Sweden-Number/dlls/ntdll/unix/system.c

3157 lines
108 KiB
C

/*
* System information APIs
*
* Copyright 1996-1998 Marcus Meissner
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#if 0
#pragma makedep unix
#endif
#include "config.h"
#include "wine/port.h"
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#ifdef HAVE_SYS_TIME_H
# include <sys/time.h>
#endif
#include <time.h>
#ifdef HAVE_SYS_PARAM_H
# include <sys/param.h>
#endif
#ifdef HAVE_SYS_SYSCTL_H
# include <sys/sysctl.h>
#endif
#ifdef HAVE_MACHINE_CPU_H
# include <machine/cpu.h>
#endif
#ifdef HAVE_IOKIT_IOKITLIB_H
# include <CoreFoundation/CoreFoundation.h>
# include <IOKit/IOKitLib.h>
# include <IOKit/pwr_mgt/IOPM.h>
# include <IOKit/pwr_mgt/IOPMLib.h>
# include <IOKit/ps/IOPowerSources.h>
#endif
#ifdef __APPLE__
# include <mach/mach.h>
# include <mach/machine.h>
# include <mach/mach_init.h>
# include <mach/mach_host.h>
# include <mach/vm_map.h>
#endif
#define NONAMELESSUNION
#include "ntstatus.h"
#define WIN32_NO_STATUS
#include "windef.h"
#include "winternl.h"
#include "ddk/wdm.h"
#include "wine/asm.h"
#include "unix_private.h"
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(ntdll);
#include "pshpack1.h"
struct smbios_prologue
{
BYTE calling_method;
BYTE major_version;
BYTE minor_version;
BYTE revision;
DWORD length;
};
struct smbios_header
{
BYTE type;
BYTE length;
WORD handle;
};
struct smbios_bios
{
struct smbios_header hdr;
BYTE vendor;
BYTE version;
WORD start;
BYTE date;
BYTE size;
UINT64 characteristics;
BYTE characteristics_ext[2];
BYTE system_bios_major_release;
BYTE system_bios_minor_release;
BYTE ec_firmware_major_release;
BYTE ec_firmware_minor_release;
};
struct smbios_system
{
struct smbios_header hdr;
BYTE vendor;
BYTE product;
BYTE version;
BYTE serial;
BYTE uuid[16];
BYTE wake_up_type;
BYTE sku_number;
BYTE family;
};
struct smbios_board
{
struct smbios_header hdr;
BYTE vendor;
BYTE product;
BYTE version;
BYTE serial;
BYTE asset_tag;
BYTE feature_flags;
BYTE location;
WORD chassis_handle;
BYTE board_type;
BYTE num_contained_handles;
};
struct smbios_chassis
{
struct smbios_header hdr;
BYTE vendor;
BYTE type;
BYTE version;
BYTE serial;
BYTE asset_tag;
BYTE boot_state;
BYTE power_supply_state;
BYTE thermal_state;
BYTE security_status;
DWORD oem_defined;
BYTE height;
BYTE num_power_cords;
BYTE num_contained_elements;
BYTE contained_element_rec_length;
};
struct smbios_boot_info
{
struct smbios_header hdr;
BYTE reserved[6];
BYTE boot_status[10];
};
#include "poppack.h"
/* Firmware table providers */
#define ACPI 0x41435049
#define FIRM 0x4649524D
#define RSMB 0x52534D42
static SYSTEM_CPU_INFORMATION cpu_info;
/*******************************************************************************
* Architecture specific feature detection for CPUs
*
* This a set of mutually exclusive #if define()s each providing its own get_cpuinfo() to be called
* from init_cpu_info();
*/
#if defined(__i386__) || defined(__x86_64__)
#define AUTH 0x68747541 /* "Auth" */
#define ENTI 0x69746e65 /* "enti" */
#define CAMD 0x444d4163 /* "cAMD" */
#define GENU 0x756e6547 /* "Genu" */
#define INEI 0x49656e69 /* "ineI" */
#define NTEL 0x6c65746e /* "ntel" */
extern void do_cpuid(unsigned int ax, unsigned int *p);
#ifdef __i386__
__ASM_GLOBAL_FUNC( do_cpuid,
"pushl %esi\n\t"
"pushl %ebx\n\t"
"movl 12(%esp),%eax\n\t"
"movl 16(%esp),%esi\n\t"
"xorl %ecx,%ecx\n\t"
"cpuid\n\t"
"movl %eax,(%esi)\n\t"
"movl %ebx,4(%esi)\n\t"
"movl %ecx,8(%esi)\n\t"
"movl %edx,12(%esi)\n\t"
"popl %ebx\n\t"
"popl %esi\n\t"
"ret" )
#else
__ASM_GLOBAL_FUNC( do_cpuid,
"pushq %rbx\n\t"
"movl %edi,%eax\n\t"
"xorl %ecx,%ecx\n\t"
"cpuid\n\t"
"movl %eax,(%rsi)\n\t"
"movl %ebx,4(%rsi)\n\t"
"movl %ecx,8(%rsi)\n\t"
"movl %edx,12(%rsi)\n\t"
"popq %rbx\n\t"
"ret" )
#endif
#ifdef __i386__
extern int have_cpuid(void);
__ASM_GLOBAL_FUNC( have_cpuid,
"pushfl\n\t"
"pushfl\n\t"
"movl (%esp),%ecx\n\t"
"xorl $0x00200000,(%esp)\n\t"
"popfl\n\t"
"pushfl\n\t"
"popl %eax\n\t"
"popfl\n\t"
"xorl %ecx,%eax\n\t"
"andl $0x00200000,%eax\n\t"
"ret" )
#else
static int have_cpuid(void)
{
return 1;
}
#endif
/* Detect if a SSE2 processor is capable of Denormals Are Zero (DAZ) mode.
*
* This function assumes you have already checked for SSE2/FXSAVE support. */
static inline BOOL have_sse_daz_mode(void)
{
#ifdef __i386__
/* Intel says we need a zeroed 16-byte aligned buffer */
char buffer[512 + 16];
XSAVE_FORMAT *state = (XSAVE_FORMAT *)(((ULONG_PTR)buffer + 15) & ~15);
memset(buffer, 0, sizeof(buffer));
__asm__ __volatile__( "fxsave %0" : "=m" (*state) : "m" (*state) );
return (state->MxCsr_Mask & (1 << 6)) >> 6;
#else /* all x86_64 processors include SSE2 with DAZ mode */
return TRUE;
#endif
}
static void get_cpuinfo( SYSTEM_CPU_INFORMATION *info )
{
unsigned int regs[4], regs2[4], regs3[4];
#if defined(__i386__)
info->Architecture = PROCESSOR_ARCHITECTURE_INTEL;
#elif defined(__x86_64__)
info->Architecture = PROCESSOR_ARCHITECTURE_AMD64;
#endif
/* We're at least a 386 */
info->FeatureSet = CPU_FEATURE_VME | CPU_FEATURE_X86 | CPU_FEATURE_PGE;
info->Level = 3;
if (!have_cpuid()) return;
do_cpuid( 0x00000000, regs ); /* get standard cpuid level and vendor name */
if (regs[0]>=0x00000001) /* Check for supported cpuid version */
{
do_cpuid( 0x00000001, regs2 ); /* get cpu features */
if (regs2[3] & (1 << 3 )) info->FeatureSet |= CPU_FEATURE_PSE;
if (regs2[3] & (1 << 4 )) info->FeatureSet |= CPU_FEATURE_TSC;
if (regs2[3] & (1 << 6 )) info->FeatureSet |= CPU_FEATURE_PAE;
if (regs2[3] & (1 << 8 )) info->FeatureSet |= CPU_FEATURE_CX8;
if (regs2[3] & (1 << 11)) info->FeatureSet |= CPU_FEATURE_SEP;
if (regs2[3] & (1 << 12)) info->FeatureSet |= CPU_FEATURE_MTRR;
if (regs2[3] & (1 << 15)) info->FeatureSet |= CPU_FEATURE_CMOV;
if (regs2[3] & (1 << 16)) info->FeatureSet |= CPU_FEATURE_PAT;
if (regs2[3] & (1 << 23)) info->FeatureSet |= CPU_FEATURE_MMX;
if (regs2[3] & (1 << 24)) info->FeatureSet |= CPU_FEATURE_FXSR;
if (regs2[3] & (1 << 25)) info->FeatureSet |= CPU_FEATURE_SSE;
if (regs2[3] & (1 << 26)) info->FeatureSet |= CPU_FEATURE_SSE2;
if (regs2[2] & (1 << 0 )) info->FeatureSet |= CPU_FEATURE_SSE3;
if (regs2[2] & (1 << 9 )) info->FeatureSet |= CPU_FEATURE_SSSE3;
if (regs2[2] & (1 << 13)) info->FeatureSet |= CPU_FEATURE_CX128;
if (regs2[2] & (1 << 19)) info->FeatureSet |= CPU_FEATURE_SSE41;
if (regs2[2] & (1 << 20)) info->FeatureSet |= CPU_FEATURE_SSE42;
if (regs2[2] & (1 << 27)) info->FeatureSet |= CPU_FEATURE_XSAVE;
if (regs2[2] & (1 << 28)) info->FeatureSet |= CPU_FEATURE_AVX;
if((regs2[3] & (1 << 26)) && (regs2[3] & (1 << 24)) && have_sse_daz_mode()) /* has SSE2 and FXSAVE/FXRSTOR */
info->FeatureSet |= CPU_FEATURE_DAZ;
if (regs[0] >= 0x00000007)
{
do_cpuid( 0x00000007, regs3 ); /* get extended features */
if (regs3[1] & (1 << 5)) info->FeatureSet |= CPU_FEATURE_AVX2;
}
if (regs[1] == AUTH && regs[3] == ENTI && regs[2] == CAMD)
{
info->Level = (regs2[0] >> 8) & 0xf; /* family */
if (info->Level == 0xf) /* AMD says to add the extended family to the family if family is 0xf */
info->Level += (regs2[0] >> 20) & 0xff;
/* repack model and stepping to make a "revision" */
info->Revision = ((regs2[0] >> 16) & 0xf) << 12; /* extended model */
info->Revision |= ((regs2[0] >> 4 ) & 0xf) << 8; /* model */
info->Revision |= regs2[0] & 0xf; /* stepping */
do_cpuid( 0x80000000, regs ); /* get vendor cpuid level */
if (regs[0] >= 0x80000001)
{
do_cpuid( 0x80000001, regs2 ); /* get vendor features */
if (regs2[2] & (1 << 2)) info->FeatureSet |= CPU_FEATURE_VIRT;
if (regs2[3] & (1 << 20)) info->FeatureSet |= CPU_FEATURE_NX;
if (regs2[3] & (1 << 27)) info->FeatureSet |= CPU_FEATURE_TSC;
if (regs2[3] & (1u << 31)) info->FeatureSet |= CPU_FEATURE_3DNOW;
}
}
else if (regs[1] == GENU && regs[3] == INEI && regs[2] == NTEL)
{
info->Level = ((regs2[0] >> 8) & 0xf) + ((regs2[0] >> 20) & 0xff); /* family + extended family */
if(info->Level == 15) info->Level = 6;
/* repack model and stepping to make a "revision" */
info->Revision = ((regs2[0] >> 16) & 0xf) << 12; /* extended model */
info->Revision |= ((regs2[0] >> 4 ) & 0xf) << 8; /* model */
info->Revision |= regs2[0] & 0xf; /* stepping */
if(regs2[2] & (1 << 5)) info->FeatureSet |= CPU_FEATURE_VIRT;
if(regs2[3] & (1 << 21)) info->FeatureSet |= CPU_FEATURE_DS;
do_cpuid( 0x80000000, regs ); /* get vendor cpuid level */
if (regs[0] >= 0x80000001)
{
do_cpuid( 0x80000001, regs2 ); /* get vendor features */
if (regs2[3] & (1 << 20)) info->FeatureSet |= CPU_FEATURE_NX;
if (regs2[3] & (1 << 27)) info->FeatureSet |= CPU_FEATURE_TSC;
}
}
else
{
info->Level = (regs2[0] >> 8) & 0xf; /* family */
/* repack model and stepping to make a "revision" */
info->Revision = ((regs2[0] >> 4 ) & 0xf) << 8; /* model */
info->Revision |= regs2[0] & 0xf; /* stepping */
}
}
}
#elif defined(__arm__)
static inline void get_cpuinfo( SYSTEM_CPU_INFORMATION *info )
{
#ifdef linux
char line[512];
char *s, *value;
FILE *f = fopen("/proc/cpuinfo", "r");
if (f)
{
while (fgets( line, sizeof(line), f ))
{
/* NOTE: the ':' is the only character we can rely on */
if (!(value = strchr(line,':'))) continue;
/* terminate the valuename */
s = value - 1;
while ((s >= line) && (*s == ' ' || *s == '\t')) s--;
s[1] = 0;
/* and strip leading spaces from value */
value += 1;
while (*value == ' ' || *value == '\t') value++;
if ((s = strchr( value,'\n' ))) *s = 0;
if (!strcmp( line, "CPU architecture" ))
{
info->Level = atoi(value);
continue;
}
if (!strcmp( line, "CPU revision" ))
{
info->Revision = atoi(value);
continue;
}
if (!strcmp( line, "Features" ))
{
if (strstr(value, "crc32")) info->FeatureSet |= CPU_FEATURE_ARM_V8_CRC32;
if (strstr(value, "aes")) info->FeatureSet |= CPU_FEATURE_ARM_V8_CRYPTO;
continue;
}
}
fclose( f );
}
#elif defined(__FreeBSD__)
size_t valsize;
char buf[8];
int value;
valsize = sizeof(buf);
if (!sysctlbyname("hw.machine_arch", &buf, &valsize, NULL, 0) && sscanf(buf, "armv%i", &value) == 1)
info->Level = value;
valsize = sizeof(value);
