8272 lines
218 KiB
C
8272 lines
218 KiB
C
/*
|
|
* regexp.c: generic and extensible Regular Expression engine
|
|
*
|
|
* Basically designed with the purpose of compiling regexps for
|
|
* the variety of validation/schemas mechanisms now available in
|
|
* XML related specifications these include:
|
|
* - XML-1.0 DTD validation
|
|
* - XML Schemas structure part 1
|
|
* - XML Schemas Datatypes part 2 especially Appendix F
|
|
* - RELAX-NG/TREX i.e. the counter proposal
|
|
*
|
|
* See Copyright for the status of this software.
|
|
*
|
|
* Daniel Veillard <veillard@redhat.com>
|
|
*/
|
|
|
|
#define IN_LIBXML
|
|
#include "libxml.h"
|
|
|
|
#ifdef LIBXML_REGEXP_ENABLED
|
|
|
|
/* #define DEBUG_ERR */
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#ifdef HAVE_LIMITS_H
|
|
#include <limits.h>
|
|
#endif
|
|
#ifdef HAVE_STDINT_H
|
|
#include <stdint.h>
|
|
#endif
|
|
|
|
#include <libxml/tree.h>
|
|
#include <libxml/parserInternals.h>
|
|
#include <libxml/xmlregexp.h>
|
|
#include <libxml/xmlautomata.h>
|
|
#include <libxml/xmlunicode.h>
|
|
|
|
#ifndef INT_MAX
|
|
#define INT_MAX 123456789 /* easy to flag and big enough for our needs */
|
|
#endif
|
|
#ifndef SIZE_MAX
|
|
#define SIZE_MAX ((size_t) -1)
|
|
#endif
|
|
|
|
/* #define DEBUG_REGEXP_GRAPH */
|
|
/* #define DEBUG_REGEXP_EXEC */
|
|
/* #define DEBUG_PUSH */
|
|
/* #define DEBUG_COMPACTION */
|
|
|
|
#define MAX_PUSH 10000000
|
|
|
|
#ifdef ERROR
|
|
#undef ERROR
|
|
#endif
|
|
#define ERROR(str) \
|
|
ctxt->error = XML_REGEXP_COMPILE_ERROR; \
|
|
xmlRegexpErrCompile(ctxt, str);
|
|
#define NEXT ctxt->cur++
|
|
#define CUR (*(ctxt->cur))
|
|
#define NXT(index) (ctxt->cur[index])
|
|
|
|
#define CUR_SCHAR(s, l) xmlStringCurrentChar(NULL, s, &l)
|
|
#define NEXTL(l) ctxt->cur += l;
|
|
#define XML_REG_STRING_SEPARATOR '|'
|
|
/*
|
|
* Need PREV to check on a '-' within a Character Group. May only be used
|
|
* when it's guaranteed that cur is not at the beginning of ctxt->string!
|
|
*/
|
|
#define PREV (ctxt->cur[-1])
|
|
|
|
/**
|
|
* TODO:
|
|
*
|
|
* macro to flag unimplemented blocks
|
|
*/
|
|
#define TODO \
|
|
xmlGenericError(xmlGenericErrorContext, \
|
|
"Unimplemented block at %s:%d\n", \
|
|
__FILE__, __LINE__);
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Datatypes and structures *
|
|
* *
|
|
************************************************************************/
|
|
|
|
/*
|
|
* Note: the order of the enums below is significant, do not shuffle
|
|
*/
|
|
typedef enum {
|
|
XML_REGEXP_EPSILON = 1,
|
|
XML_REGEXP_CHARVAL,
|
|
XML_REGEXP_RANGES,
|
|
XML_REGEXP_SUBREG, /* used for () sub regexps */
|
|
XML_REGEXP_STRING,
|
|
XML_REGEXP_ANYCHAR, /* . */
|
|
XML_REGEXP_ANYSPACE, /* \s */
|
|
XML_REGEXP_NOTSPACE, /* \S */
|
|
XML_REGEXP_INITNAME, /* \l */
|
|
XML_REGEXP_NOTINITNAME, /* \L */
|
|
XML_REGEXP_NAMECHAR, /* \c */
|
|
XML_REGEXP_NOTNAMECHAR, /* \C */
|
|
XML_REGEXP_DECIMAL, /* \d */
|
|
XML_REGEXP_NOTDECIMAL, /* \D */
|
|
XML_REGEXP_REALCHAR, /* \w */
|
|
XML_REGEXP_NOTREALCHAR, /* \W */
|
|
XML_REGEXP_LETTER = 100,
|
|
XML_REGEXP_LETTER_UPPERCASE,
|
|
XML_REGEXP_LETTER_LOWERCASE,
|
|
XML_REGEXP_LETTER_TITLECASE,
|
|
XML_REGEXP_LETTER_MODIFIER,
|
|
XML_REGEXP_LETTER_OTHERS,
|
|
XML_REGEXP_MARK,
|
|
XML_REGEXP_MARK_NONSPACING,
|
|
XML_REGEXP_MARK_SPACECOMBINING,
|
|
XML_REGEXP_MARK_ENCLOSING,
|
|
XML_REGEXP_NUMBER,
|
|
XML_REGEXP_NUMBER_DECIMAL,
|
|
XML_REGEXP_NUMBER_LETTER,
|
|
XML_REGEXP_NUMBER_OTHERS,
|
|
XML_REGEXP_PUNCT,
|
|
XML_REGEXP_PUNCT_CONNECTOR,
|
|
XML_REGEXP_PUNCT_DASH,
|
|
XML_REGEXP_PUNCT_OPEN,
|
|
XML_REGEXP_PUNCT_CLOSE,
|
|
XML_REGEXP_PUNCT_INITQUOTE,
|
|
XML_REGEXP_PUNCT_FINQUOTE,
|
|
XML_REGEXP_PUNCT_OTHERS,
|
|
XML_REGEXP_SEPAR,
|
|
XML_REGEXP_SEPAR_SPACE,
|
|
XML_REGEXP_SEPAR_LINE,
|
|
XML_REGEXP_SEPAR_PARA,
|
|
XML_REGEXP_SYMBOL,
|
|
XML_REGEXP_SYMBOL_MATH,
|
|
XML_REGEXP_SYMBOL_CURRENCY,
|
|
XML_REGEXP_SYMBOL_MODIFIER,
|
|
XML_REGEXP_SYMBOL_OTHERS,
|
|
XML_REGEXP_OTHER,
|
|
XML_REGEXP_OTHER_CONTROL,
|
|
XML_REGEXP_OTHER_FORMAT,
|
|
XML_REGEXP_OTHER_PRIVATE,
|
|
XML_REGEXP_OTHER_NA,
|
|
XML_REGEXP_BLOCK_NAME
|
|
} xmlRegAtomType;
|
|
|
|
typedef enum {
|
|
XML_REGEXP_QUANT_EPSILON = 1,
|
|
XML_REGEXP_QUANT_ONCE,
|
|
XML_REGEXP_QUANT_OPT,
|
|
XML_REGEXP_QUANT_MULT,
|
|
XML_REGEXP_QUANT_PLUS,
|
|
XML_REGEXP_QUANT_ONCEONLY,
|
|
XML_REGEXP_QUANT_ALL,
|
|
XML_REGEXP_QUANT_RANGE
|
|
} xmlRegQuantType;
|
|
|
|
typedef enum {
|
|
XML_REGEXP_START_STATE = 1,
|
|
XML_REGEXP_FINAL_STATE,
|
|
XML_REGEXP_TRANS_STATE,
|
|
XML_REGEXP_SINK_STATE,
|
|
XML_REGEXP_UNREACH_STATE
|
|
} xmlRegStateType;
|
|
|
|
typedef enum {
|
|
XML_REGEXP_MARK_NORMAL = 0,
|
|
XML_REGEXP_MARK_START,
|
|
XML_REGEXP_MARK_VISITED
|
|
} xmlRegMarkedType;
|
|
|
|
typedef struct _xmlRegRange xmlRegRange;
|
|
typedef xmlRegRange *xmlRegRangePtr;
|
|
|
|
struct _xmlRegRange {
|
|
int neg; /* 0 normal, 1 not, 2 exclude */
|
|
xmlRegAtomType type;
|
|
int start;
|
|
int end;
|
|
xmlChar *blockName;
|
|
};
|
|
|
|
typedef struct _xmlRegAtom xmlRegAtom;
|
|
typedef xmlRegAtom *xmlRegAtomPtr;
|
|
|
|
typedef struct _xmlAutomataState xmlRegState;
|
|
typedef xmlRegState *xmlRegStatePtr;
|
|
|
|
struct _xmlRegAtom {
|
|
int no;
|
|
xmlRegAtomType type;
|
|
xmlRegQuantType quant;
|
|
int min;
|
|
int max;
|
|
|
|
void *valuep;
|
|
void *valuep2;
|
|
int neg;
|
|
int codepoint;
|
|
xmlRegStatePtr start;
|
|
xmlRegStatePtr start0;
|
|
xmlRegStatePtr stop;
|
|
int maxRanges;
|
|
int nbRanges;
|
|
xmlRegRangePtr *ranges;
|
|
void *data;
|
|
};
|
|
|
|
typedef struct _xmlRegCounter xmlRegCounter;
|
|
typedef xmlRegCounter *xmlRegCounterPtr;
|
|
|
|
struct _xmlRegCounter {
|
|
int min;
|
|
int max;
|
|
};
|
|
|
|
typedef struct _xmlRegTrans xmlRegTrans;
|
|
typedef xmlRegTrans *xmlRegTransPtr;
|
|
|
|
struct _xmlRegTrans {
|
|
xmlRegAtomPtr atom;
|
|
int to;
|
|
int counter;
|
|
int count;
|
|
int nd;
|
|
};
|
|
|
|
struct _xmlAutomataState {
|
|
xmlRegStateType type;
|
|
xmlRegMarkedType mark;
|
|
xmlRegMarkedType markd;
|
|
xmlRegMarkedType reached;
|
|
int no;
|
|
int maxTrans;
|
|
int nbTrans;
|
|
xmlRegTrans *trans;
|
|
/* knowing states pointing to us can speed things up */
|
|
int maxTransTo;
|
|
int nbTransTo;
|
|
int *transTo;
|
|
};
|
|
|
|
typedef struct _xmlAutomata xmlRegParserCtxt;
|
|
typedef xmlRegParserCtxt *xmlRegParserCtxtPtr;
|
|
|
|
#define AM_AUTOMATA_RNG 1
|
|
|
|
struct _xmlAutomata {
|
|
xmlChar *string;
|
|
xmlChar *cur;
|
|
|
|
int error;
|
|
int neg;
|
|
|
|
xmlRegStatePtr start;
|
|
xmlRegStatePtr end;
|
|
xmlRegStatePtr state;
|
|
|
|
xmlRegAtomPtr atom;
|
|
|
|
int maxAtoms;
|
|
int nbAtoms;
|
|
xmlRegAtomPtr *atoms;
|
|
|
|
int maxStates;
|
|
int nbStates;
|
|
xmlRegStatePtr *states;
|
|
|
|
int maxCounters;
|
|
int nbCounters;
|
|
xmlRegCounter *counters;
|
|
|
|
int determinist;
|
|
int negs;
|
|
int flags;
|
|
|
|
int depth;
|
|
};
|
|
|
|
struct _xmlRegexp {
|
|
xmlChar *string;
|
|
int nbStates;
|
|
xmlRegStatePtr *states;
|
|
int nbAtoms;
|
|
xmlRegAtomPtr *atoms;
|
|
int nbCounters;
|
|
xmlRegCounter *counters;
|
|
int determinist;
|
|
int flags;
|
|
/*
|
|
* That's the compact form for determinists automatas
|
|
*/
|
|
int nbstates;
|
|
int *compact;
|
|
void **transdata;
|
|
int nbstrings;
|
|
xmlChar **stringMap;
|
|
};
|
|
|
|
typedef struct _xmlRegExecRollback xmlRegExecRollback;
|
|
typedef xmlRegExecRollback *xmlRegExecRollbackPtr;
|
|
|
|
struct _xmlRegExecRollback {
|
|
xmlRegStatePtr state;/* the current state */
|
|
int index; /* the index in the input stack */
|
|
int nextbranch; /* the next transition to explore in that state */
|
|
int *counts; /* save the automata state if it has some */
|
|
};
|
|
|
|
typedef struct _xmlRegInputToken xmlRegInputToken;
|
|
typedef xmlRegInputToken *xmlRegInputTokenPtr;
|
|
|
|
struct _xmlRegInputToken {
|
|
xmlChar *value;
|
|
void *data;
|
|
};
|
|
|
|
struct _xmlRegExecCtxt {
|
|
int status; /* execution status != 0 indicate an error */
|
|
int determinist; /* did we find an indeterministic behaviour */
|
|
xmlRegexpPtr comp; /* the compiled regexp */
|
|
xmlRegExecCallbacks callback;
|
|
void *data;
|
|
|
|
xmlRegStatePtr state;/* the current state */
|
|
int transno; /* the current transition on that state */
|
|
int transcount; /* the number of chars in char counted transitions */
|
|
|
|
/*
|
|
* A stack of rollback states
|
|
*/
|
|
int maxRollbacks;
|
|
int nbRollbacks;
|
|
xmlRegExecRollback *rollbacks;
|
|
|
|
/*
|
|
* The state of the automata if any
|
|
*/
|
|
int *counts;
|
|
|
|
/*
|
|
* The input stack
|
|
*/
|
|
int inputStackMax;
|
|
int inputStackNr;
|
|
int index;
|
|
int *charStack;
|
|
const xmlChar *inputString; /* when operating on characters */
|
|
xmlRegInputTokenPtr inputStack;/* when operating on strings */
|
|
|
|
/*
|
|
* error handling
|
|
*/
|
|
int errStateNo; /* the error state number */
|
|
xmlRegStatePtr errState; /* the error state */
|
|
xmlChar *errString; /* the string raising the error */
|
|
int *errCounts; /* counters at the error state */
|
|
int nbPush;
|
|
};
|
|
|
|
#define REGEXP_ALL_COUNTER 0x123456
|
|
#define REGEXP_ALL_LAX_COUNTER 0x123457
|
|
|
|
static void xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top);
|
|
static void xmlRegFreeState(xmlRegStatePtr state);
|
|
static void xmlRegFreeAtom(xmlRegAtomPtr atom);
|
|
static int xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr);
|
|
static int xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint);
|
|
static int xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint,
|
|
int neg, int start, int end, const xmlChar *blockName);
|
|
|
|
void xmlAutomataSetFlags(xmlAutomataPtr am, int flags);
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Regexp memory error handler *
|
|
* *
|
|
************************************************************************/
|
|
/**
|
|
* xmlRegexpErrMemory:
|
|
* @extra: extra information
|
|
*
|
|
* Handle an out of memory condition
|
|
*/
|
|
static void
|
|
xmlRegexpErrMemory(xmlRegParserCtxtPtr ctxt, const char *extra)
|
|
{
|
|
const char *regexp = NULL;
|
|
if (ctxt != NULL) {
|
|
regexp = (const char *) ctxt->string;
|
|
ctxt->error = XML_ERR_NO_MEMORY;
|
|
}
|
|
__xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP,
|
|
XML_ERR_NO_MEMORY, XML_ERR_FATAL, NULL, 0, extra,
|
|
regexp, NULL, 0, 0,
|
|
"Memory allocation failed : %s\n", extra);
|
|
}
|
|
|
|
/**
|
|
* xmlRegexpErrCompile:
|
|
* @extra: extra information
|
|
*
|
|
* Handle a compilation failure
|
|
*/
|
|
static void
|
|
xmlRegexpErrCompile(xmlRegParserCtxtPtr ctxt, const char *extra)
|
|
{
|
|
const char *regexp = NULL;
|
|
int idx = 0;
|
|
|
|
if (ctxt != NULL) {
|
|
regexp = (const char *) ctxt->string;
|
|
idx = ctxt->cur - ctxt->string;
|
|
ctxt->error = XML_REGEXP_COMPILE_ERROR;
|
|
}
|
|
__xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP,
|
|
XML_REGEXP_COMPILE_ERROR, XML_ERR_FATAL, NULL, 0, extra,
|
|
regexp, NULL, idx, 0,
|
|
"failed to compile: %s\n", extra);
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Allocation/Deallocation *
|
|
* *
|
|
************************************************************************/
|
|
|
|
static int xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt);
|
|
|
|
/**
|
|
* xmlRegCalloc2:
|
|
* @dim1: size of first dimension
|
|
* @dim2: size of second dimension
|
|
* @elemSize: size of element
|
|
*
|
|
* Allocate a two-dimensional array and set all elements to zero.
|
|
*
|
|
* Returns the new array or NULL in case of error.
|
|
*/
|
|
static void*
|
|
xmlRegCalloc2(size_t dim1, size_t dim2, size_t elemSize) {
|
|
size_t totalSize;
|
|
void *ret;
|
|
|
|
/* Check for overflow */
|
|
if (dim1 > SIZE_MAX / dim2 / elemSize)
|
|
return (NULL);
|
|
totalSize = dim1 * dim2 * elemSize;
|
|
ret = xmlMalloc(totalSize);
|
|
if (ret != NULL)
|
|
memset(ret, 0, totalSize);
|
|
return (ret);
|
|
}
|
|
|
|
/**
|
|
* xmlRegEpxFromParse:
|
|
* @ctxt: the parser context used to build it
|
|
*
|
|
* Allocate a new regexp and fill it with the result from the parser
|
|
*
|
|
* Returns the new regexp or NULL in case of error
|
|
*/
|
|
static xmlRegexpPtr
|
|
xmlRegEpxFromParse(xmlRegParserCtxtPtr ctxt) {
|
|
xmlRegexpPtr ret;
|
|
|
|
ret = (xmlRegexpPtr) xmlMalloc(sizeof(xmlRegexp));
|
|
if (ret == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "compiling regexp");
|
|
return(NULL);
|
|
}
|
|
memset(ret, 0, sizeof(xmlRegexp));
|
|
ret->string = ctxt->string;
|
|
ret->nbStates = ctxt->nbStates;
|
|
ret->states = ctxt->states;
|
|
ret->nbAtoms = ctxt->nbAtoms;
|
|
ret->atoms = ctxt->atoms;
|
|
ret->nbCounters = ctxt->nbCounters;
|
|
ret->counters = ctxt->counters;
|
|
ret->determinist = ctxt->determinist;
|
|
ret->flags = ctxt->flags;
|
|
if (ret->determinist == -1) {
|
|
xmlRegexpIsDeterminist(ret);
|
|
}
|
|
|
|
if ((ret->determinist != 0) &&
|
|
(ret->nbCounters == 0) &&
|
|
(ctxt->negs == 0) &&
|
|
(ret->atoms != NULL) &&
|
|
(ret->atoms[0] != NULL) &&
|
|
(ret->atoms[0]->type == XML_REGEXP_STRING)) {
|
|
int i, j, nbstates = 0, nbatoms = 0;
|
|
int *stateRemap;
|
|
int *stringRemap;
|
|
int *transitions;
|
|
void **transdata;
|
|
xmlChar **stringMap;
|
|
xmlChar *value;
|
|
|
|
/*
|
|
* Switch to a compact representation
|
|
* 1/ counting the effective number of states left
|
|
* 2/ counting the unique number of atoms, and check that
|
|
* they are all of the string type
|
|
* 3/ build a table state x atom for the transitions
|
|
*/
|
|
|
|
stateRemap = xmlMalloc(ret->nbStates * sizeof(int));
|
|
if (stateRemap == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "compiling regexp");
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
for (i = 0;i < ret->nbStates;i++) {
|
|
if (ret->states[i] != NULL) {
|
|
stateRemap[i] = nbstates;
|
|
nbstates++;
|
|
} else {
|
|
stateRemap[i] = -1;
|
|
}
|
|
}
|
|
#ifdef DEBUG_COMPACTION
|
|
printf("Final: %d states\n", nbstates);
|
|
#endif
|
|
stringMap = xmlMalloc(ret->nbAtoms * sizeof(char *));
|
|
if (stringMap == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "compiling regexp");
|
|
xmlFree(stateRemap);
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
stringRemap = xmlMalloc(ret->nbAtoms * sizeof(int));
|
|
if (stringRemap == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "compiling regexp");
|
|
xmlFree(stringMap);
|
|
xmlFree(stateRemap);
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
for (i = 0;i < ret->nbAtoms;i++) {
|
|
if ((ret->atoms[i]->type == XML_REGEXP_STRING) &&
|
|
(ret->atoms[i]->quant == XML_REGEXP_QUANT_ONCE)) {
|
|
value = ret->atoms[i]->valuep;
|
|
for (j = 0;j < nbatoms;j++) {
|
|
if (xmlStrEqual(stringMap[j], value)) {
|
|
stringRemap[i] = j;
|
|
break;
|
|
}
|
|
}
|
|
if (j >= nbatoms) {
|
|
stringRemap[i] = nbatoms;
|
|
stringMap[nbatoms] = xmlStrdup(value);
|
|
if (stringMap[nbatoms] == NULL) {
|
|
for (i = 0;i < nbatoms;i++)
|
|
xmlFree(stringMap[i]);
|
|
xmlFree(stringRemap);
|
|
xmlFree(stringMap);
|
|
xmlFree(stateRemap);
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
nbatoms++;
|
|
}
|
|
} else {
|
|
xmlFree(stateRemap);
|
|
xmlFree(stringRemap);
|
|
for (i = 0;i < nbatoms;i++)
|
|
xmlFree(stringMap[i]);
|
|
xmlFree(stringMap);
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
}
|
|
#ifdef DEBUG_COMPACTION
|
|
printf("Final: %d atoms\n", nbatoms);
|
|
#endif
|
|
transitions = (int *) xmlRegCalloc2(nbstates + 1, nbatoms + 1,
|
|
sizeof(int));
|
|
if (transitions == NULL) {
|
|
xmlFree(stateRemap);
|
|
xmlFree(stringRemap);
|
|
for (i = 0;i < nbatoms;i++)
|
|
xmlFree(stringMap[i]);
|
|
xmlFree(stringMap);
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* Allocate the transition table. The first entry for each
|
|
* state corresponds to the state type.
|
|
*/
|
|
transdata = NULL;
|
|
|
|
for (i = 0;i < ret->nbStates;i++) {
|
|
int stateno, atomno, targetno, prev;
|
|
xmlRegStatePtr state;
|
|
xmlRegTransPtr trans;
|
|
|
|
stateno = stateRemap[i];
|
|
if (stateno == -1)
|
|
continue;
|
|
state = ret->states[i];
|
|
|
|
transitions[stateno * (nbatoms + 1)] = state->type;
|
|
|
|
for (j = 0;j < state->nbTrans;j++) {
|
|
trans = &(state->trans[j]);
|
|
if ((trans->to == -1) || (trans->atom == NULL))
|
|
continue;
|
|
atomno = stringRemap[trans->atom->no];
|
|
if ((trans->atom->data != NULL) && (transdata == NULL)) {
|
|
transdata = (void **) xmlRegCalloc2(nbstates, nbatoms,
|
|
sizeof(void *));
|
|
if (transdata == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "compiling regexp");
|
|
break;
|
|
}
|
|
}
|
|
targetno = stateRemap[trans->to];
|
|
/*
|
|
* if the same atom can generate transitions to 2 different
|
|
* states then it means the automata is not deterministic and
|
|
* the compact form can't be used !
|
|
*/
|
|
prev = transitions[stateno * (nbatoms + 1) + atomno + 1];
|
|
if (prev != 0) {
|
|
if (prev != targetno + 1) {
|
|
ret->determinist = 0;
|
|
#ifdef DEBUG_COMPACTION
|
|
printf("Indet: state %d trans %d, atom %d to %d : %d to %d\n",
|
|
i, j, trans->atom->no, trans->to, atomno, targetno);
|
|
printf(" previous to is %d\n", prev);
|
|
#endif
|
|
if (transdata != NULL)
|
|
xmlFree(transdata);
|
|
xmlFree(transitions);
|
|
xmlFree(stateRemap);
|
|
xmlFree(stringRemap);
|
|
for (i = 0;i < nbatoms;i++)
|
|
xmlFree(stringMap[i]);
|
|
xmlFree(stringMap);
|
|
goto not_determ;
|
|
}
|
|
} else {
|
|
#if 0
|
|
printf("State %d trans %d: atom %d to %d : %d to %d\n",
|
|
i, j, trans->atom->no, trans->to, atomno, targetno);
|
|
#endif
|
|
transitions[stateno * (nbatoms + 1) + atomno + 1] =
|
|
targetno + 1; /* to avoid 0 */
|
|
if (transdata != NULL)
|
|
transdata[stateno * nbatoms + atomno] =
|
|
trans->atom->data;
|
|
}
|
|
}
|
|
}
|
|
ret->determinist = 1;
|
|
#ifdef DEBUG_COMPACTION
|
|
/*
|
|
* Debug
|
|
*/
|
|
for (i = 0;i < nbstates;i++) {
|
|
for (j = 0;j < nbatoms + 1;j++) {
|
|
printf("%02d ", transitions[i * (nbatoms + 1) + j]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
/*
|
|
* Cleanup of the old data
|
|
*/
|
|
if (ret->states != NULL) {
|
|
for (i = 0;i < ret->nbStates;i++)
|
|
xmlRegFreeState(ret->states[i]);
|
|
xmlFree(ret->states);
|
|
}
|
|
ret->states = NULL;
|
|
ret->nbStates = 0;
|
|
if (ret->atoms != NULL) {
|
|
for (i = 0;i < ret->nbAtoms;i++)
|
|
xmlRegFreeAtom(ret->atoms[i]);
|
|
xmlFree(ret->atoms);
|
|
}
|
|
ret->atoms = NULL;
|
|
ret->nbAtoms = 0;
|
|
|
|
ret->compact = transitions;
|
|
ret->transdata = transdata;
|
|
ret->stringMap = stringMap;
|
|
ret->nbstrings = nbatoms;
|
|
ret->nbstates = nbstates;
|
|
xmlFree(stateRemap);
|
|
xmlFree(stringRemap);
|
|
}
|
|
not_determ:
|
|
ctxt->string = NULL;
|
|
ctxt->nbStates = 0;
|
|
ctxt->states = NULL;
|
|
ctxt->nbAtoms = 0;
|
|
ctxt->atoms = NULL;
|
|
ctxt->nbCounters = 0;
|
|
ctxt->counters = NULL;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlRegNewParserCtxt:
|
|
* @string: the string to parse
|
|
*
|
|
* Allocate a new regexp parser context
|
|
*
|
|
* Returns the new context or NULL in case of error
|
|
*/
|
|
static xmlRegParserCtxtPtr
|
|
xmlRegNewParserCtxt(const xmlChar *string) {
|
|
xmlRegParserCtxtPtr ret;
|
|
|
|
ret = (xmlRegParserCtxtPtr) xmlMalloc(sizeof(xmlRegParserCtxt));
|
|
if (ret == NULL)
|
|
return(NULL);
|
|
memset(ret, 0, sizeof(xmlRegParserCtxt));
|
|
if (string != NULL)
|
|
ret->string = xmlStrdup(string);
|
|
ret->cur = ret->string;
|
|
ret->neg = 0;
|
|
ret->negs = 0;
|
|
ret->error = 0;
|
|
ret->determinist = -1;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlRegNewRange:
|
|
* @ctxt: the regexp parser context
|
|
* @neg: is that negative
|
|
* @type: the type of range
|
|
* @start: the start codepoint
|
|
* @end: the end codepoint
|
|
*
|
|
* Allocate a new regexp range
|
|
*
|
|
* Returns the new range or NULL in case of error
|
|
*/
|
|
static xmlRegRangePtr
|
|
xmlRegNewRange(xmlRegParserCtxtPtr ctxt,
|
|
int neg, xmlRegAtomType type, int start, int end) {
|
|
xmlRegRangePtr ret;
|
|
|
|
ret = (xmlRegRangePtr) xmlMalloc(sizeof(xmlRegRange));
|
|
if (ret == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "allocating range");
|
|
return(NULL);
|
|
}
|
|
ret->neg = neg;
|
|
ret->type = type;
|
|
ret->start = start;
|
|
ret->end = end;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlRegFreeRange:
|
|
* @range: the regexp range
|
|
*
|
|
* Free a regexp range
|
|
*/
|
|
static void
|
|
xmlRegFreeRange(xmlRegRangePtr range) {
|
|
if (range == NULL)
|
|
return;
|
|
|
|
if (range->blockName != NULL)
|
|
xmlFree(range->blockName);
|
|
xmlFree(range);
|
|
}
|
|
|
|
/**
|
|
* xmlRegCopyRange:
|
|
* @range: the regexp range
|
|
*
|
|
* Copy a regexp range
|
|
*
|
|
* Returns the new copy or NULL in case of error.
