Sweden-Number/dlls/dbghelp/cpu_x86_64.c

810 lines
30 KiB
C

/*
* File cpu_x86_64.c
*
* Copyright (C) 1999, 2005 Alexandre Julliard
* Copyright (C) 2009 Eric Pouech.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <assert.h>
#define NONAMELESSUNION
#define NONAMELESSSTRUCT
#include "ntstatus.h"
#define WIN32_NO_STATUS
#include "dbghelp_private.h"
#include "winternl.h"
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(dbghelp);
/* x86-64 unwind information, for PE modules, as described on MSDN */
typedef enum _UNWIND_OP_CODES
{
UWOP_PUSH_NONVOL = 0,
UWOP_ALLOC_LARGE,
UWOP_ALLOC_SMALL,
UWOP_SET_FPREG,
UWOP_SAVE_NONVOL,
UWOP_SAVE_NONVOL_FAR,
UWOP_SAVE_XMM128,
UWOP_SAVE_XMM128_FAR,
UWOP_PUSH_MACHFRAME
} UNWIND_CODE_OPS;
typedef union _UNWIND_CODE
{
struct
{
BYTE CodeOffset;
BYTE UnwindOp : 4;
BYTE OpInfo : 4;
};
USHORT FrameOffset;
} UNWIND_CODE, *PUNWIND_CODE;
typedef struct _UNWIND_INFO
{
BYTE Version : 3;
BYTE Flags : 5;
BYTE SizeOfProlog;
BYTE CountOfCodes;
BYTE FrameRegister : 4;
BYTE FrameOffset : 4;
UNWIND_CODE UnwindCode[1]; /* actually CountOfCodes (aligned) */
/*
* union
* {
* OPTIONAL ULONG ExceptionHandler;
* OPTIONAL ULONG FunctionEntry;
* };
* OPTIONAL ULONG ExceptionData[];
*/
} UNWIND_INFO, *PUNWIND_INFO;
#define GetUnwindCodeEntry(info, index) \
((info)->UnwindCode[index])
#define GetLanguageSpecificDataPtr(info) \
((PVOID)&GetUnwindCodeEntry((info),((info)->CountOfCodes + 1) & ~1))
#define GetExceptionHandler(base, info) \
((PEXCEPTION_HANDLER)((base) + *(PULONG)GetLanguageSpecificDataPtr(info)))
#define GetChainedFunctionEntry(base, info) \
((PRUNTIME_FUNCTION)((base) + *(PULONG)GetLanguageSpecificDataPtr(info)))
#define GetExceptionDataPtr(info) \
((PVOID)((PULONG)GetLanguageSpecificData(info) + 1)
static unsigned x86_64_get_addr(HANDLE hThread, const CONTEXT* ctx,
enum cpu_addr ca, ADDRESS64* addr)
{
addr->Mode = AddrModeFlat;
switch (ca)
{
#ifdef __x86_64__
case cpu_addr_pc: addr->Segment = ctx->SegCs; addr->Offset = ctx->Rip; return TRUE;
case cpu_addr_stack: addr->Segment = ctx->SegSs; addr->Offset = ctx->Rsp; return TRUE;
case cpu_addr_frame: addr->Segment = ctx->SegSs; addr->Offset = ctx->Rbp; return TRUE;
#endif
default: addr->Mode = -1;
return FALSE;
}
}
enum st_mode {stm_start, stm_64bit, stm_done};
/* indexes in Reserved array */
#define __CurrentMode 0
#define __CurrentCount 1
/* #define __ 2 (unused) */
#define curr_mode (frame->Reserved[__CurrentMode])
#define curr_count (frame->Reserved[__CurrentCount])
/* #define ??? (frame->Reserved[__]) (unused) */
#ifdef __x86_64__
union handler_data
{
RUNTIME_FUNCTION chain;
ULONG handler;
};
static void dump_unwind_info(HANDLE hProcess, ULONG64 base, RUNTIME_FUNCTION *function)
{
static const char * const reg_names[16] =
{ "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" };
union handler_data *handler_data;
char buffer[sizeof(UNWIND_INFO) + 256 * sizeof(UNWIND_CODE)];
UNWIND_INFO* info = (UNWIND_INFO*)buffer;
unsigned int i, count;