if (!sysctlbyname("hw.floatingpoint", &value, &valsize, NULL, 0))
info->FeatureSet |= CPU_FEATURE_ARM_VFP_32;
#else
FIXME("CPU Feature detection not implemented.\n");
#endif
info->Architecture = PROCESSOR_ARCHITECTURE_ARM;
}
#elif defined(__aarch64__)
static void get_cpuinfo( SYSTEM_CPU_INFORMATION *info )
{
#ifdef linux
char line[512];
char *s, *value;
FILE *f = fopen("/proc/cpuinfo", "r");
if (f)
{
while (fgets( line, sizeof(line), f ))
{
/* NOTE: the ':' is the only character we can rely on */
if (!(value = strchr(line,':'))) continue;
/* terminate the valuename */
s = value - 1;
while ((s >= line) && (*s == ' ' || *s == '\t')) s--;
s[1] = 0;
/* and strip leading spaces from value */
value += 1;
while (*value == ' ' || *value == '\t') value++;
if ((s = strchr( value,'\n' ))) *s = 0;
if (!strcmp( line, "CPU architecture" ))
{
info->Level = atoi(value);
continue;
}
if (!strcmp( line, "CPU revision" ))
{
info->Revision = atoi(value);
continue;
}
if (!strcmp( line, "Features" ))
{
if (strstr(value, "crc32")) info->FeatureSet |= CPU_FEATURE_ARM_V8_CRC32;
if (strstr(value, "aes")) info->FeatureSet |= CPU_FEATURE_ARM_V8_CRYPTO;
continue;
}
}
fclose( f );
}
#else
FIXME("CPU Feature detection not implemented.\n");
#endif
info->Level = max(info->Level, 8);
info->Architecture = PROCESSOR_ARCHITECTURE_ARM64;
}
#endif /* End architecture specific feature detection for CPUs */
/******************************************************************
* init_cpu_info
*
* inits a couple of places with CPU related information:
* - cpu_info in this file
* - Peb->NumberOfProcessors
* - SharedUserData->ProcessFeatures[] array
*/
void init_cpu_info(void)
{
long num;
#ifdef _SC_NPROCESSORS_ONLN
num = sysconf(_SC_NPROCESSORS_ONLN);
if (num < 1)
{
num = 1;
WARN("Failed to detect the number of processors.\n");
}
#elif defined(CTL_HW) && defined(HW_NCPU)
int mib[2];
size_t len = sizeof(num);
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
if (sysctl(mib, 2, &num, &len, NULL, 0) != 0)
{
num = 1;
WARN("Failed to detect the number of processors.\n");
}
#else
num = 1;
FIXME("Detecting the number of processors is not supported.\n");
#endif
NtCurrentTeb()->Peb->NumberOfProcessors = num;
get_cpuinfo( &cpu_info );
TRACE( "<- CPU arch %d, level %d, rev %d, features 0x%x\n",
cpu_info.Architecture, cpu_info.Level, cpu_info.Revision, cpu_info.FeatureSet );
}
static BOOL grow_logical_proc_buf( SYSTEM_LOGICAL_PROCESSOR_INFORMATION **pdata, DWORD *max_len )
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION *new_data;
*max_len *= 2;
if (!(new_data = realloc( *pdata, *max_len*sizeof(*new_data) ))) return FALSE;
*pdata = new_data;
return TRUE;
}
static BOOL grow_logical_proc_ex_buf( SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX **pdataex, DWORD *max_len )
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *new_dataex;
DWORD new_len = *max_len * 2;
if (!(new_dataex = realloc( *pdataex, new_len * sizeof(*new_dataex) ))) return FALSE;
memset( new_dataex + *max_len, 0, (new_len - *max_len) * sizeof(*new_dataex) );
*pdataex = new_dataex;
*max_len = new_len;
return TRUE;
}
static DWORD log_proc_ex_size_plus(DWORD size)
{
/* add SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX.Relationship and .Size */
return sizeof(LOGICAL_PROCESSOR_RELATIONSHIP) + sizeof(DWORD) + size;
}
static DWORD count_bits(ULONG_PTR mask)
{
DWORD count = 0;
while (mask > 0)
{
mask >>= 1;
count++;
}
return count;
}
/* Store package and core information for a logical processor. Parsing of processor
* data may happen in multiple passes; the 'id' parameter is then used to locate
* previously stored data. The type of data stored in 'id' depends on 'rel':
* - RelationProcessorPackage: package id ('CPU socket').
* - RelationProcessorCore: physical core number.
*/
static BOOL logical_proc_info_add_by_id( SYSTEM_LOGICAL_PROCESSOR_INFORMATION **pdata,
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX **pdataex, DWORD *len,
DWORD *pmax_len, LOGICAL_PROCESSOR_RELATIONSHIP rel,
DWORD id, ULONG_PTR mask )
{
if (pdata)
{
DWORD i;
for (i = 0; i < *len; i++)
{
if (rel == RelationProcessorPackage && (*pdata)[i].Relationship == rel && (*pdata)[i].u.Reserved[1] == id)
{
(*pdata)[i].ProcessorMask |= mask;
return TRUE;
}
else if (rel == RelationProcessorCore && (*pdata)[i].Relationship == rel && (*pdata)[i].u.Reserved[1] == id)
return TRUE;
}
while (*len == *pmax_len)
{
if (!grow_logical_proc_buf(pdata, pmax_len)) return FALSE;
}
(*pdata)[i].Relationship = rel;
(*pdata)[i].ProcessorMask = mask;
if (rel == RelationProcessorCore)
(*pdata)[i].u.ProcessorCore.Flags = count_bits(mask) > 1 ? LTP_PC_SMT : 0;
(*pdata)[i].u.Reserved[0] = 0;
(*pdata)[i].u.Reserved[1] = id;
*len = i+1;
}
else
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *dataex;
DWORD ofs = 0;
while (ofs < *len)
{
dataex = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)(((char *)*pdataex) + ofs);
if (rel == RelationProcessorPackage && dataex->Relationship == rel && dataex->u.Processor.Reserved[1] == id)
{
dataex->u.Processor.GroupMask[0].Mask |= mask;
return TRUE;
}
else if (rel == RelationProcessorCore && dataex->Relationship == rel && dataex->u.Processor.Reserved[1] == id)
{
return TRUE;
}
ofs += dataex->Size;
}
/* TODO: For now, just one group. If more than 64 processors, then we
* need another group. */
while (ofs + log_proc_ex_size_plus(sizeof(PROCESSOR_RELATIONSHIP)) > *pmax_len)
{
if (!grow_logical_proc_ex_buf(pdataex, pmax_len)) return FALSE;
}
dataex = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)(((char *)*pdataex) + ofs);
dataex->Relationship = rel;
dataex->Size = log_proc_ex_size_plus(sizeof(PROCESSOR_RELATIONSHIP));
if (rel == RelationProcessorCore)
dataex->u.Processor.Flags = count_bits(mask) > 1 ? LTP_PC_SMT : 0;
else
dataex->u.Processor.Flags = 0;
dataex->u.Processor.EfficiencyClass = 0;
dataex->u.Processor.GroupCount = 1;
dataex->u.Processor.GroupMask[0].Mask = mask;
dataex->u.Processor.GroupMask[0].Group = 0;
/* mark for future lookup */
dataex->u.Processor.Reserved[0] = 0;
dataex->u.Processor.Reserved[1] = id;
*len += dataex->Size;
}
return TRUE;
}
static BOOL logical_proc_info_add_cache( SYSTEM_LOGICAL_PROCESSOR_INFORMATION **pdata,
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX **pdataex, DWORD *len,
DWORD *pmax_len, ULONG_PTR mask, CACHE_DESCRIPTOR *cache )
{
if (pdata)
{
DWORD i;
for (i = 0; i < *len; i++)
{
if ((*pdata)[i].Relationship==RelationCache && (*pdata)[i].ProcessorMask==mask
&& (*pdata)[i].u.Cache.Level==cache->Level && (*pdata)[i].u.Cache.Type==cache->Type)
return TRUE;
}
while (*len == *pmax_len)
if (!grow_logical_proc_buf(pdata, pmax_len)) return FALSE;
(*pdata)[i].Relationship = RelationCache;
(*pdata)[i].ProcessorMask = mask;
(*pdata)[i].u.Cache = *cache;
*len = i+1;
}
else
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *dataex;
DWORD ofs;
for (ofs = 0; ofs < *len; )
{
dataex = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)(((char *)*pdataex) + ofs);
if (dataex->Relationship == RelationCache && dataex->u.Cache.GroupMask.Mask == mask &&
dataex->u.Cache.Level == cache->Level && dataex->u.Cache.Type == cache->Type)
return TRUE;
ofs += dataex->Size;
}
while (ofs + log_proc_ex_size_plus(sizeof(CACHE_RELATIONSHIP)) > *pmax_len)
{
if (!grow_logical_proc_ex_buf(pdataex, pmax_len)) return FALSE;
}
dataex = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)(((char *)*pdataex) + ofs);
dataex->Relationship = RelationCache;
dataex->Size = log_proc_ex_size_plus(sizeof(CACHE_RELATIONSHIP));
dataex->u.Cache.Level = cache->Level;
dataex->u.Cache.Associativity = cache->Associativity;
dataex->u.Cache.LineSize = cache->LineSize;
dataex->u.Cache.CacheSize = cache->Size;
dataex->u.Cache.Type = cache->Type;
dataex->u.Cache.GroupMask.Mask = mask;
dataex->u.Cache.GroupMask.Group = 0;
*len += dataex->Size;
}
return TRUE;
}
static BOOL logical_proc_info_add_numa_node( SYSTEM_LOGICAL_PROCESSOR_INFORMATION **pdata,
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX **pdataex, DWORD *len,
DWORD *pmax_len, ULONG_PTR mask, DWORD node_id )
{
if (pdata)
{
while (*len == *pmax_len)
if (!grow_logical_proc_buf(pdata, pmax_len)) return FALSE;
(*pdata)[*len].Relationship = RelationNumaNode;
(*pdata)[*len].ProcessorMask = mask;
(*pdata)[*len].u.NumaNode.NodeNumber = node_id;
(*len)++;
}
else
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *dataex;
while (*len + log_proc_ex_size_plus(sizeof(NUMA_NODE_RELATIONSHIP)) > *pmax_len)
{
if (!grow_logical_proc_ex_buf(pdataex, pmax_len)) return FALSE;
}
dataex = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)(((char *)*pdataex) + *len);
dataex->Relationship = RelationNumaNode;
dataex->Size = log_proc_ex_size_plus(sizeof(NUMA_NODE_RELATIONSHIP));
dataex->u.NumaNode.NodeNumber = node_id;
dataex->u.NumaNode.GroupMask.Mask = mask;
dataex->u.NumaNode.GroupMask.Group = 0;
*len += dataex->Size;
}
return TRUE;
}
static BOOL logical_proc_info_add_group( SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX **pdataex,
DWORD *len, DWORD *pmax_len, DWORD num_cpus, ULONG_PTR mask )
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *dataex;
while (*len + log_proc_ex_size_plus(sizeof(GROUP_RELATIONSHIP)) > *pmax_len)
if (!grow_logical_proc_ex_buf(pdataex, pmax_len)) return FALSE;
dataex = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)(((char *)*pdataex) + *len);
dataex->Relationship = RelationGroup;
dataex->Size = log_proc_ex_size_plus(sizeof(GROUP_RELATIONSHIP));
dataex->u.Group.MaximumGroupCount = 1;
dataex->u.Group.ActiveGroupCount = 1;
dataex->u.Group.GroupInfo[0].MaximumProcessorCount = num_cpus;
dataex->u.Group.GroupInfo[0].ActiveProcessorCount = num_cpus;
dataex->u.Group.GroupInfo[0].ActiveProcessorMask = mask;
*len += dataex->Size;
return TRUE;
}
#ifdef linux
/* Helper function for counting bitmap values as commonly used by the Linux kernel
* for storing CPU masks in sysfs. The format is comma separated lists of hex values
* each max 32-bit e.g. "00ff" or even "00,00000000,0000ffff".
