(dyn) || !is_dt_flag_valid(dyn.d_tag))
dyn.d_tag = DT_NULL;
ptr += sizeof(dyn);
} while (dyn.d_tag != DT_DEBUG && dyn.d_tag != DT_NULL);
if (dyn.d_tag == DT_NULL) goto leave;
elf_info->dbg_hdr_addr = dyn.d_un.d_ptr;
}
}
elf_unmap_section(&fmap, fmap.elfhdr.e_shstrndx);
}
if (elf_info->flags & ELF_INFO_MODULE)
{
struct elf_module_info *elf_module_info =
HeapAlloc(GetProcessHeap(), 0, sizeof(struct elf_module_info));
if (!elf_module_info) goto leave;
elf_info->module = module_new(pcs, filename, DMT_ELF,
(load_offset) ? load_offset : fmap.elf_start,
fmap.elf_size, 0, 0);
if (!elf_info->module)
{
HeapFree(GetProcessHeap(), 0, elf_module_info);
goto leave;
}
elf_info->module->elf_info = elf_module_info;
elf_info->module->elf_info->elf_addr = load_offset;
if (dbghelp_options & SYMOPT_DEFERRED_LOADS)
{
elf_info->module->module.SymType = SymDeferred;
ret = TRUE;
}
else ret = elf_load_debug_info(elf_info->module, &fmap);
elf_info->module->elf_info->elf_mark = 1;
elf_info->module->elf_info->elf_loader = 0;
} else ret = TRUE;
leave:
elf_unmap_file(&fmap);
return ret;
}
/******************************************************************
* elf_load_file_from_path
* tries to load an ELF file from a set of paths (separated by ':')
*/
static BOOL elf_load_file_from_path(HANDLE hProcess,
const char* filename,
unsigned long load_offset,
const char* path,
struct elf_info* elf_info)
{
BOOL ret = FALSE;
char *s, *t, *fn;
char* paths = NULL;
if (!path) return FALSE;
paths = strcpy(HeapAlloc(GetProcessHeap(), 0, strlen(path) + 1), path);
for (s = paths; s && *s; s = (t) ? (t+1) : NULL)
{
t = strchr(s, ':');
if (t) *t = '\0';
fn = HeapAlloc(GetProcessHeap(), 0, strlen(filename) + 1 + strlen(s) + 1);
if (!fn) break;
strcpy(fn, s);
strcat(fn, "/");
strcat(fn, filename);
ret = elf_load_file(hProcess, fn, load_offset, elf_info);
HeapFree(GetProcessHeap(), 0, fn);
if (ret) break;
s = (t) ? (t+1) : NULL;
}
HeapFree(GetProcessHeap(), 0, paths);
return ret;
}
/******************************************************************
* elf_search_and_load_file
*
* lookup a file in standard ELF locations, and if found, load it
*/
static BOOL elf_search_and_load_file(struct process* pcs, const char* filename,
unsigned long load_offset,
struct elf_info* elf_info)
{
BOOL ret = FALSE;
struct module* module;
if (filename == NULL || *filename == '\0') return FALSE;
if ((module = module_find_by_name(pcs, filename, DMT_ELF)))
{
elf_info->module = module;
module->elf_info->elf_mark = 1;
return module->module.SymType;
}
if (strstr(filename, "libstdc++")) return FALSE; /* We know we can't do it */
ret = elf_load_file(pcs, filename, load_offset, elf_info);
/* if relative pathname, try some absolute base dirs */
if (!ret && !strchr(filename, '/'))
{
ret = elf_load_file_from_path(pcs, filename, load_offset,
getenv("PATH"), elf_info) ||
elf_load_file_from_path(pcs, filename, load_offset,
getenv("LD_LIBRARY_PATH"), elf_info) ||
elf_load_file_from_path(pcs, filename, load_offset,
getenv("WINEDLLPATH"), elf_info);
}
return ret;
}
/******************************************************************
* elf_enum_modules_internal
*
* Enumerate ELF modules from a running process
*/
static BOOL elf_enum_modules_internal(const struct process* pcs,
elf_enum_modules_cb cb, void* user)
{
struct r_debug dbg_hdr;
void* lm_addr;
struct link_map lm;
char bufstr[256];
if (!pcs->dbg_hdr_addr ||
!ReadProcessMemory(pcs->handle, (void*)pcs->dbg_hdr_addr,
&dbg_hdr, sizeof(dbg_hdr), NULL))
return FALSE;
/* Now walk the linked list. In all known ELF implementations,
* the dynamic loader maintains this linked list for us. In some
* cases the first entry doesn't appear with a name, in other cases it
* does.