|
|
*/
|
|
static xmlRegRangePtr
|
|
xmlRegCopyRange(xmlRegParserCtxtPtr ctxt, xmlRegRangePtr range) {
|
|
xmlRegRangePtr ret;
|
|
|
|
if (range == NULL)
|
|
return(NULL);
|
|
|
|
ret = xmlRegNewRange(ctxt, range->neg, range->type, range->start,
|
|
range->end);
|
|
if (ret == NULL)
|
|
return(NULL);
|
|
if (range->blockName != NULL) {
|
|
ret->blockName = xmlStrdup(range->blockName);
|
|
if (ret->blockName == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "allocating range");
|
|
xmlRegFreeRange(ret);
|
|
return(NULL);
|
|
}
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlRegNewAtom:
|
|
* @ctxt: the regexp parser context
|
|
* @type: the type of atom
|
|
*
|
|
* Allocate a new atom
|
|
*
|
|
* Returns the new atom or NULL in case of error
|
|
*/
|
|
static xmlRegAtomPtr
|
|
xmlRegNewAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomType type) {
|
|
xmlRegAtomPtr ret;
|
|
|
|
ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
|
|
if (ret == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "allocating atom");
|
|
return(NULL);
|
|
}
|
|
memset(ret, 0, sizeof(xmlRegAtom));
|
|
ret->type = type;
|
|
ret->quant = XML_REGEXP_QUANT_ONCE;
|
|
ret->min = 0;
|
|
ret->max = 0;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlRegFreeAtom:
|
|
* @atom: the regexp atom
|
|
*
|
|
* Free a regexp atom
|
|
*/
|
|
static void
|
|
xmlRegFreeAtom(xmlRegAtomPtr atom) {
|
|
int i;
|
|
|
|
if (atom == NULL)
|
|
return;
|
|
|
|
for (i = 0;i < atom->nbRanges;i++)
|
|
xmlRegFreeRange(atom->ranges[i]);
|
|
if (atom->ranges != NULL)
|
|
xmlFree(atom->ranges);
|
|
if ((atom->type == XML_REGEXP_STRING) && (atom->valuep != NULL))
|
|
xmlFree(atom->valuep);
|
|
if ((atom->type == XML_REGEXP_STRING) && (atom->valuep2 != NULL))
|
|
xmlFree(atom->valuep2);
|
|
if ((atom->type == XML_REGEXP_BLOCK_NAME) && (atom->valuep != NULL))
|
|
xmlFree(atom->valuep);
|
|
xmlFree(atom);
|
|
}
|
|
|
|
/**
|
|
* xmlRegCopyAtom:
|
|
* @ctxt: the regexp parser context
|
|
* @atom: the original atom
|
|
*
|
|
* Allocate a new regexp range
|
|
*
|
|
* Returns the new atom or NULL in case of error
|
|
*/
|
|
static xmlRegAtomPtr
|
|
xmlRegCopyAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
|
|
xmlRegAtomPtr ret;
|
|
|
|
ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
|
|
if (ret == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "copying atom");
|
|
return(NULL);
|
|
}
|
|
memset(ret, 0, sizeof(xmlRegAtom));
|
|
ret->type = atom->type;
|
|
ret->quant = atom->quant;
|
|
ret->min = atom->min;
|
|
ret->max = atom->max;
|
|
if (atom->nbRanges > 0) {
|
|
int i;
|
|
|
|
ret->ranges = (xmlRegRangePtr *) xmlMalloc(sizeof(xmlRegRangePtr) *
|
|
atom->nbRanges);
|
|
if (ret->ranges == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "copying atom");
|
|
goto error;
|
|
}
|
|
for (i = 0;i < atom->nbRanges;i++) {
|
|
ret->ranges[i] = xmlRegCopyRange(ctxt, atom->ranges[i]);
|
|
if (ret->ranges[i] == NULL)
|
|
goto error;
|
|
ret->nbRanges = i + 1;
|
|
}
|
|
}
|
|
return(ret);
|
|
|
|
error:
|
|
xmlRegFreeAtom(ret);
|
|
return(NULL);
|
|
}
|
|
|
|
static xmlRegStatePtr
|
|
xmlRegNewState(xmlRegParserCtxtPtr ctxt) {
|
|
xmlRegStatePtr ret;
|
|
|
|
ret = (xmlRegStatePtr) xmlMalloc(sizeof(xmlRegState));
|
|
if (ret == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "allocating state");
|
|
return(NULL);
|
|
}
|
|
memset(ret, 0, sizeof(xmlRegState));
|
|
ret->type = XML_REGEXP_TRANS_STATE;
|
|
ret->mark = XML_REGEXP_MARK_NORMAL;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlRegFreeState:
|
|
* @state: the regexp state
|
|
*
|
|
* Free a regexp state
|
|
*/
|
|
static void
|
|
xmlRegFreeState(xmlRegStatePtr state) {
|
|
if (state == NULL)
|
|
return;
|
|
|
|
if (state->trans != NULL)
|
|
xmlFree(state->trans);
|
|
if (state->transTo != NULL)
|
|
xmlFree(state->transTo);
|
|
xmlFree(state);
|
|
}
|
|
|
|
/**
|
|
* xmlRegFreeParserCtxt:
|
|
* @ctxt: the regexp parser context
|
|
*
|
|
* Free a regexp parser context
|
|
*/
|
|
static void
|
|
xmlRegFreeParserCtxt(xmlRegParserCtxtPtr ctxt) {
|
|
int i;
|
|
if (ctxt == NULL)
|
|
return;
|
|
|
|
if (ctxt->string != NULL)
|
|
xmlFree(ctxt->string);
|
|
if (ctxt->states != NULL) {
|
|
for (i = 0;i < ctxt->nbStates;i++)
|
|
xmlRegFreeState(ctxt->states[i]);
|
|
xmlFree(ctxt->states);
|
|
}
|
|
if (ctxt->atoms != NULL) {
|
|
for (i = 0;i < ctxt->nbAtoms;i++)
|
|
xmlRegFreeAtom(ctxt->atoms[i]);
|
|
xmlFree(ctxt->atoms);
|
|
}
|
|
if (ctxt->counters != NULL)
|
|
xmlFree(ctxt->counters);
|
|
xmlFree(ctxt);
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Display of Data structures *
|
|
* *
|
|
************************************************************************/
|
|
|
|
static void
|
|
xmlRegPrintAtomType(FILE *output, xmlRegAtomType type) {
|
|
switch (type) {
|
|
case XML_REGEXP_EPSILON:
|
|
fprintf(output, "epsilon "); break;
|
|
case XML_REGEXP_CHARVAL:
|
|
fprintf(output, "charval "); break;
|
|
case XML_REGEXP_RANGES:
|
|
fprintf(output, "ranges "); break;
|
|
case XML_REGEXP_SUBREG:
|
|
fprintf(output, "subexpr "); break;
|
|
case XML_REGEXP_STRING:
|
|
fprintf(output, "string "); break;
|
|
case XML_REGEXP_ANYCHAR:
|
|
fprintf(output, "anychar "); break;
|
|
case XML_REGEXP_ANYSPACE:
|
|
fprintf(output, "anyspace "); break;
|
|
case XML_REGEXP_NOTSPACE:
|
|
fprintf(output, "notspace "); break;
|
|
case XML_REGEXP_INITNAME:
|
|
fprintf(output, "initname "); break;
|
|
case XML_REGEXP_NOTINITNAME:
|
|
fprintf(output, "notinitname "); break;
|
|
case XML_REGEXP_NAMECHAR:
|
|
fprintf(output, "namechar "); break;
|
|
case XML_REGEXP_NOTNAMECHAR:
|
|
fprintf(output, "notnamechar "); break;
|
|
case XML_REGEXP_DECIMAL:
|
|
fprintf(output, "decimal "); break;
|
|
case XML_REGEXP_NOTDECIMAL:
|
|
fprintf(output, "notdecimal "); break;
|
|
case XML_REGEXP_REALCHAR:
|
|
fprintf(output, "realchar "); break;
|
|
case XML_REGEXP_NOTREALCHAR:
|
|
fprintf(output, "notrealchar "); break;
|
|
case XML_REGEXP_LETTER:
|
|
fprintf(output, "LETTER "); break;
|
|
case XML_REGEXP_LETTER_UPPERCASE:
|
|
fprintf(output, "LETTER_UPPERCASE "); break;
|
|
case XML_REGEXP_LETTER_LOWERCASE:
|
|
fprintf(output, "LETTER_LOWERCASE "); break;
|
|
case XML_REGEXP_LETTER_TITLECASE:
|
|
fprintf(output, "LETTER_TITLECASE "); break;
|
|
case XML_REGEXP_LETTER_MODIFIER:
|
|
fprintf(output, "LETTER_MODIFIER "); break;
|
|
case XML_REGEXP_LETTER_OTHERS:
|
|
fprintf(output, "LETTER_OTHERS "); break;
|
|
case XML_REGEXP_MARK:
|
|
fprintf(output, "MARK "); break;
|
|
case XML_REGEXP_MARK_NONSPACING:
|
|
fprintf(output, "MARK_NONSPACING "); break;
|
|
case XML_REGEXP_MARK_SPACECOMBINING:
|
|
fprintf(output, "MARK_SPACECOMBINING "); break;
|
|
case XML_REGEXP_MARK_ENCLOSING:
|
|
fprintf(output, "MARK_ENCLOSING "); break;
|
|
case XML_REGEXP_NUMBER:
|
|
fprintf(output, "NUMBER "); break;
|
|
case XML_REGEXP_NUMBER_DECIMAL:
|
|
fprintf(output, "NUMBER_DECIMAL "); break;
|
|
case XML_REGEXP_NUMBER_LETTER:
|
|
fprintf(output, "NUMBER_LETTER "); break;
|
|
case XML_REGEXP_NUMBER_OTHERS:
|
|
fprintf(output, "NUMBER_OTHERS "); break;
|
|
case XML_REGEXP_PUNCT:
|
|
fprintf(output, "PUNCT "); break;
|
|
case XML_REGEXP_PUNCT_CONNECTOR:
|
|
fprintf(output, "PUNCT_CONNECTOR "); break;
|
|
case XML_REGEXP_PUNCT_DASH:
|
|
fprintf(output, "PUNCT_DASH "); break;
|
|
case XML_REGEXP_PUNCT_OPEN:
|
|
fprintf(output, "PUNCT_OPEN "); break;
|
|
case XML_REGEXP_PUNCT_CLOSE:
|
|
fprintf(output, "PUNCT_CLOSE "); break;
|
|
case XML_REGEXP_PUNCT_INITQUOTE:
|
|
fprintf(output, "PUNCT_INITQUOTE "); break;
|
|
case XML_REGEXP_PUNCT_FINQUOTE:
|
|
fprintf(output, "PUNCT_FINQUOTE "); break;
|
|
case XML_REGEXP_PUNCT_OTHERS:
|
|
fprintf(output, "PUNCT_OTHERS "); break;
|
|
case XML_REGEXP_SEPAR:
|
|
fprintf(output, "SEPAR "); break;
|
|
case XML_REGEXP_SEPAR_SPACE:
|
|
fprintf(output, "SEPAR_SPACE "); break;
|
|
case XML_REGEXP_SEPAR_LINE:
|
|
fprintf(output, "SEPAR_LINE "); break;
|
|
case XML_REGEXP_SEPAR_PARA:
|
|
fprintf(output, "SEPAR_PARA "); break;
|
|
case XML_REGEXP_SYMBOL:
|
|
fprintf(output, "SYMBOL "); break;
|
|
case XML_REGEXP_SYMBOL_MATH:
|
|
fprintf(output, "SYMBOL_MATH "); break;
|
|
case XML_REGEXP_SYMBOL_CURRENCY:
|
|
fprintf(output, "SYMBOL_CURRENCY "); break;
|
|
case XML_REGEXP_SYMBOL_MODIFIER:
|
|
fprintf(output, "SYMBOL_MODIFIER "); break;
|
|
case XML_REGEXP_SYMBOL_OTHERS:
|
|
fprintf(output, "SYMBOL_OTHERS "); break;
|
|
case XML_REGEXP_OTHER:
|
|
fprintf(output, "OTHER "); break;
|
|
case XML_REGEXP_OTHER_CONTROL:
|
|
fprintf(output, "OTHER_CONTROL "); break;
|
|
case XML_REGEXP_OTHER_FORMAT:
|
|
fprintf(output, "OTHER_FORMAT "); break;
|
|
case XML_REGEXP_OTHER_PRIVATE:
|
|
fprintf(output, "OTHER_PRIVATE "); break;
|
|
case XML_REGEXP_OTHER_NA:
|
|
fprintf(output, "OTHER_NA "); break;
|
|
case XML_REGEXP_BLOCK_NAME:
|
|
fprintf(output, "BLOCK "); break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
xmlRegPrintQuantType(FILE *output, xmlRegQuantType type) {
|
|
switch (type) {
|
|
case XML_REGEXP_QUANT_EPSILON:
|
|
fprintf(output, "epsilon "); break;
|
|
case XML_REGEXP_QUANT_ONCE:
|
|
fprintf(output, "once "); break;
|
|
case XML_REGEXP_QUANT_OPT:
|
|
fprintf(output, "? "); break;
|
|
case XML_REGEXP_QUANT_MULT:
|
|
fprintf(output, "* "); break;
|
|
case XML_REGEXP_QUANT_PLUS:
|
|
fprintf(output, "+ "); break;
|
|
case XML_REGEXP_QUANT_RANGE:
|
|
fprintf(output, "range "); break;
|
|
case XML_REGEXP_QUANT_ONCEONLY:
|
|
fprintf(output, "onceonly "); break;
|
|
case XML_REGEXP_QUANT_ALL:
|
|
fprintf(output, "all "); break;
|
|
}
|
|
}
|
|
static void
|
|
xmlRegPrintRange(FILE *output, xmlRegRangePtr range) {
|
|
fprintf(output, " range: ");
|
|
if (range->neg)
|
|
fprintf(output, "negative ");
|
|
xmlRegPrintAtomType(output, range->type);
|
|
fprintf(output, "%c - %c\n", range->start, range->end);
|
|
}
|
|
|
|
static void
|
|
xmlRegPrintAtom(FILE *output, xmlRegAtomPtr atom) {
|
|
fprintf(output, " atom: ");
|
|
if (atom == NULL) {
|
|
fprintf(output, "NULL\n");
|
|
return;
|
|
}
|
|
if (atom->neg)
|
|
fprintf(output, "not ");
|
|
xmlRegPrintAtomType(output, atom->type);
|
|
xmlRegPrintQuantType(output, atom->quant);
|
|
if (atom->quant == XML_REGEXP_QUANT_RANGE)
|
|
fprintf(output, "%d-%d ", atom->min, atom->max);
|
|
if (atom->type == XML_REGEXP_STRING)
|
|
fprintf(output, "'%s' ", (char *) atom->valuep);
|
|
if (atom->type == XML_REGEXP_CHARVAL)
|
|
fprintf(output, "char %c\n", atom->codepoint);
|
|
else if (atom->type == XML_REGEXP_RANGES) {
|
|
int i;
|
|
fprintf(output, "%d entries\n", atom->nbRanges);
|
|
for (i = 0; i < atom->nbRanges;i++)
|
|
xmlRegPrintRange(output, atom->ranges[i]);
|
|
} else if (atom->type == XML_REGEXP_SUBREG) {
|
|
fprintf(output, "start %d end %d\n", atom->start->no, atom->stop->no);
|
|
} else {
|
|
fprintf(output, "\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
xmlRegPrintTrans(FILE *output, xmlRegTransPtr trans) {
|
|
fprintf(output, " trans: ");
|
|
if (trans == NULL) {
|
|
fprintf(output, "NULL\n");
|
|
return;
|
|
}
|
|
if (trans->to < 0) {
|
|
fprintf(output, "removed\n");
|
|
return;
|
|
}
|
|
if (trans->nd != 0) {
|
|
if (trans->nd == 2)
|
|
fprintf(output, "last not determinist, ");
|
|
else
|
|
fprintf(output, "not determinist, ");
|
|
}
|
|
if (trans->counter >= 0) {
|
|
fprintf(output, "counted %d, ", trans->counter);
|
|
}
|
|
if (trans->count == REGEXP_ALL_COUNTER) {
|
|
fprintf(output, "all transition, ");
|
|
} else if (trans->count >= 0) {
|
|
fprintf(output, "count based %d, ", trans->count);
|
|
}
|
|
if (trans->atom == NULL) {
|
|
fprintf(output, "epsilon to %d\n", trans->to);
|
|
return;
|
|
}
|
|
if (trans->atom->type == XML_REGEXP_CHARVAL)
|
|
fprintf(output, "char %c ", trans->atom->codepoint);
|
|
fprintf(output, "atom %d, to %d\n", trans->atom->no, trans->to);
|
|
}
|
|
|
|
static void
|
|
xmlRegPrintState(FILE *output, xmlRegStatePtr state) {
|
|
int i;
|
|
|
|
fprintf(output, " state: ");
|
|
if (state == NULL) {
|
|
fprintf(output, "NULL\n");
|
|
return;
|
|
}
|
|
if (state->type == XML_REGEXP_START_STATE)
|
|
fprintf(output, "START ");
|
|
if (state->type == XML_REGEXP_FINAL_STATE)
|
|
fprintf(output, "FINAL ");
|
|
|
|
fprintf(output, "%d, %d transitions:\n", state->no, state->nbTrans);
|
|
for (i = 0;i < state->nbTrans; i++) {
|
|
xmlRegPrintTrans(output, &(state->trans[i]));
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
static void
|
|
xmlRegPrintCtxt(FILE *output, xmlRegParserCtxtPtr ctxt) {
|
|
int i;
|
|
|
|
fprintf(output, " ctxt: ");
|
|
if (ctxt == NULL) {
|
|
fprintf(output, "NULL\n");
|
|
return;
|
|
}
|
|
fprintf(output, "'%s' ", ctxt->string);
|
|
if (ctxt->error)
|
|
fprintf(output, "error ");
|
|
if (ctxt->neg)
|
|
fprintf(output, "neg ");
|
|
fprintf(output, "\n");
|
|
fprintf(output, "%d atoms:\n", ctxt->nbAtoms);
|
|
for (i = 0;i < ctxt->nbAtoms; i++) {
|
|
fprintf(output, " %02d ", i);
|
|
xmlRegPrintAtom(output, ctxt->atoms[i]);
|
|
}
|
|
if (ctxt->atom != NULL) {
|
|
fprintf(output, "current atom:\n");
|
|
xmlRegPrintAtom(output, ctxt->atom);
|
|
}
|
|
fprintf(output, "%d states:", ctxt->nbStates);
|
|
if (ctxt->start != NULL)
|
|
fprintf(output, " start: %d", ctxt->start->no);
|
|
if (ctxt->end != NULL)
|
|
fprintf(output, " end: %d", ctxt->end->no);
|
|
fprintf(output, "\n");
|
|
for (i = 0;i < ctxt->nbStates; i++) {
|
|
xmlRegPrintState(output, ctxt->states[i]);
|
|
}
|
|
fprintf(output, "%d counters:\n", ctxt->nbCounters);
|
|
for (i = 0;i < ctxt->nbCounters; i++) {
|
|
fprintf(output, " %d: min %d max %d\n", i, ctxt->counters[i].min,
|
|
ctxt->counters[i].max);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Finite Automata structures manipulations *
|
|
* *
|
|
************************************************************************/
|
|
|
|
static void
|
|
xmlRegAtomAddRange(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom,
|
|
int neg, xmlRegAtomType type, int start, int end,
|
|
xmlChar *blockName) {
|
|
xmlRegRangePtr range;
|
|
|
|
if (atom == NULL) {
|
|
ERROR("add range: atom is NULL");
|
|
return;
|
|
}
|
|
if (atom->type != XML_REGEXP_RANGES) {
|
|
ERROR("add range: atom is not ranges");
|
|
return;
|
|
}
|
|
if (atom->maxRanges == 0) {
|
|
atom->maxRanges = 4;
|
|
atom->ranges = (xmlRegRangePtr *) xmlMalloc(atom->maxRanges *
|
|
sizeof(xmlRegRangePtr));
|
|
if (atom->ranges == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "adding ranges");
|
|
atom->maxRanges = 0;
|
|
return;
|
|
}
|
|
} else if (atom->nbRanges >= atom->maxRanges) {
|
|
xmlRegRangePtr *tmp;
|
|
atom->maxRanges *= 2;
|
|
tmp = (xmlRegRangePtr *) xmlRealloc(atom->ranges, atom->maxRanges *
|
|
sizeof(xmlRegRangePtr));
|
|
if (tmp == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "adding ranges");
|
|
atom->maxRanges /= 2;
|
|
return;
|
|
}
|
|
atom->ranges = tmp;
|
|
}
|
|
range = xmlRegNewRange(ctxt, neg, type, start, end);
|
|
if (range == NULL)
|
|
return;
|
|
range->blockName = blockName;
|
|
atom->ranges[atom->nbRanges++] = range;
|
|
|
|
}
|
|
|
|
static int
|
|
xmlRegGetCounter(xmlRegParserCtxtPtr ctxt) {
|
|
if (ctxt->maxCounters == 0) {
|
|
ctxt->maxCounters = 4;
|
|
ctxt->counters = (xmlRegCounter *) xmlMalloc(ctxt->maxCounters *
|
|
sizeof(xmlRegCounter));
|
|
if (ctxt->counters == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "allocating counter");
|
|
ctxt->maxCounters = 0;
|
|
return(-1);
|
|
}
|
|
} else if (ctxt->nbCounters >= ctxt->maxCounters) {
|
|
xmlRegCounter *tmp;
|
|
ctxt->maxCounters *= 2;
|
|
tmp = (xmlRegCounter *) xmlRealloc(ctxt->counters, ctxt->maxCounters *
|
|
sizeof(xmlRegCounter));
|
|
if (tmp == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "allocating counter");
|
|
ctxt->maxCounters /= 2;
|
|
return(-1);
|
|
}
|
|
ctxt->counters = tmp;
|
|
}
|
|
ctxt->counters[ctxt->nbCounters].min = -1;
|
|
ctxt->counters[ctxt->nbCounters].max = -1;
|
|
return(ctxt->nbCounters++);
|
|
}
|
|
|
|
static int
|
|
xmlRegAtomPush(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
|
|
if (atom == NULL) {
|
|
ERROR("atom push: atom is NULL");
|
|
return(-1);
|
|
}
|
|
if (ctxt->maxAtoms == 0) {
|
|
ctxt->maxAtoms = 4;
|
|
ctxt->atoms = (xmlRegAtomPtr *) xmlMalloc(ctxt->maxAtoms *
|
|
sizeof(xmlRegAtomPtr));
|
|
if (ctxt->atoms == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "pushing atom");
|
|
ctxt->maxAtoms = 0;
|
|
return(-1);
|
|
}
|
|
} else if (ctxt->nbAtoms >= ctxt->maxAtoms) {
|
|
xmlRegAtomPtr *tmp;
|
|
ctxt->maxAtoms *= 2;
|
|
tmp = (xmlRegAtomPtr *) xmlRealloc(ctxt->atoms, ctxt->maxAtoms *
|
|
sizeof(xmlRegAtomPtr));
|
|
if (tmp == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "allocating counter");
|
|
ctxt->maxAtoms /= 2;
|
|
return(-1);
|
|
}
|
|
ctxt->atoms = tmp;
|
|
}
|
|
atom->no = ctxt->nbAtoms;
|
|
ctxt->atoms[ctxt->nbAtoms++] = atom;
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
xmlRegStateAddTransTo(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr target,
|
|
int from) {
|
|
if (target->maxTransTo == 0) {
|
|
target->maxTransTo = 8;
|
|
target->transTo = (int *) xmlMalloc(target->maxTransTo *
|
|
sizeof(int));
|
|
if (target->transTo == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "adding transition");
|
|
target->maxTransTo = 0;
|
|
return;
|
|
}
|
|
} else if (target->nbTransTo >= target->maxTransTo) {
|
|
int *tmp;
|
|
target->maxTransTo *= 2;
|
|
tmp = (int *) xmlRealloc(target->transTo, target->maxTransTo *
|
|
sizeof(int));
|
|
if (tmp == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "adding transition");
|
|
target->maxTransTo /= 2;
|
|
return;
|
|
}
|
|
target->transTo = tmp;
|
|
}
|
|
target->transTo[target->nbTransTo] = from;
|
|
target->nbTransTo++;
|
|
}
|
|
|
|
static void
|
|
xmlRegStateAddTrans(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
|
|
xmlRegAtomPtr atom, xmlRegStatePtr target,
|
|
int counter, int count) {
|
|
|
|
int nrtrans;
|
|
|
|
if (state == NULL) {
|
|
ERROR("add state: state is NULL");
|
|
return;
|
|
}
|
|
if (target == NULL) {
|
|
ERROR("add state: target is NULL");
|
|
return;
|
|
}
|
|
/*
|
|
* Other routines follow the philosophy 'When in doubt, add a transition'
|
|
* so we check here whether such a transition is already present and, if
|
|
* so, silently ignore this request.
|
|
*/
|
|
|
|
for (nrtrans = state->nbTrans - 1; nrtrans >= 0; nrtrans--) {
|
|
xmlRegTransPtr trans = &(state->trans[nrtrans]);
|
|
if ((trans->atom == atom) &&
|
|
(trans->to == target->no) &&
|
|
(trans->counter == counter) &&
|
|
(trans->count == count)) {
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
printf("Ignoring duplicate transition from %d to %d\n",
|
|
state->no, target->no);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (state->maxTrans == 0) {
|
|
state->maxTrans = 8;
|
|
state->trans = (xmlRegTrans *) xmlMalloc(state->maxTrans *
|
|
sizeof(xmlRegTrans));
|
|
if (state->trans == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "adding transition");
|
|
state->maxTrans = 0;
|
|
return;
|
|
}
|
|
} else if (state->nbTrans >= state->maxTrans) {
|
|
xmlRegTrans *tmp;
|
|
state->maxTrans *= 2;
|
|
tmp = (xmlRegTrans *) xmlRealloc(state->trans, state->maxTrans *
|
|
sizeof(xmlRegTrans));
|
|
if (tmp == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "adding transition");
|
|
state->maxTrans /= 2;
|
|
return;
|
|
}
|
|
state->trans = tmp;
|
|
}
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
printf("Add trans from %d to %d ", state->no, target->no);
|
|
if (count == REGEXP_ALL_COUNTER)
|
|
printf("all transition\n");
|
|
else if (count >= 0)
|
|
printf("count based %d\n", count);
|
|
else if (counter >= 0)
|
|
printf("counted %d\n", counter);
|
|
else if (atom == NULL)
|
|
printf("epsilon transition\n");
|
|
else if (atom != NULL)
|
|
xmlRegPrintAtom(stdout, atom);
|
|
#endif
|
|
|
|
state->trans[state->nbTrans].atom = atom;
|
|
state->trans[state->nbTrans].to = target->no;
|
|
state->trans[state->nbTrans].counter = counter;
|
|
state->trans[state->nbTrans].count = count;
|
|
state->trans[state->nbTrans].nd = 0;
|
|
state->nbTrans++;
|
|
xmlRegStateAddTransTo(ctxt, target, state->no);
|
|
}
|
|
|
|
static int
|
|
xmlRegStatePush(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state) {
|
|
if (state == NULL) return(-1);
|
|
if (ctxt->maxStates == 0) {
|
|
ctxt->maxStates = 4;
|
|
ctxt->states = (xmlRegStatePtr *) xmlMalloc(ctxt->maxStates *
|
|
sizeof(xmlRegStatePtr));
|
|
if (ctxt->states == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "adding state");
|
|
ctxt->maxStates = 0;
|
|
return(-1);
|
|
}
|
|
} else if (ctxt->nbStates >= ctxt->maxStates) {
|
|
xmlRegStatePtr *tmp;
|
|
ctxt->maxStates *= 2;
|
|
tmp = (xmlRegStatePtr *) xmlRealloc(ctxt->states, ctxt->maxStates *
|
|
sizeof(xmlRegStatePtr));
|
|
if (tmp == NULL) {
|
|
xmlRegexpErrMemory(ctxt, "adding state");
|
|
ctxt->maxStates /= 2;
|
|
return(-1);
|
|
}
|
|
ctxt->states = tmp;
|
|
}
|
|
state->no = ctxt->nbStates;
|
|
ctxt->states[ctxt->nbStates++] = state;
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* xmlFAGenerateAllTransition:
|
|
* @ctxt: a regexp parser context
|
|
* @from: the from state
|
|
* @to: the target state or NULL for building a new one
|
|
* @lax:
|
|
*
|
|
*/
|
|
static void
|
|
xmlFAGenerateAllTransition(xmlRegParserCtxtPtr ctxt,
|
|
xmlRegStatePtr from, xmlRegStatePtr to,
|
|
int lax) {
|
|
if (to == NULL) {
|
|
to = xmlRegNewState(ctxt);
|
|
xmlRegStatePush(ctxt, to);
|
|
ctxt->state = to;
|
|
}
|
|
if (lax)
|
|
xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_LAX_COUNTER);
|
|
else
|
|
xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_COUNTER);
|
|
}
|
|
|
|
/**
|
|
* xmlFAGenerateEpsilonTransition:
|
|
* @ctxt: a regexp parser context
|
|
* @from: the from state
|
|
* @to: the target state or NULL for building a new one
|
|
*
|
|
*/
|
|
static void
|
|
xmlFAGenerateEpsilonTransition(xmlRegParserCtxtPtr ctxt,
|
|
xmlRegStatePtr from, xmlRegStatePtr to) {
|
|
if (to == NULL) {
|
|
to = xmlRegNewState(ctxt);
|
|
xmlRegStatePush(ctxt, to);
|
|
ctxt->state = to;
|
|
}
|
|
xmlRegStateAddTrans(ctxt, from, NULL, to, -1, -1);
|
|
}
|
|
|
|
/**
|
|
* xmlFAGenerateCountedEpsilonTransition:
|
|
* @ctxt: a regexp parser context
|
|
* @from: the from state
|
|
* @to: the target state or NULL for building a new one
|
|
* counter: the counter for that transition
|
|
*
|
|
*/
|
|
static void
|
|
xmlFAGenerateCountedEpsilonTransition(xmlRegParserCtxtPtr ctxt,
|
|
xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
|
|
if (to == NULL) {
|
|
to = xmlRegNewState(ctxt);
|
|
xmlRegStatePush(ctxt, to);
|
|
ctxt->state = to;
|
|
}
|
|
xmlRegStateAddTrans(ctxt, from, NULL, to, counter, -1);
|
|
}
|
|
|
|
/**
|
|
* xmlFAGenerateCountedTransition:
|
|
* @ctxt: a regexp parser context
|
|
* @from: the from state
|
|
* @to: the target state or NULL for building a new one
|
|
* counter: the counter for that transition
|
|
*
|
|
*/
|
|
static void
|
|
xmlFAGenerateCountedTransition(xmlRegParserCtxtPtr ctxt,
|
|
xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
|
|
if (to == NULL) {
|
|
to = xmlRegNewState(ctxt);
|
|
xmlRegStatePush(ctxt, to);
|
|
ctxt->state = to;
|
|
}
|
|
xmlRegStateAddTrans(ctxt, from, NULL, to, -1, counter);
|
|
}
|
|
|
|
/**
|
|
* xmlFAGenerateTransitions:
|
|
* @ctxt: a regexp parser context
|
|
* @from: the from state
|
|
* @to: the target state or NULL for building a new one
|
|
* @atom: the atom generating the transition
|
|
*
|
|
* Returns 0 if success and -1 in case of error.
|
|
*/
|
|
static int
|
|
xmlFAGenerateTransitions(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr from,
|
|
xmlRegStatePtr to, xmlRegAtomPtr atom) {
|
|
xmlRegStatePtr end;
|
|
int nullable = 0;
|
|
|
|
if (atom == NULL) {
|
|
ERROR("generate transition: atom == NULL");
|
|
return(-1);
|
|
}
|
|
if (atom->type == XML_REGEXP_SUBREG) {
|
|
/*
|
|
* this is a subexpression handling one should not need to
|
|
* create a new node except for XML_REGEXP_QUANT_RANGE.
|
|
*/
|
|
if (xmlRegAtomPush(ctxt, atom) < 0) {
|
|
return(-1);
|
|
}
|
|
if ((to != NULL) && (atom->stop != to) &&
|
|
(atom->quant != XML_REGEXP_QUANT_RANGE)) {
|
|
/*
|
|
* Generate an epsilon transition to link to the target
|
|
*/
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
|
|
#ifdef DV
|
|
} else if ((to == NULL) && (atom->quant != XML_REGEXP_QUANT_RANGE) &&
|
|
(atom->quant != XML_REGEXP_QUANT_ONCE)) {
|
|
to = xmlRegNewState(ctxt);
|
|
xmlRegStatePush(ctxt, to);
|
|
ctxt->state = to;
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
|
|
#endif
|
|
}
|
|
switch (atom->quant) {
|
|
case XML_REGEXP_QUANT_OPT:
|
|
atom->quant = XML_REGEXP_QUANT_ONCE;
|
|
/*
|
|
* transition done to the state after end of atom.
|
|
* 1. set transition from atom start to new state
|
|
* 2. set transition from atom end to this state.
|
|
*/
|
|
if (to == NULL) {
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->start, 0);
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->stop,
|
|
ctxt->state);
|
|
} else {
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->start, to);
|
|
}
|
|
break;
|
|
case XML_REGEXP_QUANT_MULT:
|
|
atom->quant = XML_REGEXP_QUANT_ONCE;
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->start, atom->stop);
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
|
|
break;
|
|
case XML_REGEXP_QUANT_PLUS:
|
|
atom->quant = XML_REGEXP_QUANT_ONCE;
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
|
|
break;
|
|
case XML_REGEXP_QUANT_RANGE: {
|
|
int counter;
|
|
xmlRegStatePtr inter, newstate;
|
|
|
|
/*
|
|
* create the final state now if needed
|
|
*/
|
|
if (to != NULL) {
|
|
newstate = to;
|
|
} else {
|
|
newstate = xmlRegNewState(ctxt);
|
|
xmlRegStatePush(ctxt, newstate);
|
|
}
|
|
|
|
/*
|
|
* The principle here is to use counted transition
|
|
* to avoid explosion in the number of states in the
|
|
* graph. This is clearly more complex but should not
|
|
* be exploitable at runtime.
|
|
*/
|
|
if ((atom->min == 0) && (atom->start0 == NULL)) {
|
|
xmlRegAtomPtr copy;
|
|
/*
|
|
* duplicate a transition based on atom to count next
|
|
* occurrences after 1. We cannot loop to atom->start
|
|
* directly because we need an epsilon transition to
|
|
* newstate.
|
|
*/
|
|
/* ???? For some reason it seems we never reach that
|
|
case, I suppose this got optimized out before when
|
|
building the automata */
|
|
copy = xmlRegCopyAtom(ctxt, atom);
|
|
if (copy == NULL)
|
|
return(-1);
|
|
copy->quant = XML_REGEXP_QUANT_ONCE;
|
|
copy->min = 0;
|
|
copy->max = 0;
|
|
|
|
if (xmlFAGenerateTransitions(ctxt, atom->start, NULL, copy)
|
|
< 0)
|
|
return(-1);
|
|
inter = ctxt->state;
|
|
counter = xmlRegGetCounter(ctxt);
|
|
ctxt->counters[counter].min = atom->min - 1;
|
|
ctxt->counters[counter].max = atom->max - 1;
|
|
/* count the number of times we see it again */
|
|
xmlFAGenerateCountedEpsilonTransition(ctxt, inter,
|
|
atom->stop, counter);
|
|
/* allow a way out based on the count */
|
|
xmlFAGenerateCountedTransition(ctxt, inter,
|
|
newstate, counter);
|
|
/* and also allow a direct exit for 0 */
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->start,
|
|
newstate);
|
|
} else {
|
|
/*
|
|
* either we need the atom at least once or there
|
|
* is an atom->start0 allowing to easily plug the
|
|
* epsilon transition.
|
|
*/
|
|
counter = xmlRegGetCounter(ctxt);
|
|
ctxt->counters[counter].min = atom->min - 1;
|
|
ctxt->counters[counter].max = atom->max - 1;
|
|
/* count the number of times we see it again */
|
|
xmlFAGenerateCountedEpsilonTransition(ctxt, atom->stop,
|
|
atom->start, counter);
|
|
/* allow a way out based on the count */
|
|
xmlFAGenerateCountedTransition(ctxt, atom->stop,
|
|
newstate, counter);
|
|
/* and if needed allow a direct exit for 0 */
|
|
if (atom->min == 0)
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->start0,
|
|
newstate);
|
|
|
|
}
|
|
atom->min = 0;
|
|
atom->max = 0;
|
|
atom->quant = XML_REGEXP_QUANT_ONCE;
|
|
ctxt->state = newstate;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return(0);
|
|
}
|
|
if ((atom->min == 0) && (atom->max == 0) &&
|
|
(atom->quant == XML_REGEXP_QUANT_RANGE)) {
|
|
/*
|
|
* we can discard the atom and generate an epsilon transition instead
|
|
*/
|
|
if (to == NULL) {
|
|
to = xmlRegNewState(ctxt);
|
|
if (to != NULL)
|
|
xmlRegStatePush(ctxt, to);
|
|
else {
|
|
return(-1);
|
|
}
|
|
}
|
|
xmlFAGenerateEpsilonTransition(ctxt, from, to);
|
|
ctxt->state = to;
|
|
xmlRegFreeAtom(atom);
|
|
return(0);
|
|
}
|
|
if (to == NULL) {
|
|
to = xmlRegNewState(ctxt);
|
|
if (to != NULL)
|
|
xmlRegStatePush(ctxt, to);
|
|
else {
|
|
return(-1);
|
|
}
|
|
}
|
|
end = to;
|
|
if ((atom->quant == XML_REGEXP_QUANT_MULT) ||
|
|
(atom->quant == XML_REGEXP_QUANT_PLUS)) {
|
|
/*
|
|
* Do not pollute the target state by adding transitions from
|
|
* it as it is likely to be the shared target of multiple branches.
|
|
* So isolate with an epsilon transition.
|
|
*/
|
|
xmlRegStatePtr tmp;
|
|
|
|
tmp = xmlRegNewState(ctxt);
|
|
if (tmp != NULL)
|
|
xmlRegStatePush(ctxt, tmp);
|
|
else {
|
|
return(-1);
|
|
}
|
|
xmlFAGenerateEpsilonTransition(ctxt, tmp, to);
|
|
to = tmp;
|
|
}
|
|
if (xmlRegAtomPush(ctxt, atom) < 0) {
|
|
return(-1);
|
|
}
|
|
if ((atom->quant == XML_REGEXP_QUANT_RANGE) &&
|
|
(atom->min == 0) && (atom->max > 0)) {
|
|
nullable = 1;
|
|
atom->min = 1;
|
|
if (atom->max == 1)
|
|
atom->quant = XML_REGEXP_QUANT_OPT;
|
|
}
|
|
xmlRegStateAddTrans(ctxt, from, atom, to, -1, -1);
|
|
ctxt->state = end;
|
|
switch (atom->quant) {
|
|
case XML_REGEXP_QUANT_OPT:
|
|
atom->quant = XML_REGEXP_QUANT_ONCE;
|
|
xmlFAGenerateEpsilonTransition(ctxt, from, to);
|
|
break;
|
|
case XML_REGEXP_QUANT_MULT:
|
|
atom->quant = XML_REGEXP_QUANT_ONCE;
|
|
xmlFAGenerateEpsilonTransition(ctxt, from, to);
|
|
xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
|
|
break;
|
|
case XML_REGEXP_QUANT_PLUS:
|
|
atom->quant = XML_REGEXP_QUANT_ONCE;
|
|
xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
|
|
break;
|
|
case XML_REGEXP_QUANT_RANGE:
|
|
if (nullable)
|
|
xmlFAGenerateEpsilonTransition(ctxt, from, to);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* xmlFAReduceEpsilonTransitions:
|
|
* @ctxt: a regexp parser context
|
|
* @fromnr: the from state
|
|
* @tonr: the to state
|
|
* @counter: should that transition be associated to a counted
|
|
*
|
|
*/
|
|
static void
|
|
xmlFAReduceEpsilonTransitions(xmlRegParserCtxtPtr ctxt, int fromnr,
|
|
int tonr, int counter) {
|
|
int transnr;
|
|
xmlRegStatePtr from;
|
|
xmlRegStatePtr to;
|
|
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
printf("xmlFAReduceEpsilonTransitions(%d, %d)\n", fromnr, tonr);
|
|
#endif
|
|
from = ctxt->states[fromnr];
|
|
if (from == NULL)
|
|
return;
|
|
to = ctxt->states[tonr];
|
|
if (to == NULL)
|
|
return;
|
|
if ((to->mark == XML_REGEXP_MARK_START) ||
|
|
(to->mark == XML_REGEXP_MARK_VISITED))
|
|
return;
|
|
|
|
to->mark = XML_REGEXP_MARK_VISITED;
|
|
if (to->type == XML_REGEXP_FINAL_STATE) {
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
printf("State %d is final, so %d becomes final\n", tonr, fromnr);
|
|
#endif
|
|
from->type = XML_REGEXP_FINAL_STATE;
|
|
}
|
|
for (transnr = 0;transnr < to->nbTrans;transnr++) {
|
|
if (to->trans[transnr].to < 0)
|
|
continue;
|
|
if (to->trans[transnr].atom == NULL) {
|
|
/*
|
|
* Don't remove counted transitions
|
|
* Don't loop either
|
|
*/
|
|
if (to->trans[transnr].to != fromnr) {
|
|
if (to->trans[transnr].count >= 0) {
|
|
int newto = to->trans[transnr].to;
|
|
|
|
xmlRegStateAddTrans(ctxt, from, NULL,
|
|
ctxt->states[newto],
|
|
-1, to->trans[transnr].count);
|
|
} else {
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
printf("Found epsilon trans %d from %d to %d\n",
|
|
transnr, tonr, to->trans[transnr].to);
|
|
#endif
|
|
if (to->trans[transnr].counter >= 0) {
|
|
xmlFAReduceEpsilonTransitions(ctxt, fromnr,
|
|
to->trans[transnr].to,
|
|
to->trans[transnr].counter);
|
|
} else {
|
|
xmlFAReduceEpsilonTransitions(ctxt, fromnr,
|
|
to->trans[transnr].to,
|
|
counter);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
int newto = to->trans[transnr].to;
|
|
|
|
if (to->trans[transnr].counter >= 0) {
|
|
xmlRegStateAddTrans(ctxt, from, to->trans[transnr].atom,
|
|
ctxt->states[newto],
|
|
to->trans[transnr].counter, -1);
|
|
} else {
|
|
xmlRegStateAddTrans(ctxt, from, to->trans[transnr].atom,
|
|
ctxt->states[newto], counter, -1);
|
|
}
|
|
}
|
|
}
|
|
to->mark = XML_REGEXP_MARK_NORMAL;
|
|
}
|
|
|
|
/**
|
|
* xmlFAEliminateSimpleEpsilonTransitions:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* Eliminating general epsilon transitions can get costly in the general
|
|
* algorithm due to the large amount of generated new transitions and
|
|
* associated comparisons. However for simple epsilon transition used just
|
|
* to separate building blocks when generating the automata this can be
|
|
* reduced to state elimination:
|
|
* - if there exists an epsilon from X to Y
|
|
* - if there is no other transition from X
|
|
* then X and Y are semantically equivalent and X can be eliminated
|
|
* If X is the start state then make Y the start state, else replace the
|
|
* target of all transitions to X by transitions to Y.
|
|
*
|
|
* If X is a final state, skip it.
|
|
* Otherwise it would be necessary to manipulate counters for this case when
|
|
* eliminating state 2:
|
|
* State 1 has a transition with an atom to state 2.
|
|
* State 2 is final and has an epsilon transition to state 1.
|
|
*/
|
|
static void
|
|
xmlFAEliminateSimpleEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
|
|
int statenr, i, j, newto;
|
|
xmlRegStatePtr state, tmp;
|
|
|
|
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if (state == NULL)
|
|
continue;
|
|
if (state->nbTrans != 1)
|
|
continue;
|
|
if (state->type == XML_REGEXP_UNREACH_STATE ||
|
|
state->type == XML_REGEXP_FINAL_STATE)
|
|
continue;
|
|
/* is the only transition out a basic transition */
|
|
if ((state->trans[0].atom == NULL) &&
|
|
(state->trans[0].to >= 0) &&
|
|
(state->trans[0].to != statenr) &&
|
|
(state->trans[0].counter < 0) &&
|
|
(state->trans[0].count < 0)) {
|
|
newto = state->trans[0].to;
|
|
|
|
if (state->type == XML_REGEXP_START_STATE) {
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
printf("Found simple epsilon trans from start %d to %d\n",
|
|
statenr, newto);
|
|
#endif
|
|
} else {
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
printf("Found simple epsilon trans from %d to %d\n",
|
|
statenr, newto);
|
|
#endif
|
|
for (i = 0;i < state->nbTransTo;i++) {
|
|
tmp = ctxt->states[state->transTo[i]];
|
|
for (j = 0;j < tmp->nbTrans;j++) {
|
|
if (tmp->trans[j].to == statenr) {
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
printf("Changed transition %d on %d to go to %d\n",
|
|
j, tmp->no, newto);
|
|
#endif
|
|
tmp->trans[j].to = -1;
|
|
xmlRegStateAddTrans(ctxt, tmp, tmp->trans[j].atom,
|
|
ctxt->states[newto],
|
|
tmp->trans[j].counter,
|
|
tmp->trans[j].count);
|
|
}
|
|
}
|
|
}
|
|
if (state->type == XML_REGEXP_FINAL_STATE)
|
|
ctxt->states[newto]->type = XML_REGEXP_FINAL_STATE;
|
|
/* eliminate the transition completely */
|
|
state->nbTrans = 0;
|
|
|
|
state->type = XML_REGEXP_UNREACH_STATE;
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
/**
|
|
* xmlFAEliminateEpsilonTransitions:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
*/
|
|
static void
|
|
xmlFAEliminateEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
|
|
int statenr, transnr;
|
|
xmlRegStatePtr state;
|
|
int has_epsilon;
|
|
|
|
if (ctxt->states == NULL) return;
|
|
|
|
/*
|
|
* Eliminate simple epsilon transition and the associated unreachable
|
|
* states.