*
* Example files include:
* - /sys/devices/system/cpu/cpu0/cache/index0/shared_cpu_map
* - /sys/devices/system/cpu/cpu0/topology/thread_siblings
*/
static BOOL sysfs_parse_bitmap(const char *filename, ULONG_PTR *mask)
{
FILE *f;
DWORD r;
f = fopen(filename, "r");
if (!f) return FALSE;
while (!feof(f))
{
char op;
if (!fscanf(f, "%x%c ", &r, &op)) break;
*mask = (sizeof(ULONG_PTR)>sizeof(int) ? *mask << (8 * sizeof(DWORD)) : 0) + r;
}
fclose( f );
return TRUE;
}
/* Helper function for counting number of elements in interval lists as used by
* the Linux kernel. The format is comma separated list of intervals of which
* each interval has the format of "begin-end" where begin and end are decimal
* numbers. E.g. "0-7", "0-7,16-23"
*
* Example files include:
* - /sys/devices/system/cpu/online
* - /sys/devices/system/cpu/cpu0/cache/index0/shared_cpu_list
* - /sys/devices/system/cpu/cpu0/topology/thread_siblings_list.
*/
static BOOL sysfs_count_list_elements(const char *filename, DWORD *result)
{
FILE *f;
f = fopen(filename, "r");
if (!f) return FALSE;
while (!feof(f))
{
char op;
DWORD beg, end;
if (!fscanf(f, "%u%c ", &beg, &op)) break;
if(op == '-')
fscanf(f, "%u%c ", &end, &op);
else
end = beg;
*result += end - beg + 1;
}
fclose( f );
return TRUE;
}
/* for 'data', max_len is the array count. for 'dataex', max_len is in bytes */
static NTSTATUS create_logical_proc_info( SYSTEM_LOGICAL_PROCESSOR_INFORMATION **data,
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX **dataex,
DWORD *max_len, DWORD relation )
{
static const char core_info[] = "/sys/devices/system/cpu/cpu%u/topology/%s";
static const char cache_info[] = "/sys/devices/system/cpu/cpu%u/cache/index%u/%s";
static const char numa_info[] = "/sys/devices/system/node/node%u/cpumap";
FILE *fcpu_list, *fnuma_list, *f;
DWORD len = 0, beg, end, i, j, r, num_cpus = 0, max_cpus = 0;
char op, name[MAX_PATH];
ULONG_PTR all_cpus_mask = 0;
/* On systems with a large number of CPU cores (32 or 64 depending on 32-bit or 64-bit),
* we have issues parsing processor information:
* - ULONG_PTR masks as used in data structures can't hold all cores. Requires splitting
* data appropriately into "processor groups". We are hard coding 1.
* - Thread affinity code in wineserver and our CPU parsing code here work independently.
* So far the Windows mask applied directly to Linux, but process groups break that.
* (NUMA systems you may have multiple non-full groups.)
*/
if(sysfs_count_list_elements("/sys/devices/system/cpu/present", &max_cpus) && max_cpus > MAXIMUM_PROCESSORS)
{
FIXME("Improve CPU info reporting: system supports %u logical cores, but only %u supported!\n",
max_cpus, MAXIMUM_PROCESSORS);
}
fcpu_list = fopen("/sys/devices/system/cpu/online", "r");
if (!fcpu_list) return STATUS_NOT_IMPLEMENTED;
while (!feof(fcpu_list))
{
if (!fscanf(fcpu_list, "%u%c ", &beg, &op)) break;
if (op == '-') fscanf(fcpu_list, "%u%c ", &end, &op);
else end = beg;
for(i = beg; i <= end; i++)
{
DWORD phys_core = 0;
ULONG_PTR thread_mask = 0;
if (i > 8*sizeof(ULONG_PTR))
{
FIXME("skipping logical processor %d\n", i);
continue;
}
if (relation == RelationAll || relation == RelationProcessorPackage)
{
sprintf(name, core_info, i, "physical_package_id");
f = fopen(name, "r");
if (f)
{
fscanf(f, "%u", &r);
fclose(f);
}
else r = 0;
if (!logical_proc_info_add_by_id(data, dataex, &len, max_len, RelationProcessorPackage, r, (ULONG_PTR)1 << i))
{
fclose(fcpu_list);
return STATUS_NO_MEMORY;
}
}
/* Sysfs enumerates logical cores (and not physical cores), but Windows enumerates
* by physical core. Upon enumerating a logical core in sysfs, we register a physical
* core and all its logical cores. In order to not report physical cores multiple
* times, we pass a unique physical core ID to logical_proc_info_add_by_id and let
* that call figure out any duplication.
* Obtain a unique physical core ID from the first element of thread_siblings_list.
* This list provides logical cores sharing the same physical core. The IDs are based
* on kernel cpu core numbering as opposed to a hardware core ID like provided through
* 'core_id', so are suitable as a unique ID.
*/
if(relation == RelationAll || relation == RelationProcessorCore ||
relation == RelationNumaNode || relation == RelationGroup)
{
/* Mask of logical threads sharing same physical core in kernel core numbering. */
sprintf(name, core_info, i, "thread_siblings");
if(!sysfs_parse_bitmap(name, &thread_mask)) thread_mask = 1<<i;
/* Needed later for NumaNode and Group. */
all_cpus_mask |= thread_mask;
if (relation == RelationAll || relation == RelationProcessorCore)
{
sprintf(name, core_info, i, "thread_siblings_list");
f = fopen(name, "r");
if (f)
{
fscanf(f, "%d%c", &phys_core, &op);
fclose(f);
}
else phys_core = i;
if (!logical_proc_info_add_by_id(data, dataex, &len, max_len, RelationProcessorCore, phys_core, thread_mask))
{
fclose(fcpu_list);
return STATUS_NO_MEMORY;
}
}
}
if (relation == RelationAll || relation == RelationCache)
{
for(j = 0; j < 4; j++)
{
CACHE_DESCRIPTOR cache;
ULONG_PTR mask = 0;
sprintf(name, cache_info, i, j, "shared_cpu_map");
if(!sysfs_parse_bitmap(name, &mask)) continue;
sprintf(name, cache_info, i, j, "level");
f = fopen(name, "r");
if(!f) continue;
fscanf(f, "%u", &r);
fclose(f);
cache.Level = r;
sprintf(name, cache_info, i, j, "ways_of_associativity");
f = fopen(name, "r");
if(!f) continue;
fscanf(f, "%u", &r);
fclose(f);
cache.Associativity = r;
sprintf(name, cache_info, i, j, "coherency_line_size");
f = fopen(name, "r");
if(!f) continue;
fscanf(f, "%u", &r);
fclose(f);
cache.LineSize = r;
sprintf(name, cache_info, i, j, "size");
f = fopen(name, "r");
if(!f) continue;
fscanf(f, "%u%c", &r, &op);
fclose(f);
if(op != 'K')
WARN("unknown cache size %u%c\n", r, op);
cache.Size = (op=='K' ? r*1024 : r);
sprintf(name, cache_info, i, j, "type");
f = fopen(name, "r");
if(!f) continue;
fscanf(f, "%s", name);
fclose(f);
if (!memcmp(name, "Data", 5))
cache.Type = CacheData;
else if(!memcmp(name, "Instruction", 11))
cache.Type = CacheInstruction;
else
cache.Type = CacheUnified;
if (!logical_proc_info_add_cache(data, dataex, &len, max_len, mask, &cache))
{
fclose(fcpu_list);
return STATUS_NO_MEMORY;
}
}
}
}
}
fclose(fcpu_list);
num_cpus = count_bits(all_cpus_mask);
if(relation == RelationAll || relation == RelationNumaNode)
{
fnuma_list = fopen("/sys/devices/system/node/online", "r");
if (!fnuma_list)
{
if (!logical_proc_info_add_numa_node(data, dataex, &len, max_len, all_cpus_mask, 0))
return STATUS_NO_MEMORY;
}
else
{
while (!feof(fnuma_list))
{
if (!fscanf(fnuma_list, "%u%c ", &beg, &op))
break;
if (op == '-') fscanf(fnuma_list, "%u%c ", &end, &op);
else end = beg;
for (i = beg; i <= end; i++)
{
ULONG_PTR mask = 0;
sprintf(name, numa_info, i);
if (!sysfs_parse_bitmap( name, &mask )) continue;
if (!logical_proc_info_add_numa_node(data, dataex, &len, max_len, mask, i))
{
fclose(fnuma_list);
return STATUS_NO_MEMORY;
}
}
}
fclose(fnuma_list);
}
}
if(dataex && (relation == RelationAll || relation == RelationGroup))
logical_proc_info_add_group(dataex, &len, max_len, num_cpus, all_cpus_mask);
if(data)
*max_len = len * sizeof(**data);
else
*max_len = len;
return STATUS_SUCCESS;
}
#elif defined(__APPLE__)
/* for 'data', max_len is the array count. for 'dataex', max_len is in bytes */
static NTSTATUS create_logical_proc_info( SYSTEM_LOGICAL_PROCESSOR_INFORMATION **data,
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX **dataex,
DWORD *max_len, DWORD relation)
{
DWORD pkgs_no, cores_no, lcpu_no, lcpu_per_core, cores_per_package, assoc, len = 0;
DWORD cache_ctrs[10] = {0};
ULONG_PTR all_cpus_mask = 0;
CACHE_DESCRIPTOR cache[10];
LONGLONG cache_size, cache_line_size, cache_sharing[10];
size_t size;
DWORD p,i,j,k;
if (relation != RelationAll)
FIXME("Relationship filtering not implemented: 0x%x\n", relation);
lcpu_no = NtCurrentTeb()->Peb->NumberOfProcessors;
size = sizeof(pkgs_no);
if (sysctlbyname("hw.packages", &pkgs_no, &size, NULL, 0))
pkgs_no = 1;
size = sizeof(cores_no);
if (sysctlbyname("hw.physicalcpu", &cores_no, &size, NULL, 0))
cores_no = lcpu_no;
TRACE("%u logical CPUs from %u physical cores across %u packages\n",
lcpu_no, cores_no, pkgs_no);
lcpu_per_core = lcpu_no / cores_no;
cores_per_package = cores_no / pkgs_no;
memset(cache, 0, sizeof(cache));
cache[1].Level = 1;
cache[1].Type = CacheInstruction;
cache[1].Associativity = 8; /* reasonable default */
cache[1].LineSize = 0x40; /* reasonable default */
cache[2].Level = 1;
cache[2].Type = CacheData;
cache[2].Associativity = 8;
cache[2].LineSize = 0x40;
cache[3].Level = 2;
cache[3].Type = CacheUnified;
cache[3].Associativity = 8;
cache[3].LineSize = 0x40;
cache[4].Level = 3;
cache[4].Type = CacheUnified;
cache[4].Associativity = 12;
cache[4].LineSize = 0x40;
size = sizeof(cache_line_size);
if (!sysctlbyname("hw.cachelinesize", &cache_line_size, &size, NULL, 0))
{
for (i = 1; i < 5; i++) cache[i].LineSize = cache_line_size;
}
/* TODO: set actual associativity for all caches */
size = sizeof(assoc);
if (!sysctlbyname("machdep.cpu.cache.L2_associativity", &assoc, &size, NULL, 0))
cache[3].Associativity = assoc;
size = sizeof(cache_size);
if (!sysctlbyname("hw.l1icachesize", &cache_size, &size, NULL, 0))
cache[1].Size = cache_size;
size = sizeof(cache_size);
if (!sysctlbyname("hw.l1dcachesize", &cache_size, &size, NULL, 0))
cache[2].Size = cache_size;
size = sizeof(cache_size);