SIZE_T r;
TRACE("**** func %x-%x\n", function->BeginAddress, function->EndAddress);
for (;;)
{
if (function->UnwindData & 1)
{
#if 0
RUNTIME_FUNCTION *next = (RUNTIME_FUNCTION*)((char*)base + (function->UnwindData & ~1));
TRACE("unwind info for function %p-%p chained to function %p-%p\n",
(char*)base + function->BeginAddress, (char*)base + function->EndAddress,
(char*)base + next->BeginAddress, (char*)base + next->EndAddress);
function = next;
continue;
#else
FIXME("NOT SUPPORTED\n");
#endif
}
ReadProcessMemory(hProcess, (char*)base + function->UnwindData, info, sizeof(*info), &r);
ReadProcessMemory(hProcess, (char*)base + function->UnwindData + FIELD_OFFSET(UNWIND_INFO, UnwindCode),
info->UnwindCode, 256 * sizeof(UNWIND_CODE), &r);
TRACE("unwind info at %p flags %x prolog 0x%x bytes function %p-%p\n",
info, info->Flags, info->SizeOfProlog,
(char*)base + function->BeginAddress, (char*)base + function->EndAddress);
if (info->FrameRegister)
TRACE(" frame register %s offset 0x%x(%%rsp)\n",
reg_names[info->FrameRegister], info->FrameOffset * 16);
for (i = 0; i < info->CountOfCodes; i++)
{
TRACE(" 0x%x: ", info->UnwindCode[i].CodeOffset);
switch (info->UnwindCode[i].UnwindOp)
{
case UWOP_PUSH_NONVOL:
TRACE("pushq %%%s\n", reg_names[info->UnwindCode[i].OpInfo]);
break;
case UWOP_ALLOC_LARGE:
if (info->UnwindCode[i].OpInfo)
{
count = *(DWORD*)&info->UnwindCode[i+1];
i += 2;
}
else
{
count = *(USHORT*)&info->UnwindCode[i+1] * 8;
i++;
}
TRACE("subq $0x%x,%%rsp\n", count);
break;
case UWOP_ALLOC_SMALL:
count = (info->UnwindCode[i].OpInfo + 1) * 8;
TRACE("subq $0x%x,%%rsp\n", count);
break;
case UWOP_SET_FPREG:
TRACE("leaq 0x%x(%%rsp),%s\n",
info->FrameOffset * 16, reg_names[info->FrameRegister]);
break;
case UWOP_SAVE_NONVOL:
count = *(USHORT*)&info->UnwindCode[i+1] * 8;
TRACE("movq %%%s,0x%x(%%rsp)\n", reg_names[info->UnwindCode[i].OpInfo], count);
i++;
break;
case UWOP_SAVE_NONVOL_FAR:
count = *(DWORD*)&info->UnwindCode[i+1];
TRACE("movq %%%s,0x%x(%%rsp)\n", reg_names[info->UnwindCode[i].OpInfo], count);
i += 2;
break;
case UWOP_SAVE_XMM128:
count = *(USHORT*)&info->UnwindCode[i+1] * 16;
TRACE("movaps %%xmm%u,0x%x(%%rsp)\n", info->UnwindCode[i].OpInfo, count);
i++;
break;
case UWOP_SAVE_XMM128_FAR:
count = *(DWORD*)&info->UnwindCode[i+1];
TRACE("movaps %%xmm%u,0x%x(%%rsp)\n", info->UnwindCode[i].OpInfo, count);
i += 2;
break;
case UWOP_PUSH_MACHFRAME:
TRACE("PUSH_MACHFRAME %u\n", info->UnwindCode[i].OpInfo);
break;
default:
FIXME("unknown code %u\n", info->UnwindCode[i].UnwindOp);
break;
}
}
handler_data = (union handler_data*)&info->UnwindCode[(info->CountOfCodes + 1) & ~1];
if (info->Flags & UNW_FLAG_CHAININFO)
{
TRACE(" chained to function %p-%p\n",
(char*)base + handler_data->chain.BeginAddress,
(char*)base + handler_data->chain.EndAddress);
function = &handler_data->chain;
continue;
}
if (info->Flags & (UNW_FLAG_EHANDLER | UNW_FLAG_UHANDLER))
TRACE(" handler %p data at %p\n",
(char*)base + handler_data->handler, &handler_data->handler + 1);