|
|
*/
|
|
xmlFAEliminateSimpleEpsilonTransitions(ctxt);
|
|
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if ((state != NULL) && (state->type == XML_REGEXP_UNREACH_STATE)) {
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
printf("Removed unreachable state %d\n", statenr);
|
|
#endif
|
|
xmlRegFreeState(state);
|
|
ctxt->states[statenr] = NULL;
|
|
}
|
|
}
|
|
|
|
has_epsilon = 0;
|
|
|
|
/*
|
|
* Build the completed transitions bypassing the epsilons
|
|
* Use a marking algorithm to avoid loops
|
|
* Mark sink states too.
|
|
* Process from the latest states backward to the start when
|
|
* there is long cascading epsilon chains this minimize the
|
|
* recursions and transition compares when adding the new ones
|
|
*/
|
|
for (statenr = ctxt->nbStates - 1;statenr >= 0;statenr--) {
|
|
state = ctxt->states[statenr];
|
|
if (state == NULL)
|
|
continue;
|
|
if ((state->nbTrans == 0) &&
|
|
(state->type != XML_REGEXP_FINAL_STATE)) {
|
|
state->type = XML_REGEXP_SINK_STATE;
|
|
}
|
|
for (transnr = 0;transnr < state->nbTrans;transnr++) {
|
|
if ((state->trans[transnr].atom == NULL) &&
|
|
(state->trans[transnr].to >= 0)) {
|
|
if (state->trans[transnr].to == statenr) {
|
|
state->trans[transnr].to = -1;
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
printf("Removed loopback epsilon trans %d on %d\n",
|
|
transnr, statenr);
|
|
#endif
|
|
} else if (state->trans[transnr].count < 0) {
|
|
int newto = state->trans[transnr].to;
|
|
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
printf("Found epsilon trans %d from %d to %d\n",
|
|
transnr, statenr, newto);
|
|
#endif
|
|
has_epsilon = 1;
|
|
state->trans[transnr].to = -2;
|
|
state->mark = XML_REGEXP_MARK_START;
|
|
xmlFAReduceEpsilonTransitions(ctxt, statenr,
|
|
newto, state->trans[transnr].counter);
|
|
state->mark = XML_REGEXP_MARK_NORMAL;
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
} else {
|
|
printf("Found counted transition %d on %d\n",
|
|
transnr, statenr);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Eliminate the epsilon transitions
|
|
*/
|
|
if (has_epsilon) {
|
|
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if (state == NULL)
|
|
continue;
|
|
for (transnr = 0;transnr < state->nbTrans;transnr++) {
|
|
xmlRegTransPtr trans = &(state->trans[transnr]);
|
|
if ((trans->atom == NULL) &&
|
|
(trans->count < 0) &&
|
|
(trans->to >= 0)) {
|
|
trans->to = -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Use this pass to detect unreachable states too
|
|
*/
|
|
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if (state != NULL)
|
|
state->reached = XML_REGEXP_MARK_NORMAL;
|
|
}
|
|
state = ctxt->states[0];
|
|
if (state != NULL)
|
|
state->reached = XML_REGEXP_MARK_START;
|
|
while (state != NULL) {
|
|
xmlRegStatePtr target = NULL;
|
|
state->reached = XML_REGEXP_MARK_VISITED;
|
|
/*
|
|
* Mark all states reachable from the current reachable state
|
|
*/
|
|
for (transnr = 0;transnr < state->nbTrans;transnr++) {
|
|
if ((state->trans[transnr].to >= 0) &&
|
|
((state->trans[transnr].atom != NULL) ||
|
|
(state->trans[transnr].count >= 0))) {
|
|
int newto = state->trans[transnr].to;
|
|
|
|
if (ctxt->states[newto] == NULL)
|
|
continue;
|
|
if (ctxt->states[newto]->reached == XML_REGEXP_MARK_NORMAL) {
|
|
ctxt->states[newto]->reached = XML_REGEXP_MARK_START;
|
|
target = ctxt->states[newto];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* find the next accessible state not explored
|
|
*/
|
|
if (target == NULL) {
|
|
for (statenr = 1;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if ((state != NULL) && (state->reached ==
|
|
XML_REGEXP_MARK_START)) {
|
|
target = state;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
state = target;
|
|
}
|
|
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if ((state != NULL) && (state->reached == XML_REGEXP_MARK_NORMAL)) {
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
printf("Removed unreachable state %d\n", statenr);
|
|
#endif
|
|
xmlRegFreeState(state);
|
|
ctxt->states[statenr] = NULL;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static int
|
|
xmlFACompareRanges(xmlRegRangePtr range1, xmlRegRangePtr range2) {
|
|
int ret = 0;
|
|
|
|
if ((range1->type == XML_REGEXP_RANGES) ||
|
|
(range2->type == XML_REGEXP_RANGES) ||
|
|
(range2->type == XML_REGEXP_SUBREG) ||
|
|
(range1->type == XML_REGEXP_SUBREG) ||
|
|
(range1->type == XML_REGEXP_STRING) ||
|
|
(range2->type == XML_REGEXP_STRING))
|
|
return(-1);
|
|
|
|
/* put them in order */
|
|
if (range1->type > range2->type) {
|
|
xmlRegRangePtr tmp;
|
|
|
|
tmp = range1;
|
|
range1 = range2;
|
|
range2 = tmp;
|
|
}
|
|
if ((range1->type == XML_REGEXP_ANYCHAR) ||
|
|
(range2->type == XML_REGEXP_ANYCHAR)) {
|
|
ret = 1;
|
|
} else if ((range1->type == XML_REGEXP_EPSILON) ||
|
|
(range2->type == XML_REGEXP_EPSILON)) {
|
|
return(0);
|
|
} else if (range1->type == range2->type) {
|
|
if (range1->type != XML_REGEXP_CHARVAL)
|
|
ret = 1;
|
|
else if ((range1->end < range2->start) ||
|
|
(range2->end < range1->start))
|
|
ret = 0;
|
|
else
|
|
ret = 1;
|
|
} else if (range1->type == XML_REGEXP_CHARVAL) {
|
|
int codepoint;
|
|
int neg = 0;
|
|
|
|
/*
|
|
* just check all codepoints in the range for acceptance,
|
|
* this is usually way cheaper since done only once at
|
|
* compilation than testing over and over at runtime or
|
|
* pushing too many states when evaluating.
|
|
*/
|
|
if (((range1->neg == 0) && (range2->neg != 0)) ||
|
|
((range1->neg != 0) && (range2->neg == 0)))
|
|
neg = 1;
|
|
|
|
for (codepoint = range1->start;codepoint <= range1->end ;codepoint++) {
|
|
ret = xmlRegCheckCharacterRange(range2->type, codepoint,
|
|
0, range2->start, range2->end,
|
|
range2->blockName);
|
|
if (ret < 0)
|
|
return(-1);
|
|
if (((neg == 1) && (ret == 0)) ||
|
|
((neg == 0) && (ret == 1)))
|
|
return(1);
|
|
}
|
|
return(0);
|
|
} else if ((range1->type == XML_REGEXP_BLOCK_NAME) ||
|
|
(range2->type == XML_REGEXP_BLOCK_NAME)) {
|
|
if (range1->type == range2->type) {
|
|
ret = xmlStrEqual(range1->blockName, range2->blockName);
|
|
} else {
|
|
/*
|
|
* comparing a block range with anything else is way
|
|
* too costly, and maintaining the table is like too much
|
|
* memory too, so let's force the automata to save state
|
|
* here.
|
|
*/
|
|
return(1);
|
|
}
|
|
} else if ((range1->type < XML_REGEXP_LETTER) ||
|
|
(range2->type < XML_REGEXP_LETTER)) {
|
|
if ((range1->type == XML_REGEXP_ANYSPACE) &&
|
|
(range2->type == XML_REGEXP_NOTSPACE))
|
|
ret = 0;
|
|
else if ((range1->type == XML_REGEXP_INITNAME) &&
|
|
(range2->type == XML_REGEXP_NOTINITNAME))
|
|
ret = 0;
|
|
else if ((range1->type == XML_REGEXP_NAMECHAR) &&
|
|
(range2->type == XML_REGEXP_NOTNAMECHAR))
|
|
ret = 0;
|
|
else if ((range1->type == XML_REGEXP_DECIMAL) &&
|
|
(range2->type == XML_REGEXP_NOTDECIMAL))
|
|
ret = 0;
|
|
else if ((range1->type == XML_REGEXP_REALCHAR) &&
|
|
(range2->type == XML_REGEXP_NOTREALCHAR))
|
|
ret = 0;
|
|
else {
|
|
/* same thing to limit complexity */
|
|
return(1);
|
|
}
|
|
} else {
|
|
ret = 0;
|
|
/* range1->type < range2->type here */
|
|
switch (range1->type) {
|
|
case XML_REGEXP_LETTER:
|
|
/* all disjoint except in the subgroups */
|
|
if ((range2->type == XML_REGEXP_LETTER_UPPERCASE) ||
|
|
(range2->type == XML_REGEXP_LETTER_LOWERCASE) ||
|
|
(range2->type == XML_REGEXP_LETTER_TITLECASE) ||
|
|
(range2->type == XML_REGEXP_LETTER_MODIFIER) ||
|
|
(range2->type == XML_REGEXP_LETTER_OTHERS))
|
|
ret = 1;
|
|
break;
|
|
case XML_REGEXP_MARK:
|
|
if ((range2->type == XML_REGEXP_MARK_NONSPACING) ||
|
|
(range2->type == XML_REGEXP_MARK_SPACECOMBINING) ||
|
|
(range2->type == XML_REGEXP_MARK_ENCLOSING))
|
|
ret = 1;
|
|
break;
|
|
case XML_REGEXP_NUMBER:
|
|
if ((range2->type == XML_REGEXP_NUMBER_DECIMAL) ||
|
|
(range2->type == XML_REGEXP_NUMBER_LETTER) ||
|
|
(range2->type == XML_REGEXP_NUMBER_OTHERS))
|
|
ret = 1;
|
|
break;
|
|
case XML_REGEXP_PUNCT:
|
|
if ((range2->type == XML_REGEXP_PUNCT_CONNECTOR) ||
|
|
(range2->type == XML_REGEXP_PUNCT_DASH) ||
|
|
(range2->type == XML_REGEXP_PUNCT_OPEN) ||
|
|
(range2->type == XML_REGEXP_PUNCT_CLOSE) ||
|
|
(range2->type == XML_REGEXP_PUNCT_INITQUOTE) ||
|
|
(range2->type == XML_REGEXP_PUNCT_FINQUOTE) ||
|
|
(range2->type == XML_REGEXP_PUNCT_OTHERS))
|
|
ret = 1;
|
|
break;
|
|
case XML_REGEXP_SEPAR:
|
|
if ((range2->type == XML_REGEXP_SEPAR_SPACE) ||
|
|
(range2->type == XML_REGEXP_SEPAR_LINE) ||
|
|
(range2->type == XML_REGEXP_SEPAR_PARA))
|
|
ret = 1;
|
|
break;
|
|
case XML_REGEXP_SYMBOL:
|
|
if ((range2->type == XML_REGEXP_SYMBOL_MATH) ||
|
|
(range2->type == XML_REGEXP_SYMBOL_CURRENCY) ||
|
|
(range2->type == XML_REGEXP_SYMBOL_MODIFIER) ||
|
|
(range2->type == XML_REGEXP_SYMBOL_OTHERS))
|
|
ret = 1;
|
|
break;
|
|
case XML_REGEXP_OTHER:
|
|
if ((range2->type == XML_REGEXP_OTHER_CONTROL) ||
|
|
(range2->type == XML_REGEXP_OTHER_FORMAT) ||
|
|
(range2->type == XML_REGEXP_OTHER_PRIVATE))
|
|
ret = 1;
|
|
break;
|
|
default:
|
|
if ((range2->type >= XML_REGEXP_LETTER) &&
|
|
(range2->type < XML_REGEXP_BLOCK_NAME))
|
|
ret = 0;
|
|
else {
|
|
/* safety net ! */
|
|
return(1);
|
|
}
|
|
}
|
|
}
|
|
if (((range1->neg == 0) && (range2->neg != 0)) ||
|
|
((range1->neg != 0) && (range2->neg == 0)))
|
|
ret = !ret;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlFACompareAtomTypes:
|
|
* @type1: an atom type
|
|
* @type2: an atom type
|
|
*
|
|
* Compares two atoms type to check whether they intersect in some ways,
|
|
* this is used by xmlFACompareAtoms only
|
|
*
|
|
* Returns 1 if they may intersect and 0 otherwise
|
|
*/
|
|
static int
|
|
xmlFACompareAtomTypes(xmlRegAtomType type1, xmlRegAtomType type2) {
|
|
if ((type1 == XML_REGEXP_EPSILON) ||
|
|
(type1 == XML_REGEXP_CHARVAL) ||
|
|
(type1 == XML_REGEXP_RANGES) ||
|
|
(type1 == XML_REGEXP_SUBREG) ||
|
|
(type1 == XML_REGEXP_STRING) ||
|
|
(type1 == XML_REGEXP_ANYCHAR))
|
|
return(1);
|
|
if ((type2 == XML_REGEXP_EPSILON) ||
|
|
(type2 == XML_REGEXP_CHARVAL) ||
|
|
(type2 == XML_REGEXP_RANGES) ||
|
|
(type2 == XML_REGEXP_SUBREG) ||
|
|
(type2 == XML_REGEXP_STRING) ||
|
|
(type2 == XML_REGEXP_ANYCHAR))
|
|
return(1);
|
|
|
|
if (type1 == type2) return(1);
|
|
|
|
/* simplify subsequent compares by making sure type1 < type2 */
|
|
if (type1 > type2) {
|
|
xmlRegAtomType tmp = type1;
|
|
type1 = type2;
|
|
type2 = tmp;
|
|
}
|
|
switch (type1) {
|
|
case XML_REGEXP_ANYSPACE: /* \s */
|
|
/* can't be a letter, number, mark, punctuation, symbol */
|
|
if ((type2 == XML_REGEXP_NOTSPACE) ||
|
|
((type2 >= XML_REGEXP_LETTER) &&
|
|
(type2 <= XML_REGEXP_LETTER_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_NUMBER) &&
|
|
(type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_MARK) &&
|
|
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
|
|
((type2 >= XML_REGEXP_PUNCT) &&
|
|
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_SYMBOL) &&
|
|
(type2 <= XML_REGEXP_SYMBOL_OTHERS))
|
|
) return(0);
|
|
break;
|
|
case XML_REGEXP_NOTSPACE: /* \S */
|
|
break;
|
|
case XML_REGEXP_INITNAME: /* \l */
|
|
/* can't be a number, mark, separator, punctuation, symbol or other */
|
|
if ((type2 == XML_REGEXP_NOTINITNAME) ||
|
|
((type2 >= XML_REGEXP_NUMBER) &&
|
|
(type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_MARK) &&
|
|
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
|
|
((type2 >= XML_REGEXP_SEPAR) &&
|
|
(type2 <= XML_REGEXP_SEPAR_PARA)) ||
|
|
((type2 >= XML_REGEXP_PUNCT) &&
|
|
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_SYMBOL) &&
|
|
(type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_OTHER) &&
|
|
(type2 <= XML_REGEXP_OTHER_NA))
|
|
) return(0);
|
|
break;
|
|
case XML_REGEXP_NOTINITNAME: /* \L */
|
|
break;
|
|
case XML_REGEXP_NAMECHAR: /* \c */
|
|
/* can't be a mark, separator, punctuation, symbol or other */
|
|
if ((type2 == XML_REGEXP_NOTNAMECHAR) ||
|
|
((type2 >= XML_REGEXP_MARK) &&
|
|
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
|
|
((type2 >= XML_REGEXP_PUNCT) &&
|
|
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_SEPAR) &&
|
|
(type2 <= XML_REGEXP_SEPAR_PARA)) ||
|
|
((type2 >= XML_REGEXP_SYMBOL) &&
|
|
(type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_OTHER) &&
|
|
(type2 <= XML_REGEXP_OTHER_NA))
|
|
) return(0);
|
|
break;
|
|
case XML_REGEXP_NOTNAMECHAR: /* \C */
|
|
break;
|
|
case XML_REGEXP_DECIMAL: /* \d */
|
|
/* can't be a letter, mark, separator, punctuation, symbol or other */
|
|
if ((type2 == XML_REGEXP_NOTDECIMAL) ||
|
|
(type2 == XML_REGEXP_REALCHAR) ||
|
|
((type2 >= XML_REGEXP_LETTER) &&
|
|
(type2 <= XML_REGEXP_LETTER_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_MARK) &&
|
|
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
|
|
((type2 >= XML_REGEXP_PUNCT) &&
|
|
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_SEPAR) &&
|
|
(type2 <= XML_REGEXP_SEPAR_PARA)) ||
|
|
((type2 >= XML_REGEXP_SYMBOL) &&
|
|
(type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_OTHER) &&
|
|
(type2 <= XML_REGEXP_OTHER_NA))
|
|
)return(0);
|
|
break;
|
|
case XML_REGEXP_NOTDECIMAL: /* \D */
|
|
break;
|
|
case XML_REGEXP_REALCHAR: /* \w */
|
|
/* can't be a mark, separator, punctuation, symbol or other */
|
|
if ((type2 == XML_REGEXP_NOTDECIMAL) ||
|
|
((type2 >= XML_REGEXP_MARK) &&
|
|
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
|
|
((type2 >= XML_REGEXP_PUNCT) &&
|
|
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_SEPAR) &&
|
|
(type2 <= XML_REGEXP_SEPAR_PARA)) ||
|
|
((type2 >= XML_REGEXP_SYMBOL) &&
|
|
(type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_OTHER) &&
|
|
(type2 <= XML_REGEXP_OTHER_NA))
|
|
)return(0);
|
|
break;
|
|
case XML_REGEXP_NOTREALCHAR: /* \W */
|
|
break;
|
|
/*
|
|
* at that point we know both type 1 and type2 are from
|
|
* character categories are ordered and are different,
|
|
* it becomes simple because this is a partition
|
|
*/
|
|
case XML_REGEXP_LETTER:
|
|
if (type2 <= XML_REGEXP_LETTER_OTHERS)
|
|
return(1);
|
|
return(0);
|
|
case XML_REGEXP_LETTER_UPPERCASE:
|
|
case XML_REGEXP_LETTER_LOWERCASE:
|
|
case XML_REGEXP_LETTER_TITLECASE:
|
|
case XML_REGEXP_LETTER_MODIFIER:
|
|
case XML_REGEXP_LETTER_OTHERS:
|
|
return(0);
|
|
case XML_REGEXP_MARK:
|
|
if (type2 <= XML_REGEXP_MARK_ENCLOSING)
|
|
return(1);
|
|
return(0);
|
|
case XML_REGEXP_MARK_NONSPACING:
|
|
case XML_REGEXP_MARK_SPACECOMBINING:
|
|
case XML_REGEXP_MARK_ENCLOSING:
|
|
return(0);
|
|
case XML_REGEXP_NUMBER:
|
|
if (type2 <= XML_REGEXP_NUMBER_OTHERS)
|
|
return(1);
|
|
return(0);
|
|
case XML_REGEXP_NUMBER_DECIMAL:
|
|
case XML_REGEXP_NUMBER_LETTER:
|
|
case XML_REGEXP_NUMBER_OTHERS:
|
|
return(0);
|
|
case XML_REGEXP_PUNCT:
|
|
if (type2 <= XML_REGEXP_PUNCT_OTHERS)
|
|
return(1);
|
|
return(0);
|
|
case XML_REGEXP_PUNCT_CONNECTOR:
|
|
case XML_REGEXP_PUNCT_DASH:
|
|
case XML_REGEXP_PUNCT_OPEN:
|
|
case XML_REGEXP_PUNCT_CLOSE:
|
|
case XML_REGEXP_PUNCT_INITQUOTE:
|
|
case XML_REGEXP_PUNCT_FINQUOTE:
|
|
case XML_REGEXP_PUNCT_OTHERS:
|
|
return(0);
|
|
case XML_REGEXP_SEPAR:
|
|
if (type2 <= XML_REGEXP_SEPAR_PARA)
|
|
return(1);
|
|
return(0);
|
|
case XML_REGEXP_SEPAR_SPACE:
|
|
case XML_REGEXP_SEPAR_LINE:
|
|
case XML_REGEXP_SEPAR_PARA:
|
|
return(0);
|
|
case XML_REGEXP_SYMBOL:
|
|
if (type2 <= XML_REGEXP_SYMBOL_OTHERS)
|
|
return(1);
|
|
return(0);
|
|
case XML_REGEXP_SYMBOL_MATH:
|
|
case XML_REGEXP_SYMBOL_CURRENCY:
|
|
case XML_REGEXP_SYMBOL_MODIFIER:
|
|
case XML_REGEXP_SYMBOL_OTHERS:
|
|
return(0);
|
|
case XML_REGEXP_OTHER:
|
|
if (type2 <= XML_REGEXP_OTHER_NA)
|
|
return(1);
|
|
return(0);
|
|
case XML_REGEXP_OTHER_CONTROL:
|
|
case XML_REGEXP_OTHER_FORMAT:
|
|
case XML_REGEXP_OTHER_PRIVATE:
|
|
case XML_REGEXP_OTHER_NA:
|
|
return(0);
|
|
default:
|
|
break;
|
|
}
|
|
return(1);
|
|
}
|
|
|
|
/**
|
|
* xmlFAEqualAtoms:
|
|
* @atom1: an atom
|
|
* @atom2: an atom
|
|
* @deep: if not set only compare string pointers
|
|
*
|
|
* Compares two atoms to check whether they are the same exactly
|
|
* this is used to remove equivalent transitions
|
|
*
|
|
* Returns 1 if same and 0 otherwise
|
|
*/
|
|
static int
|
|
xmlFAEqualAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
|
|
int ret = 0;
|
|
|
|
if (atom1 == atom2)
|
|
return(1);
|
|
if ((atom1 == NULL) || (atom2 == NULL))
|
|
return(0);
|
|
|
|
if (atom1->type != atom2->type)
|
|
return(0);
|
|
switch (atom1->type) {
|
|
case XML_REGEXP_EPSILON:
|
|
ret = 0;
|
|
break;
|
|
case XML_REGEXP_STRING:
|
|
if (!deep)
|
|
ret = (atom1->valuep == atom2->valuep);
|
|
else
|
|
ret = xmlStrEqual((xmlChar *)atom1->valuep,
|
|
(xmlChar *)atom2->valuep);
|
|
break;
|
|
case XML_REGEXP_CHARVAL:
|
|
ret = (atom1->codepoint == atom2->codepoint);
|
|
break;
|
|
case XML_REGEXP_RANGES:
|
|
/* too hard to do in the general case */
|
|
ret = 0;
|
|
default:
|
|
break;
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlFACompareAtoms:
|
|
* @atom1: an atom
|
|
* @atom2: an atom
|
|
* @deep: if not set only compare string pointers
|
|
*
|
|
* Compares two atoms to check whether they intersect in some ways,
|
|
* this is used by xmlFAComputesDeterminism and xmlFARecurseDeterminism only
|
|
*
|
|
* Returns 1 if yes and 0 otherwise
|
|
*/
|
|
static int
|
|
xmlFACompareAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
|
|
int ret = 1;
|
|
|
|
if (atom1 == atom2)
|
|
return(1);
|
|
if ((atom1 == NULL) || (atom2 == NULL))
|
|
return(0);
|
|
|
|
if ((atom1->type == XML_REGEXP_ANYCHAR) ||
|
|
(atom2->type == XML_REGEXP_ANYCHAR))
|
|
return(1);
|
|
|
|
if (atom1->type > atom2->type) {
|
|
xmlRegAtomPtr tmp;
|
|
tmp = atom1;
|
|
atom1 = atom2;
|
|
atom2 = tmp;
|
|
}
|
|
if (atom1->type != atom2->type) {
|
|
ret = xmlFACompareAtomTypes(atom1->type, atom2->type);
|
|
/* if they can't intersect at the type level break now */
|
|
if (ret == 0)
|
|
return(0);
|
|
}
|
|
switch (atom1->type) {
|
|
case XML_REGEXP_STRING:
|
|
if (!deep)
|
|
ret = (atom1->valuep != atom2->valuep);
|
|
else {
|
|
xmlChar *val1 = (xmlChar *)atom1->valuep;
|
|
xmlChar *val2 = (xmlChar *)atom2->valuep;
|
|
int compound1 = (xmlStrchr(val1, '|') != NULL);
|
|
int compound2 = (xmlStrchr(val2, '|') != NULL);
|
|
|
|
/* Ignore negative match flag for ##other namespaces */
|
|
if (compound1 != compound2)
|
|
return(0);
|
|
|
|
ret = xmlRegStrEqualWildcard(val1, val2);
|
|
}
|
|
break;
|
|
case XML_REGEXP_EPSILON:
|
|
goto not_determinist;
|
|
case XML_REGEXP_CHARVAL:
|
|
if (atom2->type == XML_REGEXP_CHARVAL) {
|
|
ret = (atom1->codepoint == atom2->codepoint);
|
|
} else {
|
|
ret = xmlRegCheckCharacter(atom2, atom1->codepoint);
|
|
if (ret < 0)
|
|
ret = 1;
|
|
}
|
|
break;
|
|
case XML_REGEXP_RANGES:
|
|
if (atom2->type == XML_REGEXP_RANGES) {
|
|
int i, j, res;
|
|
xmlRegRangePtr r1, r2;
|
|
|
|
/*
|
|
* need to check that none of the ranges eventually matches
|
|
*/
|
|
for (i = 0;i < atom1->nbRanges;i++) {
|
|
for (j = 0;j < atom2->nbRanges;j++) {
|
|
r1 = atom1->ranges[i];
|
|
r2 = atom2->ranges[j];
|
|
res = xmlFACompareRanges(r1, r2);
|
|
if (res == 1) {
|
|
ret = 1;
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
ret = 0;
|
|
}
|
|
break;
|
|
default:
|
|
goto not_determinist;
|
|
}
|
|
done:
|
|
if (atom1->neg != atom2->neg) {
|
|
ret = !ret;
|
|
}
|
|
if (ret == 0)
|
|
return(0);
|
|
not_determinist:
|
|
return(1);
|
|
}
|
|
|
|
/**
|
|
* xmlFARecurseDeterminism:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* Check whether the associated regexp is determinist,
|
|
* should be called after xmlFAEliminateEpsilonTransitions()
|
|
*
|
|
*/
|
|
static int
|
|
xmlFARecurseDeterminism(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
|
|
int to, xmlRegAtomPtr atom) {
|
|
int ret = 1;
|
|
int res;
|
|
int transnr, nbTrans;
|
|
xmlRegTransPtr t1;
|
|
int deep = 1;
|
|
|
|
if (state == NULL)
|
|
return(ret);
|
|
if (state->markd == XML_REGEXP_MARK_VISITED)
|
|
return(ret);
|
|
|
|
if (ctxt->flags & AM_AUTOMATA_RNG)
|
|
deep = 0;
|
|
|
|
/*
|
|
* don't recurse on transitions potentially added in the course of
|
|
* the elimination.
|
|
*/
|
|
nbTrans = state->nbTrans;
|
|
for (transnr = 0;transnr < nbTrans;transnr++) {
|
|
t1 = &(state->trans[transnr]);
|
|
/*
|
|
* check transitions conflicting with the one looked at
|
|
*/
|
|
if (t1->atom == NULL) {
|
|
if (t1->to < 0)
|
|
continue;
|
|
state->markd = XML_REGEXP_MARK_VISITED;
|
|
res = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to],
|
|
to, atom);
|
|
if (res == 0) {
|
|
ret = 0;
|
|
/* t1->nd = 1; */
|
|
}
|
|
continue;
|
|
}
|
|
if (t1->to != to)
|
|
continue;
|
|
if (xmlFACompareAtoms(t1->atom, atom, deep)) {
|
|
ret = 0;
|
|
/* mark the transition as non-deterministic */
|
|
t1->nd = 1;
|
|
}
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlFAFinishRecurseDeterminism:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* Reset flags after checking determinism.
|
|
*/
|
|
static void
|
|
xmlFAFinishRecurseDeterminism(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state) {
|
|
int transnr, nbTrans;
|
|
|
|
if (state == NULL)
|
|
return;
|
|
if (state->markd != XML_REGEXP_MARK_VISITED)
|
|
return;
|
|
state->markd = 0;
|
|
|
|
nbTrans = state->nbTrans;
|
|
for (transnr = 0; transnr < nbTrans; transnr++) {
|
|
xmlRegTransPtr t1 = &state->trans[transnr];
|
|
if ((t1->atom == NULL) && (t1->to >= 0))
|
|
xmlFAFinishRecurseDeterminism(ctxt, ctxt->states[t1->to]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xmlFAComputesDeterminism:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* Check whether the associated regexp is determinist,
|
|
* should be called after xmlFAEliminateEpsilonTransitions()
|
|
*
|
|
*/
|
|
static int
|
|
xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt) {
|
|
int statenr, transnr;
|
|
xmlRegStatePtr state;
|
|
xmlRegTransPtr t1, t2, last;
|
|
int i;
|
|
int ret = 1;
|
|
int deep = 1;
|
|
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
printf("xmlFAComputesDeterminism\n");
|
|
xmlRegPrintCtxt(stdout, ctxt);
|
|
#endif
|
|
if (ctxt->determinist != -1)
|
|
return(ctxt->determinist);
|
|
|
|
if (ctxt->flags & AM_AUTOMATA_RNG)
|
|
deep = 0;
|
|
|
|
/*
|
|
* First cleanup the automata removing cancelled transitions
|
|
*/
|
|
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if (state == NULL)
|
|
continue;
|
|
if (state->nbTrans < 2)
|
|
continue;
|
|
for (transnr = 0;transnr < state->nbTrans;transnr++) {
|
|
t1 = &(state->trans[transnr]);
|
|
/*
|
|
* Determinism checks in case of counted or all transitions
|
|
* will have to be handled separately
|
|
*/
|
|
if (t1->atom == NULL) {
|
|
/* t1->nd = 1; */
|
|
continue;
|
|
}
|
|
if (t1->to == -1) /* eliminated */
|
|
continue;
|
|
for (i = 0;i < transnr;i++) {
|
|
t2 = &(state->trans[i]);
|
|
if (t2->to == -1) /* eliminated */
|
|
continue;
|
|
if (t2->atom != NULL) {
|
|
if (t1->to == t2->to) {
|
|
/*
|
|
* Here we use deep because we want to keep the
|
|
* transitions which indicate a conflict
|
|
*/
|
|
if (xmlFAEqualAtoms(t1->atom, t2->atom, deep) &&
|
|
(t1->counter == t2->counter) &&
|
|
(t1->count == t2->count))
|
|
t2->to = -1; /* eliminated */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for all states that there aren't 2 transitions
|
|
* with the same atom and a different target.