if (!sysctlbyname("hw.l2cachesize", &cache_size, &size, NULL, 0))
cache[3].Size = cache_size;
size = sizeof(cache_size);
if (!sysctlbyname("hw.l3cachesize", &cache_size, &size, NULL, 0))
cache[4].Size = cache_size;
size = sizeof(cache_sharing);
if (sysctlbyname("hw.cacheconfig", cache_sharing, &size, NULL, 0) < 0)
{
cache_sharing[1] = lcpu_per_core;
cache_sharing[2] = lcpu_per_core;
cache_sharing[3] = lcpu_per_core;
cache_sharing[4] = lcpu_no;
}
else
{
/* in cache[], indexes 1 and 2 are l1 caches */
cache_sharing[4] = cache_sharing[3];
cache_sharing[3] = cache_sharing[2];
cache_sharing[2] = cache_sharing[1];
}
for(p = 0; p < pkgs_no; ++p)
{
for(j = 0; j < cores_per_package && p * cores_per_package + j < cores_no; ++j)
{
ULONG_PTR mask = 0;
DWORD phys_core;
for(k = 0; k < lcpu_per_core; ++k) mask |= (ULONG_PTR)1 << (j * lcpu_per_core + k);
all_cpus_mask |= mask;
/* add to package */
if(!logical_proc_info_add_by_id(data, dataex, &len, max_len, RelationProcessorPackage, p, mask))
return STATUS_NO_MEMORY;
/* add new core */
phys_core = p * cores_per_package + j;
if(!logical_proc_info_add_by_id(data, dataex, &len, max_len, RelationProcessorCore, phys_core, mask))
return STATUS_NO_MEMORY;
for(i = 1; i < 5; ++i)
{
if(cache_ctrs[i] == 0 && cache[i].Size > 0)
{
mask = 0;
for(k = 0; k < cache_sharing[i]; ++k)
mask |= (ULONG_PTR)1 << (j * lcpu_per_core + k);
if(!logical_proc_info_add_cache(data, dataex, &len, max_len, mask, &cache[i]))
return STATUS_NO_MEMORY;
}
cache_ctrs[i] += lcpu_per_core;
if(cache_ctrs[i] == cache_sharing[i]) cache_ctrs[i] = 0;
}
}
}
/* OSX doesn't support NUMA, so just make one NUMA node for all CPUs */
if(!logical_proc_info_add_numa_node(data, dataex, &len, max_len, all_cpus_mask, 0))
return STATUS_NO_MEMORY;
if(dataex) logical_proc_info_add_group(dataex, &len, max_len, lcpu_no, all_cpus_mask);
if(data)
*max_len = len * sizeof(**data);
else
*max_len = len;
return STATUS_SUCCESS;
}
#else
static NTSTATUS create_logical_proc_info( SYSTEM_LOGICAL_PROCESSOR_INFORMATION **data,
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX **dataex,
DWORD *max_len, DWORD relation )
{
FIXME("stub\n");
return STATUS_NOT_IMPLEMENTED;
}
#endif
#ifdef linux
static void copy_smbios_string( char **buffer, char *s, size_t len )
{
if (!len) return;
memcpy(*buffer, s, len + 1);
*buffer += len + 1;
}
static size_t get_smbios_string( const char *path, char *str, size_t size )
{
FILE *file;
size_t len;
if (!(file = fopen(path, "r"))) return 0;
len = fread( str, 1, size - 1, file );
fclose( file );
if (len >= 1 && str[len - 1] == '\n') len--;
str[len] = 0;
return len;
}
static void get_system_uuid( GUID *uuid )
{
static const unsigned char hex[] =
{
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x00 */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x10 */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x20 */
0,1,2,3,4,5,6,7,8,9,0,0,0,0,0,0, /* 0x30 */
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, /* 0x40 */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x50 */
0,10,11,12,13,14,15 /* 0x60 */
};
int fd;
memset( uuid, 0xff, sizeof(*uuid) );
if ((fd = open( "/var/lib/dbus/machine-id", O_RDONLY )) != -1)
{
unsigned char buf[32], *p = buf;
if (read( fd, buf, sizeof(buf) ) == sizeof(buf))
{
uuid->Data1 = hex[p[6]] << 28 | hex[p[7]] << 24 | hex[p[4]] << 20 | hex[p[5]] << 16 |
hex[p[2]] << 12 | hex[p[3]] << 8 | hex[p[0]] << 4 | hex[p[1]];
uuid->Data2 = hex[p[10]] << 12 | hex[p[11]] << 8 | hex[p[8]] << 4 | hex[p[9]];
uuid->Data3 = hex[p[14]] << 12 | hex[p[15]] << 8 | hex[p[12]] << 4 | hex[p[13]];
uuid->Data4[0] = hex[p[16]] << 4 | hex[p[17]];
uuid->Data4[1] = hex[p[18]] << 4 | hex[p[19]];
uuid->Data4[2] = hex[p[20]] << 4 | hex[p[21]];
uuid->Data4[3] = hex[p[22]] << 4 | hex[p[23]];
uuid->Data4[4] = hex[p[24]] << 4 | hex[p[25]];
uuid->Data4[5] = hex[p[26]] << 4 | hex[p[27]];
uuid->Data4[6] = hex[p[28]] << 4 | hex[p[29]];
uuid->Data4[7] = hex[p[30]] << 4 | hex[p[31]];
}
close( fd );
}
}
static NTSTATUS get_firmware_info( SYSTEM_FIRMWARE_TABLE_INFORMATION *sfti, ULONG available_len,
ULONG *required_len )
{
switch (sfti->ProviderSignature)
{
case RSMB:
{
char bios_vendor[128], bios_version[128], bios_date[128];
size_t bios_vendor_len, bios_version_len, bios_date_len;
char system_vendor[128], system_product[128], system_version[128], system_serial[128];
size_t system_vendor_len, system_product_len, system_version_len, system_serial_len;
char system_sku[128], system_family[128];
size_t system_sku_len, system_family_len;
char board_vendor[128], board_product[128], board_version[128], board_serial[128], board_asset_tag[128];
size_t board_vendor_len, board_product_len, board_version_len, board_serial_len, board_asset_tag_len;
char chassis_vendor[128], chassis_version[128], chassis_serial[128], chassis_asset_tag[128];
char chassis_type[11] = "2"; /* unknown */
size_t chassis_vendor_len, chassis_version_len, chassis_serial_len, chassis_asset_tag_len;
char *buffer = (char*)sfti->TableBuffer;
BYTE string_count;
BYTE handle_count = 0;
struct smbios_prologue *prologue;
struct smbios_bios *bios;
struct smbios_system *system;
struct smbios_board *board;
struct smbios_chassis *chassis;
struct smbios_boot_info *boot_info;
struct smbios_header *end_of_table;
#define S(s) s, sizeof(s)
bios_vendor_len = get_smbios_string("/sys/class/dmi/id/bios_vendor", S(bios_vendor));
bios_version_len = get_smbios_string("/sys/class/dmi/id/bios_version", S(bios_version));
bios_date_len = get_smbios_string("/sys/class/dmi/id/bios_date", S(bios_date));
system_vendor_len = get_smbios_string("/sys/class/dmi/id/sys_vendor", S(system_vendor));
system_product_len = get_smbios_string("/sys/class/dmi/id/product_name", S(system_product));
system_version_len = get_smbios_string("/sys/class/dmi/id/product_version", S(system_version));
system_serial_len = get_smbios_string("/sys/class/dmi/id/product_serial", S(system_serial));
system_sku_len = get_smbios_string("/sys/class/dmi/id/product_sku", S(system_sku));
system_family_len = get_smbios_string("/sys/class/dmi/id/product_family", S(system_family));
board_vendor_len = get_smbios_string("/sys/class/dmi/id/board_vendor", S(board_vendor));
board_product_len = get_smbios_string("/sys/class/dmi/id/board_name", S(board_product));
board_version_len = get_smbios_string("/sys/class/dmi/id/board_version", S(board_version));
board_serial_len = get_smbios_string("/sys/class/dmi/id/board_serial", S(board_serial));
board_asset_tag_len = get_smbios_string("/sys/class/dmi/id/board_asset_tag", S(board_asset_tag));
chassis_vendor_len = get_smbios_string("/sys/class/dmi/id/chassis_vendor", S(chassis_vendor));
chassis_version_len = get_smbios_string("/sys/class/dmi/id/chassis_version", S(chassis_version));
chassis_serial_len = get_smbios_string("/sys/class/dmi/id/chassis_serial", S(chassis_serial));
chassis_asset_tag_len = get_smbios_string("/sys/class/dmi/id/chassis_tag", S(chassis_asset_tag));
get_smbios_string("/sys/class/dmi/id/chassis_type", S(chassis_type));
#undef S
*required_len = sizeof(struct smbios_prologue);
#define L(l) (l + (l ? 1 : 0))
*required_len += sizeof(struct smbios_bios);
*required_len += max(L(bios_vendor_len) + L(bios_version_len) + L(bios_date_len) + 1, 2);
*required_len += sizeof(struct smbios_system);
*required_len += max(L(system_vendor_len) + L(system_product_len) + L(system_version_len) +
L(system_serial_len) + L(system_sku_len) + L(system_family_len) + 1, 2);
*required_len += sizeof(struct smbios_board);
*required_len += max(L(board_vendor_len) + L(board_product_len) + L(board_version_len) +
L(board_serial_len) + L(board_asset_tag_len) + 1, 2);
*required_len += sizeof(struct smbios_chassis);
*required_len += max(L(chassis_vendor_len) + L(chassis_version_len) + L(chassis_serial_len) +
L(chassis_asset_tag_len) + 1, 2);
*required_len += sizeof(struct smbios_boot_info);
*required_len += 2;
*required_len += sizeof(struct smbios_header);
*required_len += 2;
#undef L
sfti->TableBufferLength = *required_len;
*required_len += FIELD_OFFSET(SYSTEM_FIRMWARE_TABLE_INFORMATION, TableBuffer);
if (available_len < *required_len)
return STATUS_BUFFER_TOO_SMALL;
prologue = (struct smbios_prologue*)buffer;
prologue->calling_method = 0;
prologue->major_version = 2;
prologue->minor_version = 4;
prologue->revision = 0;
prologue->length = sfti->TableBufferLength - sizeof(struct smbios_prologue);
buffer += sizeof(struct smbios_prologue);
string_count = 0;
bios = (struct smbios_bios*)buffer;
bios->hdr.type = 0;
bios->hdr.length = sizeof(struct smbios_bios);
bios->hdr.handle = handle_count++;
bios->vendor = bios_vendor_len ? ++string_count : 0;
bios->version = bios_version_len ? ++string_count : 0;
bios->start = 0;
bios->date = bios_date_len ? ++string_count : 0;
bios->size = 0;
bios->characteristics = 0x4; /* not supported */
bios->characteristics_ext[0] = 0;
bios->characteristics_ext[1] = 0;
bios->system_bios_major_release = 0xFF; /* not supported */
bios->system_bios_minor_release = 0xFF; /* not supported */
bios->ec_firmware_major_release = 0xFF; /* not supported */
bios->ec_firmware_minor_release = 0xFF; /* not supported */
buffer += sizeof(struct smbios_bios);
copy_smbios_string(&buffer, bios_vendor, bios_vendor_len);
copy_smbios_string(&buffer, bios_version, bios_version_len);
copy_smbios_string(&buffer, bios_date, bios_date_len);
if (!string_count) *buffer++ = 0;
*buffer++ = 0;
string_count = 0;