break;
}
}
/* highly derived from dlls/ntdll/signal_x86_64.c */
static ULONG64 get_int_reg(CONTEXT *context, int reg)
{
return *(&context->Rax + reg);
}
static void set_int_reg(CONTEXT *context, int reg, ULONG64 val)
{
*(&context->Rax + reg) = val;
}
static void set_float_reg(CONTEXT *context, int reg, M128A val)
{
*(&context->u.s.Xmm0 + reg) = val;
}
static int get_opcode_size(UNWIND_CODE op)
{
switch (op.UnwindOp)
{
case UWOP_ALLOC_LARGE:
return 2 + (op.OpInfo != 0);
case UWOP_SAVE_NONVOL:
case UWOP_SAVE_XMM128:
return 2;
case UWOP_SAVE_NONVOL_FAR:
case UWOP_SAVE_XMM128_FAR:
return 3;
default:
return 1;
}
}
static BOOL is_inside_epilog(struct cpu_stack_walk* csw, DWORD64 pc)
{
BYTE op0, op1, op2;
if (!sw_read_mem(csw, pc, &op0, 1)) return FALSE;
/* add or lea must be the first instruction, and it must have a rex.W prefix */
if ((op0 & 0xf8) == 0x48)
{
if (!sw_read_mem(csw, pc + 1, &op1, 1)) return FALSE;
switch (op1)
{
case 0x81: /* add $nnnn,%rsp */
if (!sw_read_mem(csw, pc + 2, &op2, 1)) return FALSE;
if (op0 == 0x48 && op2 == 0xc4)
{
pc += 7;
break;
}
return FALSE;
case 0x83: /* add $n,%rsp */
if (op0 == 0x48 && op2 == 0xc4)
{
pc += 4;
break;
}
return FALSE;
case 0x8d: /* lea n(reg),%rsp */
if (op0 & 0x06) return FALSE; /* rex.RX must be cleared */
if (((op2 >> 3) & 7) != 4) return FALSE; /* dest reg mus be %rsp */
if ((op2 & 7) == 4) return FALSE; /* no SIB byte allowed */
if ((op2 >> 6) == 1) /* 8-bit offset */
{
pc += 4;
break;
}
if ((op2 >> 6) == 2) /* 32-bit offset */
{
pc += 7;
break;
}
return FALSE;
}
}
/* now check for various pop instructions */
for (;;)
{
BYTE rex = 0;
if (!sw_read_mem(csw, pc, &op0, 1)) return FALSE;
if ((op0 & 0xf0) == 0x40)
{
rex = op0 & 0x0f; /* rex prefix */
if (!sw_read_mem(csw, ++pc, &op0, 1)) return FALSE;
}
switch (op0)
{
case 0x58: /* pop %rax/%r8 */
case 0x59: /* pop %rcx/%r9 */
case 0x5a: /* pop %rdx/%r10 */
case 0x5b: /* pop %rbx/%r11 */
case 0x5c: /* pop %rsp/%r12 */
case 0x5d: /* pop %rbp/%r13 */
case 0x5e: /* pop %rsi/%r14 */
case 0x5f: /* pop %rdi/%r15 */
pc++;
continue;
case 0xc2: /* ret $nn */
case 0xc3: /* ret */
return TRUE;
/* FIXME: add various jump instructions */
}
return FALSE;
}
}
static BOOL default_unwind(struct cpu_stack_walk* csw, CONTEXT* context)
{
if (!sw_read_mem(csw, context->Rsp, &context->Rip, sizeof(DWORD64)))
{
WARN("Cannot read new frame offset %s\n", wine_dbgstr_longlong(context->Rsp));
return FALSE;
}
context->Rsp += sizeof(DWORD64);
return TRUE;
}
static BOOL interpret_function_table_entry(struct cpu_stack_walk* csw,
CONTEXT* context, RUNTIME_FUNCTION* function, DWORD64 base)
{
char buffer[sizeof(UNWIND_INFO) + 256 * sizeof(UNWIND_CODE)];
UNWIND_INFO* info = (UNWIND_INFO*)buffer;
unsigned i;
DWORD64 newframe, prolog_offset, off, value;
M128A floatvalue;
union handler_data handler_data;
/* FIXME: we have some assumptions here */
assert(context);
dump_unwind_info(csw->hProcess, sw_module_base(csw, context->Rip), function);