|
|
*/
|
|
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if (state == NULL)
|
|
continue;
|
|
if (state->nbTrans < 2)
|
|
continue;
|
|
last = NULL;
|
|
for (transnr = 0;transnr < state->nbTrans;transnr++) {
|
|
t1 = &(state->trans[transnr]);
|
|
/*
|
|
* Determinism checks in case of counted or all transitions
|
|
* will have to be handled separately
|
|
*/
|
|
if (t1->atom == NULL) {
|
|
continue;
|
|
}
|
|
if (t1->to == -1) /* eliminated */
|
|
continue;
|
|
for (i = 0;i < transnr;i++) {
|
|
t2 = &(state->trans[i]);
|
|
if (t2->to == -1) /* eliminated */
|
|
continue;
|
|
if (t2->atom != NULL) {
|
|
/*
|
|
* But here we don't use deep because we want to
|
|
* find transitions which indicate a conflict
|
|
*/
|
|
if (xmlFACompareAtoms(t1->atom, t2->atom, 1)) {
|
|
ret = 0;
|
|
/* mark the transitions as non-deterministic ones */
|
|
t1->nd = 1;
|
|
t2->nd = 1;
|
|
last = t1;
|
|
}
|
|
} else if (t1->to != -1) {
|
|
/*
|
|
* do the closure in case of remaining specific
|
|
* epsilon transitions like choices or all
|
|
*/
|
|
ret = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to],
|
|
t2->to, t2->atom);
|
|
xmlFAFinishRecurseDeterminism(ctxt, ctxt->states[t1->to]);
|
|
/* don't shortcut the computation so all non deterministic
|
|
transition get marked down
|
|
if (ret == 0)
|
|
return(0);
|
|
*/
|
|
if (ret == 0) {
|
|
t1->nd = 1;
|
|
/* t2->nd = 1; */
|
|
last = t1;
|
|
}
|
|
}
|
|
}
|
|
/* don't shortcut the computation so all non deterministic
|
|
transition get marked down
|
|
if (ret == 0)
|
|
break; */
|
|
}
|
|
|
|
/*
|
|
* mark specifically the last non-deterministic transition
|
|
* from a state since there is no need to set-up rollback
|
|
* from it
|
|
*/
|
|
if (last != NULL) {
|
|
last->nd = 2;
|
|
}
|
|
|
|
/* don't shortcut the computation so all non deterministic
|
|
transition get marked down
|
|
if (ret == 0)
|
|
break; */
|
|
}
|
|
|
|
ctxt->determinist = ret;
|
|
return(ret);
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Routines to check input against transition atoms *
|
|
* *
|
|
************************************************************************/
|
|
|
|
static int
|
|
xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint, int neg,
|
|
int start, int end, const xmlChar *blockName) {
|
|
int ret = 0;
|
|
|
|
switch (type) {
|
|
case XML_REGEXP_STRING:
|
|
case XML_REGEXP_SUBREG:
|
|
case XML_REGEXP_RANGES:
|
|
case XML_REGEXP_EPSILON:
|
|
return(-1);
|
|
case XML_REGEXP_ANYCHAR:
|
|
ret = ((codepoint != '\n') && (codepoint != '\r'));
|
|
break;
|
|
case XML_REGEXP_CHARVAL:
|
|
ret = ((codepoint >= start) && (codepoint <= end));
|
|
break;
|
|
case XML_REGEXP_NOTSPACE:
|
|
neg = !neg;
|
|
/* Falls through. */
|
|
case XML_REGEXP_ANYSPACE:
|
|
ret = ((codepoint == '\n') || (codepoint == '\r') ||
|
|
(codepoint == '\t') || (codepoint == ' '));
|
|
break;
|
|
case XML_REGEXP_NOTINITNAME:
|
|
neg = !neg;
|
|
/* Falls through. */
|
|
case XML_REGEXP_INITNAME:
|
|
ret = (IS_LETTER(codepoint) ||
|
|
(codepoint == '_') || (codepoint == ':'));
|
|
break;
|
|
case XML_REGEXP_NOTNAMECHAR:
|
|
neg = !neg;
|
|
/* Falls through. */
|
|
case XML_REGEXP_NAMECHAR:
|
|
ret = (IS_LETTER(codepoint) || IS_DIGIT(codepoint) ||
|
|
(codepoint == '.') || (codepoint == '-') ||
|
|
(codepoint == '_') || (codepoint == ':') ||
|
|
IS_COMBINING(codepoint) || IS_EXTENDER(codepoint));
|
|
break;
|
|
case XML_REGEXP_NOTDECIMAL:
|
|
neg = !neg;
|
|
/* Falls through. */
|
|
case XML_REGEXP_DECIMAL:
|
|
ret = xmlUCSIsCatNd(codepoint);
|
|
break;
|
|
case XML_REGEXP_REALCHAR:
|
|
neg = !neg;
|
|
/* Falls through. */
|
|
case XML_REGEXP_NOTREALCHAR:
|
|
ret = xmlUCSIsCatP(codepoint);
|
|
if (ret == 0)
|
|
ret = xmlUCSIsCatZ(codepoint);
|
|
if (ret == 0)
|
|
ret = xmlUCSIsCatC(codepoint);
|
|
break;
|
|
case XML_REGEXP_LETTER:
|
|
ret = xmlUCSIsCatL(codepoint);
|
|
break;
|
|
case XML_REGEXP_LETTER_UPPERCASE:
|
|
ret = xmlUCSIsCatLu(codepoint);
|
|
break;
|
|
case XML_REGEXP_LETTER_LOWERCASE:
|
|
ret = xmlUCSIsCatLl(codepoint);
|
|
break;
|
|
case XML_REGEXP_LETTER_TITLECASE:
|
|
ret = xmlUCSIsCatLt(codepoint);
|
|
break;
|
|
case XML_REGEXP_LETTER_MODIFIER:
|
|
ret = xmlUCSIsCatLm(codepoint);
|
|
break;
|
|
case XML_REGEXP_LETTER_OTHERS:
|
|
ret = xmlUCSIsCatLo(codepoint);
|
|
break;
|
|
case XML_REGEXP_MARK:
|
|
ret = xmlUCSIsCatM(codepoint);
|
|
break;
|
|
case XML_REGEXP_MARK_NONSPACING:
|
|
ret = xmlUCSIsCatMn(codepoint);
|
|
break;
|
|
case XML_REGEXP_MARK_SPACECOMBINING:
|
|
ret = xmlUCSIsCatMc(codepoint);
|
|
break;
|
|
case XML_REGEXP_MARK_ENCLOSING:
|
|
ret = xmlUCSIsCatMe(codepoint);
|
|
break;
|
|
case XML_REGEXP_NUMBER:
|
|
ret = xmlUCSIsCatN(codepoint);
|
|
break;
|
|
case XML_REGEXP_NUMBER_DECIMAL:
|
|
ret = xmlUCSIsCatNd(codepoint);
|
|
break;
|
|
case XML_REGEXP_NUMBER_LETTER:
|
|
ret = xmlUCSIsCatNl(codepoint);
|
|
break;
|
|
case XML_REGEXP_NUMBER_OTHERS:
|
|
ret = xmlUCSIsCatNo(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT:
|
|
ret = xmlUCSIsCatP(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT_CONNECTOR:
|
|
ret = xmlUCSIsCatPc(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT_DASH:
|
|
ret = xmlUCSIsCatPd(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT_OPEN:
|
|
ret = xmlUCSIsCatPs(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT_CLOSE:
|
|
ret = xmlUCSIsCatPe(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT_INITQUOTE:
|
|
ret = xmlUCSIsCatPi(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT_FINQUOTE:
|
|
ret = xmlUCSIsCatPf(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT_OTHERS:
|
|
ret = xmlUCSIsCatPo(codepoint);
|
|
break;
|
|
case XML_REGEXP_SEPAR:
|
|
ret = xmlUCSIsCatZ(codepoint);
|
|
break;
|
|
case XML_REGEXP_SEPAR_SPACE:
|
|
ret = xmlUCSIsCatZs(codepoint);
|
|
break;
|
|
case XML_REGEXP_SEPAR_LINE:
|
|
ret = xmlUCSIsCatZl(codepoint);
|
|
break;
|
|
case XML_REGEXP_SEPAR_PARA:
|
|
ret = xmlUCSIsCatZp(codepoint);
|
|
break;
|
|
case XML_REGEXP_SYMBOL:
|
|
ret = xmlUCSIsCatS(codepoint);
|
|
break;
|
|
case XML_REGEXP_SYMBOL_MATH:
|
|
ret = xmlUCSIsCatSm(codepoint);
|
|
break;
|
|
case XML_REGEXP_SYMBOL_CURRENCY:
|
|
ret = xmlUCSIsCatSc(codepoint);
|
|
break;
|
|
case XML_REGEXP_SYMBOL_MODIFIER:
|
|
ret = xmlUCSIsCatSk(codepoint);
|
|
break;
|
|
case XML_REGEXP_SYMBOL_OTHERS:
|
|
ret = xmlUCSIsCatSo(codepoint);
|
|
break;
|
|
case XML_REGEXP_OTHER:
|
|
ret = xmlUCSIsCatC(codepoint);
|
|
break;
|
|
case XML_REGEXP_OTHER_CONTROL:
|
|
ret = xmlUCSIsCatCc(codepoint);
|
|
break;
|
|
case XML_REGEXP_OTHER_FORMAT:
|
|
ret = xmlUCSIsCatCf(codepoint);
|
|
break;
|
|
case XML_REGEXP_OTHER_PRIVATE:
|
|
ret = xmlUCSIsCatCo(codepoint);
|
|
break;
|
|
case XML_REGEXP_OTHER_NA:
|
|
/* ret = xmlUCSIsCatCn(codepoint); */
|
|
/* Seems it doesn't exist anymore in recent Unicode releases */
|
|
ret = 0;
|
|
break;
|
|
case XML_REGEXP_BLOCK_NAME:
|
|
ret = xmlUCSIsBlock(codepoint, (const char *) blockName);
|
|
break;
|
|
}
|
|
if (neg)
|
|
return(!ret);
|
|
return(ret);
|
|
}
|
|
|
|
static int
|
|
xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint) {
|
|
int i, ret = 0;
|
|
xmlRegRangePtr range;
|
|
|
|
if ((atom == NULL) || (!IS_CHAR(codepoint)))
|
|
return(-1);
|
|
|
|
switch (atom->type) {
|
|
case XML_REGEXP_SUBREG:
|
|
case XML_REGEXP_EPSILON:
|
|
return(-1);
|
|
case XML_REGEXP_CHARVAL:
|
|
return(codepoint == atom->codepoint);
|
|
case XML_REGEXP_RANGES: {
|
|
int accept = 0;
|
|
|
|
for (i = 0;i < atom->nbRanges;i++) {
|
|
range = atom->ranges[i];
|
|
if (range->neg == 2) {
|
|
ret = xmlRegCheckCharacterRange(range->type, codepoint,
|
|
0, range->start, range->end,
|
|
range->blockName);
|
|
if (ret != 0)
|
|
return(0); /* excluded char */
|
|
} else if (range->neg) {
|
|
ret = xmlRegCheckCharacterRange(range->type, codepoint,
|
|
0, range->start, range->end,
|
|
range->blockName);
|
|
if (ret == 0)
|
|
accept = 1;
|
|
else
|
|
return(0);
|
|
} else {
|
|
ret = xmlRegCheckCharacterRange(range->type, codepoint,
|
|
0, range->start, range->end,
|
|
range->blockName);
|
|
if (ret != 0)
|
|
accept = 1; /* might still be excluded */
|
|
}
|
|
}
|
|
return(accept);
|
|
}
|
|
case XML_REGEXP_STRING:
|
|
printf("TODO: XML_REGEXP_STRING\n");
|
|
return(-1);
|
|
case XML_REGEXP_ANYCHAR:
|
|
case XML_REGEXP_ANYSPACE:
|
|
case XML_REGEXP_NOTSPACE:
|
|
case XML_REGEXP_INITNAME:
|
|
case XML_REGEXP_NOTINITNAME:
|
|
case XML_REGEXP_NAMECHAR:
|
|
case XML_REGEXP_NOTNAMECHAR:
|
|
case XML_REGEXP_DECIMAL:
|
|
case XML_REGEXP_NOTDECIMAL:
|
|
case XML_REGEXP_REALCHAR:
|
|
case XML_REGEXP_NOTREALCHAR:
|
|
case XML_REGEXP_LETTER:
|
|
case XML_REGEXP_LETTER_UPPERCASE:
|
|
case XML_REGEXP_LETTER_LOWERCASE:
|
|
case XML_REGEXP_LETTER_TITLECASE:
|
|
case XML_REGEXP_LETTER_MODIFIER:
|
|
case XML_REGEXP_LETTER_OTHERS:
|
|
case XML_REGEXP_MARK:
|
|
case XML_REGEXP_MARK_NONSPACING:
|
|
case XML_REGEXP_MARK_SPACECOMBINING:
|
|
case XML_REGEXP_MARK_ENCLOSING:
|
|
case XML_REGEXP_NUMBER:
|
|
case XML_REGEXP_NUMBER_DECIMAL:
|
|
case XML_REGEXP_NUMBER_LETTER:
|
|
case XML_REGEXP_NUMBER_OTHERS:
|
|
case XML_REGEXP_PUNCT:
|
|
case XML_REGEXP_PUNCT_CONNECTOR:
|
|
case XML_REGEXP_PUNCT_DASH:
|
|
case XML_REGEXP_PUNCT_OPEN:
|
|
case XML_REGEXP_PUNCT_CLOSE:
|
|
case XML_REGEXP_PUNCT_INITQUOTE:
|
|
case XML_REGEXP_PUNCT_FINQUOTE:
|
|
case XML_REGEXP_PUNCT_OTHERS:
|
|
case XML_REGEXP_SEPAR:
|
|
case XML_REGEXP_SEPAR_SPACE:
|
|
case XML_REGEXP_SEPAR_LINE:
|
|
case XML_REGEXP_SEPAR_PARA:
|
|
case XML_REGEXP_SYMBOL:
|
|
case XML_REGEXP_SYMBOL_MATH:
|
|
case XML_REGEXP_SYMBOL_CURRENCY:
|
|
case XML_REGEXP_SYMBOL_MODIFIER:
|
|
case XML_REGEXP_SYMBOL_OTHERS:
|
|
case XML_REGEXP_OTHER:
|
|
case XML_REGEXP_OTHER_CONTROL:
|
|
case XML_REGEXP_OTHER_FORMAT:
|
|
case XML_REGEXP_OTHER_PRIVATE:
|
|
case XML_REGEXP_OTHER_NA:
|
|
case XML_REGEXP_BLOCK_NAME:
|
|
ret = xmlRegCheckCharacterRange(atom->type, codepoint, 0, 0, 0,
|
|
(const xmlChar *)atom->valuep);
|
|
if (atom->neg)
|
|
ret = !ret;
|
|
break;
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Saving and restoring state of an execution context *
|
|
* *
|
|
************************************************************************/
|
|
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
static void
|
|
xmlFARegDebugExec(xmlRegExecCtxtPtr exec) {
|
|
printf("state: %d:%d:idx %d", exec->state->no, exec->transno, exec->index);
|
|
if (exec->inputStack != NULL) {
|
|
int i;
|
|
printf(": ");
|
|
for (i = 0;(i < 3) && (i < exec->inputStackNr);i++)
|
|
printf("%s ", (const char *)
|
|
exec->inputStack[exec->inputStackNr - (i + 1)].value);
|
|
} else {
|
|
printf(": %s", &(exec->inputString[exec->index]));
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
xmlFARegExecSave(xmlRegExecCtxtPtr exec) {
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("saving ");
|
|
exec->transno++;
|
|
xmlFARegDebugExec(exec);
|
|
exec->transno--;
|
|
#endif
|
|
#ifdef MAX_PUSH
|
|
if (exec->nbPush > MAX_PUSH) {
|
|
return;
|
|
}
|
|
exec->nbPush++;
|
|
#endif
|
|
|
|
if (exec->maxRollbacks == 0) {
|
|
exec->maxRollbacks = 4;
|
|
exec->rollbacks = (xmlRegExecRollback *) xmlMalloc(exec->maxRollbacks *
|
|
sizeof(xmlRegExecRollback));
|
|
if (exec->rollbacks == NULL) {
|
|
xmlRegexpErrMemory(NULL, "saving regexp");
|
|
exec->maxRollbacks = 0;
|
|
return;
|
|
}
|
|
memset(exec->rollbacks, 0,
|
|
exec->maxRollbacks * sizeof(xmlRegExecRollback));
|
|
} else if (exec->nbRollbacks >= exec->maxRollbacks) {
|
|
xmlRegExecRollback *tmp;
|
|
int len = exec->maxRollbacks;
|
|
|
|
exec->maxRollbacks *= 2;
|
|
tmp = (xmlRegExecRollback *) xmlRealloc(exec->rollbacks,
|
|
exec->maxRollbacks * sizeof(xmlRegExecRollback));
|
|
if (tmp == NULL) {
|
|
xmlRegexpErrMemory(NULL, "saving regexp");
|
|
exec->maxRollbacks /= 2;
|
|
return;
|
|
}
|
|
exec->rollbacks = tmp;
|
|
tmp = &exec->rollbacks[len];
|
|
memset(tmp, 0, (exec->maxRollbacks - len) * sizeof(xmlRegExecRollback));
|
|
}
|
|
exec->rollbacks[exec->nbRollbacks].state = exec->state;
|
|
exec->rollbacks[exec->nbRollbacks].index = exec->index;
|
|
exec->rollbacks[exec->nbRollbacks].nextbranch = exec->transno + 1;
|
|
if (exec->comp->nbCounters > 0) {
|
|
if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
|
|
exec->rollbacks[exec->nbRollbacks].counts = (int *)
|
|
xmlMalloc(exec->comp->nbCounters * sizeof(int));
|
|
if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
|
|
xmlRegexpErrMemory(NULL, "saving regexp");
|
|
exec->status = -5;
|
|
return;
|
|
}
|
|
}
|
|
memcpy(exec->rollbacks[exec->nbRollbacks].counts, exec->counts,
|
|
exec->comp->nbCounters * sizeof(int));
|
|
}
|
|
exec->nbRollbacks++;
|
|
}
|
|
|
|
static void
|
|
xmlFARegExecRollBack(xmlRegExecCtxtPtr exec) {
|
|
if (exec->nbRollbacks <= 0) {
|
|
exec->status = -1;
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("rollback failed on empty stack\n");
|
|
#endif
|
|
return;
|
|
}
|
|
exec->nbRollbacks--;
|
|
exec->state = exec->rollbacks[exec->nbRollbacks].state;
|
|
exec->index = exec->rollbacks[exec->nbRollbacks].index;
|
|
exec->transno = exec->rollbacks[exec->nbRollbacks].nextbranch;
|
|
if (exec->comp->nbCounters > 0) {
|
|
if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
|
|
fprintf(stderr, "exec save: allocation failed");
|
|
exec->status = -6;
|
|
return;
|
|
}
|
|
if (exec->counts) {
|
|
memcpy(exec->counts, exec->rollbacks[exec->nbRollbacks].counts,
|
|
exec->comp->nbCounters * sizeof(int));
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("restored ");
|
|
xmlFARegDebugExec(exec);
|
|
#endif
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Verifier, running an input against a compiled regexp *
|
|
* *
|
|
************************************************************************/
|
|
|
|
static int
|
|
xmlFARegExec(xmlRegexpPtr comp, const xmlChar *content) {
|
|
xmlRegExecCtxt execval;
|
|
xmlRegExecCtxtPtr exec = &execval;
|
|
int ret, codepoint = 0, len, deter;
|
|
|
|
exec->inputString = content;
|
|
exec->index = 0;
|
|
exec->nbPush = 0;
|
|
exec->determinist = 1;
|
|
exec->maxRollbacks = 0;
|
|
exec->nbRollbacks = 0;
|
|
exec->rollbacks = NULL;
|
|
exec->status = 0;
|
|
exec->comp = comp;
|
|
exec->state = comp->states[0];
|
|
exec->transno = 0;
|
|
exec->transcount = 0;
|
|
exec->inputStack = NULL;
|
|
exec->inputStackMax = 0;
|
|
if (comp->nbCounters > 0) {
|
|
exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int));
|
|
if (exec->counts == NULL) {
|
|
xmlRegexpErrMemory(NULL, "running regexp");
|
|
return(-1);
|
|
}
|
|
memset(exec->counts, 0, comp->nbCounters * sizeof(int));
|
|
} else
|
|
exec->counts = NULL;
|
|
while ((exec->status == 0) && (exec->state != NULL) &&
|
|
((exec->inputString[exec->index] != 0) ||
|
|
((exec->state != NULL) &&
|
|
(exec->state->type != XML_REGEXP_FINAL_STATE)))) {
|
|
xmlRegTransPtr trans;
|
|
xmlRegAtomPtr atom;
|
|
|
|
/*
|
|
* If end of input on non-terminal state, rollback, however we may
|
|
* still have epsilon like transition for counted transitions
|
|
* on counters, in that case don't break too early. Additionally,
|
|
* if we are working on a range like "AB{0,2}", where B is not present,
|
|
* we don't want to break.
|
|
*/
|
|
len = 1;
|
|
if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL)) {
|
|
/*
|
|
* if there is a transition, we must check if
|
|
* atom allows minOccurs of 0
|
|
*/
|
|
if (exec->transno < exec->state->nbTrans) {
|
|
trans = &exec->state->trans[exec->transno];
|
|
if (trans->to >=0) {
|
|
atom = trans->atom;
|
|
if (!((atom->min == 0) && (atom->max > 0)))
|
|
goto rollback;
|
|
}
|
|
} else
|
|
goto rollback;
|
|
}
|
|
|
|
exec->transcount = 0;
|
|
for (;exec->transno < exec->state->nbTrans;exec->transno++) {
|
|
trans = &exec->state->trans[exec->transno];
|
|
if (trans->to < 0)
|
|
continue;
|
|
atom = trans->atom;
|
|
ret = 0;
|
|
deter = 1;
|
|
if (trans->count >= 0) {
|
|
int count;
|
|
xmlRegCounterPtr counter;
|
|
|
|
if (exec->counts == NULL) {
|
|
exec->status = -1;
|
|
goto error;
|
|
}
|
|
/*
|
|
* A counted transition.
|
|
*/
|
|
|
|
count = exec->counts[trans->count];
|
|
counter = &exec->comp->counters[trans->count];
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("testing count %d: val %d, min %d, max %d\n",
|
|
trans->count, count, counter->min, counter->max);
|
|
#endif
|
|
ret = ((count >= counter->min) && (count <= counter->max));
|
|
if ((ret) && (counter->min != counter->max))
|
|
deter = 0;
|
|
} else if (atom == NULL) {
|
|
fprintf(stderr, "epsilon transition left at runtime\n");
|
|
exec->status = -2;
|
|
break;
|
|
} else if (exec->inputString[exec->index] != 0) {
|
|
codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len);
|
|
ret = xmlRegCheckCharacter(atom, codepoint);
|
|
if ((ret == 1) && (atom->min >= 0) && (atom->max > 0)) {
|
|
xmlRegStatePtr to = comp->states[trans->to];
|
|
|
|
/*
|
|
* this is a multiple input sequence
|
|
* If there is a counter associated increment it now.
|
|
* before potentially saving and rollback
|
|
* do not increment if the counter is already over the
|
|
* maximum limit in which case get to next transition
|
|
*/
|
|
if (trans->counter >= 0) {
|
|
xmlRegCounterPtr counter;
|
|
|
|
if ((exec->counts == NULL) ||
|
|
(exec->comp == NULL) ||
|
|
(exec->comp->counters == NULL)) {
|
|
exec->status = -1;
|
|
goto error;
|
|
}
|
|
counter = &exec->comp->counters[trans->counter];
|
|
if (exec->counts[trans->counter] >= counter->max)
|
|
continue; /* for loop on transitions */
|
|
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("Increasing count %d\n", trans->counter);
|
|
#endif
|
|
exec->counts[trans->counter]++;
|
|
}
|
|
if (exec->state->nbTrans > exec->transno + 1) {
|
|
xmlFARegExecSave(exec);
|
|
}
|
|
exec->transcount = 1;
|
|
do {
|
|
/*
|
|
* Try to progress as much as possible on the input
|
|
*/
|
|
if (exec->transcount == atom->max) {
|
|
break;
|
|
}
|
|
exec->index += len;
|
|
/*
|
|
* End of input: stop here
|
|
*/
|
|
if (exec->inputString[exec->index] == 0) {
|
|
exec->index -= len;
|
|
break;
|
|
}
|
|
if (exec->transcount >= atom->min) {
|
|
int transno = exec->transno;
|
|
xmlRegStatePtr state = exec->state;
|
|
|
|
/*
|
|
* The transition is acceptable save it
|
|
*/
|
|
exec->transno = -1; /* trick */
|
|
exec->state = to;
|
|
xmlFARegExecSave(exec);
|
|
exec->transno = transno;
|
|
exec->state = state;
|
|
}
|
|
codepoint = CUR_SCHAR(&(exec->inputString[exec->index]),
|
|
len);
|
|
ret = xmlRegCheckCharacter(atom, codepoint);
|
|
exec->transcount++;
|
|
} while (ret == 1);
|
|
if (exec->transcount < atom->min)
|
|
ret = 0;
|
|
|
|
/*
|
|
* If the last check failed but one transition was found
|
|
* possible, rollback
|
|
*/
|
|
if (ret < 0)
|
|
ret = 0;
|
|
if (ret == 0) {
|
|
goto rollback;
|
|
}
|
|
if (trans->counter >= 0) {
|
|
if (exec->counts == NULL) {
|
|
exec->status = -1;
|
|
goto error;
|
|
}
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("Decreasing count %d\n", trans->counter);
|
|
#endif
|
|
exec->counts[trans->counter]--;
|
|
}
|
|
} else if ((ret == 0) && (atom->min == 0) && (atom->max > 0)) {
|
|
/*
|
|
* we don't match on the codepoint, but minOccurs of 0
|
|
* says that's ok. Setting len to 0 inhibits stepping
|
|
* over the codepoint.
|
|
*/
|
|
exec->transcount = 1;
|
|
len = 0;
|
|
ret = 1;
|
|
}
|
|
} else if ((atom->min == 0) && (atom->max > 0)) {
|
|
/* another spot to match when minOccurs is 0 */
|
|
exec->transcount = 1;
|
|
len = 0;
|
|
ret = 1;
|
|
}
|
|
if (ret == 1) {
|
|
if ((trans->nd == 1) ||
|
|
((trans->count >= 0) && (deter == 0) &&
|
|
(exec->state->nbTrans > exec->transno + 1))) {
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
if (trans->nd == 1)
|
|
printf("Saving on nd transition atom %d for %c at %d\n",
|
|
trans->atom->no, codepoint, exec->index);
|
|
else
|
|
printf("Saving on counted transition count %d for %c at %d\n",
|
|
trans->count, codepoint, exec->index);
|
|
#endif
|
|
xmlFARegExecSave(exec);
|
|
}
|
|
if (trans->counter >= 0) {
|
|
xmlRegCounterPtr counter;
|
|
|
|
/* make sure we don't go over the counter maximum value */
|
|
if ((exec->counts == NULL) ||
|
|
(exec->comp == NULL) ||
|
|
(exec->comp->counters == NULL)) {
|
|
exec->status = -1;
|
|
goto error;
|
|
}
|
|
counter = &exec->comp->counters[trans->counter];
|
|
if (exec->counts[trans->counter] >= counter->max)
|
|
continue; /* for loop on transitions */
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("Increasing count %d\n", trans->counter);
|
|
#endif
|
|
exec->counts[trans->counter]++;
|
|
}
|
|
if ((trans->count >= 0) &&
|
|
(trans->count < REGEXP_ALL_COUNTER)) {
|
|
if (exec->counts == NULL) {
|
|
exec->status = -1;
|
|
goto error;
|
|
}
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("resetting count %d on transition\n",
|
|
trans->count);
|
|
#endif
|
|
exec->counts[trans->count] = 0;
|
|
}
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("entering state %d\n", trans->to);
|
|
#endif
|
|
exec->state = comp->states[trans->to];
|
|
exec->transno = 0;
|
|
if (trans->atom != NULL) {
|
|
exec->index += len;
|
|
}
|
|
goto progress;
|
|
} else if (ret < 0) {
|
|
exec->status = -4;
|
|
break;
|
|
}
|
|
}
|
|
if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
|
|
rollback:
|
|
/*
|
|
* Failed to find a way out
|
|
*/
|
|
exec->determinist = 0;
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("rollback from state %d on %d:%c\n", exec->state->no,
|
|
codepoint,codepoint);
|
|
#endif
|
|
xmlFARegExecRollBack(exec);
|
|
}
|
|
progress:
|
|
continue;
|
|
}
|
|
error:
|
|
if (exec->rollbacks != NULL) {
|
|
if (exec->counts != NULL) {
|
|
int i;
|
|
|
|
for (i = 0;i < exec->maxRollbacks;i++)
|
|
if (exec->rollbacks[i].counts != NULL)
|
|
xmlFree(exec->rollbacks[i].counts);
|
|
}
|
|
xmlFree(exec->rollbacks);
|
|
}
|
|
if (exec->state == NULL)
|
|
return(-1);
|
|
if (exec->counts != NULL)
|
|
xmlFree(exec->counts);
|
|
if (exec->status == 0)
|
|
return(1);
|
|
if (exec->status == -1) {
|
|
if (exec->nbPush > MAX_PUSH)
|
|
return(-1);
|
|
return(0);
|
|
}
|
|
return(exec->status);
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Progressive interface to the verifier one atom at a time *
|
|
* *
|
|
************************************************************************/
|
|
#ifdef DEBUG_ERR
|
|
static void testerr(xmlRegExecCtxtPtr exec);
|
|
#endif
|
|
|
|
/**
|
|
* xmlRegNewExecCtxt:
|
|
* @comp: a precompiled regular expression
|
|
* @callback: a callback function used for handling progresses in the
|
|
* automata matching phase
|
|
* @data: the context data associated to the callback in this context
|
|
*
|
|
* Build a context used for progressive evaluation of a regexp.
|
|
*
|
|
* Returns the new context
|
|
*/
|
|
xmlRegExecCtxtPtr
|
|
xmlRegNewExecCtxt(xmlRegexpPtr comp, xmlRegExecCallbacks callback, void *data) {
|
|
xmlRegExecCtxtPtr exec;
|
|
|
|
if (comp == NULL)
|
|
return(NULL);
|
|
if ((comp->compact == NULL) && (comp->states == NULL))
|
|
return(NULL);
|
|
exec = (xmlRegExecCtxtPtr) xmlMalloc(sizeof(xmlRegExecCtxt));
|
|
if (exec == NULL) {
|
|
xmlRegexpErrMemory(NULL, "creating execution context");
|
|
return(NULL);
|
|
}
|
|
memset(exec, 0, sizeof(xmlRegExecCtxt));
|
|
exec->inputString = NULL;
|
|
exec->index = 0;
|
|
exec->determinist = 1;
|
|
exec->maxRollbacks = 0;
|
|
exec->nbRollbacks = 0;
|
|
exec->rollbacks = NULL;
|
|
exec->status = 0;
|
|
exec->comp = comp;
|
|
if (comp->compact == NULL)
|
|
exec->state = comp->states[0];
|
|
exec->transno = 0;
|
|
exec->transcount = 0;
|
|
exec->callback = callback;
|
|
exec->data = data;
|
|
if (comp->nbCounters > 0) {
|
|
/*
|
|
* For error handling, exec->counts is allocated twice the size
|
|
* the second half is used to store the data in case of rollback
|
|
*/
|
|
exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int)
|
|
* 2);
|
|
if (exec->counts == NULL) {
|
|
xmlRegexpErrMemory(NULL, "creating execution context");
|
|
xmlFree(exec);
|
|
return(NULL);
|
|
}
|
|
memset(exec->counts, 0, comp->nbCounters * sizeof(int) * 2);
|
|
exec->errCounts = &exec->counts[comp->nbCounters];
|
|
} else {
|
|
exec->counts = NULL;
|
|
exec->errCounts = NULL;
|
|
}
|
|
exec->inputStackMax = 0;
|
|
exec->inputStackNr = 0;
|
|
exec->inputStack = NULL;
|
|
exec->errStateNo = -1;
|
|
exec->errString = NULL;
|
|
exec->nbPush = 0;
|
|
return(exec);
|
|
}
|
|
|
|
/**
|
|
* xmlRegFreeExecCtxt:
|
|
* @exec: a regular expression evaluation context
|
|
*
|
|
* Free the structures associated to a regular expression evaluation context.
|
|
*/
|
|
void
|
|
xmlRegFreeExecCtxt(xmlRegExecCtxtPtr exec) {
|
|
if (exec == NULL)
|
|
return;
|
|
|
|
if (exec->rollbacks != NULL) {
|
|
if (exec->counts != NULL) {
|
|
int i;
|
|
|
|
for (i = 0;i < exec->maxRollbacks;i++)
|
|
if (exec->rollbacks[i].counts != NULL)
|
|
xmlFree(exec->rollbacks[i].counts);
|
|
}
|
|
xmlFree(exec->rollbacks);
|
|
}
|
|
if (exec->counts != NULL)
|
|
xmlFree(exec->counts);
|
|
if (exec->inputStack != NULL) {
|
|
int i;
|
|
|
|
for (i = 0;i < exec->inputStackNr;i++) {
|
|
if (exec->inputStack[i].value != NULL)
|
|
xmlFree(exec->inputStack[i].value);
|
|
}
|
|
xmlFree(exec->inputStack);
|
|
}
|
|
if (exec->errString != NULL)
|
|
xmlFree(exec->errString);
|
|
xmlFree(exec);
|
|
}
|
|
|
|
static void
|
|
xmlFARegExecSaveInputString(xmlRegExecCtxtPtr exec, const xmlChar *value,
|
|
void *data) {
|
|
#ifdef DEBUG_PUSH
|
|
printf("saving value: %d:%s\n", exec->inputStackNr, value);
|
|
#endif
|
|
if (exec->inputStackMax == 0) {
|
|
exec->inputStackMax = 4;
|
|
exec->inputStack = (xmlRegInputTokenPtr)
|
|
xmlMalloc(exec->inputStackMax * sizeof(xmlRegInputToken));
|
|
if (exec->inputStack == NULL) {
|
|
xmlRegexpErrMemory(NULL, "pushing input string");
|
|
exec->inputStackMax = 0;
|
|
return;
|
|
}
|
|
} else if (exec->inputStackNr + 1 >= exec->inputStackMax) {
|
|
xmlRegInputTokenPtr tmp;
|
|
|
|
exec->inputStackMax *= 2;
|
|
tmp = (xmlRegInputTokenPtr) xmlRealloc(exec->inputStack,
|
|
exec->inputStackMax * sizeof(xmlRegInputToken));
|
|
if (tmp == NULL) {
|
|
xmlRegexpErrMemory(NULL, "pushing input string");
|
|
exec->inputStackMax /= 2;
|
|
return;
|
|
}
|
|
exec->inputStack = tmp;
|
|
}
|
|
exec->inputStack[exec->inputStackNr].value = xmlStrdup(value);
|
|
exec->inputStack[exec->inputStackNr].data = data;
|
|
exec->inputStackNr++;
|
|
exec->inputStack[exec->inputStackNr].value = NULL;
|
|
exec->inputStack[exec->inputStackNr].data = NULL;
|
|
}
|
|
|
|
/**
|
|
* xmlRegStrEqualWildcard:
|
|
* @expStr: the string to be evaluated
|
|
* @valStr: the validation string
|
|
*
|
|
* Checks if both strings are equal or have the same content. "*"
|
|
* can be used as a wildcard in @valStr; "|" is used as a separator of
|
|
* substrings in both @expStr and @valStr.
|
|
*
|
|
* Returns 1 if the comparison is satisfied and the number of substrings
|
|
* is equal, 0 otherwise.
|
|
*/
|
|
|
|
static int
|
|
xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr) {
|
|
if (expStr == valStr) return(1);
|
|
if (expStr == NULL) return(0);
|
|
if (valStr == NULL) return(0);
|
|
do {
|
|
/*
|
|
* Eval if we have a wildcard for the current item.
|
|
*/
|
|
if (*expStr != *valStr) {
|
|
/* if one of them starts with a wildcard make valStr be it */
|
|
if (*valStr == '*') {
|
|
const xmlChar *tmp;
|
|
|
|
tmp = valStr;
|
|
valStr = expStr;
|
|
expStr = tmp;
|
|
}
|
|
if ((*valStr != 0) && (*expStr != 0) && (*expStr++ == '*')) {
|
|
do {
|
|
if (*valStr == XML_REG_STRING_SEPARATOR)
|
|
break;
|
|
valStr++;
|
|
} while (*valStr != 0);
|
|
continue;
|
|
} else
|
|
return(0);
|
|
}
|
|
expStr++;
|
|
valStr++;
|
|
} while (*valStr != 0);
|
|
if (*expStr != 0)
|
|
return (0);
|
|
else
|
|
return (1);
|
|
}
|
|
|
|
/**
|
|
* xmlRegCompactPushString:
|
|
* @exec: a regexp execution context
|
|
* @comp: the precompiled exec with a compact table
|
|
* @value: a string token input
|
|
* @data: data associated to the token to reuse in callbacks
|
|
*
|
|
* Push one input token in the execution context
|
|
*
|
|
* Returns: 1 if the regexp reached a final state, 0 if non-final, and
|
|
* a negative value in case of error.
|
|
*/
|
|
static int
|
|
xmlRegCompactPushString(xmlRegExecCtxtPtr exec,
|
|
xmlRegexpPtr comp,
|
|
const xmlChar *value,
|
|
void *data) {
|
|
int state = exec->index;
|
|
int i, target;
|
|
|
|
if ((comp == NULL) || (comp->compact == NULL) || (comp->stringMap == NULL))
|
|
return(-1);
|
|
|
|
if (value == NULL) {
|
|
/*
|
|
* are we at a final state ?
|
|
*/
|
|
if (comp->compact[state * (comp->nbstrings + 1)] ==
|
|
XML_REGEXP_FINAL_STATE)
|
|
return(1);
|
|
return(0);
|
|
}
|
|
|
|
#ifdef DEBUG_PUSH
|
|
printf("value pushed: %s\n", value);
|
|
#endif
|
|
|
|
/*
|
|
* Examine all outside transitions from current state
|
|
*/
|
|
for (i = 0;i < comp->nbstrings;i++) {
|
|
target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
|
|
if ((target > 0) && (target <= comp->nbstates)) {
|
|
target--; /* to avoid 0 */
|
|
if (xmlRegStrEqualWildcard(comp->stringMap[i], value)) {
|
|
exec->index = target;
|
|
if ((exec->callback != NULL) && (comp->transdata != NULL)) {
|
|
exec->callback(exec->data, value,
|
|
comp->transdata[state * comp->nbstrings + i], data);
|
|
}
|
|
#ifdef DEBUG_PUSH
|
|
printf("entering state %d\n", target);
|
|
#endif
|
|
if (comp->compact[target * (comp->nbstrings + 1)] ==
|
|
XML_REGEXP_SINK_STATE)
|
|
goto error;
|
|
|
|
if (comp->compact[target * (comp->nbstrings + 1)] ==
|
|
XML_REGEXP_FINAL_STATE)
|
|
return(1);
|
|
return(0);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Failed to find an exit transition out from current state for the
|
|
* current token
|
|
*/
|
|
#ifdef DEBUG_PUSH
|
|
printf("failed to find a transition for %s on state %d\n", value, state);
|
|
#endif
|
|
error:
|
|
if (exec->errString != NULL)
|
|
xmlFree(exec->errString);
|
|
exec->errString = xmlStrdup(value);
|
|
exec->errStateNo = state;
|
|
exec->status = -1;
|
|
#ifdef DEBUG_ERR
|
|
testerr(exec);
|
|
#endif
|
|
return(-1);
|
|
}
|
|
|
|
/**
|
|
* xmlRegExecPushStringInternal:
|
|
* @exec: a regexp execution context or NULL to indicate the end
|
|
* @value: a string token input
|
|
* @data: data associated to the token to reuse in callbacks
|
|
* @compound: value was assembled from 2 strings
|
|
*
|
|
* Push one input token in the execution context
|
|
*
|
|
* Returns: 1 if the regexp reached a final state, 0 if non-final, and
|
|
* a negative value in case of error.
|
|
*/
|
|
static int
|
|
xmlRegExecPushStringInternal(xmlRegExecCtxtPtr exec, const xmlChar *value,
|
|
void *data, int compound) {
|
|
xmlRegTransPtr trans;
|
|
xmlRegAtomPtr atom;
|
|
int ret;
|
|
int final = 0;
|
|
int progress = 1;
|
|
|
|
if (exec == NULL)
|
|
return(-1);
|
|
if (exec->comp == NULL)
|
|
return(-1);
|
|
if (exec->status != 0)
|
|
return(exec->status);
|
|
|
|
if (exec->comp->compact != NULL)
|
|
return(xmlRegCompactPushString(exec, exec->comp, value, data));
|
|
|
|
if (value == NULL) {
|
|
if (exec->state->type == XML_REGEXP_FINAL_STATE)
|
|
return(1);
|
|
final = 1;
|
|
}
|
|
|
|
#ifdef DEBUG_PUSH
|
|
printf("value pushed: %s\n", value);
|
|
#endif
|
|
/*
|
|
* If we have an active rollback stack push the new value there
|
|
* and get back to where we were left
|
|
*/
|
|
if ((value != NULL) && (exec->inputStackNr > 0)) {
|
|
xmlFARegExecSaveInputString(exec, value, data);
|
|
value = exec->inputStack[exec->index].value;
|
|
data = exec->inputStack[exec->index].data;
|
|
#ifdef DEBUG_PUSH
|
|
printf("value loaded: %s\n", value);
|
|
#endif
|
|
}
|
|
|
|
while ((exec->status == 0) &&
|
|
((value != NULL) ||
|
|
((final == 1) &&
|
|
(exec->state->type != XML_REGEXP_FINAL_STATE)))) {
|
|
|
|
/*
|
|
* End of input on non-terminal state, rollback, however we may
|
|
* still have epsilon like transition for counted transitions
|
|
* on counters, in that case don't break too early.