*/
for (lm_addr = (void*)dbg_hdr.r_map; lm_addr; lm_addr = (void*)lm.l_next)
{
if (!ReadProcessMemory(pcs->handle, lm_addr, &lm, sizeof(lm), NULL))
return FALSE;
if (lm.l_prev != NULL && /* skip first entry, normally debuggee itself */
lm.l_name != NULL &&
ReadProcessMemory(pcs->handle, lm.l_name, bufstr, sizeof(bufstr), NULL))
{
bufstr[sizeof(bufstr) - 1] = '\0';
if (!cb(bufstr, lm.l_addr, user)) break;
}
}
return TRUE;
}
struct elf_sync
{
struct process* pcs;
struct elf_info elf_info;
};
static BOOL elf_enum_sync_cb(const char* name, unsigned long addr, void* user)
{
struct elf_sync* es = user;
elf_search_and_load_file(es->pcs, name, addr, &es->elf_info);
return TRUE;
}
/******************************************************************
* elf_synchronize_module_list
*
* this functions rescans the debuggee module's list and synchronizes it with
* the one from 'pcs', ie:
* - if a module is in debuggee and not in pcs, it's loaded into pcs
* - if a module is in pcs and not in debuggee, it's unloaded from pcs
*/
BOOL elf_synchronize_module_list(struct process* pcs)
{
struct module* module;
struct elf_sync es;
for (module = pcs->lmodules; module; module = module->next)
{
if (module->type == DMT_ELF) module->elf_info->elf_mark = 0;
}
es.pcs = pcs;
es.elf_info.flags = ELF_INFO_MODULE;
if (!elf_enum_modules_internal(pcs, elf_enum_sync_cb, &es))
return FALSE;
module = pcs->lmodules;
while (module)
{
if (module->type == DMT_ELF && !module->elf_info->elf_mark &&
!module->elf_info->elf_loader)
{
module_remove(pcs, module);
/* restart all over */
module = pcs->lmodules;
}
else module = module->next;
}
return TRUE;
}
/******************************************************************
* elf_search_loader
*
* Lookup in a running ELF process the loader, and sets its ELF link
* address (for accessing the list of loaded .so libs) in pcs.
* If flags is ELF_INFO_MODULE, the module for the loader is also
* added as a module into pcs.
*/
static BOOL elf_search_loader(struct process* pcs, struct elf_info* elf_info)
{
BOOL ret;
const char* ptr;
/* All binaries are loaded with WINELOADER (if run from tree) or by the
* main executable (either wine-kthread or wine-pthread)
* FIXME: the heuristic used to know whether we need to load wine-pthread
* or wine-kthread is not 100% safe
*/
if ((ptr = getenv("WINELOADER")))
ret = elf_search_and_load_file(pcs, ptr, 0, elf_info);
else
{
ret = elf_search_and_load_file(pcs, "wine-kthread", 0, elf_info) ||
elf_search_and_load_file(pcs, "wine-pthread", 0, elf_info);
}
return ret;
}
/******************************************************************
* elf_read_wine_loader_dbg_info
*
* Try to find a decent wine executable which could have loaded the debuggee
*/
BOOL elf_read_wine_loader_dbg_info(struct process* pcs)
{
struct elf_info elf_info;
elf_info.flags = ELF_INFO_DEBUG_HEADER | ELF_INFO_MODULE;
if (!elf_search_loader(pcs, &elf_info)) return FALSE;
elf_info.module->elf_info->elf_loader = 1;
strcpy(elf_info.module->module.ModuleName, "<wine-loader>");
return (pcs->dbg_hdr_addr = elf_info.dbg_hdr_addr) != 0;
}
/******************************************************************
* elf_enum_modules
*
* Enumerates the ELF loaded modules from a running target (hProc)
* This function doesn't require that someone has called SymInitialize
* on this very process.
*/
BOOL elf_enum_modules(HANDLE hProc, elf_enum_modules_cb cb, void* user)
{
struct process pcs;
struct elf_info elf_info;
memset(&pcs, 0, sizeof(pcs));
pcs.handle = hProc;
elf_info.flags = ELF_INFO_DEBUG_HEADER;
if (!elf_search_loader(&pcs, &elf_info)) return FALSE;
pcs.dbg_hdr_addr = elf_info.dbg_hdr_addr;
return elf_enum_modules_internal(&pcs, cb, user);
}
struct elf_load
{
struct process* pcs;
struct elf_info elf_info;
const char* name;
BOOL ret;
};
/******************************************************************
* elf_load_cb
*
* Callback for elf_load_module, used to walk the list of loaded
* modules.
*/
static BOOL elf_load_cb(const char* name, unsigned long addr, void* user)
{
struct elf_load* el = user;
const char* p;
/* memcmp is needed for matches when bufstr contains also version information
* el->name: libc.so, name: libc.so.6.0
*/
p = strrchr(name, '/');
if (!p++) p = name;
if (!memcmp(p, el->name, strlen(el->name)))
{
elf_search_and_load_file(el->pcs, name, addr, &el->elf_info);
return FALSE;
}
return TRUE;
}
/******************************************************************
* elf_load_module
*
* loads an ELF module and stores it in process' module list
* Also, find module real name and load address from
* the real loaded modules list in pcs address space
*/
struct module* elf_load_module(struct process* pcs, const char* name, DWORD addr)
{
struct elf_load el;
TRACE("(%p %s)\n", pcs, name);
el.elf_info.flags = ELF_INFO_MODULE;
el.ret = FALSE;
if (pcs->dbg_hdr_addr) /* we're debugging a life target */
{
el.pcs = pcs;
/* do only the lookup from the filename, not the path (as we lookup module name
* in the process' loaded module list)
*/
el.name = strrchr(name, '/');
if (!el.name++) el.name = name;
el.ret = FALSE;
if (!elf_enum_modules_internal(pcs, elf_load_cb, &el))
return NULL;
}
else if (addr)
{
el.ret = elf_search_and_load_file(pcs, name, addr, &el.elf_info);
}
if (!el.ret) return NULL;
assert(el.elf_info.module);
return el.elf_info.module;
}
#else /* !__ELF__ */
BOOL elf_synchronize_module_list(struct process* pcs)
{
return FALSE;
}
BOOL elf_read_wine_loader_dbg_info(struct process* pcs)
{
return FALSE;
}
struct module* elf_load_module(struct process* pcs, const char* name, DWORD addr)
{
return NULL;
}
BOOL elf_load_debug_info(struct module* module)
{
return FALSE;
}
#endif /* __ELF__ */