newframe = context->Rsp;
for (;;)
{
if (!sw_read_mem(csw, base + function->UnwindData, info, sizeof(*info)) ||
!sw_read_mem(csw, base + function->UnwindData + FIELD_OFFSET(UNWIND_INFO, UnwindCode),
info->UnwindCode, info->CountOfCodes * sizeof(UNWIND_CODE)))
{
WARN("Couldn't read unwind_code at %lx\n", base + function->UnwindData);
return FALSE;
}
if (info->Version != 1)
{
WARN("unknown unwind info version %u at %lx\n", info->Version, base + function->UnwindData);
return FALSE;
}
if (info->FrameRegister)
newframe = get_int_reg(context, info->FrameRegister) - info->FrameOffset * 16;
/* check if in prolog */
if (context->Rip >= base + function->BeginAddress &&
context->Rip < base + function->BeginAddress + info->SizeOfProlog)
{
prolog_offset = context->Rip - base - function->BeginAddress;
}
else
{
prolog_offset = ~0;
if (is_inside_epilog(csw, context->Rip))
{
FIXME("epilog management not fully done\n");
/* interpret_epilog((const BYTE*)frame->AddrPC.Offset, context); */
return TRUE;
}
}
for (i = 0; i < info->CountOfCodes; i += get_opcode_size(info->UnwindCode[i]))
{
if (prolog_offset < info->UnwindCode[i].CodeOffset) continue; /* skip it */
switch (info->UnwindCode[i].UnwindOp)
{
case UWOP_PUSH_NONVOL: /* pushq %reg */
if (!sw_read_mem(csw, context->Rsp, &value, sizeof(DWORD64))) return FALSE;
set_int_reg(context, info->UnwindCode[i].OpInfo, value);
context->Rsp += sizeof(ULONG64);
break;
case UWOP_ALLOC_LARGE: /* subq $nn,%rsp */
if (info->UnwindCode[i].OpInfo) context->Rsp += *(DWORD*)&info->UnwindCode[i+1];
else context->Rsp += *(USHORT*)&info->UnwindCode[i+1] * 8;
break;
case UWOP_ALLOC_SMALL: /* subq $n,%rsp */
context->Rsp += (info->UnwindCode[i].OpInfo + 1) * 8;
break;
case UWOP_SET_FPREG: /* leaq nn(%rsp),%framereg */
context->Rsp = newframe;
break;
case UWOP_SAVE_NONVOL: /* movq %reg,n(%rsp) */
off = newframe + *(USHORT*)&info->UnwindCode[i+1] * 8;
if (!sw_read_mem(csw, context->Rsp, &value, sizeof(DWORD64))) return FALSE;
set_int_reg(context, info->UnwindCode[i].OpInfo, value);
break;
case UWOP_SAVE_NONVOL_FAR: /* movq %reg,nn(%rsp) */
off = newframe + *(DWORD*)&info->UnwindCode[i+1];
if (!sw_read_mem(csw, context->Rsp, &value, sizeof(DWORD64))) return FALSE;
set_int_reg(context, info->UnwindCode[i].OpInfo, value);
break;
case UWOP_SAVE_XMM128: /* movaps %xmmreg,n(%rsp) */
off = newframe + *(USHORT*)&info->UnwindCode[i+1] * 16;
if (!sw_read_mem(csw, context->Rsp, &floatvalue, sizeof(M128A))) return FALSE;
set_float_reg(context, info->UnwindCode[i].OpInfo, floatvalue);
break;
case UWOP_SAVE_XMM128_FAR: /* movaps %xmmreg,nn(%rsp) */
off = newframe + *(DWORD*)&info->UnwindCode[i+1];
if (!sw_read_mem(csw, context->Rsp, &floatvalue, sizeof(M128A))) return FALSE;
set_float_reg(context, info->UnwindCode[i].OpInfo, floatvalue);
break;
case UWOP_PUSH_MACHFRAME:
FIXME("PUSH_MACHFRAME %u\n", info->UnwindCode[i].OpInfo);
break;
default:
FIXME("unknown code %u\n", info->UnwindCode[i].UnwindOp);
break;
}
}