|
|
*/
|
|
if ((value == NULL) && (exec->counts == NULL))
|
|
goto rollback;
|
|
|
|
exec->transcount = 0;
|
|
for (;exec->transno < exec->state->nbTrans;exec->transno++) {
|
|
trans = &exec->state->trans[exec->transno];
|
|
if (trans->to < 0)
|
|
continue;
|
|
atom = trans->atom;
|
|
ret = 0;
|
|
if (trans->count == REGEXP_ALL_LAX_COUNTER) {
|
|
int i;
|
|
int count;
|
|
xmlRegTransPtr t;
|
|
xmlRegCounterPtr counter;
|
|
|
|
ret = 0;
|
|
|
|
#ifdef DEBUG_PUSH
|
|
printf("testing all lax %d\n", trans->count);
|
|
#endif
|
|
/*
|
|
* Check all counted transitions from the current state
|
|
*/
|
|
if ((value == NULL) && (final)) {
|
|
ret = 1;
|
|
} else if (value != NULL) {
|
|
for (i = 0;i < exec->state->nbTrans;i++) {
|
|
t = &exec->state->trans[i];
|
|
if ((t->counter < 0) || (t == trans))
|
|
continue;
|
|
counter = &exec->comp->counters[t->counter];
|
|
count = exec->counts[t->counter];
|
|
if ((count < counter->max) &&
|
|
(t->atom != NULL) &&
|
|
(xmlStrEqual(value, t->atom->valuep))) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if ((count >= counter->min) &&
|
|
(count < counter->max) &&
|
|
(t->atom != NULL) &&
|
|
(xmlStrEqual(value, t->atom->valuep))) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else if (trans->count == REGEXP_ALL_COUNTER) {
|
|
int i;
|
|
int count;
|
|
xmlRegTransPtr t;
|
|
xmlRegCounterPtr counter;
|
|
|
|
ret = 1;
|
|
|
|
#ifdef DEBUG_PUSH
|
|
printf("testing all %d\n", trans->count);
|
|
#endif
|
|
/*
|
|
* Check all counted transitions from the current state
|
|
*/
|
|
for (i = 0;i < exec->state->nbTrans;i++) {
|
|
t = &exec->state->trans[i];
|
|
if ((t->counter < 0) || (t == trans))
|
|
continue;
|
|
counter = &exec->comp->counters[t->counter];
|
|
count = exec->counts[t->counter];
|
|
if ((count < counter->min) || (count > counter->max)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
} else if (trans->count >= 0) {
|
|
int count;
|
|
xmlRegCounterPtr counter;
|
|
|
|
/*
|
|
* A counted transition.
|
|
*/
|
|
|
|
count = exec->counts[trans->count];
|
|
counter = &exec->comp->counters[trans->count];
|
|
#ifdef DEBUG_PUSH
|
|
printf("testing count %d: val %d, min %d, max %d\n",
|
|
trans->count, count, counter->min, counter->max);
|
|
#endif
|
|
ret = ((count >= counter->min) && (count <= counter->max));
|
|
} else if (atom == NULL) {
|
|
fprintf(stderr, "epsilon transition left at runtime\n");
|
|
exec->status = -2;
|
|
break;
|
|
} else if (value != NULL) {
|
|
ret = xmlRegStrEqualWildcard(atom->valuep, value);
|
|
if (atom->neg) {
|
|
ret = !ret;
|
|
if (!compound)
|
|
ret = 0;
|
|
}
|
|
if ((ret == 1) && (trans->counter >= 0)) {
|
|
xmlRegCounterPtr counter;
|
|
int count;
|
|
|
|
count = exec->counts[trans->counter];
|
|
counter = &exec->comp->counters[trans->counter];
|
|
if (count >= counter->max)
|
|
ret = 0;
|
|
}
|
|
|
|
if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) {
|
|
xmlRegStatePtr to = exec->comp->states[trans->to];
|
|
|
|
/*
|
|
* this is a multiple input sequence
|
|
*/
|
|
if (exec->state->nbTrans > exec->transno + 1) {
|
|
if (exec->inputStackNr <= 0) {
|
|
xmlFARegExecSaveInputString(exec, value, data);
|
|
}
|
|
xmlFARegExecSave(exec);
|
|
}
|
|
exec->transcount = 1;
|
|
do {
|
|
/*
|
|
* Try to progress as much as possible on the input
|
|
*/
|
|
if (exec->transcount == atom->max) {
|
|
break;
|
|
}
|
|
exec->index++;
|
|
value = exec->inputStack[exec->index].value;
|
|
data = exec->inputStack[exec->index].data;
|
|
#ifdef DEBUG_PUSH
|
|
printf("value loaded: %s\n", value);
|
|
#endif
|
|
|
|
/*
|
|
* End of input: stop here
|
|
*/
|
|
if (value == NULL) {
|
|
exec->index --;
|
|
break;
|
|
}
|
|
if (exec->transcount >= atom->min) {
|
|
int transno = exec->transno;
|
|
xmlRegStatePtr state = exec->state;
|
|
|
|
/*
|
|
* The transition is acceptable save it
|
|
*/
|
|
exec->transno = -1; /* trick */
|
|
exec->state = to;
|
|
if (exec->inputStackNr <= 0) {
|
|
xmlFARegExecSaveInputString(exec, value, data);
|
|
}
|
|
xmlFARegExecSave(exec);
|
|
exec->transno = transno;
|
|
exec->state = state;
|
|
}
|
|
ret = xmlStrEqual(value, atom->valuep);
|
|
exec->transcount++;
|
|
} while (ret == 1);
|
|
if (exec->transcount < atom->min)
|
|
ret = 0;
|
|
|
|
/*
|
|
* If the last check failed but one transition was found
|
|
* possible, rollback
|
|
*/
|
|
if (ret < 0)
|
|
ret = 0;
|
|
if (ret == 0) {
|
|
goto rollback;
|
|
}
|
|
}
|
|
}
|
|
if (ret == 1) {
|
|
if ((exec->callback != NULL) && (atom != NULL) &&
|
|
(data != NULL)) {
|
|
exec->callback(exec->data, atom->valuep,
|
|
atom->data, data);
|
|
}
|
|
if (exec->state->nbTrans > exec->transno + 1) {
|
|
if (exec->inputStackNr <= 0) {
|
|
xmlFARegExecSaveInputString(exec, value, data);
|
|
}
|
|
xmlFARegExecSave(exec);
|
|
}
|
|
if (trans->counter >= 0) {
|
|
#ifdef DEBUG_PUSH
|
|
printf("Increasing count %d\n", trans->counter);
|
|
#endif
|
|
exec->counts[trans->counter]++;
|
|
}
|
|
if ((trans->count >= 0) &&
|
|
(trans->count < REGEXP_ALL_COUNTER)) {
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("resetting count %d on transition\n",
|
|
trans->count);
|
|
#endif
|
|
exec->counts[trans->count] = 0;
|
|
}
|
|
#ifdef DEBUG_PUSH
|
|
printf("entering state %d\n", trans->to);
|
|
#endif
|
|
if ((exec->comp->states[trans->to] != NULL) &&
|
|
(exec->comp->states[trans->to]->type ==
|
|
XML_REGEXP_SINK_STATE)) {
|
|
/*
|
|
* entering a sink state, save the current state as error
|
|
* state.
|
|
*/
|
|
if (exec->errString != NULL)
|
|
xmlFree(exec->errString);
|
|
exec->errString = xmlStrdup(value);
|
|
exec->errState = exec->state;
|
|
memcpy(exec->errCounts, exec->counts,
|
|
exec->comp->nbCounters * sizeof(int));
|
|
}
|
|
exec->state = exec->comp->states[trans->to];
|
|
exec->transno = 0;
|
|
if (trans->atom != NULL) {
|
|
if (exec->inputStack != NULL) {
|
|
exec->index++;
|
|
if (exec->index < exec->inputStackNr) {
|
|
value = exec->inputStack[exec->index].value;
|
|
data = exec->inputStack[exec->index].data;
|
|
#ifdef DEBUG_PUSH
|
|
printf("value loaded: %s\n", value);
|
|
#endif
|
|
} else {
|
|
value = NULL;
|
|
data = NULL;
|
|
#ifdef DEBUG_PUSH
|
|
printf("end of input\n");
|
|
#endif
|
|
}
|
|
} else {
|
|
value = NULL;
|
|
data = NULL;
|
|
#ifdef DEBUG_PUSH
|
|
printf("end of input\n");
|
|
#endif
|
|
}
|
|
}
|
|
goto progress;
|
|
} else if (ret < 0) {
|
|
exec->status = -4;
|
|
break;
|
|
}
|
|
}
|
|
if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
|
|
rollback:
|
|
/*
|
|
* if we didn't yet rollback on the current input
|
|
* store the current state as the error state.
|
|
*/
|
|
if ((progress) && (exec->state != NULL) &&
|
|
(exec->state->type != XML_REGEXP_SINK_STATE)) {
|
|
progress = 0;
|
|
if (exec->errString != NULL)
|
|
xmlFree(exec->errString);
|
|
exec->errString = xmlStrdup(value);
|
|
exec->errState = exec->state;
|
|
if (exec->comp->nbCounters)
|
|
memcpy(exec->errCounts, exec->counts,
|
|
exec->comp->nbCounters * sizeof(int));
|
|
}
|
|
|
|
/*
|
|
* Failed to find a way out
|
|
*/
|
|
exec->determinist = 0;
|
|
xmlFARegExecRollBack(exec);
|
|
if ((exec->inputStack != NULL ) && (exec->status == 0)) {
|
|
value = exec->inputStack[exec->index].value;
|
|
data = exec->inputStack[exec->index].data;
|
|
#ifdef DEBUG_PUSH
|
|
printf("value loaded: %s\n", value);
|
|
#endif
|
|
}
|
|
}
|
|
continue;
|
|
progress:
|
|
progress = 1;
|
|
continue;
|
|
}
|
|
if (exec->status == 0) {
|
|
return(exec->state->type == XML_REGEXP_FINAL_STATE);
|
|
}
|
|
#ifdef DEBUG_ERR
|
|
if (exec->status < 0) {
|
|
testerr(exec);
|
|
}
|
|
#endif
|
|
return(exec->status);
|
|
}
|
|
|
|
/**
|
|
* xmlRegExecPushString:
|
|
* @exec: a regexp execution context or NULL to indicate the end
|
|
* @value: a string token input
|
|
* @data: data associated to the token to reuse in callbacks
|
|
*
|
|
* Push one input token in the execution context
|
|
*
|
|
* Returns: 1 if the regexp reached a final state, 0 if non-final, and
|
|
* a negative value in case of error.
|
|
*/
|
|
int
|
|
xmlRegExecPushString(xmlRegExecCtxtPtr exec, const xmlChar *value,
|
|
void *data) {
|
|
return(xmlRegExecPushStringInternal(exec, value, data, 0));
|
|
}
|
|
|
|
/**
|
|
* xmlRegExecPushString2:
|
|
* @exec: a regexp execution context or NULL to indicate the end
|
|
* @value: the first string token input
|
|
* @value2: the second string token input
|
|
* @data: data associated to the token to reuse in callbacks
|
|
*
|
|
* Push one input token in the execution context
|
|
*
|
|
* Returns: 1 if the regexp reached a final state, 0 if non-final, and
|
|
* a negative value in case of error.
|
|
*/
|
|
int
|
|
xmlRegExecPushString2(xmlRegExecCtxtPtr exec, const xmlChar *value,
|
|
const xmlChar *value2, void *data) {
|
|
xmlChar buf[150];
|
|
int lenn, lenp, ret;
|
|
xmlChar *str;
|
|
|
|
if (exec == NULL)
|
|
return(-1);
|
|
if (exec->comp == NULL)
|
|
return(-1);
|
|
if (exec->status != 0)
|
|
return(exec->status);
|
|
|
|
if (value2 == NULL)
|
|
return(xmlRegExecPushString(exec, value, data));
|
|
|
|
lenn = strlen((char *) value2);
|
|
lenp = strlen((char *) value);
|
|
|
|
if (150 < lenn + lenp + 2) {
|
|
str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
|
|
if (str == NULL) {
|
|
exec->status = -1;
|
|
return(-1);
|
|
}
|
|
} else {
|
|
str = buf;
|
|
}
|
|
memcpy(&str[0], value, lenp);
|
|
str[lenp] = XML_REG_STRING_SEPARATOR;
|
|
memcpy(&str[lenp + 1], value2, lenn);
|
|
str[lenn + lenp + 1] = 0;
|
|
|
|
if (exec->comp->compact != NULL)
|
|
ret = xmlRegCompactPushString(exec, exec->comp, str, data);
|
|
else
|
|
ret = xmlRegExecPushStringInternal(exec, str, data, 1);
|
|
|
|
if (str != buf)
|
|
xmlFree(str);
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlRegExecGetValues:
|
|
* @exec: a regexp execution context
|
|
* @err: error extraction or normal one
|
|
* @nbval: pointer to the number of accepted values IN/OUT
|
|
* @nbneg: return number of negative transitions
|
|
* @values: pointer to the array of acceptable values
|
|
* @terminal: return value if this was a terminal state
|
|
*
|
|
* Extract information from the regexp execution, internal routine to
|
|
* implement xmlRegExecNextValues() and xmlRegExecErrInfo()
|
|
*
|
|
* Returns: 0 in case of success or -1 in case of error.
|
|
*/
|
|
static int
|
|
xmlRegExecGetValues(xmlRegExecCtxtPtr exec, int err,
|
|
int *nbval, int *nbneg,
|
|
xmlChar **values, int *terminal) {
|
|
int maxval;
|
|
int nb = 0;
|
|
|
|
if ((exec == NULL) || (nbval == NULL) || (nbneg == NULL) ||
|
|
(values == NULL) || (*nbval <= 0))
|
|
return(-1);
|
|
|
|
maxval = *nbval;
|
|
*nbval = 0;
|
|
*nbneg = 0;
|
|
if ((exec->comp != NULL) && (exec->comp->compact != NULL)) {
|
|
xmlRegexpPtr comp;
|
|
int target, i, state;
|
|
|
|
comp = exec->comp;
|
|
|
|
if (err) {
|
|
if (exec->errStateNo == -1) return(-1);
|
|
state = exec->errStateNo;
|
|
} else {
|
|
state = exec->index;
|
|
}
|
|
if (terminal != NULL) {
|
|
if (comp->compact[state * (comp->nbstrings + 1)] ==
|
|
XML_REGEXP_FINAL_STATE)
|
|
*terminal = 1;
|
|
else
|
|
*terminal = 0;
|
|
}
|
|
for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
|
|
target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
|
|
if ((target > 0) && (target <= comp->nbstates) &&
|
|
(comp->compact[(target - 1) * (comp->nbstrings + 1)] !=
|
|
XML_REGEXP_SINK_STATE)) {
|
|
values[nb++] = comp->stringMap[i];
|
|
(*nbval)++;
|
|
}
|
|
}
|
|
for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
|
|
target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
|
|
if ((target > 0) && (target <= comp->nbstates) &&
|
|
(comp->compact[(target - 1) * (comp->nbstrings + 1)] ==
|
|
XML_REGEXP_SINK_STATE)) {
|
|
values[nb++] = comp->stringMap[i];
|
|
(*nbneg)++;
|
|
}
|
|
}
|
|
} else {
|
|
int transno;
|
|
xmlRegTransPtr trans;
|
|
xmlRegAtomPtr atom;
|
|
xmlRegStatePtr state;
|
|
|
|
if (terminal != NULL) {
|
|
if (exec->state->type == XML_REGEXP_FINAL_STATE)
|
|
*terminal = 1;
|
|
else
|
|
*terminal = 0;
|
|
}
|
|
|
|
if (err) {
|
|
if (exec->errState == NULL) return(-1);
|
|
state = exec->errState;
|
|
} else {
|
|
if (exec->state == NULL) return(-1);
|
|
state = exec->state;
|
|
}
|
|
for (transno = 0;
|
|
(transno < state->nbTrans) && (nb < maxval);
|
|
transno++) {
|
|
trans = &state->trans[transno];
|
|
if (trans->to < 0)
|
|
continue;
|
|
atom = trans->atom;
|
|
if ((atom == NULL) || (atom->valuep == NULL))
|
|
continue;
|
|
if (trans->count == REGEXP_ALL_LAX_COUNTER) {
|
|
/* this should not be reached but ... */
|
|
TODO;
|
|
} else if (trans->count == REGEXP_ALL_COUNTER) {
|
|
/* this should not be reached but ... */
|
|
TODO;
|
|
} else if (trans->counter >= 0) {
|
|
xmlRegCounterPtr counter = NULL;
|
|
int count;
|
|
|
|
if (err)
|
|
count = exec->errCounts[trans->counter];
|
|
else
|
|
count = exec->counts[trans->counter];
|
|
if (exec->comp != NULL)
|
|
counter = &exec->comp->counters[trans->counter];
|
|
if ((counter == NULL) || (count < counter->max)) {
|
|
if (atom->neg)
|
|
values[nb++] = (xmlChar *) atom->valuep2;
|
|
else
|
|
values[nb++] = (xmlChar *) atom->valuep;
|
|
(*nbval)++;
|
|
}
|
|
} else {
|
|
if ((exec->comp != NULL) && (exec->comp->states[trans->to] != NULL) &&
|
|
(exec->comp->states[trans->to]->type !=
|
|
XML_REGEXP_SINK_STATE)) {
|
|
if (atom->neg)
|
|
values[nb++] = (xmlChar *) atom->valuep2;
|
|
else
|
|
values[nb++] = (xmlChar *) atom->valuep;
|
|
(*nbval)++;
|
|
}
|
|
}
|
|
}
|
|
for (transno = 0;
|
|
(transno < state->nbTrans) && (nb < maxval);
|
|
transno++) {
|
|
trans = &state->trans[transno];
|
|
if (trans->to < 0)
|
|
continue;
|
|
atom = trans->atom;
|
|
if ((atom == NULL) || (atom->valuep == NULL))
|
|
continue;
|
|
if (trans->count == REGEXP_ALL_LAX_COUNTER) {
|
|
continue;
|
|
} else if (trans->count == REGEXP_ALL_COUNTER) {
|
|
continue;
|
|
} else if (trans->counter >= 0) {
|
|
continue;
|
|
} else {
|
|
if ((exec->comp->states[trans->to] != NULL) &&
|
|
(exec->comp->states[trans->to]->type ==
|
|
XML_REGEXP_SINK_STATE)) {
|
|
if (atom->neg)
|
|
values[nb++] = (xmlChar *) atom->valuep2;
|
|
else
|
|
values[nb++] = (xmlChar *) atom->valuep;
|
|
(*nbneg)++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* xmlRegExecNextValues:
|
|
* @exec: a regexp execution context
|
|
* @nbval: pointer to the number of accepted values IN/OUT
|
|
* @nbneg: return number of negative transitions
|
|
* @values: pointer to the array of acceptable values
|
|
* @terminal: return value if this was a terminal state
|
|
*
|
|
* Extract information from the regexp execution,
|
|
* the parameter @values must point to an array of @nbval string pointers
|
|
* on return nbval will contain the number of possible strings in that
|
|
* state and the @values array will be updated with them. The string values
|
|
* returned will be freed with the @exec context and don't need to be
|
|
* deallocated.
|
|
*
|
|
* Returns: 0 in case of success or -1 in case of error.
|
|
*/
|
|
int
|
|
xmlRegExecNextValues(xmlRegExecCtxtPtr exec, int *nbval, int *nbneg,
|
|
xmlChar **values, int *terminal) {
|
|
return(xmlRegExecGetValues(exec, 0, nbval, nbneg, values, terminal));
|
|
}
|
|
|
|
/**
|
|
* xmlRegExecErrInfo:
|
|
* @exec: a regexp execution context generating an error
|
|
* @string: return value for the error string
|
|
* @nbval: pointer to the number of accepted values IN/OUT
|
|
* @nbneg: return number of negative transitions
|
|
* @values: pointer to the array of acceptable values
|
|
* @terminal: return value if this was a terminal state
|
|
*
|
|
* Extract error information from the regexp execution, the parameter
|
|
* @string will be updated with the value pushed and not accepted,
|
|
* the parameter @values must point to an array of @nbval string pointers
|
|
* on return nbval will contain the number of possible strings in that
|
|
* state and the @values array will be updated with them. The string values
|
|
* returned will be freed with the @exec context and don't need to be
|
|
* deallocated.
|
|
*
|
|
* Returns: 0 in case of success or -1 in case of error.
|
|
*/
|
|
int
|
|
xmlRegExecErrInfo(xmlRegExecCtxtPtr exec, const xmlChar **string,
|
|
int *nbval, int *nbneg, xmlChar **values, int *terminal) {
|
|
if (exec == NULL)
|
|
return(-1);
|
|
if (string != NULL) {
|
|
if (exec->status != 0)
|
|
*string = exec->errString;
|
|
else
|
|
*string = NULL;
|
|
}
|
|
return(xmlRegExecGetValues(exec, 1, nbval, nbneg, values, terminal));
|
|
}
|
|
|
|
#ifdef DEBUG_ERR
|
|
static void testerr(xmlRegExecCtxtPtr exec) {
|
|
const xmlChar *string;
|
|
xmlChar *values[5];
|
|
int nb = 5;
|
|
int nbneg;
|
|
int terminal;
|
|
xmlRegExecErrInfo(exec, &string, &nb, &nbneg, &values[0], &terminal);
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
static int
|
|
xmlRegExecPushChar(xmlRegExecCtxtPtr exec, int UCS) {
|
|
xmlRegTransPtr trans;
|
|
xmlRegAtomPtr atom;
|
|
int ret;
|
|
int codepoint, len;
|
|
|
|
if (exec == NULL)
|
|
return(-1);
|
|
if (exec->status != 0)
|
|
return(exec->status);
|
|
|
|
while ((exec->status == 0) &&
|
|
((exec->inputString[exec->index] != 0) ||
|
|
(exec->state->type != XML_REGEXP_FINAL_STATE))) {
|
|
|
|
/*
|
|
* End of input on non-terminal state, rollback, however we may
|
|
* still have epsilon like transition for counted transitions
|
|
* on counters, in that case don't break too early.
|
|
*/
|
|
if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL))
|
|
goto rollback;
|
|
|
|
exec->transcount = 0;
|
|
for (;exec->transno < exec->state->nbTrans;exec->transno++) {
|
|
trans = &exec->state->trans[exec->transno];
|
|
if (trans->to < 0)
|
|
continue;
|
|
atom = trans->atom;
|
|
ret = 0;
|
|
if (trans->count >= 0) {
|
|
int count;
|
|
xmlRegCounterPtr counter;
|
|
|
|
/*
|
|
* A counted transition.
|
|
*/
|
|
|
|
count = exec->counts[trans->count];
|
|
counter = &exec->comp->counters[trans->count];
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("testing count %d: val %d, min %d, max %d\n",
|
|
trans->count, count, counter->min, counter->max);
|
|
#endif
|
|
ret = ((count >= counter->min) && (count <= counter->max));
|
|
} else if (atom == NULL) {
|
|
fprintf(stderr, "epsilon transition left at runtime\n");
|
|
exec->status = -2;
|
|
break;
|
|
} else if (exec->inputString[exec->index] != 0) {
|
|
codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len);
|
|
ret = xmlRegCheckCharacter(atom, codepoint);
|
|
if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) {
|
|
xmlRegStatePtr to = exec->comp->states[trans->to];
|
|
|
|
/*
|
|
* this is a multiple input sequence
|
|
*/
|
|
if (exec->state->nbTrans > exec->transno + 1) {
|
|
xmlFARegExecSave(exec);
|
|
}
|
|
exec->transcount = 1;
|
|
do {
|
|
/*
|
|
* Try to progress as much as possible on the input
|
|
*/
|
|
if (exec->transcount == atom->max) {
|
|
break;
|
|
}
|
|
exec->index += len;
|
|
/*
|
|
* End of input: stop here
|
|
*/
|
|
if (exec->inputString[exec->index] == 0) {
|
|
exec->index -= len;
|
|
break;
|
|
}
|
|
if (exec->transcount >= atom->min) {
|
|
int transno = exec->transno;
|
|
xmlRegStatePtr state = exec->state;
|
|
|
|
/*
|
|
* The transition is acceptable save it
|
|
*/
|
|
exec->transno = -1; /* trick */
|
|
exec->state = to;
|
|
xmlFARegExecSave(exec);
|
|
exec->transno = transno;
|
|
exec->state = state;
|
|
}
|
|
codepoint = CUR_SCHAR(&(exec->inputString[exec->index]),
|
|
len);
|
|
ret = xmlRegCheckCharacter(atom, codepoint);
|
|
exec->transcount++;
|
|
} while (ret == 1);
|
|
if (exec->transcount < atom->min)
|
|
ret = 0;
|
|
|
|
/*
|
|
* If the last check failed but one transition was found
|
|
* possible, rollback
|
|
*/
|
|
if (ret < 0)
|
|
ret = 0;
|
|
if (ret == 0) {
|
|
goto rollback;
|
|
}
|
|
}
|
|
}
|
|
if (ret == 1) {
|
|
if (exec->state->nbTrans > exec->transno + 1) {
|
|
xmlFARegExecSave(exec);
|
|
}
|
|
/*
|
|
* restart count for expressions like this ((abc){2})*
|
|
*/
|
|
if (trans->count >= 0) {
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("Reset count %d\n", trans->count);
|
|
#endif
|
|
exec->counts[trans->count] = 0;
|
|
}
|
|
if (trans->counter >= 0) {
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("Increasing count %d\n", trans->counter);
|
|
#endif
|
|
exec->counts[trans->counter]++;
|
|
}
|
|
#ifdef DEBUG_REGEXP_EXEC
|
|
printf("entering state %d\n", trans->to);
|
|
#endif
|
|
exec->state = exec->comp->states[trans->to];
|
|
exec->transno = 0;
|
|
if (trans->atom != NULL) {
|
|
exec->index += len;
|
|
}
|
|
goto progress;
|
|
} else if (ret < 0) {
|
|
exec->status = -4;
|
|
break;
|
|
}
|
|
}
|
|
if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
|
|
rollback:
|
|
/*
|
|
* Failed to find a way out
|
|
*/
|
|
exec->determinist = 0;
|
|
xmlFARegExecRollBack(exec);
|
|
}
|
|
progress:
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
/************************************************************************
|
|
* *
|
|
* Parser for the Schemas Datatype Regular Expressions *
|
|
* http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#regexs *
|
|
* *
|
|
************************************************************************/
|
|
|
|
/**
|
|
* xmlFAIsChar:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* [10] Char ::= [^.\?*+()|#x5B#x5D]
|
|
*/
|
|
static int
|
|
xmlFAIsChar(xmlRegParserCtxtPtr ctxt) {
|
|
int cur;
|
|
int len;
|
|
|
|
cur = CUR_SCHAR(ctxt->cur, len);
|
|
if ((cur == '.') || (cur == '\\') || (cur == '?') ||
|
|
(cur == '*') || (cur == '+') || (cur == '(') ||
|
|
(cur == ')') || (cur == '|') || (cur == 0x5B) ||
|
|
(cur == 0x5D) || (cur == 0))
|
|
return(-1);
|
|
return(cur);
|
|
}
|
|
|
|
/**
|
|
* xmlFAParseCharProp:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* [27] charProp ::= IsCategory | IsBlock
|
|
* [28] IsCategory ::= Letters | Marks | Numbers | Punctuation |
|
|
* Separators | Symbols | Others
|
|
* [29] Letters ::= 'L' [ultmo]?
|
|
* [30] Marks ::= 'M' [nce]?
|
|
* [31] Numbers ::= 'N' [dlo]?
|
|
* [32] Punctuation ::= 'P' [cdseifo]?
|
|
* [33] Separators ::= 'Z' [slp]?
|
|
* [34] Symbols ::= 'S' [mcko]?
|
|
* [35] Others ::= 'C' [cfon]?