system = (struct smbios_system*)buffer;
system->hdr.type = 1;
system->hdr.length = sizeof(struct smbios_system);
system->hdr.handle = handle_count++;
system->vendor = system_vendor_len ? ++string_count : 0;
system->product = system_product_len ? ++string_count : 0;
system->version = system_version_len ? ++string_count : 0;
system->serial = system_serial_len ? ++string_count : 0;
get_system_uuid( (GUID *)system->uuid );
system->wake_up_type = 0x02; /* unknown */
system->sku_number = system_sku_len ? ++string_count : 0;
system->family = system_family_len ? ++string_count : 0;
buffer += sizeof(struct smbios_system);
copy_smbios_string(&buffer, system_vendor, system_vendor_len);
copy_smbios_string(&buffer, system_product, system_product_len);
copy_smbios_string(&buffer, system_version, system_version_len);
copy_smbios_string(&buffer, system_serial, system_serial_len);
copy_smbios_string(&buffer, system_sku, system_sku_len);
copy_smbios_string(&buffer, system_family, system_family_len);
if (!string_count) *buffer++ = 0;
*buffer++ = 0;
string_count = 0;
chassis = (struct smbios_chassis*)buffer;
chassis->hdr.type = 3;
chassis->hdr.length = sizeof(struct smbios_chassis);
chassis->hdr.handle = handle_count++;
chassis->vendor = chassis_vendor_len ? ++string_count : 0;
chassis->type = atoi(chassis_type);
chassis->version = chassis_version_len ? ++string_count : 0;
chassis->serial = chassis_serial_len ? ++string_count : 0;
chassis->asset_tag = chassis_asset_tag_len ? ++string_count : 0;
chassis->boot_state = 0x02; /* unknown */
chassis->power_supply_state = 0x02; /* unknown */
chassis->thermal_state = 0x02; /* unknown */
chassis->security_status = 0x02; /* unknown */
chassis->oem_defined = 0;
chassis->height = 0; /* undefined */
chassis->num_power_cords = 0; /* unspecified */
chassis->num_contained_elements = 0;
chassis->contained_element_rec_length = 3;
buffer += sizeof(struct smbios_chassis);
copy_smbios_string(&buffer, chassis_vendor, chassis_vendor_len);
copy_smbios_string(&buffer, chassis_version, chassis_version_len);
copy_smbios_string(&buffer, chassis_serial, chassis_serial_len);
copy_smbios_string(&buffer, chassis_asset_tag, chassis_asset_tag_len);
if (!string_count) *buffer++ = 0;
*buffer++ = 0;
string_count = 0;
board = (struct smbios_board*)buffer;
board->hdr.type = 2;
board->hdr.length = sizeof(struct smbios_board);
board->hdr.handle = handle_count++;
board->vendor = board_vendor_len ? ++string_count : 0;
board->product = board_product_len ? ++string_count : 0;
board->version = board_version_len ? ++string_count : 0;
board->serial = board_serial_len ? ++string_count : 0;
board->asset_tag = board_asset_tag_len ? ++string_count : 0;
board->feature_flags = 0x5; /* hosting board, removable */
board->location = 0;
board->chassis_handle = chassis->hdr.handle;
board->board_type = 0xa; /* motherboard */
board->num_contained_handles = 0;
buffer += sizeof(struct smbios_board);
copy_smbios_string(&buffer, board_vendor, board_vendor_len);
copy_smbios_string(&buffer, board_product, board_product_len);
copy_smbios_string(&buffer, board_version, board_version_len);
copy_smbios_string(&buffer, board_serial, board_serial_len);
copy_smbios_string(&buffer, board_asset_tag, board_asset_tag_len);
if (!string_count) *buffer++ = 0;
*buffer++ = 0;
boot_info = (struct smbios_boot_info*)buffer;
boot_info->hdr.type = 32;
boot_info->hdr.length = sizeof(struct smbios_boot_info);
boot_info->hdr.handle = handle_count++;
memset(boot_info->reserved, 0, sizeof(boot_info->reserved));
memset(boot_info->boot_status, 0, sizeof(boot_info->boot_status)); /* no errors detected */
buffer += sizeof(struct smbios_boot_info);
*buffer++ = 0;
*buffer++ = 0;
end_of_table = (struct smbios_header*)buffer;
end_of_table->type = 127;
end_of_table->length = sizeof(struct smbios_header);
end_of_table->handle = handle_count++;
buffer += sizeof(struct smbios_header);
*buffer++ = 0;
*buffer++ = 0;
return STATUS_SUCCESS;
}
default:
FIXME("info_class SYSTEM_FIRMWARE_TABLE_INFORMATION provider %08x\n", sfti->ProviderSignature);
return STATUS_NOT_IMPLEMENTED;
}
}
#elif defined(__APPLE__)
static NTSTATUS get_firmware_info( SYSTEM_FIRMWARE_TABLE_INFORMATION *sfti, ULONG available_len,
ULONG *required_len )
{
switch (sfti->ProviderSignature)
{
case RSMB:
{
io_service_t service;
CFDataRef data;
const UInt8 *ptr;
CFIndex len;
struct smbios_prologue *prologue;
BYTE major_version = 2, minor_version = 0;
if (!(service = IOServiceGetMatchingService(kIOMasterPortDefault, IOServiceMatching("AppleSMBIOS"))))
{
WARN("can't find AppleSMBIOS service\n");
return STATUS_NO_MEMORY;
}
if (!(data = IORegistryEntryCreateCFProperty(service, CFSTR("SMBIOS-EPS"), kCFAllocatorDefault, 0)))
{
WARN("can't find SMBIOS entry point\n");
IOObjectRelease(service);
return STATUS_NO_MEMORY;
}
len = CFDataGetLength(data);
ptr = CFDataGetBytePtr(data);
if (len >= 8 && !memcmp(ptr, "_SM_", 4))
{
major_version = ptr[6];
minor_version = ptr[7];
}
CFRelease(data);
if (!(data = IORegistryEntryCreateCFProperty(service, CFSTR("SMBIOS"), kCFAllocatorDefault, 0)))
{
WARN("can't find SMBIOS table\n");
IOObjectRelease(service);
return STATUS_NO_MEMORY;
}
len = CFDataGetLength(data);
ptr = CFDataGetBytePtr(data);
sfti->TableBufferLength = sizeof(*prologue) + len;
*required_len = sfti->TableBufferLength + FIELD_OFFSET(SYSTEM_FIRMWARE_TABLE_INFORMATION, TableBuffer);
if (available_len < *required_len)
{
CFRelease(data);
IOObjectRelease(service);
return STATUS_BUFFER_TOO_SMALL;
}
prologue = (struct smbios_prologue *)sfti->TableBuffer;
prologue->calling_method = 0;
prologue->major_version = major_version;
prologue->minor_version = minor_version;
prologue->revision = 0;
prologue->length = sfti->TableBufferLength - sizeof(*prologue);
memcpy(sfti->TableBuffer + sizeof(*prologue), ptr, len);
CFRelease(data);
IOObjectRelease(service);
return STATUS_SUCCESS;
}
default:
FIXME("info_class SYSTEM_FIRMWARE_TABLE_INFORMATION provider %08x\n", sfti->ProviderSignature);
return STATUS_NOT_IMPLEMENTED;
}
}
#else
static NTSTATUS get_firmware_info( SYSTEM_FIRMWARE_TABLE_INFORMATION *sfti, ULONG available_len,
ULONG *required_len )
{
FIXME("info_class SYSTEM_FIRMWARE_TABLE_INFORMATION\n");
sfti->TableBufferLength = 0;
return STATUS_NOT_IMPLEMENTED;
}
#endif
static void get_performance_info( SYSTEM_PERFORMANCE_INFORMATION *info )
{
unsigned long long totalram = 0, freeram = 0, totalswap = 0, freeswap = 0;
FILE *fp;
memset( info, 0, sizeof(*info) );
if ((fp = fopen("/proc/uptime", "r")))
{
double uptime, idle_time;
fscanf(fp, "%lf %lf", &uptime, &idle_time);
fclose(fp);
info->IdleTime.QuadPart = 10000000 * idle_time;
}
else
{
static ULONGLONG idle;
/* many programs expect IdleTime to change so fake change */
info->IdleTime.QuadPart = ++idle;
}
#ifdef linux
if ((fp = fopen("/proc/meminfo", "r")))
{
unsigned long long value;
char line[64];
while (fgets(line, sizeof(line), fp))
{
if(sscanf(line, "MemTotal: %llu kB", &value) == 1)
totalram += value * 1024;
else if(sscanf(line, "MemFree: %llu kB", &value) == 1)
freeram += value * 1024;
else if(sscanf(line, "SwapTotal: %llu kB", &value) == 1)
totalswap += value * 1024;
else if(sscanf(line, "SwapFree: %llu kB", &value) == 1)
freeswap += value * 1024;
else if (sscanf(line, "Buffers: %llu", &value))
freeram += value * 1024;
else if (sscanf(line, "Cached: %llu", &value))
freeram += value * 1024;
}
fclose(fp);
}
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__NetBSD__) || \
defined(__OpenBSD__) || defined(__DragonFly__) || defined(__APPLE__)
{
#ifdef __APPLE__
unsigned int val;
#else
unsigned long val;
#endif
int mib[2];
size_t size_sys;
mib[0] = CTL_HW;
#ifdef HW_MEMSIZE
{
uint64_t val64;
mib[1] = HW_MEMSIZE;
size_sys = sizeof(val64);
if (!sysctl(mib, 2, &val64, &size_sys, NULL, 0) && size_sys == sizeof(val64)) totalram = val64;
}
#endif
#ifdef HAVE_MACH_MACH_H
{
host_name_port_t host = mach_host_self();
mach_msg_type_number_t count;
#ifdef HOST_VM_INFO64_COUNT
vm_statistics64_data_t vm_stat;
count = HOST_VM_INFO64_COUNT;
if (host_statistics64(host, HOST_VM_INFO64, (host_info64_t)&vm_stat, &count) == KERN_SUCCESS)
freeram = (vm_stat.free_count + vm_stat.inactive_count) * (ULONGLONG)page_size;
#endif
if (!totalram)
{
host_basic_info_data_t info;
count = HOST_BASIC_INFO_COUNT;
if (host_info(host, HOST_BASIC_INFO, (host_info_t)&info, &count) == KERN_SUCCESS)
totalram = info.max_mem;
}
mach_port_deallocate(mach_task_self(), host);
}
#endif
if (!totalram)
{
mib[1] = HW_PHYSMEM;
size_sys = sizeof(val);
if (!sysctl(mib, 2, &val, &size_sys, NULL, 0) && size_sys == sizeof(val)) totalram = val;
}
if (!freeram)
{
mib[1] = HW_USERMEM;
size_sys = sizeof(val);
if (!sysctl(mib, 2, &val, &size_sys, NULL, 0) && size_sys == sizeof(val)) freeram = val;
}
#ifdef VM_SWAPUSAGE
{
struct xsw_usage swap;
mib[0] = CTL_VM;
mib[1] = VM_SWAPUSAGE;
size_sys = sizeof(swap);
if (!sysctl(mib, 2, &swap, &size_sys, NULL, 0) && size_sys == sizeof(swap))
{
totalswap = swap.xsu_total;
freeswap = swap.xsu_avail;
}
}
#endif
}
#endif
info->AvailablePages = freeram / page_size;
info->TotalCommittedPages = (totalram + totalswap - freeram - freeswap) / page_size;
info->TotalCommitLimit = (totalram + totalswap) / page_size;
}
/* calculate the mday of dst change date, so that for instance Sun 5 Oct 2007
* (last Sunday in October of 2007) becomes Sun Oct 28 2007
*
* Note: year, day and month must be in unix format.