if (!(info->Flags & UNW_FLAG_CHAININFO)) break;
if (!sw_read_mem(csw, base + function->UnwindData + FIELD_OFFSET(UNWIND_INFO, UnwindCode) +
((info->CountOfCodes + 1) & ~1) * sizeof(UNWIND_CODE),
&handler_data, sizeof(handler_data))) return FALSE;
function = &handler_data.chain; /* restart with the chained info */
}
return default_unwind(csw, context);
}
/* fetch_next_frame()
*
* modify (at least) context.{rip, rsp, rbp} using unwind information
* either out of PE exception handlers, debug info (dwarf), or simple stack unwind
*/
static BOOL fetch_next_frame(struct cpu_stack_walk* csw, CONTEXT* context,
DWORD_PTR curr_pc, void** prtf)
{
DWORD_PTR cfa;
RUNTIME_FUNCTION* rtf;
DWORD64 base;
if (!curr_pc || !(base = sw_module_base(csw, curr_pc))) return FALSE;
rtf = sw_table_access(csw, curr_pc);
if (prtf) *prtf = rtf;
if (rtf)
{
return interpret_function_table_entry(csw, context, rtf, base);
}
else if (dwarf2_virtual_unwind(csw, curr_pc, context, &cfa))
{
context->Rsp = cfa;
TRACE("next function rip=%016lx\n", context->Rip);
TRACE(" rax=%016lx rbx=%016lx rcx=%016lx rdx=%016lx\n",
context->Rax, context->Rbx, context->Rcx, context->Rdx);
TRACE(" rsi=%016lx rdi=%016lx rbp=%016lx rsp=%016lx\n",
context->Rsi, context->Rdi, context->Rbp, context->Rsp);
TRACE(" r8=%016lx r9=%016lx r10=%016lx r11=%016lx\n",
context->R8, context->R9, context->R10, context->R11);
TRACE(" r12=%016lx r13=%016lx r14=%016lx r15=%016lx\n",
context->R12, context->R13, context->R14, context->R15);
return TRUE;
}
else
return default_unwind(csw, context);
}
static BOOL x86_64_stack_walk(struct cpu_stack_walk* csw, LPSTACKFRAME64 frame, CONTEXT* context)
{
unsigned deltapc = curr_count <= 1 ? 0 : 1;
/* sanity check */
if (curr_mode >= stm_done) return FALSE;
assert(!csw->is32);
TRACE("Enter: PC=%s Frame=%s Return=%s Stack=%s Mode=%s Count=%s\n",
wine_dbgstr_addr(&frame->AddrPC),
wine_dbgstr_addr(&frame->AddrFrame),
wine_dbgstr_addr(&frame->AddrReturn),
wine_dbgstr_addr(&frame->AddrStack),
curr_mode == stm_start ? "start" : "64bit",
wine_dbgstr_longlong(curr_count));
if (curr_mode == stm_start)
{
if ((frame->AddrPC.Mode == AddrModeFlat) &&
(frame->AddrFrame.Mode != AddrModeFlat))
{
WARN("Bad AddrPC.Mode / AddrFrame.Mode combination\n");
goto done_err;
}
/* Init done */
curr_mode = stm_64bit;
frame->AddrReturn.Mode = frame->AddrStack.Mode = AddrModeFlat;
/* don't set up AddrStack on first call. Either the caller has set it up, or
* we will get it in the next frame
*/
memset(&frame->AddrBStore, 0, sizeof(frame->AddrBStore));
}
else
{
if (context->Rsp != frame->AddrStack.Offset) FIXME("inconsistent Stack Pointer\n");
if (context->Rip != frame->AddrPC.Offset) FIXME("inconsistent Instruction Pointer\n");
if (frame->AddrReturn.Offset == 0) goto done_err;
if (!fetch_next_frame(csw, context, frame->AddrPC.Offset - deltapc, &frame->FuncTableEntry))
goto done_err;
deltapc = 1;
}
memset(&frame->Params, 0, sizeof(frame->Params));
/* set frame information */
frame->AddrStack.Offset = context->Rsp;