|
|
* [36] IsBlock ::= 'Is' [a-zA-Z0-9#x2D]+
|
|
*/
|
|
static void
|
|
xmlFAParseCharProp(xmlRegParserCtxtPtr ctxt) {
|
|
int cur;
|
|
xmlRegAtomType type = (xmlRegAtomType) 0;
|
|
xmlChar *blockName = NULL;
|
|
|
|
cur = CUR;
|
|
if (cur == 'L') {
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 'u') {
|
|
NEXT;
|
|
type = XML_REGEXP_LETTER_UPPERCASE;
|
|
} else if (cur == 'l') {
|
|
NEXT;
|
|
type = XML_REGEXP_LETTER_LOWERCASE;
|
|
} else if (cur == 't') {
|
|
NEXT;
|
|
type = XML_REGEXP_LETTER_TITLECASE;
|
|
} else if (cur == 'm') {
|
|
NEXT;
|
|
type = XML_REGEXP_LETTER_MODIFIER;
|
|
} else if (cur == 'o') {
|
|
NEXT;
|
|
type = XML_REGEXP_LETTER_OTHERS;
|
|
} else {
|
|
type = XML_REGEXP_LETTER;
|
|
}
|
|
} else if (cur == 'M') {
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 'n') {
|
|
NEXT;
|
|
/* nonspacing */
|
|
type = XML_REGEXP_MARK_NONSPACING;
|
|
} else if (cur == 'c') {
|
|
NEXT;
|
|
/* spacing combining */
|
|
type = XML_REGEXP_MARK_SPACECOMBINING;
|
|
} else if (cur == 'e') {
|
|
NEXT;
|
|
/* enclosing */
|
|
type = XML_REGEXP_MARK_ENCLOSING;
|
|
} else {
|
|
/* all marks */
|
|
type = XML_REGEXP_MARK;
|
|
}
|
|
} else if (cur == 'N') {
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 'd') {
|
|
NEXT;
|
|
/* digital */
|
|
type = XML_REGEXP_NUMBER_DECIMAL;
|
|
} else if (cur == 'l') {
|
|
NEXT;
|
|
/* letter */
|
|
type = XML_REGEXP_NUMBER_LETTER;
|
|
} else if (cur == 'o') {
|
|
NEXT;
|
|
/* other */
|
|
type = XML_REGEXP_NUMBER_OTHERS;
|
|
} else {
|
|
/* all numbers */
|
|
type = XML_REGEXP_NUMBER;
|
|
}
|
|
} else if (cur == 'P') {
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 'c') {
|
|
NEXT;
|
|
/* connector */
|
|
type = XML_REGEXP_PUNCT_CONNECTOR;
|
|
} else if (cur == 'd') {
|
|
NEXT;
|
|
/* dash */
|
|
type = XML_REGEXP_PUNCT_DASH;
|
|
} else if (cur == 's') {
|
|
NEXT;
|
|
/* open */
|
|
type = XML_REGEXP_PUNCT_OPEN;
|
|
} else if (cur == 'e') {
|
|
NEXT;
|
|
/* close */
|
|
type = XML_REGEXP_PUNCT_CLOSE;
|
|
} else if (cur == 'i') {
|
|
NEXT;
|
|
/* initial quote */
|
|
type = XML_REGEXP_PUNCT_INITQUOTE;
|
|
} else if (cur == 'f') {
|
|
NEXT;
|
|
/* final quote */
|
|
type = XML_REGEXP_PUNCT_FINQUOTE;
|
|
} else if (cur == 'o') {
|
|
NEXT;
|
|
/* other */
|
|
type = XML_REGEXP_PUNCT_OTHERS;
|
|
} else {
|
|
/* all punctuation */
|
|
type = XML_REGEXP_PUNCT;
|
|
}
|
|
} else if (cur == 'Z') {
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 's') {
|
|
NEXT;
|
|
/* space */
|
|
type = XML_REGEXP_SEPAR_SPACE;
|
|
} else if (cur == 'l') {
|
|
NEXT;
|
|
/* line */
|
|
type = XML_REGEXP_SEPAR_LINE;
|
|
} else if (cur == 'p') {
|
|
NEXT;
|
|
/* paragraph */
|
|
type = XML_REGEXP_SEPAR_PARA;
|
|
} else {
|
|
/* all separators */
|
|
type = XML_REGEXP_SEPAR;
|
|
}
|
|
} else if (cur == 'S') {
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 'm') {
|
|
NEXT;
|
|
type = XML_REGEXP_SYMBOL_MATH;
|
|
/* math */
|
|
} else if (cur == 'c') {
|
|
NEXT;
|
|
type = XML_REGEXP_SYMBOL_CURRENCY;
|
|
/* currency */
|
|
} else if (cur == 'k') {
|
|
NEXT;
|
|
type = XML_REGEXP_SYMBOL_MODIFIER;
|
|
/* modifiers */
|
|
} else if (cur == 'o') {
|
|
NEXT;
|
|
type = XML_REGEXP_SYMBOL_OTHERS;
|
|
/* other */
|
|
} else {
|
|
/* all symbols */
|
|
type = XML_REGEXP_SYMBOL;
|
|
}
|
|
} else if (cur == 'C') {
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 'c') {
|
|
NEXT;
|
|
/* control */
|
|
type = XML_REGEXP_OTHER_CONTROL;
|
|
} else if (cur == 'f') {
|
|
NEXT;
|
|
/* format */
|
|
type = XML_REGEXP_OTHER_FORMAT;
|
|
} else if (cur == 'o') {
|
|
NEXT;
|
|
/* private use */
|
|
type = XML_REGEXP_OTHER_PRIVATE;
|
|
} else if (cur == 'n') {
|
|
NEXT;
|
|
/* not assigned */
|
|
type = XML_REGEXP_OTHER_NA;
|
|
} else {
|
|
/* all others */
|
|
type = XML_REGEXP_OTHER;
|
|
}
|
|
} else if (cur == 'I') {
|
|
const xmlChar *start;
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur != 's') {
|
|
ERROR("IsXXXX expected");
|
|
return;
|
|
}
|
|
NEXT;
|
|
start = ctxt->cur;
|
|
cur = CUR;
|
|
if (((cur >= 'a') && (cur <= 'z')) ||
|
|
((cur >= 'A') && (cur <= 'Z')) ||
|
|
((cur >= '0') && (cur <= '9')) ||
|
|
(cur == 0x2D)) {
|
|
NEXT;
|
|
cur = CUR;
|
|
while (((cur >= 'a') && (cur <= 'z')) ||
|
|
((cur >= 'A') && (cur <= 'Z')) ||
|
|
((cur >= '0') && (cur <= '9')) ||
|
|
(cur == 0x2D)) {
|
|
NEXT;
|
|
cur = CUR;
|
|
}
|
|
}
|
|
type = XML_REGEXP_BLOCK_NAME;
|
|
blockName = xmlStrndup(start, ctxt->cur - start);
|
|
} else {
|
|
ERROR("Unknown char property");
|
|
return;
|
|
}
|
|
if (ctxt->atom == NULL) {
|
|
ctxt->atom = xmlRegNewAtom(ctxt, type);
|
|
if (ctxt->atom != NULL)
|
|
ctxt->atom->valuep = blockName;
|
|
} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
|
|
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
|
|
type, 0, 0, blockName);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xmlFAParseCharClassEsc:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* [23] charClassEsc ::= ( SingleCharEsc | MultiCharEsc | catEsc | complEsc )
|
|
* [24] SingleCharEsc ::= '\' [nrt\|.?*+(){}#x2D#x5B#x5D#x5E]
|
|
* [25] catEsc ::= '\p{' charProp '}'
|
|
* [26] complEsc ::= '\P{' charProp '}'
|
|
* [37] MultiCharEsc ::= '.' | ('\' [sSiIcCdDwW])
|
|
*/
|
|
static void
|
|
xmlFAParseCharClassEsc(xmlRegParserCtxtPtr ctxt) {
|
|
int cur;
|
|
|
|
if (CUR == '.') {
|
|
if (ctxt->atom == NULL) {
|
|
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_ANYCHAR);
|
|
} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
|
|
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
|
|
XML_REGEXP_ANYCHAR, 0, 0, NULL);
|
|
}
|
|
NEXT;
|
|
return;
|
|
}
|
|
if (CUR != '\\') {
|
|
ERROR("Escaped sequence: expecting \\");
|
|
return;
|
|
}
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 'p') {
|
|
NEXT;
|
|
if (CUR != '{') {
|
|
ERROR("Expecting '{'");
|
|
return;
|
|
}
|
|
NEXT;
|
|
xmlFAParseCharProp(ctxt);
|
|
if (CUR != '}') {
|
|
ERROR("Expecting '}'");
|
|
return;
|
|
}
|
|
NEXT;
|
|
} else if (cur == 'P') {
|
|
NEXT;
|
|
if (CUR != '{') {
|
|
ERROR("Expecting '{'");
|
|
return;
|
|
}
|
|
NEXT;
|
|
xmlFAParseCharProp(ctxt);
|
|
if (ctxt->atom != NULL)
|
|
ctxt->atom->neg = 1;
|
|
if (CUR != '}') {
|
|
ERROR("Expecting '}'");
|
|
return;
|
|
}
|
|
NEXT;
|
|
} else if ((cur == 'n') || (cur == 'r') || (cur == 't') || (cur == '\\') ||
|
|
(cur == '|') || (cur == '.') || (cur == '?') || (cur == '*') ||
|
|
(cur == '+') || (cur == '(') || (cur == ')') || (cur == '{') ||
|
|
(cur == '}') || (cur == 0x2D) || (cur == 0x5B) || (cur == 0x5D) ||
|
|
(cur == 0x5E)) {
|
|
if (ctxt->atom == NULL) {
|
|
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
|
|
if (ctxt->atom != NULL) {
|
|
switch (cur) {
|
|
case 'n':
|
|
ctxt->atom->codepoint = '\n';
|
|
break;
|
|
case 'r':
|
|
ctxt->atom->codepoint = '\r';
|
|
break;
|
|
case 't':
|
|
ctxt->atom->codepoint = '\t';
|
|
break;
|
|
default:
|
|
ctxt->atom->codepoint = cur;
|
|
}
|
|
}
|
|
} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
|
|
switch (cur) {
|
|
case 'n':
|
|
cur = '\n';
|
|
break;
|
|
case 'r':
|
|
cur = '\r';
|
|
break;
|
|
case 't':
|
|
cur = '\t';
|
|
break;
|
|
}
|
|
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
|
|
XML_REGEXP_CHARVAL, cur, cur, NULL);
|
|
}
|
|
NEXT;
|
|
} else if ((cur == 's') || (cur == 'S') || (cur == 'i') || (cur == 'I') ||
|
|
(cur == 'c') || (cur == 'C') || (cur == 'd') || (cur == 'D') ||
|
|
(cur == 'w') || (cur == 'W')) {
|
|
xmlRegAtomType type = XML_REGEXP_ANYSPACE;
|
|
|
|
switch (cur) {
|
|
case 's':
|
|
type = XML_REGEXP_ANYSPACE;
|
|
break;
|
|
case 'S':
|
|
type = XML_REGEXP_NOTSPACE;
|
|
break;
|
|
case 'i':
|
|
type = XML_REGEXP_INITNAME;
|
|
break;
|
|
case 'I':
|
|
type = XML_REGEXP_NOTINITNAME;
|
|
break;
|
|
case 'c':
|
|
type = XML_REGEXP_NAMECHAR;
|
|
break;
|
|
case 'C':
|
|
type = XML_REGEXP_NOTNAMECHAR;
|
|
break;
|
|
case 'd':
|
|
type = XML_REGEXP_DECIMAL;
|
|
break;
|
|
case 'D':
|
|
type = XML_REGEXP_NOTDECIMAL;
|
|
break;
|
|
case 'w':
|
|
type = XML_REGEXP_REALCHAR;
|
|
break;
|
|
case 'W':
|
|
type = XML_REGEXP_NOTREALCHAR;
|
|
break;
|
|
}
|
|
NEXT;
|
|
if (ctxt->atom == NULL) {
|
|
ctxt->atom = xmlRegNewAtom(ctxt, type);
|
|
} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
|
|
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
|
|
type, 0, 0, NULL);
|
|
}
|
|
} else {
|
|
ERROR("Wrong escape sequence, misuse of character '\\'");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xmlFAParseCharRange:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* [17] charRange ::= seRange | XmlCharRef | XmlCharIncDash
|
|
* [18] seRange ::= charOrEsc '-' charOrEsc
|
|
* [20] charOrEsc ::= XmlChar | SingleCharEsc
|
|
* [21] XmlChar ::= [^\#x2D#x5B#x5D]
|
|
* [22] XmlCharIncDash ::= [^\#x5B#x5D]
|
|
*/
|
|
static void
|
|
xmlFAParseCharRange(xmlRegParserCtxtPtr ctxt) {
|
|
int cur, len;
|
|
int start = -1;
|
|
int end = -1;
|
|
|
|
if (CUR == '\0') {
|
|
ERROR("Expecting ']'");
|
|
return;
|
|
}
|
|
|
|
cur = CUR;
|
|
if (cur == '\\') {
|
|
NEXT;
|
|
cur = CUR;
|
|
switch (cur) {
|
|
case 'n': start = 0xA; break;
|
|
case 'r': start = 0xD; break;
|
|
case 't': start = 0x9; break;
|
|
case '\\': case '|': case '.': case '-': case '^': case '?':
|
|
case '*': case '+': case '{': case '}': case '(': case ')':
|
|
case '[': case ']':
|
|
start = cur; break;
|
|
default:
|
|
ERROR("Invalid escape value");
|
|
return;
|
|
}
|
|
end = start;
|
|
len = 1;
|
|
} else if ((cur != 0x5B) && (cur != 0x5D)) {
|
|
end = start = CUR_SCHAR(ctxt->cur, len);
|
|
} else {
|
|
ERROR("Expecting a char range");
|
|
return;
|
|
}
|
|
/*
|
|
* Since we are "inside" a range, we can assume ctxt->cur is past
|
|
* the start of ctxt->string, and PREV should be safe
|
|
*/
|
|
if ((start == '-') && (NXT(1) != ']') && (PREV != '[') && (PREV != '^')) {
|
|
NEXTL(len);
|
|
return;
|
|
}
|
|
NEXTL(len);
|
|
cur = CUR;
|
|
if ((cur != '-') || (NXT(1) == ']')) {
|
|
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
|
|
XML_REGEXP_CHARVAL, start, end, NULL);
|
|
return;
|
|
}
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == '\\') {
|
|
NEXT;
|
|
cur = CUR;
|
|
switch (cur) {
|
|
case 'n': end = 0xA; break;
|
|
case 'r': end = 0xD; break;
|
|
case 't': end = 0x9; break;
|
|
case '\\': case '|': case '.': case '-': case '^': case '?':
|
|
case '*': case '+': case '{': case '}': case '(': case ')':
|
|
case '[': case ']':
|
|
end = cur; break;
|
|
default:
|
|
ERROR("Invalid escape value");
|
|
return;
|
|
}
|
|
len = 1;
|
|
} else if ((cur != '\0') && (cur != 0x5B) && (cur != 0x5D)) {
|
|
end = CUR_SCHAR(ctxt->cur, len);
|
|
} else {
|
|
ERROR("Expecting the end of a char range");
|
|
return;
|
|
}
|
|
|
|
/* TODO check that the values are acceptable character ranges for XML */
|
|
if (end < start) {
|
|
ERROR("End of range is before start of range");
|
|
} else {
|
|
NEXTL(len);
|
|
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
|
|
XML_REGEXP_CHARVAL, start, end, NULL);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* xmlFAParsePosCharGroup:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* [14] posCharGroup ::= ( charRange | charClassEsc )+
|
|
*/
|
|
static void
|
|
xmlFAParsePosCharGroup(xmlRegParserCtxtPtr ctxt) {
|
|
do {
|
|
if (CUR == '\\') {
|
|
xmlFAParseCharClassEsc(ctxt);
|
|
} else {
|
|
xmlFAParseCharRange(ctxt);
|
|
}
|
|
} while ((CUR != ']') && (CUR != '-') &&
|
|
(CUR != 0) && (ctxt->error == 0));
|
|
}
|
|
|
|
/**
|
|
* xmlFAParseCharGroup:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* [13] charGroup ::= posCharGroup | negCharGroup | charClassSub
|
|
* [15] negCharGroup ::= '^' posCharGroup
|
|
* [16] charClassSub ::= ( posCharGroup | negCharGroup ) '-' charClassExpr
|
|
* [12] charClassExpr ::= '[' charGroup ']'
|
|
*/
|
|
static void
|
|
xmlFAParseCharGroup(xmlRegParserCtxtPtr ctxt) {
|
|
int neg = ctxt->neg;
|
|
|
|
if (CUR == '^') {
|
|
NEXT;
|
|
ctxt->neg = !ctxt->neg;
|
|
xmlFAParsePosCharGroup(ctxt);
|
|
ctxt->neg = neg;
|
|
}
|
|
while ((CUR != ']') && (ctxt->error == 0)) {
|
|
if ((CUR == '-') && (NXT(1) == '[')) {
|
|
NEXT; /* eat the '-' */
|
|
NEXT; /* eat the '[' */
|
|
ctxt->neg = 2;
|
|
xmlFAParseCharGroup(ctxt);
|
|
ctxt->neg = neg;
|
|
if (CUR == ']') {
|
|
NEXT;
|
|
} else {
|
|
ERROR("charClassExpr: ']' expected");
|
|
}
|
|
break;
|
|
} else {
|
|
xmlFAParsePosCharGroup(ctxt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xmlFAParseCharClass:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* [11] charClass ::= charClassEsc | charClassExpr
|
|
* [12] charClassExpr ::= '[' charGroup ']'
|
|
*/
|
|
static void
|
|
xmlFAParseCharClass(xmlRegParserCtxtPtr ctxt) {
|
|
if (CUR == '[') {
|
|
NEXT;
|
|
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_RANGES);
|
|
if (ctxt->atom == NULL)
|
|
return;
|
|
xmlFAParseCharGroup(ctxt);
|
|
if (CUR == ']') {
|
|
NEXT;
|
|
} else {
|
|
ERROR("xmlFAParseCharClass: ']' expected");
|
|
}
|
|
} else {
|
|
xmlFAParseCharClassEsc(ctxt);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xmlFAParseQuantExact:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* [8] QuantExact ::= [0-9]+
|
|
*
|
|
* Returns 0 if success or -1 in case of error
|
|
*/
|
|
static int
|
|
xmlFAParseQuantExact(xmlRegParserCtxtPtr ctxt) {
|
|
int ret = 0;
|
|
int ok = 0;
|
|
int overflow = 0;
|
|
|
|
while ((CUR >= '0') && (CUR <= '9')) {
|
|
if (ret > INT_MAX / 10) {
|
|
overflow = 1;
|
|
} else {
|
|
int digit = CUR - '0';
|
|
|
|
ret *= 10;
|
|
if (ret > INT_MAX - digit)
|
|
overflow = 1;
|
|
else
|
|
ret += digit;
|
|
}
|
|
ok = 1;
|
|
NEXT;
|
|
}
|
|
if ((ok != 1) || (overflow == 1)) {
|
|
return(-1);
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlFAParseQuantifier:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* [4] quantifier ::= [?*+] | ( '{' quantity '}' )
|
|
* [5] quantity ::= quantRange | quantMin | QuantExact
|
|
* [6] quantRange ::= QuantExact ',' QuantExact
|
|
* [7] quantMin ::= QuantExact ','
|
|
* [8] QuantExact ::= [0-9]+
|
|
*/
|
|
static int
|
|
xmlFAParseQuantifier(xmlRegParserCtxtPtr ctxt) {
|
|
int cur;
|
|
|
|
cur = CUR;
|
|
if ((cur == '?') || (cur == '*') || (cur == '+')) {
|
|
if (ctxt->atom != NULL) {
|
|
if (cur == '?')
|
|
ctxt->atom->quant = XML_REGEXP_QUANT_OPT;
|
|
else if (cur == '*')
|
|
ctxt->atom->quant = XML_REGEXP_QUANT_MULT;
|
|
else if (cur == '+')
|
|
ctxt->atom->quant = XML_REGEXP_QUANT_PLUS;
|
|
}
|
|
NEXT;
|
|
return(1);
|
|
}
|
|
if (cur == '{') {
|
|
int min = 0, max = 0;
|
|
|
|
NEXT;
|
|
cur = xmlFAParseQuantExact(ctxt);
|
|
if (cur >= 0)
|
|
min = cur;
|
|
else {
|
|
ERROR("Improper quantifier");
|
|
}
|
|
if (CUR == ',') {
|
|
NEXT;
|
|
if (CUR == '}')
|
|
max = INT_MAX;
|
|
else {
|
|
cur = xmlFAParseQuantExact(ctxt);
|
|
if (cur >= 0)
|
|
max = cur;
|
|
else {
|
|
ERROR("Improper quantifier");
|
|
}
|
|
}
|
|
}
|
|
if (CUR == '}') {
|
|
NEXT;
|
|
} else {
|
|
ERROR("Unterminated quantifier");
|
|
}
|
|
if (max == 0)
|
|
max = min;
|
|
if (ctxt->atom != NULL) {
|
|
ctxt->atom->quant = XML_REGEXP_QUANT_RANGE;
|
|
ctxt->atom->min = min;
|
|
ctxt->atom->max = max;
|
|
}
|
|
return(1);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* xmlFAParseAtom:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* [9] atom ::= Char | charClass | ( '(' regExp ')' )
|
|
*/
|
|
static int
|
|
xmlFAParseAtom(xmlRegParserCtxtPtr ctxt) {
|
|
int codepoint, len;
|
|
|
|
codepoint = xmlFAIsChar(ctxt);
|
|
if (codepoint > 0) {
|
|
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
|
|
if (ctxt->atom == NULL)
|
|
return(-1);
|
|
codepoint = CUR_SCHAR(ctxt->cur, len);
|
|
ctxt->atom->codepoint = codepoint;
|
|
NEXTL(len);
|
|
return(1);
|
|
} else if (CUR == '|') {
|
|
return(0);
|
|
} else if (CUR == 0) {
|
|
return(0);
|
|
} else if (CUR == ')') {
|
|
return(0);
|
|
} else if (CUR == '(') {
|
|
xmlRegStatePtr start, oldend, start0;
|
|
|
|
NEXT;
|
|
if (ctxt->depth >= 50) {
|
|
ERROR("xmlFAParseAtom: maximum nesting depth exceeded");
|
|
return(-1);
|
|
}
|
|
/*
|
|
* this extra Epsilon transition is needed if we count with 0 allowed
|
|
* unfortunately this can't be known at that point
|
|
*/
|
|
xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
|
|
start0 = ctxt->state;
|
|
xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
|
|
start = ctxt->state;
|
|
oldend = ctxt->end;
|
|
ctxt->end = NULL;
|
|
ctxt->atom = NULL;
|
|
ctxt->depth++;
|
|
xmlFAParseRegExp(ctxt, 0);
|
|
ctxt->depth--;
|
|
if (CUR == ')') {
|
|
NEXT;
|
|
} else {
|
|
ERROR("xmlFAParseAtom: expecting ')'");
|
|
}
|
|
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_SUBREG);
|
|
if (ctxt->atom == NULL)
|
|
return(-1);
|
|
ctxt->atom->start = start;
|
|
ctxt->atom->start0 = start0;
|
|
ctxt->atom->stop = ctxt->state;
|
|
ctxt->end = oldend;
|
|
return(1);
|
|
} else if ((CUR == '[') || (CUR == '\\') || (CUR == '.')) {
|
|
xmlFAParseCharClass(ctxt);
|
|
return(1);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* xmlFAParsePiece:
|
|
* @ctxt: a regexp parser context
|
|
*
|
|
* [3] piece ::= atom quantifier?
|
|
*/
|
|
static int
|
|
xmlFAParsePiece(xmlRegParserCtxtPtr ctxt) {
|
|
int ret;
|
|
|
|
ctxt->atom = NULL;
|
|
ret = xmlFAParseAtom(ctxt);
|
|
if (ret == 0)
|
|
return(0);
|
|
if (ctxt->atom == NULL) {
|
|
ERROR("internal: no atom generated");
|
|
}
|
|
xmlFAParseQuantifier(ctxt);
|
|
return(1);
|
|
}
|
|
|
|
/**
|
|
* xmlFAParseBranch:
|
|
* @ctxt: a regexp parser context
|
|
* @to: optional target to the end of the branch
|
|
*
|
|
* @to is used to optimize by removing duplicate path in automata
|
|
* in expressions like (a|b)(c|d)
|
|
*
|
|
* [2] branch ::= piece*
|
|
*/
|
|
static int
|
|
xmlFAParseBranch(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr to) {
|
|
xmlRegStatePtr previous;
|
|
int ret;
|
|
|
|
previous = ctxt->state;
|
|
ret = xmlFAParsePiece(ctxt);
|
|
if (ret == 0) {
|
|
/* Empty branch */
|
|
xmlFAGenerateEpsilonTransition(ctxt, previous, to);
|
|
} else {
|
|
if (xmlFAGenerateTransitions(ctxt, previous,
|
|
(CUR=='|' || CUR==')' || CUR==0) ? to : NULL, ctxt->atom) < 0)
|
|
return(-1);
|
|
previous = ctxt->state;
|
|
ctxt->atom = NULL;
|
|
}
|
|
while ((ret != 0) && (ctxt->error == 0)) {
|
|
ret = xmlFAParsePiece(ctxt);
|
|
if (ret != 0) {
|
|
if (xmlFAGenerateTransitions(ctxt, previous,
|
|
(CUR=='|' || CUR==')' || CUR==0) ? to : NULL,
|
|
ctxt->atom) < 0)
|
|
return(-1);
|
|
previous = ctxt->state;
|
|
ctxt->atom = NULL;
|
|
}
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* xmlFAParseRegExp:
|
|
* @ctxt: a regexp parser context
|
|
* @top: is this the top-level expression ?
|
|
*
|
|
* [1] regExp ::= branch ( '|' branch )*
|
|
*/
|
|
static void
|
|
xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top) {
|
|
xmlRegStatePtr start, end;
|
|
|
|
/* if not top start should have been generated by an epsilon trans */
|
|
start = ctxt->state;
|
|
ctxt->end = NULL;
|
|
xmlFAParseBranch(ctxt, NULL);
|
|
if (top) {
|
|
#ifdef DEBUG_REGEXP_GRAPH
|
|
printf("State %d is final\n", ctxt->state->no);
|
|
#endif
|
|
ctxt->state->type = XML_REGEXP_FINAL_STATE;
|
|
}
|
|
if (CUR != '|') {
|
|
ctxt->end = ctxt->state;
|
|
return;
|
|
}
|
|
end = ctxt->state;
|
|
while ((CUR == '|') && (ctxt->error == 0)) {
|
|
NEXT;
|
|
ctxt->state = start;
|
|
ctxt->end = NULL;
|
|
xmlFAParseBranch(ctxt, end);
|
|
}
|
|
if (!top) {
|
|
ctxt->state = end;
|
|
ctxt->end = end;
|
|
}
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* The basic API *
|
|
* *
|
|
************************************************************************/
|
|
|
|
/**
|
|
* xmlRegexpPrint:
|
|
* @output: the file for the output debug
|
|
* @regexp: the compiled regexp
|
|
*
|
|
* Print the content of the compiled regular expression
|
|
*/
|
|
void
|
|
xmlRegexpPrint(FILE *output, xmlRegexpPtr regexp) {
|
|
int i;
|
|
|
|
if (output == NULL)
|
|
return;
|
|
fprintf(output, " regexp: ");
|
|
if (regexp == NULL) {
|
|
fprintf(output, "NULL\n");
|
|
return;
|
|
}
|
|
fprintf(output, "'%s' ", regexp->string);
|
|
fprintf(output, "\n");
|
|
fprintf(output, "%d atoms:\n", regexp->nbAtoms);
|
|
for (i = 0;i < regexp->nbAtoms; i++) {
|
|
fprintf(output, " %02d ", i);
|
|
xmlRegPrintAtom(output, regexp->atoms[i]);
|
|
}
|
|
fprintf(output, "%d states:", regexp->nbStates);
|
|
fprintf(output, "\n");
|
|
for (i = 0;i < regexp->nbStates; i++) {
|
|
xmlRegPrintState(output, regexp->states[i]);
|
|
}
|
|
fprintf(output, "%d counters:\n", regexp->nbCounters);
|
|
for (i = 0;i < regexp->nbCounters; i++) {
|
|
fprintf(output, " %d: min %d max %d\n", i, regexp->counters[i].min,
|
|
regexp->counters[i].max);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xmlRegexpCompile:
|
|
* @regexp: a regular expression string
|
|
*
|
|
* Parses a regular expression conforming to XML Schemas Part 2 Datatype
|
|
* Appendix F and builds an automata suitable for testing strings against
|
|
* that regular expression
|
|
*
|
|
* Returns the compiled expression or NULL in case of error
|
|
*/
|
|
xmlRegexpPtr
|
|
xmlRegexpCompile(const xmlChar *regexp) {
|
|
xmlRegexpPtr ret;
|
|
xmlRegParserCtxtPtr ctxt;
|
|
|
|
ctxt = xmlRegNewParserCtxt(regexp);
|
|
if (ctxt == NULL)
|
|
return(NULL);
|
|
|
|
/* initialize the parser */
|
|
ctxt->end = NULL;
|
|
ctxt->start = ctxt->state = xmlRegNewState(ctxt);
|
|
xmlRegStatePush(ctxt, ctxt->start);
|
|
|
|
/* parse the expression building an automata */
|
|
xmlFAParseRegExp(ctxt, 1);
|
|
if (CUR != 0) {
|
|
ERROR("xmlFAParseRegExp: extra characters");
|
|
}
|
|
if (ctxt->error != 0) {
|
|
xmlRegFreeParserCtxt(ctxt);
|
|
return(NULL);
|
|
}
|
|
ctxt->end = ctxt->state;
|
|
ctxt->start->type = XML_REGEXP_START_STATE;
|
|
ctxt->end->type = XML_REGEXP_FINAL_STATE;
|
|
|
|
/* remove the Epsilon except for counted transitions */
|
|
xmlFAEliminateEpsilonTransitions(ctxt);
|
|
|
|
|
|
if (ctxt->error != 0) {
|
|
xmlRegFreeParserCtxt(ctxt);
|
|
return(NULL);
|
|
}
|
|
ret = xmlRegEpxFromParse(ctxt);
|
|
xmlRegFreeParserCtxt(ctxt);
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlRegexpExec:
|
|
* @comp: the compiled regular expression
|
|
* @content: the value to check against the regular expression
|
|
*
|
|
* Check if the regular expression generates the value
|
|
*
|
|
* Returns 1 if it matches, 0 if not and a negative value in case of error
|
|
*/
|
|
int
|
|
xmlRegexpExec(xmlRegexpPtr comp, const xmlChar *content) {
|
|
if ((comp == NULL) || (content == NULL))
|
|
return(-1);
|
|
return(xmlFARegExec(comp, content));
|
|
}
|
|
|
|
/**
|
|
* xmlRegexpIsDeterminist:
|
|
* @comp: the compiled regular expression
|
|
*
|
|
* Check if the regular expression is determinist
|
|
*
|
|
* Returns 1 if it yes, 0 if not and a negative value in case of error
|
|
*/
|
|
int
|
|
xmlRegexpIsDeterminist(xmlRegexpPtr comp) {
|
|
xmlAutomataPtr am;
|
|
int ret;
|
|
|
|
if (comp == NULL)
|
|
return(-1);
|
|
if (comp->determinist != -1)
|
|
return(comp->determinist);
|
|
|
|
am = xmlNewAutomata();
|
|
if (am == NULL)
|
|
return(-1);
|
|
if (am->states != NULL) {
|
|
int i;
|
|
|
|
for (i = 0;i < am->nbStates;i++)
|
|
xmlRegFreeState(am->states[i]);
|
|
xmlFree(am->states);
|
|
}
|
|
am->nbAtoms = comp->nbAtoms;
|
|
am->atoms = comp->atoms;
|
|
am->nbStates = comp->nbStates;
|
|
am->states = comp->states;
|
|
am->determinist = -1;
|
|
am->flags = comp->flags;
|
|
ret = xmlFAComputesDeterminism(am);
|
|
am->atoms = NULL;
|
|
am->states = NULL;
|
|
xmlFreeAutomata(am);
|
|
comp->determinist = ret;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlRegFreeRegexp:
|
|
* @regexp: the regexp
|
|
*
|
|
* Free a regexp
|
|
*/
|
|
void
|
|
xmlRegFreeRegexp(xmlRegexpPtr regexp) {
|
|
int i;
|
|
if (regexp == NULL)
|
|
return;
|
|
|
|
if (regexp->string != NULL)
|
|
xmlFree(regexp->string);
|
|
if (regexp->states != NULL) {
|
|
for (i = 0;i < regexp->nbStates;i++)
|
|
xmlRegFreeState(regexp->states[i]);
|
|
xmlFree(regexp->states);
|
|
}
|
|
if (regexp->atoms != NULL) {
|
|
for (i = 0;i < regexp->nbAtoms;i++)
|
|
xmlRegFreeAtom(regexp->atoms[i]);
|
|
xmlFree(regexp->atoms);
|
|
}
|
|
if (regexp->counters != NULL)
|
|
xmlFree(regexp->counters);
|
|
if (regexp->compact != NULL)
|
|
xmlFree(regexp->compact);
|
|
if (regexp->transdata != NULL)
|
|
xmlFree(regexp->transdata);
|
|
if (regexp->stringMap != NULL) {
|
|
for (i = 0; i < regexp->nbstrings;i++)
|
|
xmlFree(regexp->stringMap[i]);
|
|
xmlFree(regexp->stringMap);
|
|
}
|
|
|
|
xmlFree(regexp);
|
|
}
|
|
|
|
#ifdef LIBXML_AUTOMATA_ENABLED
|
|
/************************************************************************
|
|
* *
|
|
* The Automata interface *
|
|
* *
|
|
************************************************************************/
|
|
|
|
/**
|
|
* xmlNewAutomata:
|
|
*
|
|
* Create a new automata
|
|
*
|
|
* Returns the new object or NULL in case of failure
|
|
*/
|
|
xmlAutomataPtr
|
|
xmlNewAutomata(void) {
|
|
xmlAutomataPtr ctxt;
|
|
|
|
ctxt = xmlRegNewParserCtxt(NULL);
|
|
if (ctxt == NULL)
|
|
return(NULL);
|
|
|
|
/* initialize the parser */
|
|
ctxt->end = NULL;
|
|
ctxt->start = ctxt->state = xmlRegNewState(ctxt);
|
|
if (ctxt->start == NULL) {
|
|
xmlFreeAutomata(ctxt);
|
|
return(NULL);
|
|
}
|
|
ctxt->start->type = XML_REGEXP_START_STATE;
|
|
if (xmlRegStatePush(ctxt, ctxt->start) < 0) {
|
|
xmlRegFreeState(ctxt->start);
|
|
xmlFreeAutomata(ctxt);
|
|
return(NULL);
|
|
}
|
|
ctxt->flags = 0;
|
|
|
|
return(ctxt);
|
|
}
|
|
|
|
/**
|
|
* xmlFreeAutomata:
|
|
* @am: an automata
|
|
*
|
|
* Free an automata
|
|
*/
|
|
void
|
|
xmlFreeAutomata(xmlAutomataPtr am) {
|
|
if (am == NULL)
|
|
return;
|
|
xmlRegFreeParserCtxt(am);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataSetFlags:
|
|
* @am: an automata
|
|
* @flags: a set of internal flags
|
|
*
|
|
* Set some flags on the automata
|
|
*/
|
|
void
|
|
xmlAutomataSetFlags(xmlAutomataPtr am, int flags) {
|
|
if (am == NULL)
|
|
return;
|
|
am->flags |= flags;
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataGetInitState:
|
|
* @am: an automata
|
|
*
|
|
* Initial state lookup
|
|
*
|
|
* Returns the initial state of the automata
|
|
*/
|
|
xmlAutomataStatePtr
|
|
xmlAutomataGetInitState(xmlAutomataPtr am) {
|
|
if (am == NULL)
|
|
return(NULL);
|
|
return(am->start);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataSetFinalState:
|
|
* @am: an automata
|
|
* @state: a state in this automata
|
|
*
|
|
* Makes that state a final state
|
|
*
|
|
* Returns 0 or -1 in case of error
|
|
*/
|
|
int
|
|
xmlAutomataSetFinalState(xmlAutomataPtr am, xmlAutomataStatePtr state) {
|
|
if ((am == NULL) || (state == NULL))
|
|
return(-1);
|
|
state->type = XML_REGEXP_FINAL_STATE;
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataNewTransition:
|
|
* @am: an automata
|
|
* @from: the starting point of the transition
|
|
* @to: the target point of the transition or NULL
|
|
* @token: the input string associated to that transition
|
|
* @data: data passed to the callback function if the transition is activated
|
|
*
|
|
* If @to is NULL, this creates first a new target state in the automata
|
|
* and then adds a transition from the @from state to the target state
|
|
* activated by the value of @token
|
|
*
|
|
* Returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataStatePtr
|
|
xmlAutomataNewTransition(xmlAutomataPtr am, xmlAutomataStatePtr from,
|
|
xmlAutomataStatePtr to, const xmlChar *token,
|
|
void *data) {
|
|
xmlRegAtomPtr atom;
|
|
|
|
if ((am == NULL) || (from == NULL) || (token == NULL))
|
|
return(NULL);
|
|
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
|
|
if (atom == NULL)
|
|
return(NULL);
|
|
atom->data = data;
|
|
atom->valuep = xmlStrdup(token);
|
|
|
|
if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
if (to == NULL)
|
|
return(am->state);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataNewTransition2:
|
|
* @am: an automata
|
|
* @from: the starting point of the transition
|
|
* @to: the target point of the transition or NULL
|
|
* @token: the first input string associated to that transition
|
|
* @token2: the second input string associated to that transition
|
|
* @data: data passed to the callback function if the transition is activated
|
|
*
|
|
* If @to is NULL, this creates first a new target state in the automata
|
|
* and then adds a transition from the @from state to the target state
|
|
* activated by the value of @token
|
|
*
|
|
* Returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataStatePtr
|
|
xmlAutomataNewTransition2(xmlAutomataPtr am, xmlAutomataStatePtr from,
|
|
xmlAutomataStatePtr to, const xmlChar *token,
|
|
const xmlChar *token2, void *data) {
|
|
xmlRegAtomPtr atom;
|
|
|
|
if ((am == NULL) || (from == NULL) || (token == NULL))
|
|
return(NULL);
|
|
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
|
|
if (atom == NULL)
|
|
return(NULL);
|
|
atom->data = data;
|
|
if ((token2 == NULL) || (*token2 == 0)) {
|
|
atom->valuep = xmlStrdup(token);
|
|
} else {
|
|
int lenn, lenp;
|
|
xmlChar *str;
|
|
|
|
lenn = strlen((char *) token2);
|
|
lenp = strlen((char *) token);
|
|
|
|
str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
|
|
if (str == NULL) {
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
memcpy(&str[0], token, lenp);
|
|
str[lenp] = '|';
|
|
memcpy(&str[lenp + 1], token2, lenn);
|
|
str[lenn + lenp + 1] = 0;
|
|
|
|
atom->valuep = str;
|
|
}
|
|
|
|
if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
if (to == NULL)
|
|
return(am->state);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataNewNegTrans:
|
|
* @am: an automata
|
|
* @from: the starting point of the transition
|
|
* @to: the target point of the transition or NULL
|
|
* @token: the first input string associated to that transition
|
|
* @token2: the second input string associated to that transition
|
|
* @data: data passed to the callback function if the transition is activated
|
|
*
|
|
* If @to is NULL, this creates first a new target state in the automata
|
|
* and then adds a transition from the @from state to the target state
|
|
* activated by any value except (@token,@token2)
|
|
* Note that if @token2 is not NULL, then (X, NULL) won't match to follow
|
|
# the semantic of XSD ##other
|
|
*
|
|
* Returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataStatePtr
|
|
xmlAutomataNewNegTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
|
|
xmlAutomataStatePtr to, const xmlChar *token,
|
|
const xmlChar *token2, void *data) {
|
|
xmlRegAtomPtr atom;
|
|
xmlChar err_msg[200];
|
|
|
|
if ((am == NULL) || (from == NULL) || (token == NULL))
|
|
return(NULL);
|
|
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
|
|
if (atom == NULL)
|
|
return(NULL);
|
|
atom->data = data;
|
|
atom->neg = 1;
|
|
if ((token2 == NULL) || (*token2 == 0)) {
|
|
atom->valuep = xmlStrdup(token);
|
|
} else {
|
|
int lenn, lenp;
|
|
xmlChar *str;
|
|
|
|
lenn = strlen((char *) token2);
|
|
lenp = strlen((char *) token);
|
|
|
|
str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
|
|
if (str == NULL) {
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
memcpy(&str[0], token, lenp);
|
|
str[lenp] = '|';
|
|
memcpy(&str[lenp + 1], token2, lenn);
|
|
str[lenn + lenp + 1] = 0;
|
|
|
|
atom->valuep = str;
|
|
}
|
|
snprintf((char *) err_msg, 199, "not %s", (const char *) atom->valuep);
|
|
err_msg[199] = 0;
|
|
atom->valuep2 = xmlStrdup(err_msg);
|
|
|
|
if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
am->negs++;
|
|
if (to == NULL)
|
|
return(am->state);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataNewCountTrans2:
|
|
* @am: an automata
|
|
* @from: the starting point of the transition
|
|
* @to: the target point of the transition or NULL
|
|
* @token: the input string associated to that transition
|
|
* @token2: the second input string associated to that transition
|
|
* @min: the minimum successive occurrences of token
|
|
* @max: the maximum successive occurrences of token
|
|
* @data: data associated to the transition
|
|
*
|
|
* If @to is NULL, this creates first a new target state in the automata
|
|
* and then adds a transition from the @from state to the target state
|
|
* activated by a succession of input of value @token and @token2 and
|
|
* whose number is between @min and @max
|
|
*
|
|
* Returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataStatePtr
|
|
xmlAutomataNewCountTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from,
|
|
xmlAutomataStatePtr to, const xmlChar *token,
|
|
const xmlChar *token2,
|
|
int min, int max, void *data) {
|
|
xmlRegAtomPtr atom;
|
|
int counter;
|
|
|
|
if ((am == NULL) || (from == NULL) || (token == NULL))
|
|
return(NULL);
|
|
if (min < 0)
|
|
return(NULL);
|
|
if ((max < min) || (max < 1))
|
|
return(NULL);
|
|
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
|
|
if (atom == NULL)
|
|
return(NULL);
|
|
if ((token2 == NULL) || (*token2 == 0)) {
|
|
atom->valuep = xmlStrdup(token);
|
|
} else {
|
|
int lenn, lenp;
|
|
xmlChar *str;
|
|
|
|
lenn = strlen((char *) token2);
|
|
lenp = strlen((char *) token);
|
|
|
|
str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
|
|
if (str == NULL) {
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
memcpy(&str[0], token, lenp);
|
|
str[lenp] = '|';
|
|
memcpy(&str[lenp + 1], token2, lenn);
|
|
str[lenn + lenp + 1] = 0;
|
|
|
|
atom->valuep = str;
|
|
}
|
|
atom->data = data;
|
|
if (min == 0)
|
|
atom->min = 1;
|
|
else
|
|
atom->min = min;
|
|
atom->max = max;
|
|
|
|
/*
|
|
* associate a counter to the transition.
|
|
*/
|
|
counter = xmlRegGetCounter(am);
|
|
am->counters[counter].min = min;
|
|
am->counters[counter].max = max;
|
|
|
|
/* xmlFAGenerateTransitions(am, from, to, atom); */
|
|
if (to == NULL) {
|
|
to = xmlRegNewState(am);
|
|
xmlRegStatePush(am, to);
|
|
}
|
|
xmlRegStateAddTrans(am, from, atom, to, counter, -1);
|
|
xmlRegAtomPush(am, atom);
|
|
am->state = to;
|
|
|
|
if (to == NULL)
|
|
to = am->state;
|
|
if (to == NULL)
|
|
return(NULL);
|
|
if (min == 0)
|
|
xmlFAGenerateEpsilonTransition(am, from, to);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataNewCountTrans:
|
|
* @am: an automata
|
|
* @from: the starting point of the transition
|
|
* @to: the target point of the transition or NULL
|
|
* @token: the input string associated to that transition
|
|
* @min: the minimum successive occurrences of token
|
|
* @max: the maximum successive occurrences of token
|
|
* @data: data associated to the transition
|
|
*
|
|
* If @to is NULL, this creates first a new target state in the automata
|
|
* and then adds a transition from the @from state to the target state
|
|
* activated by a succession of input of value @token and whose number
|
|
* is between @min and @max
|
|
*
|
|
* Returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataStatePtr
|
|
xmlAutomataNewCountTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
|
|
xmlAutomataStatePtr to, const xmlChar *token,
|
|
int min, int max, void *data) {
|
|
xmlRegAtomPtr atom;
|
|
int counter;
|
|
|
|
if ((am == NULL) || (from == NULL) || (token == NULL))
|
|
return(NULL);
|
|
if (min < 0)
|
|
return(NULL);
|
|
if ((max < min) || (max < 1))
|
|
return(NULL);
|
|
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
|
|
if (atom == NULL)
|
|
return(NULL);
|
|
atom->valuep = xmlStrdup(token);
|
|
atom->data = data;
|
|
if (min == 0)
|
|
atom->min = 1;
|
|
else
|
|
atom->min = min;
|
|
atom->max = max;
|
|
|
|
/*
|
|
* associate a counter to the transition.