*/
static int weekday_to_mday(int year, int day, int mon, int day_of_week)
{
struct tm date;
time_t tmp;
int wday, mday;
/* find first day in the month matching week day of the date */
memset(&date, 0, sizeof(date));
date.tm_year = year;
date.tm_mon = mon;
date.tm_mday = -1;
date.tm_wday = -1;
do
{
date.tm_mday++;
tmp = mktime(&date);
} while (date.tm_wday != day_of_week || date.tm_mon != mon);
mday = date.tm_mday;
/* find number of week days in the month matching week day of the date */
wday = 1; /* 1 - 1st, ...., 5 - last */
while (wday < day)
{
struct tm *tm;
date.tm_mday += 7;
tmp = mktime(&date);
tm = localtime(&tmp);
if (tm->tm_mon != mon)
break;
mday = tm->tm_mday;
wday++;
}
return mday;
}
static BOOL match_tz_date( const RTL_SYSTEM_TIME *st, const RTL_SYSTEM_TIME *reg_st )
{
WORD wDay;
if (st->wMonth != reg_st->wMonth) return FALSE;
if (!st->wMonth) return TRUE; /* no transition dates */
wDay = reg_st->wDay;
if (!reg_st->wYear) /* date in a day-of-week format */
wDay = weekday_to_mday(st->wYear - 1900, reg_st->wDay, reg_st->wMonth - 1, reg_st->wDayOfWeek);
return (st->wDay == wDay &&
st->wHour == reg_st->wHour &&
st->wMinute == reg_st->wMinute &&
st->wSecond == reg_st->wSecond &&
st->wMilliseconds == reg_st->wMilliseconds);
}
static BOOL match_tz_info( const RTL_DYNAMIC_TIME_ZONE_INFORMATION *tzi,
const RTL_DYNAMIC_TIME_ZONE_INFORMATION *reg_tzi )
{
return (tzi->Bias == reg_tzi->Bias &&
match_tz_date(&tzi->StandardDate, &reg_tzi->StandardDate) &&
match_tz_date(&tzi->DaylightDate, &reg_tzi->DaylightDate));
}
static BOOL match_tz_name( const char *tz_name, const RTL_DYNAMIC_TIME_ZONE_INFORMATION *reg_tzi )
{
static const struct { WCHAR key_name[32]; const char *short_name; } mapping[] =
{
{ {'K','o','r','e','a',' ','S','t','a','n','d','a','r','d',' ','T','i','m','e',0 },
"KST" },
{ {'T','o','k','y','o',' ','S','t','a','n','d','a','r','d',' ','T','i','m','e',0 },
"JST" },
{ {'Y','a','k','u','t','s','k',' ','S','t','a','n','d','a','r','d',' ','T','i','m','e',0 },
"+09" }, /* YAKST was used until tzdata 2016f */
};
unsigned int i;
if (reg_tzi->DaylightDate.wMonth) return TRUE;
for (i = 0; i < ARRAY_SIZE(mapping); i++)
{
if (!wcscmp( mapping[i].key_name, reg_tzi->TimeZoneKeyName ))
return !strcmp( mapping[i].short_name, tz_name );
}
return TRUE;
}
static BOOL reg_query_value( HKEY key, LPCWSTR name, DWORD type, void *data, DWORD count )
{
char buf[256];
UNICODE_STRING nameW;
KEY_VALUE_PARTIAL_INFORMATION *info = (KEY_VALUE_PARTIAL_INFORMATION *)buf;
if (count > sizeof(buf) - sizeof(KEY_VALUE_PARTIAL_INFORMATION)) return FALSE;
nameW.Buffer = (WCHAR *)name;
nameW.Length = wcslen( name ) * sizeof(WCHAR);
if (NtQueryValueKey( key, &nameW, KeyValuePartialInformation, buf, sizeof(buf), &count ))
return FALSE;
if (info->Type != type) return FALSE;
memcpy( data, info->Data, info->DataLength );
return TRUE;
}
static void find_reg_tz_info(RTL_DYNAMIC_TIME_ZONE_INFORMATION *tzi, const char* tz_name, int year)
{
static const WCHAR stdW[] = { 'S','t','d',0 };
static const WCHAR dltW[] = { 'D','l','t',0 };
static const WCHAR mui_stdW[] = { 'M','U','I','_','S','t','d',0 };
static const WCHAR mui_dltW[] = { 'M','U','I','_','D','l','t',0 };
static const WCHAR tziW[] = { 'T','Z','I',0 };
static const WCHAR Time_ZonesW[] = { 'M','a','c','h','i','n','e','\\',
'S','o','f','t','w','a','r','e','\\',
'M','i','c','r','o','s','o','f','t','\\',
'W','i','n','d','o','w','s',' ','N','T','\\',
'C','u','r','r','e','n','t','V','e','r','s','i','o','n','\\',
'T','i','m','e',' ','Z','o','n','e','s',0 };
static const WCHAR Dynamic_DstW[] = { 'D','y','n','a','m','i','c',' ','D','S','T',0 };
RTL_DYNAMIC_TIME_ZONE_INFORMATION reg_tzi;
HANDLE key, subkey, subkey_dyn = 0;
ULONG idx, len;
OBJECT_ATTRIBUTES attr;
UNICODE_STRING nameW;
WCHAR yearW[16];
char buffer[128];
KEY_BASIC_INFORMATION *info = (KEY_BASIC_INFORMATION *)buffer;
sprintf( buffer, "%u", year );
ascii_to_unicode( yearW, buffer, strlen(buffer) + 1 );
nameW.Buffer = (WCHAR *)Time_ZonesW;
nameW.Length = sizeof(Time_ZonesW) - sizeof(WCHAR);
InitializeObjectAttributes( &attr, &nameW, 0, 0, NULL );
if (NtOpenKey( &key, KEY_READ, &attr )) return;
idx = 0;
while (!NtEnumerateKey( key, idx++, KeyBasicInformation, buffer, sizeof(buffer), &len ))
{
struct tz_reg_data
{
LONG bias;
LONG std_bias;
LONG dlt_bias;
RTL_SYSTEM_TIME std_date;
RTL_SYSTEM_TIME dlt_date;
} tz_data;
BOOL is_dynamic = FALSE;
nameW.Buffer = info->Name;
nameW.Length = info->NameLength;
attr.RootDirectory = key;
if (NtOpenKey( &subkey, KEY_READ, &attr )) continue;
memset( &reg_tzi, 0, sizeof(reg_tzi) );
memcpy(reg_tzi.TimeZoneKeyName, nameW.Buffer, nameW.Length);
reg_tzi.TimeZoneKeyName[nameW.Length/sizeof(WCHAR)] = 0;
if (!reg_query_value(subkey, mui_stdW, REG_SZ, reg_tzi.StandardName, sizeof(reg_tzi.StandardName)) &&
!reg_query_value(subkey, stdW, REG_SZ, reg_tzi.StandardName, sizeof(reg_tzi.StandardName)))
goto next;
if (!reg_query_value(subkey, mui_dltW, REG_SZ, reg_tzi.DaylightName, sizeof(reg_tzi.DaylightName)) &&
!reg_query_value(subkey, dltW, REG_SZ, reg_tzi.DaylightName, sizeof(reg_tzi.DaylightName)))
goto next;
/* Check for Dynamic DST entry first */
nameW.Buffer = (WCHAR *)Dynamic_DstW;
nameW.Length = sizeof(Dynamic_DstW) - sizeof(WCHAR);
attr.RootDirectory = subkey;
if (!NtOpenKey( &subkey_dyn, KEY_READ, &attr ))
{
is_dynamic = reg_query_value( subkey_dyn, yearW, REG_BINARY, &tz_data, sizeof(tz_data) );
NtClose( subkey_dyn );
}
if (!is_dynamic && !reg_query_value( subkey, tziW, REG_BINARY, &tz_data, sizeof(tz_data) ))
goto next;
reg_tzi.Bias = tz_data.bias;
reg_tzi.StandardBias = tz_data.std_bias;
reg_tzi.DaylightBias = tz_data.dlt_bias;
reg_tzi.StandardDate = tz_data.std_date;
reg_tzi.DaylightDate = tz_data.dlt_date;
TRACE("%s: bias %d\n", debugstr_us(&nameW), reg_tzi.Bias);
TRACE("std (d/m/y): %u/%02u/%04u day of week %u %u:%02u:%02u.%03u bias %d\n",
reg_tzi.StandardDate.wDay, reg_tzi.StandardDate.wMonth,
reg_tzi.StandardDate.wYear, reg_tzi.StandardDate.wDayOfWeek,
reg_tzi.StandardDate.wHour, reg_tzi.StandardDate.wMinute,
reg_tzi.StandardDate.wSecond, reg_tzi.StandardDate.wMilliseconds,
reg_tzi.StandardBias);
TRACE("dst (d/m/y): %u/%02u/%04u day of week %u %u:%02u:%02u.%03u bias %d\n",
reg_tzi.DaylightDate.wDay, reg_tzi.DaylightDate.wMonth,
reg_tzi.DaylightDate.wYear, reg_tzi.DaylightDate.wDayOfWeek,
reg_tzi.DaylightDate.wHour, reg_tzi.DaylightDate.wMinute,
reg_tzi.DaylightDate.wSecond, reg_tzi.DaylightDate.wMilliseconds,
reg_tzi.DaylightBias);
if (match_tz_info( tzi, &reg_tzi ) && match_tz_name( tz_name, &reg_tzi ))
{
*tzi = reg_tzi;
NtClose( subkey );
NtClose( key );
return;
}
next:
NtClose( subkey );
}
NtClose( key );
if (idx == 1) return; /* registry info not initialized yet */
FIXME("Can't find matching timezone information in the registry for "
"%s, bias %d, std (d/m/y): %u/%02u/%04u, dlt (d/m/y): %u/%02u/%04u\n",
tz_name, tzi->Bias,
tzi->StandardDate.wDay, tzi->StandardDate.wMonth, tzi->StandardDate.wYear,
tzi->DaylightDate.wDay, tzi->DaylightDate.wMonth, tzi->DaylightDate.wYear);
}
static time_t find_dst_change(unsigned long min, unsigned long max, int *is_dst)
{
time_t start;
struct tm *tm;
start = min;
tm = localtime(&start);
*is_dst = !tm->tm_isdst;
TRACE("starting date isdst %d, %s", !*is_dst, ctime(&start));
while (min <= max)
{
time_t pos = (min + max) / 2;
tm = localtime(&pos);
if (tm->tm_isdst != *is_dst)
min = pos + 1;
else
max = pos - 1;
}
return min;
}
static void get_timezone_info( RTL_DYNAMIC_TIME_ZONE_INFORMATION *tzi )
{
static pthread_mutex_t tz_mutex = PTHREAD_MUTEX_INITIALIZER;
static RTL_DYNAMIC_TIME_ZONE_INFORMATION cached_tzi;
static int current_year = -1, current_bias = 65535;
struct tm *tm;
char tz_name[16];
time_t year_start, year_end, tmp, dlt = 0, std = 0;
int is_dst, bias;
pthread_mutex_lock( &tz_mutex );
year_start = time(NULL);
tm = gmtime(&year_start);
bias = (LONG)(mktime(tm) - year_start) / 60;
tm = localtime(&year_start);
if (current_year == tm->tm_year && current_bias == bias)
{
*tzi = cached_tzi;
pthread_mutex_unlock( &tz_mutex );
return;
}
memset(tzi, 0, sizeof(*tzi));
if (!strftime(tz_name, sizeof(tz_name), "%Z", tm)) {
/* not enough room or another error */
tz_name[0] = '\0';
}
TRACE("tz data will be valid through year %d, bias %d\n", tm->tm_year + 1900, bias);
current_year = tm->tm_year;
current_bias = bias;
tzi->Bias = bias;
tm->tm_isdst = 0;
tm->tm_mday = 1;
tm->tm_mon = tm->tm_hour = tm->tm_min = tm->tm_sec = tm->tm_wday = tm->tm_yday = 0;
year_start = mktime(tm);
TRACE("year_start: %s", ctime(&year_start));
tm->tm_mday = tm->tm_wday = tm->tm_yday = 0;
tm->tm_mon = 12;
tm->tm_hour = 23;
tm->tm_min = tm->tm_sec = 59;
year_end = mktime(tm);
TRACE("year_end: %s", ctime(&year_end));
tmp = find_dst_change(year_start, year_end, &is_dst);
if (is_dst)
dlt = tmp;
else
std = tmp;
tmp = find_dst_change(tmp, year_end, &is_dst);
if (is_dst)
dlt = tmp;
else
std = tmp;
TRACE("std: %s", ctime(&std));
TRACE("dlt: %s", ctime(&dlt));
if (dlt == std || !dlt || !std)
TRACE("there is no daylight saving rules in this time zone\n");
else
{
tmp = dlt - tzi->Bias * 60;
tm = gmtime(&tmp);
TRACE("dlt gmtime: %s", asctime(tm));
tzi->DaylightBias = -60;
tzi->DaylightDate.wYear = tm->tm_year + 1900;
tzi->DaylightDate.wMonth = tm->tm_mon + 1;
tzi->DaylightDate.wDayOfWeek = tm->tm_wday;
tzi->DaylightDate.wDay = tm->tm_mday;
tzi->DaylightDate.wHour = tm->tm_hour;
tzi->DaylightDate.wMinute = tm->tm_min;
tzi->DaylightDate.wSecond = tm->tm_sec;
tzi->DaylightDate.wMilliseconds = 0;
TRACE("daylight (d/m/y): %u/%02u/%04u day of week %u %u:%02u:%02u.%03u bias %d\n",
tzi->DaylightDate.wDay, tzi->DaylightDate.wMonth,
tzi->DaylightDate.wYear, tzi->DaylightDate.wDayOfWeek,
tzi->DaylightDate.wHour, tzi->DaylightDate.wMinute,
tzi->DaylightDate.wSecond, tzi->DaylightDate.wMilliseconds,
tzi->DaylightBias);
tmp = std - tzi->Bias * 60 - tzi->DaylightBias * 60;
tm = gmtime(&tmp);