frame->AddrFrame.Offset = context->Rbp;
frame->AddrPC.Offset = context->Rip;
if (1)
{
CONTEXT newctx = *context;
if (!fetch_next_frame(csw, &newctx, frame->AddrPC.Offset - deltapc, NULL))
goto done_err;
frame->AddrReturn.Mode = AddrModeFlat;
frame->AddrReturn.Offset = newctx.Rip;
}
frame->Far = TRUE;
frame->Virtual = TRUE;
curr_count++;
TRACE("Leave: PC=%s Frame=%s Return=%s Stack=%s Mode=%s Count=%s FuncTable=%p\n",
wine_dbgstr_addr(&frame->AddrPC),
wine_dbgstr_addr(&frame->AddrFrame),
wine_dbgstr_addr(&frame->AddrReturn),
wine_dbgstr_addr(&frame->AddrStack),
curr_mode == stm_start ? "start" : "64bit",
wine_dbgstr_longlong(curr_count),
frame->FuncTableEntry);
return TRUE;
done_err:
curr_mode = stm_done;
return FALSE;
}
#else
static BOOL x86_64_stack_walk(struct cpu_stack_walk* csw, LPSTACKFRAME64 frame, CONTEXT* context)
{
return FALSE;
}
#endif
static void* x86_64_find_runtime_function(struct module* module, DWORD64 addr)
{
#ifdef __x86_64__
RUNTIME_FUNCTION* rtf;
ULONG size;
int min, max;
rtf = (RUNTIME_FUNCTION*)pe_map_directory(module, IMAGE_DIRECTORY_ENTRY_EXCEPTION, &size);
if (rtf) for (min = 0, max = size / sizeof(*rtf); min <= max; )
{
int pos = (min + max) / 2;
if (addr < module->module.BaseOfImage + rtf[pos].BeginAddress) max = pos - 1;
else if (addr >= module->module.BaseOfImage + rtf[pos].EndAddress) min = pos + 1;
else
{
rtf += pos;
while (rtf->UnwindData & 1) /* follow chained entry */
{
FIXME("RunTime_Function outside IMAGE_DIRECTORY_ENTRY_EXCEPTION unimplemented yet!\n");
/* we need to read into the other process */
/* rtf = (RUNTIME_FUNCTION*)(module->module.BaseOfImage + (rtf->UnwindData & ~1)); */
}
return rtf;
}
}
#endif
return NULL;
}
static unsigned x86_64_map_dwarf_register(unsigned regno)
{
unsigned reg;
if (regno >= 17 && regno <= 24)
reg = CV_AMD64_XMM0 + regno - 17;
else if (regno >= 25 && regno <= 32)
reg = CV_AMD64_XMM8 + regno - 25;
else if (regno >= 33 && regno <= 40)
reg = CV_AMD64_ST0 + regno - 33;
else switch (regno)
{
case 0: reg = CV_AMD64_RAX; break;
case 1: reg = CV_AMD64_RDX; break;
case 2: reg = CV_AMD64_RCX; break;
case 3: reg = CV_AMD64_RBX; break;
case 4: reg = CV_AMD64_RSI; break;
case 5: reg = CV_AMD64_RDI; break;
case 6: reg = CV_AMD64_RBP; break;
case 7: reg = CV_AMD64_RSP; break;
case 8: reg = CV_AMD64_R8; break;
case 9: reg = CV_AMD64_R9; break;
case 10: reg = CV_AMD64_R10; break;
case 11: reg = CV_AMD64_R11; break;
case 12: reg = CV_AMD64_R12; break;
case 13: reg = CV_AMD64_R13; break;
case 14: reg = CV_AMD64_R14; break;
case 15: reg = CV_AMD64_R15; break;
case 16: reg = CV_AMD64_RIP; break;
case 49: reg = CV_AMD64_EFLAGS; break;
case 50: reg = CV_AMD64_ES; break;
case 51: reg = CV_AMD64_CS; break;
case 52: reg = CV_AMD64_SS; break;
case 53: reg = CV_AMD64_DS; break;
case 54: reg = CV_AMD64_FS; break;
case 55: reg = CV_AMD64_GS; break;
case 62: reg = CV_AMD64_TR; break;
case 63: reg = CV_AMD64_LDTR; break;
case 64: reg = CV_AMD64_MXCSR; break;
case 65: reg = CV_AMD64_CTRL; break;