|
|
*/
|
|
counter = xmlRegGetCounter(am);
|
|
am->counters[counter].min = min;
|
|
am->counters[counter].max = max;
|
|
|
|
/* xmlFAGenerateTransitions(am, from, to, atom); */
|
|
if (to == NULL) {
|
|
to = xmlRegNewState(am);
|
|
xmlRegStatePush(am, to);
|
|
}
|
|
xmlRegStateAddTrans(am, from, atom, to, counter, -1);
|
|
xmlRegAtomPush(am, atom);
|
|
am->state = to;
|
|
|
|
if (to == NULL)
|
|
to = am->state;
|
|
if (to == NULL)
|
|
return(NULL);
|
|
if (min == 0)
|
|
xmlFAGenerateEpsilonTransition(am, from, to);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataNewOnceTrans2:
|
|
* @am: an automata
|
|
* @from: the starting point of the transition
|
|
* @to: the target point of the transition or NULL
|
|
* @token: the input string associated to that transition
|
|
* @token2: the second input string associated to that transition
|
|
* @min: the minimum successive occurrences of token
|
|
* @max: the maximum successive occurrences of token
|
|
* @data: data associated to the transition
|
|
*
|
|
* If @to is NULL, this creates first a new target state in the automata
|
|
* and then adds a transition from the @from state to the target state
|
|
* activated by a succession of input of value @token and @token2 and whose
|
|
* number is between @min and @max, moreover that transition can only be
|
|
* crossed once.
|
|
*
|
|
* Returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataStatePtr
|
|
xmlAutomataNewOnceTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from,
|
|
xmlAutomataStatePtr to, const xmlChar *token,
|
|
const xmlChar *token2,
|
|
int min, int max, void *data) {
|
|
xmlRegAtomPtr atom;
|
|
int counter;
|
|
|
|
if ((am == NULL) || (from == NULL) || (token == NULL))
|
|
return(NULL);
|
|
if (min < 1)
|
|
return(NULL);
|
|
if (max < min)
|
|
return(NULL);
|
|
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
|
|
if (atom == NULL)
|
|
return(NULL);
|
|
if ((token2 == NULL) || (*token2 == 0)) {
|
|
atom->valuep = xmlStrdup(token);
|
|
} else {
|
|
int lenn, lenp;
|
|
xmlChar *str;
|
|
|
|
lenn = strlen((char *) token2);
|
|
lenp = strlen((char *) token);
|
|
|
|
str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
|
|
if (str == NULL) {
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
memcpy(&str[0], token, lenp);
|
|
str[lenp] = '|';
|
|
memcpy(&str[lenp + 1], token2, lenn);
|
|
str[lenn + lenp + 1] = 0;
|
|
|
|
atom->valuep = str;
|
|
}
|
|
atom->data = data;
|
|
atom->quant = XML_REGEXP_QUANT_ONCEONLY;
|
|
atom->min = min;
|
|
atom->max = max;
|
|
/*
|
|
* associate a counter to the transition.
|
|
*/
|
|
counter = xmlRegGetCounter(am);
|
|
am->counters[counter].min = 1;
|
|
am->counters[counter].max = 1;
|
|
|
|
/* xmlFAGenerateTransitions(am, from, to, atom); */
|
|
if (to == NULL) {
|
|
to = xmlRegNewState(am);
|
|
xmlRegStatePush(am, to);
|
|
}
|
|
xmlRegStateAddTrans(am, from, atom, to, counter, -1);
|
|
xmlRegAtomPush(am, atom);
|
|
am->state = to;
|
|
return(to);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* xmlAutomataNewOnceTrans:
|
|
* @am: an automata
|
|
* @from: the starting point of the transition
|
|
* @to: the target point of the transition or NULL
|
|
* @token: the input string associated to that transition
|
|
* @min: the minimum successive occurrences of token
|
|
* @max: the maximum successive occurrences of token
|
|
* @data: data associated to the transition
|
|
*
|
|
* If @to is NULL, this creates first a new target state in the automata
|
|
* and then adds a transition from the @from state to the target state
|
|
* activated by a succession of input of value @token and whose number
|
|
* is between @min and @max, moreover that transition can only be crossed
|
|
* once.
|
|
*
|
|
* Returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataStatePtr
|
|
xmlAutomataNewOnceTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
|
|
xmlAutomataStatePtr to, const xmlChar *token,
|
|
int min, int max, void *data) {
|
|
xmlRegAtomPtr atom;
|
|
int counter;
|
|
|
|
if ((am == NULL) || (from == NULL) || (token == NULL))
|
|
return(NULL);
|
|
if (min < 1)
|
|
return(NULL);
|
|
if (max < min)
|
|
return(NULL);
|
|
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
|
|
if (atom == NULL)
|
|
return(NULL);
|
|
atom->valuep = xmlStrdup(token);
|
|
atom->data = data;
|
|
atom->quant = XML_REGEXP_QUANT_ONCEONLY;
|
|
atom->min = min;
|
|
atom->max = max;
|
|
/*
|
|
* associate a counter to the transition.
|
|
*/
|
|
counter = xmlRegGetCounter(am);
|
|
am->counters[counter].min = 1;
|
|
am->counters[counter].max = 1;
|
|
|
|
/* xmlFAGenerateTransitions(am, from, to, atom); */
|
|
if (to == NULL) {
|
|
to = xmlRegNewState(am);
|
|
xmlRegStatePush(am, to);
|
|
}
|
|
xmlRegStateAddTrans(am, from, atom, to, counter, -1);
|
|
xmlRegAtomPush(am, atom);
|
|
am->state = to;
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataNewState:
|
|
* @am: an automata
|
|
*
|
|
* Create a new disconnected state in the automata
|
|
*
|
|
* Returns the new state or NULL in case of error
|
|
*/
|
|
xmlAutomataStatePtr
|
|
xmlAutomataNewState(xmlAutomataPtr am) {
|
|
xmlAutomataStatePtr to;
|
|
|
|
if (am == NULL)
|
|
return(NULL);
|
|
to = xmlRegNewState(am);
|
|
xmlRegStatePush(am, to);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataNewEpsilon:
|
|
* @am: an automata
|
|
* @from: the starting point of the transition
|
|
* @to: the target point of the transition or NULL
|
|
*
|
|
* If @to is NULL, this creates first a new target state in the automata
|
|
* and then adds an epsilon transition from the @from state to the
|
|
* target state
|
|
*
|
|
* Returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataStatePtr
|
|
xmlAutomataNewEpsilon(xmlAutomataPtr am, xmlAutomataStatePtr from,
|
|
xmlAutomataStatePtr to) {
|
|
if ((am == NULL) || (from == NULL))
|
|
return(NULL);
|
|
xmlFAGenerateEpsilonTransition(am, from, to);
|
|
if (to == NULL)
|
|
return(am->state);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataNewAllTrans:
|
|
* @am: an automata
|
|
* @from: the starting point of the transition
|
|
* @to: the target point of the transition or NULL
|
|
* @lax: allow to transition if not all all transitions have been activated
|
|
*
|
|
* If @to is NULL, this creates first a new target state in the automata
|
|
* and then adds a an ALL transition from the @from state to the
|
|
* target state. That transition is an epsilon transition allowed only when
|
|
* all transitions from the @from node have been activated.
|
|
*
|
|
* Returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataStatePtr
|
|
xmlAutomataNewAllTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
|
|
xmlAutomataStatePtr to, int lax) {
|
|
if ((am == NULL) || (from == NULL))
|
|
return(NULL);
|
|
xmlFAGenerateAllTransition(am, from, to, lax);
|
|
if (to == NULL)
|
|
return(am->state);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataNewCounter:
|
|
* @am: an automata
|
|
* @min: the minimal value on the counter
|
|
* @max: the maximal value on the counter
|
|
*
|
|
* Create a new counter
|
|
*
|
|
* Returns the counter number or -1 in case of error
|
|
*/
|
|
int
|
|
xmlAutomataNewCounter(xmlAutomataPtr am, int min, int max) {
|
|
int ret;
|
|
|
|
if (am == NULL)
|
|
return(-1);
|
|
|
|
ret = xmlRegGetCounter(am);
|
|
if (ret < 0)
|
|
return(-1);
|
|
am->counters[ret].min = min;
|
|
am->counters[ret].max = max;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataNewCountedTrans:
|
|
* @am: an automata
|
|
* @from: the starting point of the transition
|
|
* @to: the target point of the transition or NULL
|
|
* @counter: the counter associated to that transition
|
|
*
|
|
* If @to is NULL, this creates first a new target state in the automata
|
|
* and then adds an epsilon transition from the @from state to the target state
|
|
* which will increment the counter provided
|
|
*
|
|
* Returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataStatePtr
|
|
xmlAutomataNewCountedTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
|
|
xmlAutomataStatePtr to, int counter) {
|
|
if ((am == NULL) || (from == NULL) || (counter < 0))
|
|
return(NULL);
|
|
xmlFAGenerateCountedEpsilonTransition(am, from, to, counter);
|
|
if (to == NULL)
|
|
return(am->state);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataNewCounterTrans:
|
|
* @am: an automata
|
|
* @from: the starting point of the transition
|
|
* @to: the target point of the transition or NULL
|
|
* @counter: the counter associated to that transition
|
|
*
|
|
* If @to is NULL, this creates first a new target state in the automata
|
|
* and then adds an epsilon transition from the @from state to the target state
|
|
* which will be allowed only if the counter is within the right range.
|
|
*
|
|
* Returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataStatePtr
|
|
xmlAutomataNewCounterTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
|
|
xmlAutomataStatePtr to, int counter) {
|
|
if ((am == NULL) || (from == NULL) || (counter < 0))
|
|
return(NULL);
|
|
xmlFAGenerateCountedTransition(am, from, to, counter);
|
|
if (to == NULL)
|
|
return(am->state);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataCompile:
|
|
* @am: an automata
|
|
*
|
|
* Compile the automata into a Reg Exp ready for being executed.
|
|
* The automata should be free after this point.
|
|
*
|
|
* Returns the compiled regexp or NULL in case of error
|
|
*/
|
|
xmlRegexpPtr
|
|
xmlAutomataCompile(xmlAutomataPtr am) {
|
|
xmlRegexpPtr ret;
|
|
|
|
if ((am == NULL) || (am->error != 0)) return(NULL);
|
|
xmlFAEliminateEpsilonTransitions(am);
|
|
/* xmlFAComputesDeterminism(am); */
|
|
ret = xmlRegEpxFromParse(am);
|
|
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlAutomataIsDeterminist:
|
|
* @am: an automata
|
|
*
|
|
* Checks if an automata is determinist.
|
|
*
|
|
* Returns 1 if true, 0 if not, and -1 in case of error
|
|
*/
|
|
int
|
|
xmlAutomataIsDeterminist(xmlAutomataPtr am) {
|
|
int ret;
|
|
|
|
if (am == NULL)
|
|
return(-1);
|
|
|
|
ret = xmlFAComputesDeterminism(am);
|
|
return(ret);
|
|
}
|
|
#endif /* LIBXML_AUTOMATA_ENABLED */
|
|
|
|
#ifdef LIBXML_EXPR_ENABLED
|
|
/************************************************************************
|
|
* *
|
|
* Formal Expression handling code *
|
|
* *
|
|
************************************************************************/
|
|
/************************************************************************
|
|
* *
|
|
* Expression handling context *
|
|
* *
|
|
************************************************************************/
|
|
|
|
struct _xmlExpCtxt {
|
|
xmlDictPtr dict;
|
|
xmlExpNodePtr *table;
|
|
int size;
|
|
int nbElems;
|
|
int nb_nodes;
|
|
int maxNodes;
|
|
const char *expr;
|
|
const char *cur;
|
|
int nb_cons;
|
|
int tabSize;
|
|
};
|
|
|
|
/**
|
|
* xmlExpNewCtxt:
|
|
* @maxNodes: the maximum number of nodes
|
|
* @dict: optional dictionary to use internally
|
|
*
|
|
* Creates a new context for manipulating expressions
|
|
*
|
|
* Returns the context or NULL in case of error
|
|
*/
|
|
xmlExpCtxtPtr
|
|
xmlExpNewCtxt(int maxNodes, xmlDictPtr dict) {
|
|
xmlExpCtxtPtr ret;
|
|
int size = 256;
|
|
|
|
if (maxNodes <= 4096)
|
|
maxNodes = 4096;
|
|
|
|
ret = (xmlExpCtxtPtr) xmlMalloc(sizeof(xmlExpCtxt));
|
|
if (ret == NULL)
|
|
return(NULL);
|
|
memset(ret, 0, sizeof(xmlExpCtxt));
|
|
ret->size = size;
|
|
ret->nbElems = 0;
|
|
ret->maxNodes = maxNodes;
|
|
ret->table = xmlMalloc(size * sizeof(xmlExpNodePtr));
|
|
if (ret->table == NULL) {
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
memset(ret->table, 0, size * sizeof(xmlExpNodePtr));
|
|
if (dict == NULL) {
|
|
ret->dict = xmlDictCreate();
|
|
if (ret->dict == NULL) {
|
|
xmlFree(ret->table);
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
} else {
|
|
ret->dict = dict;
|
|
xmlDictReference(ret->dict);
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlExpFreeCtxt:
|
|
* @ctxt: an expression context
|
|
*
|
|
* Free an expression context
|
|
*/
|
|
void
|
|
xmlExpFreeCtxt(xmlExpCtxtPtr ctxt) {
|
|
if (ctxt == NULL)
|
|
return;
|
|
xmlDictFree(ctxt->dict);
|
|
if (ctxt->table != NULL)
|
|
xmlFree(ctxt->table);
|
|
xmlFree(ctxt);
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Structure associated to an expression node *
|
|
* *
|
|
************************************************************************/
|
|
#define MAX_NODES 10000
|
|
|
|
/* #define DEBUG_DERIV */
|
|
|
|
/*
|
|
* TODO:
|
|
* - Wildcards
|
|
* - public API for creation
|
|
*
|
|
* Started
|
|
* - regression testing
|
|
*
|
|
* Done
|
|
* - split into module and test tool
|
|
* - memleaks
|
|
*/
|
|
|
|
typedef enum {
|
|
XML_EXP_NILABLE = (1 << 0)
|
|
} xmlExpNodeInfo;
|
|
|
|
#define IS_NILLABLE(node) ((node)->info & XML_EXP_NILABLE)
|
|
|
|
struct _xmlExpNode {
|
|
unsigned char type;/* xmlExpNodeType */
|
|
unsigned char info;/* OR of xmlExpNodeInfo */
|
|
unsigned short key; /* the hash key */
|
|
unsigned int ref; /* The number of references */
|
|
int c_max; /* the maximum length it can consume */
|
|
xmlExpNodePtr exp_left;
|
|
xmlExpNodePtr next;/* the next node in the hash table or free list */
|
|
union {
|
|
struct {
|
|
int f_min;
|
|
int f_max;
|
|
} count;
|
|
struct {
|
|
xmlExpNodePtr f_right;
|
|
} children;
|
|
const xmlChar *f_str;
|
|
} field;
|
|
};
|
|
|
|
#define exp_min field.count.f_min
|
|
#define exp_max field.count.f_max
|
|
/* #define exp_left field.children.f_left */
|
|
#define exp_right field.children.f_right
|
|
#define exp_str field.f_str
|
|
|
|
static xmlExpNodePtr xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type);
|
|
static xmlExpNode forbiddenExpNode = {
|
|
XML_EXP_FORBID, 0, 0, 0, 0, NULL, NULL, {{ 0, 0}}
|
|
};
|
|
xmlExpNodePtr forbiddenExp = &forbiddenExpNode;
|
|
static xmlExpNode emptyExpNode = {
|
|
XML_EXP_EMPTY, 1, 0, 0, 0, NULL, NULL, {{ 0, 0}}
|
|
};
|
|
xmlExpNodePtr emptyExp = &emptyExpNode;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* The custom hash table for unicity and canonicalization *
|
|
* of sub-expressions pointers *
|
|
* *
|
|
************************************************************************/
|
|
/*
|
|
* xmlExpHashNameComputeKey:
|
|
* Calculate the hash key for a token
|
|
*/
|
|
static unsigned short
|
|
xmlExpHashNameComputeKey(const xmlChar *name) {
|
|
unsigned short value = 0L;
|
|
char ch;
|
|
|
|
if (name != NULL) {
|
|
value += 30 * (*name);
|
|
while ((ch = *name++) != 0) {
|
|
value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch);
|
|
}
|
|
}
|
|
return (value);
|
|
}
|
|
|
|
/*
|
|
* xmlExpHashComputeKey:
|
|
* Calculate the hash key for a compound expression
|
|
*/
|
|
static unsigned short
|
|
xmlExpHashComputeKey(xmlExpNodeType type, xmlExpNodePtr left,
|
|
xmlExpNodePtr right) {
|
|
unsigned long value;
|
|
unsigned short ret;
|
|
|
|
switch (type) {
|
|
case XML_EXP_SEQ:
|
|
value = left->key;
|
|
value += right->key;
|
|
value *= 3;
|
|
ret = (unsigned short) value;
|
|
break;
|
|
case XML_EXP_OR:
|
|
value = left->key;
|
|
value += right->key;
|
|
value *= 7;
|
|
ret = (unsigned short) value;
|
|
break;
|
|
case XML_EXP_COUNT:
|
|
value = left->key;
|
|
value += right->key;
|
|
ret = (unsigned short) value;
|
|
break;
|
|
default:
|
|
ret = 0;
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
|
|
static xmlExpNodePtr
|
|
xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type) {
|
|
xmlExpNodePtr ret;
|
|
|
|
if (ctxt->nb_nodes >= MAX_NODES)
|
|
return(NULL);
|
|
ret = (xmlExpNodePtr) xmlMalloc(sizeof(xmlExpNode));
|
|
if (ret == NULL)
|
|
return(NULL);
|
|
memset(ret, 0, sizeof(xmlExpNode));
|
|
ret->type = type;
|
|
ret->next = NULL;
|
|
ctxt->nb_nodes++;
|
|
ctxt->nb_cons++;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlExpHashGetEntry:
|
|
* @table: the hash table
|
|
*
|
|
* Get the unique entry from the hash table. The entry is created if
|
|
* needed. @left and @right are consumed, i.e. their ref count will
|
|
* be decremented by the operation.
|
|
*
|
|
* Returns the pointer or NULL in case of error
|
|
*/
|
|
static xmlExpNodePtr
|
|
xmlExpHashGetEntry(xmlExpCtxtPtr ctxt, xmlExpNodeType type,
|
|
xmlExpNodePtr left, xmlExpNodePtr right,
|
|
const xmlChar *name, int min, int max) {
|
|
unsigned short kbase, key;
|
|
xmlExpNodePtr entry;
|
|
xmlExpNodePtr insert;
|
|
|
|
if (ctxt == NULL)
|
|
return(NULL);
|
|
|
|
/*
|
|
* Check for duplicate and insertion location.
|
|
*/
|
|
if (type == XML_EXP_ATOM) {
|
|
kbase = xmlExpHashNameComputeKey(name);
|
|
} else if (type == XML_EXP_COUNT) {
|
|
/* COUNT reduction rule 1 */
|
|
/* a{1} -> a */
|
|
if (min == max) {
|
|
if (min == 1) {
|
|
return(left);
|
|
}
|
|
if (min == 0) {
|
|
xmlExpFree(ctxt, left);
|
|
return(emptyExp);
|
|
}
|
|
}
|
|
if (min < 0) {
|
|
xmlExpFree(ctxt, left);
|
|
return(forbiddenExp);
|
|
}
|
|
if (max == -1)
|
|
kbase = min + 79;
|
|
else
|
|
kbase = max - min;
|
|
kbase += left->key;
|
|
} else if (type == XML_EXP_OR) {
|
|
/* Forbid reduction rules */
|
|
if (left->type == XML_EXP_FORBID) {
|
|
xmlExpFree(ctxt, left);
|
|
return(right);
|
|
}
|
|
if (right->type == XML_EXP_FORBID) {
|
|
xmlExpFree(ctxt, right);
|
|
return(left);
|
|
}
|
|
|
|
/* OR reduction rule 1 */
|
|
/* a | a reduced to a */
|
|
if (left == right) {
|
|
xmlExpFree(ctxt, right);
|
|
return(left);
|
|
}
|
|
/* OR canonicalization rule 1 */
|
|
/* linearize (a | b) | c into a | (b | c) */
|
|
if ((left->type == XML_EXP_OR) && (right->type != XML_EXP_OR)) {
|
|
xmlExpNodePtr tmp = left;
|
|
left = right;
|
|
right = tmp;
|
|
}
|
|
/* OR reduction rule 2 */
|
|
/* a | (a | b) and b | (a | b) are reduced to a | b */
|
|
if (right->type == XML_EXP_OR) {
|
|
if ((left == right->exp_left) ||
|
|
(left == right->exp_right)) {
|
|
xmlExpFree(ctxt, left);
|
|
return(right);
|
|
}
|
|
}
|
|
/* OR canonicalization rule 2 */
|
|
/* linearize (a | b) | c into a | (b | c) */
|
|
if (left->type == XML_EXP_OR) {
|
|
xmlExpNodePtr tmp;
|
|
|
|
/* OR canonicalization rule 2 */
|
|
if ((left->exp_right->type != XML_EXP_OR) &&
|
|
(left->exp_right->key < left->exp_left->key)) {
|
|
tmp = left->exp_right;
|
|
left->exp_right = left->exp_left;
|
|
left->exp_left = tmp;
|
|
}
|
|
left->exp_right->ref++;
|
|
tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_right, right,
|
|
NULL, 0, 0);
|
|
left->exp_left->ref++;
|
|
tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_left, tmp,
|
|
NULL, 0, 0);
|
|
|
|
xmlExpFree(ctxt, left);
|
|
return(tmp);
|
|
}
|
|
if (right->type == XML_EXP_OR) {
|
|
/* Ordering in the tree */
|
|
/* C | (A | B) -> A | (B | C) */
|
|
if (left->key > right->exp_right->key) {
|
|
xmlExpNodePtr tmp;
|
|
right->exp_right->ref++;
|
|
tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_right,
|
|
left, NULL, 0, 0);
|
|
right->exp_left->ref++;
|
|
tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left,
|
|
tmp, NULL, 0, 0);
|
|
xmlExpFree(ctxt, right);
|
|
return(tmp);
|
|
}
|
|
/* Ordering in the tree */
|
|
/* B | (A | C) -> A | (B | C) */
|
|
if (left->key > right->exp_left->key) {
|
|
xmlExpNodePtr tmp;
|
|
right->exp_right->ref++;
|
|
tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left,
|
|
right->exp_right, NULL, 0, 0);
|
|
right->exp_left->ref++;
|
|
tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left,
|
|
tmp, NULL, 0, 0);
|
|
xmlExpFree(ctxt, right);
|
|
return(tmp);
|
|
}
|
|
}
|
|
/* we know both types are != XML_EXP_OR here */
|
|
else if (left->key > right->key) {
|
|
xmlExpNodePtr tmp = left;
|
|
left = right;
|
|
right = tmp;
|
|
}
|
|
kbase = xmlExpHashComputeKey(type, left, right);
|
|
} else if (type == XML_EXP_SEQ) {
|
|
/* Forbid reduction rules */
|
|
if (left->type == XML_EXP_FORBID) {
|
|
xmlExpFree(ctxt, right);
|
|
return(left);
|
|
}
|
|
if (right->type == XML_EXP_FORBID) {
|
|
xmlExpFree(ctxt, left);
|
|
return(right);
|
|
}
|
|
/* Empty reduction rules */
|
|
if (right->type == XML_EXP_EMPTY) {
|
|
return(left);
|
|
}
|
|
if (left->type == XML_EXP_EMPTY) {
|
|
return(right);
|
|
}
|
|
kbase = xmlExpHashComputeKey(type, left, right);
|
|
} else
|
|
return(NULL);
|
|
|
|
key = kbase % ctxt->size;
|
|
if (ctxt->table[key] != NULL) {
|
|
for (insert = ctxt->table[key]; insert != NULL;
|
|
insert = insert->next) {
|
|
if ((insert->key == kbase) &&
|
|
(insert->type == type)) {
|
|
if (type == XML_EXP_ATOM) {
|
|
if (name == insert->exp_str) {
|
|
insert->ref++;
|
|
return(insert);
|
|
}
|
|
} else if (type == XML_EXP_COUNT) {
|
|
if ((insert->exp_min == min) && (insert->exp_max == max) &&
|
|
(insert->exp_left == left)) {
|
|
insert->ref++;
|
|
left->ref--;
|
|
return(insert);
|
|
}
|
|
} else if ((insert->exp_left == left) &&
|
|
(insert->exp_right == right)) {
|
|
insert->ref++;
|
|
left->ref--;
|
|
right->ref--;
|
|
return(insert);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
entry = xmlExpNewNode(ctxt, type);
|
|
if (entry == NULL)
|
|
return(NULL);
|
|
entry->key = kbase;
|
|
if (type == XML_EXP_ATOM) {
|
|
entry->exp_str = name;
|
|
entry->c_max = 1;
|
|
} else if (type == XML_EXP_COUNT) {
|
|
entry->exp_min = min;
|
|
entry->exp_max = max;
|
|
entry->exp_left = left;
|
|
if ((min == 0) || (IS_NILLABLE(left)))
|
|
entry->info |= XML_EXP_NILABLE;
|
|
if (max < 0)
|
|
entry->c_max = -1;
|
|
else
|
|
entry->c_max = max * entry->exp_left->c_max;
|
|
} else {
|
|
entry->exp_left = left;
|
|
entry->exp_right = right;
|
|
if (type == XML_EXP_OR) {
|
|
if ((IS_NILLABLE(left)) || (IS_NILLABLE(right)))
|
|
entry->info |= XML_EXP_NILABLE;
|
|
if ((entry->exp_left->c_max == -1) ||
|
|
(entry->exp_right->c_max == -1))
|
|
entry->c_max = -1;
|
|
else if (entry->exp_left->c_max > entry->exp_right->c_max)
|
|
entry->c_max = entry->exp_left->c_max;
|
|
else
|
|
entry->c_max = entry->exp_right->c_max;
|
|
} else {
|
|
if ((IS_NILLABLE(left)) && (IS_NILLABLE(right)))
|
|
entry->info |= XML_EXP_NILABLE;
|
|
if ((entry->exp_left->c_max == -1) ||
|
|
(entry->exp_right->c_max == -1))
|
|
entry->c_max = -1;
|
|
else
|
|
entry->c_max = entry->exp_left->c_max + entry->exp_right->c_max;
|
|
}
|
|
}
|
|
entry->ref = 1;
|
|
if (ctxt->table[key] != NULL)
|
|
entry->next = ctxt->table[key];
|
|
|
|
ctxt->table[key] = entry;
|
|
ctxt->nbElems++;
|
|
|
|
return(entry);
|
|
}
|
|
|
|
/**
|
|
* xmlExpFree:
|
|
* @ctxt: the expression context
|
|
* @exp: the expression
|
|
*
|
|
* Dereference the expression
|
|
*/
|
|
void
|
|
xmlExpFree(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp) {
|
|
if ((exp == NULL) || (exp == forbiddenExp) || (exp == emptyExp))
|
|
return;
|
|
exp->ref--;
|
|
if (exp->ref == 0) {
|
|
unsigned short key;
|
|
|
|
/* Unlink it first from the hash table */
|
|
key = exp->key % ctxt->size;
|
|
if (ctxt->table[key] == exp) {
|
|
ctxt->table[key] = exp->next;
|
|
} else {
|
|
xmlExpNodePtr tmp;
|
|
|
|
tmp = ctxt->table[key];
|
|
while (tmp != NULL) {
|
|
if (tmp->next == exp) {
|
|
tmp->next = exp->next;
|
|
break;
|
|
}
|
|
tmp = tmp->next;
|
|
}
|
|
}
|
|
|
|
if ((exp->type == XML_EXP_SEQ) || (exp->type == XML_EXP_OR)) {
|
|
xmlExpFree(ctxt, exp->exp_left);
|
|
xmlExpFree(ctxt, exp->exp_right);
|
|
} else if (exp->type == XML_EXP_COUNT) {
|
|
xmlExpFree(ctxt, exp->exp_left);
|
|
}
|
|
xmlFree(exp);
|
|
ctxt->nb_nodes--;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xmlExpRef:
|
|
* @exp: the expression
|
|
*
|
|
* Increase the reference count of the expression
|
|
*/
|
|
void
|
|
xmlExpRef(xmlExpNodePtr exp) {
|
|
if (exp != NULL)
|
|
exp->ref++;
|
|
}
|
|
|
|
/**
|
|
* xmlExpNewAtom:
|
|
* @ctxt: the expression context
|
|
* @name: the atom name
|
|
* @len: the atom name length in byte (or -1);
|
|
*
|
|
* Get the atom associated to this name from that context
|
|
*
|
|
* Returns the node or NULL in case of error
|
|
*/
|
|
xmlExpNodePtr
|
|
xmlExpNewAtom(xmlExpCtxtPtr ctxt, const xmlChar *name, int len) {
|
|
if ((ctxt == NULL) || (name == NULL))
|
|
return(NULL);
|
|
name = xmlDictLookup(ctxt->dict, name, len);
|
|
if (name == NULL)
|
|
return(NULL);
|
|
return(xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, name, 0, 0));
|
|
}
|
|
|
|
/**
|
|
* xmlExpNewOr:
|
|
* @ctxt: the expression context
|
|
* @left: left expression
|
|
* @right: right expression
|
|
*
|
|
* Get the atom associated to the choice @left | @right
|
|
* Note that @left and @right are consumed in the operation, to keep
|
|
* an handle on them use xmlExpRef() and use xmlExpFree() to release them,
|
|
* this is true even in case of failure (unless ctxt == NULL).
|
|
*
|
|
* Returns the node or NULL in case of error
|
|
*/
|
|
xmlExpNodePtr
|
|
xmlExpNewOr(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) {
|
|
if (ctxt == NULL)
|
|
return(NULL);
|
|
if ((left == NULL) || (right == NULL)) {
|
|
xmlExpFree(ctxt, left);
|
|
xmlExpFree(ctxt, right);
|
|
return(NULL);
|
|
}
|
|
return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, left, right, NULL, 0, 0));
|
|
}
|
|
|
|
/**
|
|
* xmlExpNewSeq:
|
|
* @ctxt: the expression context
|
|
* @left: left expression
|
|
* @right: right expression
|
|
*
|
|
* Get the atom associated to the sequence @left , @right
|
|
* Note that @left and @right are consumed in the operation, to keep
|
|
* an handle on them use xmlExpRef() and use xmlExpFree() to release them,
|
|
* this is true even in case of failure (unless ctxt == NULL).
|
|
*
|
|
* Returns the node or NULL in case of error
|
|
*/
|
|
xmlExpNodePtr
|
|
xmlExpNewSeq(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) {
|
|
if (ctxt == NULL)
|
|
return(NULL);
|
|
if ((left == NULL) || (right == NULL)) {
|
|
xmlExpFree(ctxt, left);
|
|
xmlExpFree(ctxt, right);
|
|
return(NULL);
|
|
}
|
|
return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, left, right, NULL, 0, 0));
|
|
}
|
|
|
|
/**
|
|
* xmlExpNewRange:
|
|
* @ctxt: the expression context
|
|
* @subset: the expression to be repeated
|
|
* @min: the lower bound for the repetition
|
|
* @max: the upper bound for the repetition, -1 means infinite
|
|
*
|
|
* Get the atom associated to the range (@subset){@min, @max}
|
|
* Note that @subset is consumed in the operation, to keep
|
|
* an handle on it use xmlExpRef() and use xmlExpFree() to release it,
|
|
* this is true even in case of failure (unless ctxt == NULL).
|
|
*
|
|
* Returns the node or NULL in case of error
|
|
*/
|
|
xmlExpNodePtr
|
|
xmlExpNewRange(xmlExpCtxtPtr ctxt, xmlExpNodePtr subset, int min, int max) {
|
|
if (ctxt == NULL)
|
|
return(NULL);
|
|
if ((subset == NULL) || (min < 0) || (max < -1) ||
|
|
((max >= 0) && (min > max))) {
|
|
xmlExpFree(ctxt, subset);
|
|
return(NULL);
|
|
}
|
|
return(xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, subset,
|
|
NULL, NULL, min, max));
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Public API for operations on expressions *
|
|
* *
|
|
************************************************************************/
|
|
|
|
static int
|
|
xmlExpGetLanguageInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
|
|
const xmlChar**list, int len, int nb) {
|
|
int tmp, tmp2;
|
|
tail:
|
|
switch (exp->type) {
|
|
case XML_EXP_EMPTY:
|
|
return(0);
|
|
case XML_EXP_ATOM:
|
|
for (tmp = 0;tmp < nb;tmp++)
|
|
if (list[tmp] == exp->exp_str)
|
|
return(0);
|
|
if (nb >= len)
|
|
return(-2);
|
|
list[nb] = exp->exp_str;
|
|
return(1);
|
|
case XML_EXP_COUNT:
|
|
exp = exp->exp_left;
|
|
goto tail;
|
|
case XML_EXP_SEQ:
|
|
case XML_EXP_OR:
|
|
tmp = xmlExpGetLanguageInt(ctxt, exp->exp_left, list, len, nb);
|
|
if (tmp < 0)
|
|
return(tmp);
|
|
tmp2 = xmlExpGetLanguageInt(ctxt, exp->exp_right, list, len,
|
|
nb + tmp);
|
|
if (tmp2 < 0)
|
|
return(tmp2);
|
|
return(tmp + tmp2);
|
|
}
|
|
return(-1);
|
|
}
|
|
|
|
/**
|
|
* xmlExpGetLanguage:
|
|
* @ctxt: the expression context
|
|
* @exp: the expression
|
|
* @langList: where to store the tokens
|
|
* @len: the allocated length of @list
|
|
*
|
|
* Find all the strings used in @exp and store them in @list
|
|
*
|
|
* Returns the number of unique strings found, -1 in case of errors and
|
|
* -2 if there is more than @len strings
|
|
*/
|
|
int
|
|
xmlExpGetLanguage(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
|
|
const xmlChar**langList, int len) {
|
|
if ((ctxt == NULL) || (exp == NULL) || (langList == NULL) || (len <= 0))
|
|
return(-1);
|
|
return(xmlExpGetLanguageInt(ctxt, exp, langList, len, 0));
|
|
}
|
|
|
|
static int
|
|
xmlExpGetStartInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
|
|
const xmlChar**list, int len, int nb) {
|
|
int tmp, tmp2;
|
|
tail:
|
|
switch (exp->type) {
|
|
case XML_EXP_FORBID:
|
|
return(0);
|
|
case XML_EXP_EMPTY:
|
|
return(0);
|
|
case XML_EXP_ATOM:
|
|
for (tmp = 0;tmp < nb;tmp++)
|
|
if (list[tmp] == exp->exp_str)
|
|
return(0);
|
|
if (nb >= len)
|
|
return(-2);
|
|
list[nb] = exp->exp_str;
|
|
return(1);
|
|
case XML_EXP_COUNT:
|
|
exp = exp->exp_left;
|
|
goto tail;
|
|
case XML_EXP_SEQ:
|
|
tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb);
|
|
if (tmp < 0)
|
|
return(tmp);
|
|
if (IS_NILLABLE(exp->exp_left)) {
|
|
tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len,
|
|
nb + tmp);
|
|
if (tmp2 < 0)
|
|
return(tmp2);
|
|
tmp += tmp2;
|
|
}
|
|
return(tmp);
|
|
case XML_EXP_OR:
|
|
tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb);
|
|
if (tmp < 0)
|
|
return(tmp);
|
|
tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len,
|
|
nb + tmp);
|
|
if (tmp2 < 0)
|
|
return(tmp2);
|
|
return(tmp + tmp2);
|
|
}
|
|
return(-1);
|
|
}
|
|
|
|
/**
|
|
* xmlExpGetStart:
|
|
* @ctxt: the expression context
|
|
* @exp: the expression
|
|
* @tokList: where to store the tokens
|
|
* @len: the allocated length of @list
|
|
*
|
|
* Find all the strings that appears at the start of the languages
|
|
* accepted by @exp and store them in @list. E.g. for (a, b) | c
|
|
* it will return the list [a, c]
|
|
*
|
|
* Returns the number of unique strings found, -1 in case of errors and
|
|
* -2 if there is more than @len strings
|
|
*/
|
|
int
|
|
xmlExpGetStart(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
|
|
const xmlChar**tokList, int len) {
|
|
if ((ctxt == NULL) || (exp == NULL) || (tokList == NULL) || (len <= 0))
|
|
return(-1);
|
|
return(xmlExpGetStartInt(ctxt, exp, tokList, len, 0));
|
|
}
|
|
|
|
/**
|
|
* xmlExpIsNillable:
|
|
* @exp: the expression
|
|
*
|
|
* Finds if the expression is nillable, i.e. if it accepts the empty sequence
|
|
*
|
|
* Returns 1 if nillable, 0 if not and -1 in case of error
|
|
*/
|
|
int
|
|
xmlExpIsNillable(xmlExpNodePtr exp) {
|
|
if (exp == NULL)
|
|
return(-1);
|
|
return(IS_NILLABLE(exp) != 0);
|
|
}
|
|
|
|
static xmlExpNodePtr
|
|
xmlExpStringDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, const xmlChar *str)
|
|
{
|
|
xmlExpNodePtr ret;
|
|
|
|
switch (exp->type) {
|
|
case XML_EXP_EMPTY:
|
|
return(forbiddenExp);
|
|
case XML_EXP_FORBID:
|
|
return(forbiddenExp);
|
|
case XML_EXP_ATOM:
|
|
if (exp->exp_str == str) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("deriv atom: equal => Empty\n");
|
|
#endif
|
|
ret = emptyExp;
|
|
} else {
|
|
#ifdef DEBUG_DERIV
|
|
printf("deriv atom: mismatch => forbid\n");
|
|
#endif
|
|
/* TODO wildcards here */
|
|
ret = forbiddenExp;
|
|
}
|
|
return(ret);
|
|
case XML_EXP_OR: {
|
|
xmlExpNodePtr tmp;
|
|
|
|
#ifdef DEBUG_DERIV
|
|
printf("deriv or: => or(derivs)\n");
|
|
#endif
|
|
tmp = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
|
|
if (tmp == NULL) {
|
|
return(NULL);
|
|
}
|
|
ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str);
|
|
if (ret == NULL) {
|
|
xmlExpFree(ctxt, tmp);
|
|
return(NULL);
|
|
}
|
|
ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret,
|
|
NULL, 0, 0);
|
|
return(ret);
|
|
}
|
|
case XML_EXP_SEQ:
|
|
#ifdef DEBUG_DERIV
|
|
printf("deriv seq: starting with left\n");
|
|
#endif
|
|
ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
|
|
if (ret == NULL) {
|
|
return(NULL);
|
|
} else if (ret == forbiddenExp) {
|
|
if (IS_NILLABLE(exp->exp_left)) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("deriv seq: left failed but nillable\n");
|
|
#endif
|
|
ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str);
|
|
}
|
|
} else {
|
|
#ifdef DEBUG_DERIV
|
|
printf("deriv seq: left match => sequence\n");
|
|
#endif
|
|
exp->exp_right->ref++;
|
|
ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, exp->exp_right,
|
|
NULL, 0, 0);
|
|
}
|
|
return(ret);
|
|
case XML_EXP_COUNT: {
|
|
int min, max;
|
|
xmlExpNodePtr tmp;
|
|
|
|
if (exp->exp_max == 0)
|
|
return(forbiddenExp);
|
|
ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
|
|
if (ret == NULL)
|
|
return(NULL);
|
|
if (ret == forbiddenExp) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("deriv count: pattern mismatch => forbid\n");
|
|
#endif
|
|
return(ret);
|
|
}
|
|
if (exp->exp_max == 1)
|
|
return(ret);
|
|
if (exp->exp_max < 0) /* unbounded */
|
|
max = -1;
|
|
else
|
|
max = exp->exp_max - 1;
|
|
if (exp->exp_min > 0)
|
|
min = exp->exp_min - 1;
|
|
else
|
|
min = 0;
|
|
exp->exp_left->ref++;
|
|
tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left, NULL,
|
|
NULL, min, max);
|
|
if (ret == emptyExp) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("deriv count: match to empty => new count\n");
|
|
#endif
|
|
return(tmp);
|
|
}
|
|
#ifdef DEBUG_DERIV
|
|
printf("deriv count: match => sequence with new count\n");
|
|
#endif
|
|
return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, tmp,
|
|
NULL, 0, 0));
|
|
}
|
|
}
|
|
return(NULL);
|
|
}
|
|
|
|
/**
|
|
* xmlExpStringDerive:
|
|
* @ctxt: the expression context
|
|
* @exp: the expression
|
|
* @str: the string
|
|
* @len: the string len in bytes if available
|
|
*
|
|
* Do one step of Brzozowski derivation of the expression @exp with
|
|
* respect to the input string
|
|
*
|
|
* Returns the resulting expression or NULL in case of internal error
|
|
*/
|
|
xmlExpNodePtr
|
|
xmlExpStringDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
|
|
const xmlChar *str, int len) {
|
|
const xmlChar *input;
|
|
|
|
if ((exp == NULL) || (ctxt == NULL) || (str == NULL)) {
|
|
return(NULL);
|
|
}
|
|
/*
|
|
* check the string is in the dictionary, if yes use an interned
|
|
* copy, otherwise we know it's not an acceptable input
|
|
*/
|
|
input = xmlDictExists(ctxt->dict, str, len);
|
|
if (input == NULL) {
|
|
return(forbiddenExp);
|
|
}
|
|
return(xmlExpStringDeriveInt(ctxt, exp, input));
|
|
}
|
|
|
|
static int
|
|
xmlExpCheckCard(xmlExpNodePtr exp, xmlExpNodePtr sub) {
|
|
int ret = 1;
|
|
|
|
if (sub->c_max == -1) {
|
|
if (exp->c_max != -1)
|
|
ret = 0;
|
|
} else if ((exp->c_max >= 0) && (exp->c_max < sub->c_max)) {
|
|
ret = 0;
|
|
}
|
|
#if 0
|
|
if ((IS_NILLABLE(sub)) && (!IS_NILLABLE(exp)))
|
|
ret = 0;
|
|
#endif
|
|
return(ret);
|
|
}
|
|
|
|
static xmlExpNodePtr xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
|
|
xmlExpNodePtr sub);
|
|
/**
|
|
* xmlExpDivide:
|
|
* @ctxt: the expressions context
|
|
* @exp: the englobing expression
|
|
* @sub: the subexpression
|
|
* @mult: the multiple expression
|
|
* @remain: the remain from the derivation of the multiple
|
|
*
|
|
* Check if exp is a multiple of sub, i.e. if there is a finite number n
|
|
* so that sub{n} subsume exp
|
|
*
|
|
* Returns the multiple value if successful, 0 if it is not a multiple
|
|
* and -1 in case of internal error.