TRACE("std gmtime: %s", asctime(tm));
tzi->StandardBias = 0;
tzi->StandardDate.wYear = tm->tm_year + 1900;
tzi->StandardDate.wMonth = tm->tm_mon + 1;
tzi->StandardDate.wDayOfWeek = tm->tm_wday;
tzi->StandardDate.wDay = tm->tm_mday;
tzi->StandardDate.wHour = tm->tm_hour;
tzi->StandardDate.wMinute = tm->tm_min;
tzi->StandardDate.wSecond = tm->tm_sec;
tzi->StandardDate.wMilliseconds = 0;
TRACE("standard (d/m/y): %u/%02u/%04u day of week %u %u:%02u:%02u.%03u bias %d\n",
tzi->StandardDate.wDay, tzi->StandardDate.wMonth,
tzi->StandardDate.wYear, tzi->StandardDate.wDayOfWeek,
tzi->StandardDate.wHour, tzi->StandardDate.wMinute,
tzi->StandardDate.wSecond, tzi->StandardDate.wMilliseconds,
tzi->StandardBias);
}
find_reg_tz_info(tzi, tz_name, current_year + 1900);
cached_tzi = *tzi;
pthread_mutex_unlock( &tz_mutex );
}
/******************************************************************************
* NtQuerySystemInformation (NTDLL.@)
*/
NTSTATUS WINAPI NtQuerySystemInformation( SYSTEM_INFORMATION_CLASS class,
void *info, ULONG size, ULONG *ret_size )
{
NTSTATUS ret = STATUS_SUCCESS;
ULONG len = 0;
TRACE( "(0x%08x,%p,0x%08x,%p)\n", class, info, size, ret_size );
switch (class)
{
case SystemBasicInformation:
{
SYSTEM_BASIC_INFORMATION sbi;
virtual_get_system_info( &sbi );
len = sizeof(sbi);
if (size == len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &sbi, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemCpuInformation:
if (size >= (len = sizeof(cpu_info)))
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy(info, &cpu_info, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
case SystemPerformanceInformation:
{
SYSTEM_PERFORMANCE_INFORMATION spi;
static BOOL fixme_written = FALSE;
get_performance_info( &spi );
len = sizeof(spi);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &spi, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
if(!fixme_written) {
FIXME("info_class SYSTEM_PERFORMANCE_INFORMATION\n");
fixme_written = TRUE;
}
break;
}
case SystemTimeOfDayInformation:
{
struct tm *tm;
time_t now;
SYSTEM_TIMEOFDAY_INFORMATION sti = {{{ 0 }}};
sti.BootTime.QuadPart = server_start_time;
now = time( NULL );
tm = gmtime( &now );
sti.TimeZoneBias.QuadPart = mktime( tm ) - now;
tm = localtime( &now );
if (tm->tm_isdst) sti.TimeZoneBias.QuadPart -= 3600;
sti.TimeZoneBias.QuadPart *= TICKSPERSEC;
NtQuerySystemTime( &sti.SystemTime );
if (size <= sizeof(sti))
{
len = size;
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &sti, size);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemProcessInformation:
{
unsigned int process_count, i, j;
char *buffer = NULL;
unsigned int pos = 0;
if (size && !(buffer = malloc( size )))
{
ret = STATUS_NO_MEMORY;
break;
}
SERVER_START_REQ( list_processes )
{
wine_server_set_reply( req, buffer, size );
ret = wine_server_call( req );
len = reply->info_size;
process_count = reply->process_count;
}
SERVER_END_REQ;
if (ret)
{
free( buffer );
break;
}
len = 0;
for (i = 0; i < process_count; i++)
{
SYSTEM_PROCESS_INFORMATION *nt_process = (SYSTEM_PROCESS_INFORMATION *)((char *)info + len);
const struct process_info *server_process;
const WCHAR *server_name, *file_part;
ULONG proc_len;
ULONG name_len = 0;
pos = (pos + 7) & ~7;
server_process = (const struct process_info *)(buffer + pos);
pos += sizeof(*server_process);
server_name = (const WCHAR *)(buffer + pos);
file_part = server_name + (server_process->name_len / sizeof(WCHAR));
pos += server_process->name_len;
while (file_part > server_name && file_part[-1] != '\\')
{
file_part--;
name_len++;
}
proc_len = sizeof(*nt_process) + server_process->thread_count * sizeof(SYSTEM_THREAD_INFORMATION)
+ (name_len + 1) * sizeof(WCHAR);
len += proc_len;
if (len <= size)
{
memset(nt_process, 0, sizeof(*nt_process));
if (i < process_count - 1)
nt_process->NextEntryOffset = proc_len;
nt_process->CreationTime.QuadPart = server_process->start_time;
nt_process->dwThreadCount = server_process->thread_count;
nt_process->dwBasePriority = server_process->priority;
nt_process->UniqueProcessId = UlongToHandle(server_process->pid);
nt_process->ParentProcessId = UlongToHandle(server_process->parent_pid);
nt_process->HandleCount = server_process->handle_count;
get_thread_times( server_process->unix_pid, -1, &nt_process->KernelTime, &nt_process->UserTime );
fill_vm_counters( &nt_process->vmCounters, server_process->unix_pid );
}
pos = (pos + 7) & ~7;
for (j = 0; j < server_process->thread_count; j++)
{
const struct thread_info *server_thread = (const struct thread_info *)(buffer + pos);
if (len <= size)
{
nt_process->ti[j].CreateTime.QuadPart = server_thread->start_time;
nt_process->ti[j].ClientId.UniqueProcess = UlongToHandle(server_process->pid);
nt_process->ti[j].ClientId.UniqueThread = UlongToHandle(server_thread->tid);
nt_process->ti[j].dwCurrentPriority = server_thread->current_priority;
nt_process->ti[j].dwBasePriority = server_thread->base_priority;
get_thread_times( server_process->unix_pid, server_thread->unix_tid,
&nt_process->ti[j].KernelTime, &nt_process->ti[j].UserTime );
}
pos += sizeof(*server_thread);
}
if (len <= size)
{
nt_process->ProcessName.Buffer = (WCHAR *)&nt_process->ti[server_process->thread_count];
nt_process->ProcessName.Length = name_len * sizeof(WCHAR);
nt_process->ProcessName.MaximumLength = (name_len + 1) * sizeof(WCHAR);
memcpy(nt_process->ProcessName.Buffer, file_part, name_len * sizeof(WCHAR));
nt_process->ProcessName.Buffer[name_len] = 0;
}
}
if (len > size) ret = STATUS_INFO_LENGTH_MISMATCH;
free( buffer );
break;
}
case SystemProcessorPerformanceInformation:
{
SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION *sppi = NULL;
unsigned int cpus = 0;
int out_cpus = size / sizeof(SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION);
if (out_cpus == 0)
{
len = 0;
ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
if (!(sppi = calloc( out_cpus, sizeof(*sppi) )))
{
ret = STATUS_NO_MEMORY;
break;
}
else
#ifdef __APPLE__
{
processor_cpu_load_info_data_t *pinfo;
mach_msg_type_number_t info_count;
if (host_processor_info( mach_host_self (),
PROCESSOR_CPU_LOAD_INFO,
&cpus,
(processor_info_array_t*)&pinfo,
&info_count) == 0)
{
int i;
cpus = min(cpus,out_cpus);
for (i = 0; i < cpus; i++)
{
sppi[i].IdleTime.QuadPart = pinfo[i].cpu_ticks[CPU_STATE_IDLE];
sppi[i].KernelTime.QuadPart = pinfo[i].cpu_ticks[CPU_STATE_SYSTEM];
sppi[i].UserTime.QuadPart = pinfo[i].cpu_ticks[CPU_STATE_USER];
}
vm_deallocate (mach_task_self (), (vm_address_t) pinfo, info_count * sizeof(natural_t));
}
}
#else
{
FILE *cpuinfo = fopen("/proc/stat", "r");
if (cpuinfo)
{
unsigned long clk_tck = sysconf(_SC_CLK_TCK);
unsigned long usr,nice,sys,idle,remainder[8];
int i, count, id;
char name[32];
char line[255];
/* first line is combined usage */
while (fgets(line,255,cpuinfo))
{
count = sscanf(line, "%s %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
name, &usr, &nice, &sys, &idle,
&remainder[0], &remainder[1], &remainder[2], &remainder[3],
&remainder[4], &remainder[5], &remainder[6], &remainder[7]);
if (count < 5 || strncmp( name, "cpu", 3 )) break;
for (i = 0; i + 5 < count; ++i) sys += remainder[i];
sys += idle;
usr += nice;
id = atoi( name + 3 ) + 1;
if (id > out_cpus) break;
if (id > cpus) cpus = id;
sppi[id-1].IdleTime.QuadPart = (ULONGLONG)idle * 10000000 / clk_tck;
sppi[id-1].KernelTime.QuadPart = (ULONGLONG)sys * 10000000 / clk_tck;
sppi[id-1].UserTime.QuadPart = (ULONGLONG)usr * 10000000 / clk_tck;
}
fclose(cpuinfo);
}
}
#endif
if (cpus == 0)
{
static int i = 1;
unsigned int n;
cpus = min(NtCurrentTeb()->Peb->NumberOfProcessors, out_cpus);
FIXME("stub info_class SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION\n");
/* many programs expect these values to change so fake change */
for (n = 0; n < cpus; n++)
{
sppi[n].KernelTime.QuadPart = 1 * i;
sppi[n].UserTime.QuadPart = 2 * i;
sppi[n].IdleTime.QuadPart = 3 * i;
}
i++;
}
len = sizeof(*sppi) * cpus;
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, sppi, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
free( sppi );
break;
}
case SystemModuleInformation:
{
/* FIXME: return some fake info for now */
static const char *fake_modules[] =
{
"\\SystemRoot\\system32\\ntoskrnl.exe",
"\\SystemRoot\\system32\\hal.dll",
"\\SystemRoot\\system32\\drivers\\mountmgr.sys"
};
if (!info) ret = STATUS_ACCESS_VIOLATION;
else
{
ULONG i;
SYSTEM_MODULE_INFORMATION *smi = info;
len = offsetof( SYSTEM_MODULE_INFORMATION, Modules[ARRAY_SIZE(fake_modules)] );
if (len <= size)
{
memset( smi, 0, len );
for (i = 0; i < ARRAY_SIZE(fake_modules); i++)
{
SYSTEM_MODULE *sm = &smi->Modules[i];
sm->ImageBaseAddress = (char *)0x10000000 + 0x200000 * i;
sm->ImageSize = 0x200000;
sm->LoadOrderIndex = i;
sm->LoadCount = 1;
strcpy( (char *)sm->Name, fake_modules[i] );
sm->NameOffset = strrchr( fake_modules[i], '\\' ) - fake_modules[i] + 1;
}
smi->ModulesCount = i;
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
}
break;
}
case SystemHandleInformation:
{
struct handle_info *handle_info;
DWORD i, num_handles;
if (size < sizeof(SYSTEM_HANDLE_INFORMATION))
{
ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
if (!info)
{
ret = STATUS_ACCESS_VIOLATION;
break;
}
num_handles = (size - FIELD_OFFSET( SYSTEM_HANDLE_INFORMATION, Handle )) / sizeof(SYSTEM_HANDLE_ENTRY);
if (!(handle_info = malloc( sizeof(*handle_info) * num_handles ))) return STATUS_NO_MEMORY;
SERVER_START_REQ( get_system_handles )
{
wine_server_set_reply( req, handle_info, sizeof(*handle_info) * num_handles );
if (!(ret = wine_server_call( req )))
{
SYSTEM_HANDLE_INFORMATION *shi = info;
shi->Count = wine_server_reply_size( req ) / sizeof(*handle_info);
len = FIELD_OFFSET( SYSTEM_HANDLE_INFORMATION, Handle[shi->Count] );
for (i = 0; i < shi->Count; i++)
{
memset( &shi->Handle[i], 0, sizeof(shi->Handle[i]) );
shi->Handle[i].OwnerPid = handle_info[i].owner;
shi->Handle[i].HandleValue = handle_info[i].handle;