case 66: reg = CV_AMD64_STAT; break;
/*
* 56-57 reserved
* 58 %fs.base
* 59 %gs.base
* 60-61 reserved
*/
default:
FIXME("Don't know how to map register %d\n", regno);
return 0;
}
return reg;
}
static void* x86_64_fetch_context_reg(CONTEXT* ctx, unsigned regno, unsigned* size)
{
#ifdef __x86_64__
switch (regno)
{
case CV_AMD64_RAX: *size = sizeof(ctx->Rax); return &ctx->Rax;
case CV_AMD64_RDX: *size = sizeof(ctx->Rdx); return &ctx->Rdx;
case CV_AMD64_RCX: *size = sizeof(ctx->Rcx); return &ctx->Rcx;
case CV_AMD64_RBX: *size = sizeof(ctx->Rbx); return &ctx->Rbx;
case CV_AMD64_RSI: *size = sizeof(ctx->Rsi); return &ctx->Rsi;
case CV_AMD64_RDI: *size = sizeof(ctx->Rdi); return &ctx->Rdi;
case CV_AMD64_RBP: *size = sizeof(ctx->Rbp); return &ctx->Rbp;
case CV_AMD64_RSP: *size = sizeof(ctx->Rsp); return &ctx->Rsp;
case CV_AMD64_R8: *size = sizeof(ctx->R8); return &ctx->R8;
case CV_AMD64_R9: *size = sizeof(ctx->R9); return &ctx->R9;
case CV_AMD64_R10: *size = sizeof(ctx->R10); return &ctx->R10;
case CV_AMD64_R11: *size = sizeof(ctx->R11); return &ctx->R11;
case CV_AMD64_R12: *size = sizeof(ctx->R12); return &ctx->R12;
case CV_AMD64_R13: *size = sizeof(ctx->R13); return &ctx->R13;
case CV_AMD64_R14: *size = sizeof(ctx->R14); return &ctx->R14;
case CV_AMD64_R15: *size = sizeof(ctx->R15); return &ctx->R15;
case CV_AMD64_RIP: *size = sizeof(ctx->Rip); return &ctx->Rip;
case CV_AMD64_XMM0 + 0: *size = sizeof(ctx->u.s.Xmm0 ); return &ctx->u.s.Xmm0;
case CV_AMD64_XMM0 + 1: *size = sizeof(ctx->u.s.Xmm1 ); return &ctx->u.s.Xmm1;
case CV_AMD64_XMM0 + 2: *size = sizeof(ctx->u.s.Xmm2 ); return &ctx->u.s.Xmm2;
case CV_AMD64_XMM0 + 3: *size = sizeof(ctx->u.s.Xmm3 ); return &ctx->u.s.Xmm3;
case CV_AMD64_XMM0 + 4: *size = sizeof(ctx->u.s.Xmm4 ); return &ctx->u.s.Xmm4;
case CV_AMD64_XMM0 + 5: *size = sizeof(ctx->u.s.Xmm5 ); return &ctx->u.s.Xmm5;
case CV_AMD64_XMM0 + 6: *size = sizeof(ctx->u.s.Xmm6 ); return &ctx->u.s.Xmm6;
case CV_AMD64_XMM0 + 7: *size = sizeof(ctx->u.s.Xmm7 ); return &ctx->u.s.Xmm7;
case CV_AMD64_XMM8 + 0: *size = sizeof(ctx->u.s.Xmm8 ); return &ctx->u.s.Xmm8;
case CV_AMD64_XMM8 + 1: *size = sizeof(ctx->u.s.Xmm9 ); return &ctx->u.s.Xmm9;
case CV_AMD64_XMM8 + 2: *size = sizeof(ctx->u.s.Xmm10); return &ctx->u.s.Xmm10;
case CV_AMD64_XMM8 + 3: *size = sizeof(ctx->u.s.Xmm11); return &ctx->u.s.Xmm11;
case CV_AMD64_XMM8 + 4: *size = sizeof(ctx->u.s.Xmm12); return &ctx->u.s.Xmm12;
case CV_AMD64_XMM8 + 5: *size = sizeof(ctx->u.s.Xmm13); return &ctx->u.s.Xmm13;
case CV_AMD64_XMM8 + 6: *size = sizeof(ctx->u.s.Xmm14); return &ctx->u.s.Xmm14;
case CV_AMD64_XMM8 + 7: *size = sizeof(ctx->u.s.Xmm15); return &ctx->u.s.Xmm15;
case CV_AMD64_ST0 + 0: *size = sizeof(ctx->u.s.Legacy[0]); return &ctx->u.s.Legacy[0];
case CV_AMD64_ST0 + 1: *size = sizeof(ctx->u.s.Legacy[1]); return &ctx->u.s.Legacy[1];
case CV_AMD64_ST0 + 2: *size = sizeof(ctx->u.s.Legacy[2]); return &ctx->u.s.Legacy[2];
case CV_AMD64_ST0 + 3: *size = sizeof(ctx->u.s.Legacy[3]); return &ctx->u.s.Legacy[3];