|
|
*/
|
|
|
|
static int
|
|
xmlExpDivide(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub,
|
|
xmlExpNodePtr *mult, xmlExpNodePtr *remain) {
|
|
int i;
|
|
xmlExpNodePtr tmp, tmp2;
|
|
|
|
if (mult != NULL) *mult = NULL;
|
|
if (remain != NULL) *remain = NULL;
|
|
if (exp->c_max == -1) return(0);
|
|
if (IS_NILLABLE(exp) && (!IS_NILLABLE(sub))) return(0);
|
|
|
|
for (i = 1;i <= exp->c_max;i++) {
|
|
sub->ref++;
|
|
tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT,
|
|
sub, NULL, NULL, i, i);
|
|
if (tmp == NULL) {
|
|
return(-1);
|
|
}
|
|
if (!xmlExpCheckCard(tmp, exp)) {
|
|
xmlExpFree(ctxt, tmp);
|
|
continue;
|
|
}
|
|
tmp2 = xmlExpExpDeriveInt(ctxt, tmp, exp);
|
|
if (tmp2 == NULL) {
|
|
xmlExpFree(ctxt, tmp);
|
|
return(-1);
|
|
}
|
|
if ((tmp2 != forbiddenExp) && (IS_NILLABLE(tmp2))) {
|
|
if (remain != NULL)
|
|
*remain = tmp2;
|
|
else
|
|
xmlExpFree(ctxt, tmp2);
|
|
if (mult != NULL)
|
|
*mult = tmp;
|
|
else
|
|
xmlExpFree(ctxt, tmp);
|
|
#ifdef DEBUG_DERIV
|
|
printf("Divide succeeded %d\n", i);
|
|
#endif
|
|
return(i);
|
|
}
|
|
xmlExpFree(ctxt, tmp);
|
|
xmlExpFree(ctxt, tmp2);
|
|
}
|
|
#ifdef DEBUG_DERIV
|
|
printf("Divide failed\n");
|
|
#endif
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* xmlExpExpDeriveInt:
|
|
* @ctxt: the expressions context
|
|
* @exp: the englobing expression
|
|
* @sub: the subexpression
|
|
*
|
|
* Try to do a step of Brzozowski derivation but at a higher level
|
|
* the input being a subexpression.
|
|
*
|
|
* Returns the resulting expression or NULL in case of internal error
|
|
*/
|
|
static xmlExpNodePtr
|
|
xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
|
|
xmlExpNodePtr ret, tmp, tmp2, tmp3;
|
|
const xmlChar **tab;
|
|
int len, i;
|
|
|
|
/*
|
|
* In case of equality and if the expression can only consume a finite
|
|
* amount, then the derivation is empty
|
|
*/
|
|
if ((exp == sub) && (exp->c_max >= 0)) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Equal(exp, sub) and finite -> Empty\n");
|
|
#endif
|
|
return(emptyExp);
|
|
}
|
|
/*
|
|
* decompose sub sequence first
|
|
*/
|
|
if (sub->type == XML_EXP_EMPTY) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Empty(sub) -> Empty\n");
|
|
#endif
|
|
exp->ref++;
|
|
return(exp);
|
|
}
|
|
if (sub->type == XML_EXP_SEQ) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Seq(sub) -> decompose\n");
|
|
#endif
|
|
tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left);
|
|
if (tmp == NULL)
|
|
return(NULL);
|
|
if (tmp == forbiddenExp)
|
|
return(tmp);
|
|
ret = xmlExpExpDeriveInt(ctxt, tmp, sub->exp_right);
|
|
xmlExpFree(ctxt, tmp);
|
|
return(ret);
|
|
}
|
|
if (sub->type == XML_EXP_OR) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Or(sub) -> decompose\n");
|
|
#endif
|
|
tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left);
|
|
if (tmp == forbiddenExp)
|
|
return(tmp);
|
|
if (tmp == NULL)
|
|
return(NULL);
|
|
ret = xmlExpExpDeriveInt(ctxt, exp, sub->exp_right);
|
|
if ((ret == NULL) || (ret == forbiddenExp)) {
|
|
xmlExpFree(ctxt, tmp);
|
|
return(ret);
|
|
}
|
|
return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret, NULL, 0, 0));
|
|
}
|
|
if (!xmlExpCheckCard(exp, sub)) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("CheckCard(exp, sub) failed -> Forbid\n");
|
|
#endif
|
|
return(forbiddenExp);
|
|
}
|
|
switch (exp->type) {
|
|
case XML_EXP_EMPTY:
|
|
if (sub == emptyExp)
|
|
return(emptyExp);
|
|
#ifdef DEBUG_DERIV
|
|
printf("Empty(exp) -> Forbid\n");
|
|
#endif
|
|
return(forbiddenExp);
|
|
case XML_EXP_FORBID:
|
|
#ifdef DEBUG_DERIV
|
|
printf("Forbid(exp) -> Forbid\n");
|
|
#endif
|
|
return(forbiddenExp);
|
|
case XML_EXP_ATOM:
|
|
if (sub->type == XML_EXP_ATOM) {
|
|
/* TODO: handle wildcards */
|
|
if (exp->exp_str == sub->exp_str) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Atom match -> Empty\n");
|
|
#endif
|
|
return(emptyExp);
|
|
}
|
|
#ifdef DEBUG_DERIV
|
|
printf("Atom mismatch -> Forbid\n");
|
|
#endif
|
|
return(forbiddenExp);
|
|
}
|
|
if ((sub->type == XML_EXP_COUNT) &&
|
|
(sub->exp_max == 1) &&
|
|
(sub->exp_left->type == XML_EXP_ATOM)) {
|
|
/* TODO: handle wildcards */
|
|
if (exp->exp_str == sub->exp_left->exp_str) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Atom match -> Empty\n");
|
|
#endif
|
|
return(emptyExp);
|
|
}
|
|
#ifdef DEBUG_DERIV
|
|
printf("Atom mismatch -> Forbid\n");
|
|
#endif
|
|
return(forbiddenExp);
|
|
}
|
|
#ifdef DEBUG_DERIV
|
|
printf("Complex exp vs Atom -> Forbid\n");
|
|
#endif
|
|
return(forbiddenExp);
|
|
case XML_EXP_SEQ:
|
|
/* try to get the sequence consumed only if possible */
|
|
if (xmlExpCheckCard(exp->exp_left, sub)) {
|
|
/* See if the sequence can be consumed directly */
|
|
#ifdef DEBUG_DERIV
|
|
printf("Seq trying left only\n");
|
|
#endif
|
|
ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
|
|
if ((ret != forbiddenExp) && (ret != NULL)) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Seq trying left only worked\n");
|
|
#endif
|
|
/*
|
|
* TODO: assumption here that we are determinist
|
|
* i.e. we won't get to a nillable exp left
|
|
* subset which could be matched by the right
|
|
* part too.
|
|
* e.g.: (a | b)+,(a | c) and 'a+,a'
|
|
*/
|
|
exp->exp_right->ref++;
|
|
return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret,
|
|
exp->exp_right, NULL, 0, 0));
|
|
}
|
|
#ifdef DEBUG_DERIV
|
|
} else {
|
|
printf("Seq: left too short\n");
|
|
#endif
|
|
}
|
|
/* Try instead to decompose */
|
|
if (sub->type == XML_EXP_COUNT) {
|
|
int min, max;
|
|
|
|
#ifdef DEBUG_DERIV
|
|
printf("Seq: sub is a count\n");
|
|
#endif
|
|
ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left);
|
|
if (ret == NULL)
|
|
return(NULL);
|
|
if (ret != forbiddenExp) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Seq , Count match on left\n");
|
|
#endif
|
|
if (sub->exp_max < 0)
|
|
max = -1;
|
|
else
|
|
max = sub->exp_max -1;
|
|
if (sub->exp_min > 0)
|
|
min = sub->exp_min -1;
|
|
else
|
|
min = 0;
|
|
exp->exp_right->ref++;
|
|
tmp = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret,
|
|
exp->exp_right, NULL, 0, 0);
|
|
if (tmp == NULL)
|
|
return(NULL);
|
|
|
|
sub->exp_left->ref++;
|
|
tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT,
|
|
sub->exp_left, NULL, NULL, min, max);
|
|
if (tmp2 == NULL) {
|
|
xmlExpFree(ctxt, tmp);
|
|
return(NULL);
|
|
}
|
|
ret = xmlExpExpDeriveInt(ctxt, tmp, tmp2);
|
|
xmlExpFree(ctxt, tmp);
|
|
xmlExpFree(ctxt, tmp2);
|
|
return(ret);
|
|
}
|
|
}
|
|
/* we made no progress on structured operations */
|
|
break;
|
|
case XML_EXP_OR:
|
|
#ifdef DEBUG_DERIV
|
|
printf("Or , trying both side\n");
|
|
#endif
|
|
ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
|
|
if (ret == NULL)
|
|
return(NULL);
|
|
tmp = xmlExpExpDeriveInt(ctxt, exp->exp_right, sub);
|
|
if (tmp == NULL) {
|
|
xmlExpFree(ctxt, ret);
|
|
return(NULL);
|
|
}
|
|
return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp, NULL, 0, 0));
|
|
case XML_EXP_COUNT: {
|
|
int min, max;
|
|
|
|
if (sub->type == XML_EXP_COUNT) {
|
|
/*
|
|
* Try to see if the loop is completely subsumed
|
|
*/
|
|
tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left);
|
|
if (tmp == NULL)
|
|
return(NULL);
|
|
if (tmp == forbiddenExp) {
|
|
int mult;
|
|
|
|
#ifdef DEBUG_DERIV
|
|
printf("Count, Count inner don't subsume\n");
|
|
#endif
|
|
mult = xmlExpDivide(ctxt, sub->exp_left, exp->exp_left,
|
|
NULL, &tmp);
|
|
if (mult <= 0) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Count, Count not multiple => forbidden\n");
|
|
#endif
|
|
return(forbiddenExp);
|
|
}
|
|
if (sub->exp_max == -1) {
|
|
max = -1;
|
|
if (exp->exp_max == -1) {
|
|
if (exp->exp_min <= sub->exp_min * mult)
|
|
min = 0;
|
|
else
|
|
min = exp->exp_min - sub->exp_min * mult;
|
|
} else {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Count, Count finite can't subsume infinite\n");
|
|
#endif
|
|
xmlExpFree(ctxt, tmp);
|
|
return(forbiddenExp);
|
|
}
|
|
} else {
|
|
if (exp->exp_max == -1) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Infinite loop consume mult finite loop\n");
|
|
#endif
|
|
if (exp->exp_min > sub->exp_min * mult) {
|
|
max = -1;
|
|
min = exp->exp_min - sub->exp_min * mult;
|
|
} else {
|
|
max = -1;
|
|
min = 0;
|
|
}
|
|
} else {
|
|
if (exp->exp_max < sub->exp_max * mult) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("loops max mult mismatch => forbidden\n");
|
|
#endif
|
|
xmlExpFree(ctxt, tmp);
|
|
return(forbiddenExp);
|
|
}
|
|
if (sub->exp_max * mult > exp->exp_min)
|
|
min = 0;
|
|
else
|
|
min = exp->exp_min - sub->exp_max * mult;
|
|
max = exp->exp_max - sub->exp_max * mult;
|
|
}
|
|
}
|
|
} else if (!IS_NILLABLE(tmp)) {
|
|
/*
|
|
* TODO: loop here to try to grow if working on finite
|
|
* blocks.
|
|
*/
|
|
#ifdef DEBUG_DERIV
|
|
printf("Count, Count remain not nillable => forbidden\n");
|
|
#endif
|
|
xmlExpFree(ctxt, tmp);
|
|
return(forbiddenExp);
|
|
} else if (sub->exp_max == -1) {
|
|
if (exp->exp_max == -1) {
|
|
if (exp->exp_min <= sub->exp_min) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Infinite loops Okay => COUNT(0,Inf)\n");
|
|
#endif
|
|
max = -1;
|
|
min = 0;
|
|
} else {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Infinite loops min => Count(X,Inf)\n");
|
|
#endif
|
|
max = -1;
|
|
min = exp->exp_min - sub->exp_min;
|
|
}
|
|
} else if (exp->exp_min > sub->exp_min) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("loops min mismatch 1 => forbidden ???\n");
|
|
#endif
|
|
xmlExpFree(ctxt, tmp);
|
|
return(forbiddenExp);
|
|
} else {
|
|
max = -1;
|
|
min = 0;
|
|
}
|
|
} else {
|
|
if (exp->exp_max == -1) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Infinite loop consume finite loop\n");
|
|
#endif
|
|
if (exp->exp_min > sub->exp_min) {
|
|
max = -1;
|
|
min = exp->exp_min - sub->exp_min;
|
|
} else {
|
|
max = -1;
|
|
min = 0;
|
|
}
|
|
} else {
|
|
if (exp->exp_max < sub->exp_max) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("loops max mismatch => forbidden\n");
|
|
#endif
|
|
xmlExpFree(ctxt, tmp);
|
|
return(forbiddenExp);
|
|
}
|
|
if (sub->exp_max > exp->exp_min)
|
|
min = 0;
|
|
else
|
|
min = exp->exp_min - sub->exp_max;
|
|
max = exp->exp_max - sub->exp_max;
|
|
}
|
|
}
|
|
#ifdef DEBUG_DERIV
|
|
printf("loops match => SEQ(COUNT())\n");
|
|
#endif
|
|
exp->exp_left->ref++;
|
|
tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left,
|
|
NULL, NULL, min, max);
|
|
if (tmp2 == NULL) {
|
|
return(NULL);
|
|
}
|
|
ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2,
|
|
NULL, 0, 0);
|
|
return(ret);
|
|
}
|
|
tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
|
|
if (tmp == NULL)
|
|
return(NULL);
|
|
if (tmp == forbiddenExp) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("loop mismatch => forbidden\n");
|
|
#endif
|
|
return(forbiddenExp);
|
|
}
|
|
if (exp->exp_min > 0)
|
|
min = exp->exp_min - 1;
|
|
else
|
|
min = 0;
|
|
if (exp->exp_max < 0)
|
|
max = -1;
|
|
else
|
|
max = exp->exp_max - 1;
|
|
|
|
#ifdef DEBUG_DERIV
|
|
printf("loop match => SEQ(COUNT())\n");
|
|
#endif
|
|
exp->exp_left->ref++;
|
|
tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left,
|
|
NULL, NULL, min, max);
|
|
if (tmp2 == NULL)
|
|
return(NULL);
|
|
ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2,
|
|
NULL, 0, 0);
|
|
return(ret);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_DERIV
|
|
printf("Fallback to derivative\n");
|
|
#endif
|
|
if (IS_NILLABLE(sub)) {
|
|
if (!(IS_NILLABLE(exp)))
|
|
return(forbiddenExp);
|
|
else
|
|
ret = emptyExp;
|
|
} else
|
|
ret = NULL;
|
|
/*
|
|
* here the structured derivation made no progress so
|
|
* we use the default token based derivation to force one more step
|
|
*/
|
|
if (ctxt->tabSize == 0)
|
|
ctxt->tabSize = 40;
|
|
|
|
tab = (const xmlChar **) xmlMalloc(ctxt->tabSize *
|
|
sizeof(const xmlChar *));
|
|
if (tab == NULL) {
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* collect all the strings accepted by the subexpression on input
|
|
*/
|
|
len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0);
|
|
while (len < 0) {
|
|
const xmlChar **temp;
|
|
temp = (const xmlChar **) xmlRealloc((xmlChar **) tab, ctxt->tabSize * 2 *
|
|
sizeof(const xmlChar *));
|
|
if (temp == NULL) {
|
|
xmlFree((xmlChar **) tab);
|
|
return(NULL);
|
|
}
|
|
tab = temp;
|
|
ctxt->tabSize *= 2;
|
|
len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0);
|
|
}
|
|
for (i = 0;i < len;i++) {
|
|
tmp = xmlExpStringDeriveInt(ctxt, exp, tab[i]);
|
|
if ((tmp == NULL) || (tmp == forbiddenExp)) {
|
|
xmlExpFree(ctxt, ret);
|
|
xmlFree((xmlChar **) tab);
|
|
return(tmp);
|
|
}
|
|
tmp2 = xmlExpStringDeriveInt(ctxt, sub, tab[i]);
|
|
if ((tmp2 == NULL) || (tmp2 == forbiddenExp)) {
|
|
xmlExpFree(ctxt, tmp);
|
|
xmlExpFree(ctxt, ret);
|
|
xmlFree((xmlChar **) tab);
|
|
return(tmp);
|
|
}
|
|
tmp3 = xmlExpExpDeriveInt(ctxt, tmp, tmp2);
|
|
xmlExpFree(ctxt, tmp);
|
|
xmlExpFree(ctxt, tmp2);
|
|
|
|
if ((tmp3 == NULL) || (tmp3 == forbiddenExp)) {
|
|
xmlExpFree(ctxt, ret);
|
|
xmlFree((xmlChar **) tab);
|
|
return(tmp3);
|
|
}
|
|
|
|
if (ret == NULL)
|
|
ret = tmp3;
|
|
else {
|
|
ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp3, NULL, 0, 0);
|
|
if (ret == NULL) {
|
|
xmlFree((xmlChar **) tab);
|
|
return(NULL);
|
|
}
|
|
}
|
|
}
|
|
xmlFree((xmlChar **) tab);
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlExpExpDerive:
|
|
* @ctxt: the expressions context
|
|
* @exp: the englobing expression
|
|
* @sub: the subexpression
|
|
*
|
|
* Evaluates the expression resulting from @exp consuming a sub expression @sub
|
|
* Based on algebraic derivation and sometimes direct Brzozowski derivation
|
|
* it usually takes less than linear time and can handle expressions generating
|
|
* infinite languages.
|
|
*
|
|
* Returns the resulting expression or NULL in case of internal error, the
|
|
* result must be freed
|
|
*/
|
|
xmlExpNodePtr
|
|
xmlExpExpDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
|
|
if ((exp == NULL) || (ctxt == NULL) || (sub == NULL))
|
|
return(NULL);
|
|
|
|
/*
|
|
* O(1) speedups
|
|
*/
|
|
if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Sub nillable and not exp : can't subsume\n");
|
|
#endif
|
|
return(forbiddenExp);
|
|
}
|
|
if (xmlExpCheckCard(exp, sub) == 0) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("sub generate longer sequences than exp : can't subsume\n");
|
|
#endif
|
|
return(forbiddenExp);
|
|
}
|
|
return(xmlExpExpDeriveInt(ctxt, exp, sub));
|
|
}
|
|
|
|
/**
|
|
* xmlExpSubsume:
|
|
* @ctxt: the expressions context
|
|
* @exp: the englobing expression
|
|
* @sub: the subexpression
|
|
*
|
|
* Check whether @exp accepts all the languages accepted by @sub
|
|
* the input being a subexpression.
|
|
*
|
|
* Returns 1 if true 0 if false and -1 in case of failure.
|
|
*/
|
|
int
|
|
xmlExpSubsume(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
|
|
xmlExpNodePtr tmp;
|
|
|
|
if ((exp == NULL) || (ctxt == NULL) || (sub == NULL))
|
|
return(-1);
|
|
|
|
/*
|
|
* TODO: speedup by checking the language of sub is a subset of the
|
|
* language of exp
|
|
*/
|
|
/*
|
|
* O(1) speedups
|
|
*/
|
|
if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("Sub nillable and not exp : can't subsume\n");
|
|
#endif
|
|
return(0);
|
|
}
|
|
if (xmlExpCheckCard(exp, sub) == 0) {
|
|
#ifdef DEBUG_DERIV
|
|
printf("sub generate longer sequences than exp : can't subsume\n");
|
|
#endif
|
|
return(0);
|
|
}
|
|
tmp = xmlExpExpDeriveInt(ctxt, exp, sub);
|
|
#ifdef DEBUG_DERIV
|
|
printf("Result derivation :\n");
|
|
PRINT_EXP(tmp);
|
|
#endif
|
|
if (tmp == NULL)
|
|
return(-1);
|
|
if (tmp == forbiddenExp)
|
|
return(0);
|
|
if (tmp == emptyExp)
|
|
return(1);
|
|
if ((tmp != NULL) && (IS_NILLABLE(tmp))) {
|
|
xmlExpFree(ctxt, tmp);
|
|
return(1);
|
|
}
|
|
xmlExpFree(ctxt, tmp);
|
|
return(0);
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Parsing expression *
|
|
* *
|
|
************************************************************************/
|
|
|
|
static xmlExpNodePtr xmlExpParseExpr(xmlExpCtxtPtr ctxt);
|
|
|
|
#undef CUR
|
|
#define CUR (*ctxt->cur)
|
|
#undef NEXT
|
|
#define NEXT ctxt->cur++;
|
|
#undef IS_BLANK
|
|
#define IS_BLANK(c) ((c == ' ') || (c == '\n') || (c == '\r') || (c == '\t'))
|
|
#define SKIP_BLANKS while (IS_BLANK(*ctxt->cur)) ctxt->cur++;
|
|
|
|
static int
|
|
xmlExpParseNumber(xmlExpCtxtPtr ctxt) {
|
|
int ret = 0;
|
|
|
|
SKIP_BLANKS
|
|
if (CUR == '*') {
|
|
NEXT
|
|
return(-1);
|
|
}
|
|
if ((CUR < '0') || (CUR > '9'))
|
|
return(-1);
|
|
while ((CUR >= '0') && (CUR <= '9')) {
|
|
ret = ret * 10 + (CUR - '0');
|
|
NEXT
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
static xmlExpNodePtr
|
|
xmlExpParseOr(xmlExpCtxtPtr ctxt) {
|
|
const char *base;
|
|
xmlExpNodePtr ret;
|
|
const xmlChar *val;
|
|
|
|
SKIP_BLANKS
|
|
base = ctxt->cur;
|
|
if (*ctxt->cur == '(') {
|
|
NEXT
|
|
ret = xmlExpParseExpr(ctxt);
|
|
SKIP_BLANKS
|
|
if (*ctxt->cur != ')') {
|
|
fprintf(stderr, "unbalanced '(' : %s\n", base);
|
|
xmlExpFree(ctxt, ret);
|
|
return(NULL);
|
|
}
|
|
NEXT;
|
|
SKIP_BLANKS
|
|
goto parse_quantifier;
|
|
}
|
|
while ((CUR != 0) && (!(IS_BLANK(CUR))) && (CUR != '(') &&
|
|
(CUR != ')') && (CUR != '|') && (CUR != ',') && (CUR != '{') &&
|
|
(CUR != '*') && (CUR != '+') && (CUR != '?') && (CUR != '}'))
|
|
NEXT;
|
|
val = xmlDictLookup(ctxt->dict, BAD_CAST base, ctxt->cur - base);
|
|
if (val == NULL)
|
|
return(NULL);
|
|
ret = xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, val, 0, 0);
|
|
if (ret == NULL)
|
|
return(NULL);
|
|
SKIP_BLANKS
|
|
parse_quantifier:
|
|
if (CUR == '{') {
|
|
int min, max;
|
|
|
|
NEXT
|
|
min = xmlExpParseNumber(ctxt);
|
|
if (min < 0) {
|
|
xmlExpFree(ctxt, ret);
|
|
return(NULL);
|
|
}
|
|
SKIP_BLANKS
|
|
if (CUR == ',') {
|
|
NEXT
|
|
max = xmlExpParseNumber(ctxt);
|
|
SKIP_BLANKS
|
|
} else
|
|
max = min;
|
|
if (CUR != '}') {
|
|
xmlExpFree(ctxt, ret);
|
|
return(NULL);
|
|
}
|
|
NEXT
|
|
ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
|
|
min, max);
|
|
SKIP_BLANKS
|
|
} else if (CUR == '?') {
|
|
NEXT
|
|
ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
|
|
0, 1);
|
|
SKIP_BLANKS
|
|
} else if (CUR == '+') {
|
|
NEXT
|
|
ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
|
|
1, -1);
|
|
SKIP_BLANKS
|
|
} else if (CUR == '*') {
|
|
NEXT
|
|
ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
|
|
0, -1);
|
|
SKIP_BLANKS
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
|
|
static xmlExpNodePtr
|
|
xmlExpParseSeq(xmlExpCtxtPtr ctxt) {
|
|
xmlExpNodePtr ret, right;
|
|
|
|
ret = xmlExpParseOr(ctxt);
|
|
SKIP_BLANKS
|
|
while (CUR == '|') {
|
|
NEXT
|
|
right = xmlExpParseOr(ctxt);
|
|
if (right == NULL) {
|
|
xmlExpFree(ctxt, ret);
|
|
return(NULL);
|
|
}
|
|
ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, right, NULL, 0, 0);
|
|
if (ret == NULL)
|
|
return(NULL);
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
static xmlExpNodePtr
|
|
xmlExpParseExpr(xmlExpCtxtPtr ctxt) {
|
|
xmlExpNodePtr ret, right;
|
|
|
|
ret = xmlExpParseSeq(ctxt);
|
|
SKIP_BLANKS
|
|
while (CUR == ',') {
|
|
NEXT
|
|
right = xmlExpParseSeq(ctxt);
|
|
if (right == NULL) {
|
|
xmlExpFree(ctxt, ret);
|
|
return(NULL);
|
|
}
|
|
ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, right, NULL, 0, 0);
|
|
if (ret == NULL)
|
|
return(NULL);
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* xmlExpParse:
|
|
* @ctxt: the expressions context
|
|
* @expr: the 0 terminated string
|
|
*
|
|
* Minimal parser for regexps, it understand the following constructs
|
|
* - string terminals
|
|
* - choice operator |
|
|
* - sequence operator ,
|
|
* - subexpressions (...)
|
|
* - usual cardinality operators + * and ?
|
|
* - finite sequences { min, max }
|
|
* - infinite sequences { min, * }
|
|
* There is minimal checkings made especially no checking on strings values
|
|
*
|
|
* Returns a new expression or NULL in case of failure
|
|
*/
|
|
xmlExpNodePtr
|
|
xmlExpParse(xmlExpCtxtPtr ctxt, const char *expr) {
|
|
xmlExpNodePtr ret;
|
|
|
|
ctxt->expr = expr;
|
|
ctxt->cur = expr;
|
|
|
|
ret = xmlExpParseExpr(ctxt);
|
|
SKIP_BLANKS
|
|
if (*ctxt->cur != 0) {
|
|
xmlExpFree(ctxt, ret);
|
|
return(NULL);
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
static void
|
|
xmlExpDumpInt(xmlBufferPtr buf, xmlExpNodePtr expr, int glob) {
|
|
xmlExpNodePtr c;
|
|
|
|
if (expr == NULL) return;
|
|
if (glob) xmlBufferWriteChar(buf, "(");
|
|
switch (expr->type) {
|
|
case XML_EXP_EMPTY:
|
|
xmlBufferWriteChar(buf, "empty");
|
|
break;
|
|
case XML_EXP_FORBID:
|
|
xmlBufferWriteChar(buf, "forbidden");
|
|
break;
|
|
case XML_EXP_ATOM:
|
|
xmlBufferWriteCHAR(buf, expr->exp_str);
|
|
break;
|
|
case XML_EXP_SEQ:
|
|
c = expr->exp_left;
|
|
if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
|
|
xmlExpDumpInt(buf, c, 1);
|
|
else
|
|
xmlExpDumpInt(buf, c, 0);
|
|
xmlBufferWriteChar(buf, " , ");
|
|
c = expr->exp_right;
|
|
if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
|
|
xmlExpDumpInt(buf, c, 1);
|
|
else
|
|
xmlExpDumpInt(buf, c, 0);
|
|
break;
|
|
case XML_EXP_OR:
|
|
c = expr->exp_left;
|
|
if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
|
|
xmlExpDumpInt(buf, c, 1);
|
|
else
|
|
xmlExpDumpInt(buf, c, 0);
|
|
xmlBufferWriteChar(buf, " | ");
|
|
c = expr->exp_right;
|
|
if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
|
|
xmlExpDumpInt(buf, c, 1);
|
|
else
|
|
xmlExpDumpInt(buf, c, 0);
|
|
break;
|
|
case XML_EXP_COUNT: {
|
|
char rep[40];
|
|
|
|
c = expr->exp_left;
|
|
if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
|
|
xmlExpDumpInt(buf, c, 1);
|
|
else
|
|
xmlExpDumpInt(buf, c, 0);
|
|
if ((expr->exp_min == 0) && (expr->exp_max == 1)) {
|
|
rep[0] = '?';
|
|
rep[1] = 0;
|
|
} else if ((expr->exp_min == 0) && (expr->exp_max == -1)) {
|
|
rep[0] = '*';
|
|
rep[1] = 0;
|
|
} else if ((expr->exp_min == 1) && (expr->exp_max == -1)) {
|
|
rep[0] = '+';
|
|
rep[1] = 0;
|
|
} else if (expr->exp_max == expr->exp_min) {
|
|
snprintf(rep, 39, "{%d}", expr->exp_min);
|
|
} else if (expr->exp_max < 0) {
|
|
snprintf(rep, 39, "{%d,inf}", expr->exp_min);
|
|
} else {
|
|
snprintf(rep, 39, "{%d,%d}", expr->exp_min, expr->exp_max);
|
|
}
|
|
rep[39] = 0;
|
|
xmlBufferWriteChar(buf, rep);
|
|
break;
|
|
}
|
|
default:
|
|
fprintf(stderr, "Error in tree\n");
|
|
}
|
|
if (glob)
|
|
xmlBufferWriteChar(buf, ")");
|
|
}
|
|
/**
|
|
* xmlExpDump:
|
|
* @buf: a buffer to receive the output
|
|
* @expr: the compiled expression
|
|
*
|
|
* Serialize the expression as compiled to the buffer
|
|
*/
|
|
void
|
|
xmlExpDump(xmlBufferPtr buf, xmlExpNodePtr expr) {
|
|
if ((buf == NULL) || (expr == NULL))
|
|
return;
|
|
xmlExpDumpInt(buf, expr, 0);
|
|
}
|
|
|
|
/**
|
|
* xmlExpMaxToken:
|
|
* @expr: a compiled expression
|
|
*
|
|
* Indicate the maximum number of input a expression can accept
|
|
*
|
|
* Returns the maximum length or -1 in case of error
|
|
*/
|
|
int
|
|
xmlExpMaxToken(xmlExpNodePtr expr) {
|
|
if (expr == NULL)
|
|
return(-1);
|
|
return(expr->c_max);
|
|
}
|
|
|
|
/**
|
|
* xmlExpCtxtNbNodes:
|
|
* @ctxt: an expression context
|
|
*
|
|
* Debugging facility provides the number of allocated nodes at a that point
|
|
*
|
|
* Returns the number of nodes in use or -1 in case of error
|
|
*/
|
|
int
|
|
xmlExpCtxtNbNodes(xmlExpCtxtPtr ctxt) {
|
|
if (ctxt == NULL)
|
|
return(-1);
|
|
return(ctxt->nb_nodes);
|
|
}
|
|
|
|
/**
|
|
* xmlExpCtxtNbCons:
|
|
* @ctxt: an expression context
|
|
*
|
|
* Debugging facility provides the number of allocated nodes over lifetime
|
|
*
|
|
* Returns the number of nodes ever allocated or -1 in case of error
|
|
*/
|
|
int
|
|
xmlExpCtxtNbCons(xmlExpCtxtPtr ctxt) {
|
|
if (ctxt == NULL)
|
|
return(-1);
|
|
return(ctxt->nb_cons);
|
|
}
|
|
|
|
#endif /* LIBXML_EXPR_ENABLED */
|
|
#define bottom_xmlregexp
|
|
#include "elfgcchack.h"
|
|
#endif /* LIBXML_REGEXP_ENABLED */
|