case CV_AMD64_ST0 + 4: *size = sizeof(ctx->u.s.Legacy[4]); return &ctx->u.s.Legacy[4];
case CV_AMD64_ST0 + 5: *size = sizeof(ctx->u.s.Legacy[5]); return &ctx->u.s.Legacy[5];
case CV_AMD64_ST0 + 6: *size = sizeof(ctx->u.s.Legacy[6]); return &ctx->u.s.Legacy[6];
case CV_AMD64_ST0 + 7: *size = sizeof(ctx->u.s.Legacy[7]); return &ctx->u.s.Legacy[7];
case CV_AMD64_EFLAGS: *size = sizeof(ctx->EFlags); return &ctx->EFlags;
case CV_AMD64_ES: *size = sizeof(ctx->SegEs); return &ctx->SegEs;
case CV_AMD64_CS: *size = sizeof(ctx->SegCs); return &ctx->SegCs;
case CV_AMD64_SS: *size = sizeof(ctx->SegSs); return &ctx->SegSs;
case CV_AMD64_DS: *size = sizeof(ctx->SegDs); return &ctx->SegDs;
case CV_AMD64_FS: *size = sizeof(ctx->SegFs); return &ctx->SegFs;
case CV_AMD64_GS: *size = sizeof(ctx->SegGs); return &ctx->SegGs;
}
#endif
FIXME("Unknown register %x\n", regno);
return NULL;
}
static const char* x86_64_fetch_regname(unsigned regno)
{
switch (regno)
{
case CV_AMD64_RAX: return "rax";
case CV_AMD64_RDX: return "rdx";
case CV_AMD64_RCX: return "rcx";
case CV_AMD64_RBX: return "rbx";
case CV_AMD64_RSI: return "rsi";
case CV_AMD64_RDI: return "rdi";
case CV_AMD64_RBP: return "rbp";
case CV_AMD64_RSP: return "rsp";
case CV_AMD64_R8: return "r8";
case CV_AMD64_R9: return "r9";
case CV_AMD64_R10: return "r10";
case CV_AMD64_R11: return "r11";
case CV_AMD64_R12: return "r12";
case CV_AMD64_R13: return "r13";
case CV_AMD64_R14: return "r14";
case CV_AMD64_R15: return "r15";
case CV_AMD64_RIP: return "rip";
case CV_AMD64_XMM0 + 0: return "xmm0";
case CV_AMD64_XMM0 + 1: return "xmm1";
case CV_AMD64_XMM0 + 2: return "xmm2";
case CV_AMD64_XMM0 + 3: return "xmm3";
case CV_AMD64_XMM0 + 4: return "xmm4";
case CV_AMD64_XMM0 + 5: return "xmm5";
case CV_AMD64_XMM0 + 6: return "xmm6";
case CV_AMD64_XMM0 + 7: return "xmm7";
case CV_AMD64_XMM8 + 0: return "xmm8";
case CV_AMD64_XMM8 + 1: return "xmm9";
case CV_AMD64_XMM8 + 2: return "xmm10";
case CV_AMD64_XMM8 + 3: return "xmm11";
case CV_AMD64_XMM8 + 4: return "xmm12";
case CV_AMD64_XMM8 + 5: return "xmm13";
case CV_AMD64_XMM8 + 6: return "xmm14";
case CV_AMD64_XMM8 + 7: return "xmm15";
case CV_AMD64_ST0 + 0: return "st0";
case CV_AMD64_ST0 + 1: return "st1";
case CV_AMD64_ST0 + 2: return "st2";
case CV_AMD64_ST0 + 3: return "st3";
case CV_AMD64_ST0 + 4: return "st4";
case CV_AMD64_ST0 + 5: return "st5";
case CV_AMD64_ST0 + 6: return "st6";
case CV_AMD64_ST0 + 7: return "st7";
case CV_AMD64_EFLAGS: return "eflags";
case CV_AMD64_ES: return "es";
case CV_AMD64_CS: return "cs";
case CV_AMD64_SS: return "ss";
case CV_AMD64_DS: return "ds";
case CV_AMD64_FS: return "fs";
case CV_AMD64_GS: return "gs";
}
FIXME("Unknown register %x\n", regno);
return NULL;
}
struct cpu cpu_x86_64 = {
IMAGE_FILE_MACHINE_AMD64,
8,
CV_AMD64_RSP,
x86_64_get_addr,
x86_64_stack_walk,
x86_64_find_runtime_function,
x86_64_map_dwarf_register,
x86_64_fetch_context_reg,
x86_64_fetch_regname,
};