shi->Handle[i].AccessMask = handle_info[i].access;
/* FIXME: Fill out ObjectType, HandleFlags, ObjectPointer */
}
}
else if (ret == STATUS_BUFFER_TOO_SMALL)
{
len = FIELD_OFFSET( SYSTEM_HANDLE_INFORMATION, Handle[reply->count] );
ret = STATUS_INFO_LENGTH_MISMATCH;
}
}
SERVER_END_REQ;
free( handle_info );
break;
}
case SystemCacheInformation:
{
SYSTEM_CACHE_INFORMATION sci = { 0 };
len = sizeof(sci);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &sci, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
FIXME("info_class SYSTEM_CACHE_INFORMATION\n");
break;
}
case SystemInterruptInformation:
{
SYSTEM_INTERRUPT_INFORMATION sii = {{ 0 }};
len = sizeof(sii);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &sii, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
FIXME("info_class SYSTEM_INTERRUPT_INFORMATION\n");
break;
}
case SystemTimeAdjustmentInformation:
{
SYSTEM_TIME_ADJUSTMENT_QUERY query = { 156250, 156250, TRUE };
len = sizeof(query);
if (size == len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &query, len );
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemKernelDebuggerInformation:
{
SYSTEM_KERNEL_DEBUGGER_INFORMATION skdi;
skdi.DebuggerEnabled = FALSE;
skdi.DebuggerNotPresent = TRUE;
len = sizeof(skdi);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &skdi, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemRegistryQuotaInformation:
{
/* Something to do with the size of the registry *
* Since we don't have a size limitation, fake it *
* This is almost certainly wrong. *
* This sets each of the three words in the struct to 32 MB, *
* which is enough to make the IE 5 installer happy. */
SYSTEM_REGISTRY_QUOTA_INFORMATION srqi;
srqi.RegistryQuotaAllowed = 0x2000000;
srqi.RegistryQuotaUsed = 0x200000;
srqi.Reserved1 = (void*)0x200000;
len = sizeof(srqi);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else
{
FIXME("SystemRegistryQuotaInformation: faking max registry size of 32 MB\n");
memcpy( info, &srqi, len);
}
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemTimeZoneInformation:
{
RTL_DYNAMIC_TIME_ZONE_INFORMATION tz;
get_timezone_info( &tz );
len = sizeof(RTL_TIME_ZONE_INFORMATION);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &tz, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemLogicalProcessorInformation:
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION *buf;
/* Each logical processor may use up to 7 entries in returned table:
* core, numa node, package, L1i, L1d, L2, L3 */
len = 7 * NtCurrentTeb()->Peb->NumberOfProcessors;
buf = malloc( len * sizeof(*buf) );
if (!buf)
{
ret = STATUS_NO_MEMORY;
break;
}
ret = create_logical_proc_info(&buf, NULL, &len, RelationAll);
if (!ret)
{
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, buf, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
}
free( buf );
break;
}
case SystemRecommendedSharedDataAlignment:
{
len = sizeof(DWORD);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else
{
#ifdef __arm__
*((DWORD *)info) = 32;
#else
*((DWORD *)info) = 64;
#endif
}
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemFirmwareTableInformation:
{
SYSTEM_FIRMWARE_TABLE_INFORMATION *sfti = info;
len = FIELD_OFFSET(SYSTEM_FIRMWARE_TABLE_INFORMATION, TableBuffer);
if (size < len)
{
ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
switch (sfti->Action)
{
case SystemFirmwareTable_Get:
ret = get_firmware_info(sfti, size, &len);
break;
default:
len = 0;
ret = STATUS_NOT_IMPLEMENTED;
FIXME("info_class SYSTEM_FIRMWARE_TABLE_INFORMATION action %d\n", sfti->Action);
}
break;
}
case SystemDynamicTimeZoneInformation:
{
RTL_DYNAMIC_TIME_ZONE_INFORMATION tz;
get_timezone_info( &tz );
len = sizeof(tz);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &tz, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
default:
FIXME( "(0x%08x,%p,0x%08x,%p) stub\n", class, info, size, ret_size );
/* Several Information Classes are not implemented on Windows and return 2 different values
* STATUS_NOT_IMPLEMENTED or STATUS_INVALID_INFO_CLASS
* in 95% of the cases it's STATUS_INVALID_INFO_CLASS, so use this as the default
*/
ret = STATUS_INVALID_INFO_CLASS;
}
if (ret_size) *ret_size = len;
return ret;
}
/******************************************************************************
* NtQuerySystemInformationEx (NTDLL.@)
*/
NTSTATUS WINAPI NtQuerySystemInformationEx( SYSTEM_INFORMATION_CLASS class,
void *query, ULONG query_len,
void *info, ULONG size, ULONG *ret_size )
{
ULONG len = 0;
NTSTATUS ret = STATUS_NOT_IMPLEMENTED;
TRACE( "(0x%08x,%p,%u,%p,%u,%p) stub\n", class, query, query_len, info, size, ret_size );
switch (class)
{
case SystemLogicalProcessorInformationEx:
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *buf;
if (!query || query_len < sizeof(DWORD))
{
ret = STATUS_INVALID_PARAMETER;
break;
}
len = 3 * sizeof(*buf);
if (!(buf = malloc( len )))
{
ret = STATUS_NO_MEMORY;
break;
}
ret = create_logical_proc_info(NULL, &buf, &len, *(DWORD *)query);
if (!ret)
{
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy(info, buf, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
}
free( buf );
break;
}
default:
FIXME( "(0x%08x,%p,%u,%p,%u,%p) stub\n", class, query, query_len, info, size, ret_size );
break;
}
if (ret_size) *ret_size = len;
return ret;
}
/******************************************************************************
* NtSetSystemInformation (NTDLL.@)
*/
NTSTATUS WINAPI NtSetSystemInformation( SYSTEM_INFORMATION_CLASS class, void *info, ULONG length )
{
FIXME( "(0x%08x,%p,0x%08x) stub\n", class, info, length );
return STATUS_SUCCESS;
}
/******************************************************************************
* NtQuerySystemEnvironmentValue (NTDLL.@)
*/
NTSTATUS WINAPI NtQuerySystemEnvironmentValue( UNICODE_STRING *name, WCHAR *buffer, ULONG length,
ULONG *retlen )
{
FIXME( "(%s, %p, %u, %p), stub\n", debugstr_us(name), buffer, length, retlen );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtQuerySystemEnvironmentValueEx (NTDLL.@)
*/
NTSTATUS WINAPI NtQuerySystemEnvironmentValueEx( UNICODE_STRING *name, GUID *vendor, void *buffer,
ULONG *retlen, ULONG *attrib )
{
FIXME( "(%s, %s, %p, %p, %p), stub\n", debugstr_us(name),
debugstr_guid(vendor), buffer, retlen, attrib );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtSystemDebugControl (NTDLL.@)
*/
NTSTATUS WINAPI NtSystemDebugControl( SYSDBG_COMMAND command, void *in_buff, ULONG in_len,
void *out_buff, ULONG out_len, ULONG *retlen )
{
FIXME( "(%d, %p, %d, %p, %d, %p), stub\n", command, in_buff, in_len, out_buff, out_len, retlen );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtShutdownSystem (NTDLL.@)
*/
NTSTATUS WINAPI NtShutdownSystem( SHUTDOWN_ACTION action )
{
FIXME( "%d\n", action );
return STATUS_SUCCESS;
}
#ifdef linux
/* Fallback using /proc/cpuinfo for Linux systems without cpufreq. For
* most distributions on recent enough hardware, this is only likely to
* happen while running in virtualized environments such as QEMU. */
static ULONG mhz_from_cpuinfo(void)
{
char line[512];
char *s, *value;
double cmz = 0;
FILE *f = fopen("/proc/cpuinfo", "r");
if(f)
{
while (fgets(line, sizeof(line), f) != NULL)
{
if (!(value = strchr(line,':'))) continue;
s = value - 1;
while ((s >= line) && (*s == ' ' || *s == '\t')) s--;
s[1] = 0;
value++;
if (!strcmp( line, "cpu MHz" ))
{
sscanf(value, " %lf", &cmz);
break;
}
}
fclose( f );
}
return cmz;
}
static const char * get_sys_str(const char *path, char *s)
{
FILE *f = fopen(path, "r");
const char *ret = NULL;
if (f)
{
if (fgets(s, 16, f)) ret = s;
fclose(f);
}
return ret;
}
static int get_sys_int(const char *path, int def)
{
char s[16];
return get_sys_str(path, s) ? atoi(s) : def;
}
static NTSTATUS fill_battery_state( SYSTEM_BATTERY_STATE *bs )
{
char s[16], path[64];
unsigned int i = 0;
LONG64 voltage; /* microvolts */
bs->AcOnLine = get_sys_int("/sys/class/power_supply/AC/online", 1);
for (;;)
{
sprintf(path, "/sys/class/power_supply/BAT%u/status", i);
if (!get_sys_str(path, s)) break;
bs->Charging |= (strcmp(s, "Charging\n") == 0);
bs->Discharging |= (strcmp(s, "Discharging\n") == 0);
bs->BatteryPresent = TRUE;
i++;
}
if (bs->BatteryPresent)
{
voltage = get_sys_int("/sys/class/power_supply/BAT0/voltage_now", 0);
bs->MaxCapacity = get_sys_int("/sys/class/power_supply/BAT0/charge_full", 0) * voltage / 1e9;
bs->RemainingCapacity = get_sys_int("/sys/class/power_supply/BAT0/charge_now", 0) * voltage / 1e9;
bs->Rate = -get_sys_int("/sys/class/power_supply/BAT0/current_now", 0) * voltage / 1e9;
if (!bs->Charging && (LONG)bs->Rate < 0)
bs->EstimatedTime = 3600 * bs->RemainingCapacity / -(LONG)bs->Rate;
else
bs->EstimatedTime = ~0u;
}
return STATUS_SUCCESS;
}
#elif defined(HAVE_IOKIT_IOKITLIB_H)
static NTSTATUS fill_battery_state( SYSTEM_BATTERY_STATE *bs )
{
CFArrayRef batteries;
CFDictionaryRef battery;
CFNumberRef prop;
uint32_t value, voltage;
CFTimeInterval remain;
if (IOPMCopyBatteryInfo( kIOMasterPortDefault, &batteries ) != kIOReturnSuccess)
return STATUS_ACCESS_DENIED;
if (CFArrayGetCount( batteries ) == 0)
{
/* Just assume we're on AC with no battery. */
bs->AcOnLine = TRUE;
return STATUS_SUCCESS;
}
/* Just use the first battery. */
battery = CFArrayGetValueAtIndex( batteries, 0 );
prop = CFDictionaryGetValue( battery, CFSTR(kIOBatteryFlagsKey) );
CFNumberGetValue( prop, kCFNumberSInt32Type, &value );
if (value & kIOBatteryInstalled)
bs->BatteryPresent = TRUE;
else
/* Since we are executing code, we must have AC power. */
bs->AcOnLine = TRUE;
if (value & kIOBatteryChargerConnect)
{
bs->AcOnLine = TRUE;
if (value & kIOBatteryCharge)
bs->Charging = TRUE;
}
else
bs->Discharging = TRUE;
/* We'll need the voltage to be able to interpret the other values. */
prop = CFDictionaryGetValue( battery, CFSTR(kIOBatteryVoltageKey) );
CFNumberGetValue( prop, kCFNumberSInt32Type, &voltage );
prop = CFDictionaryGetValue( battery, CFSTR(kIOBatteryCapacityKey) );
CFNumberGetValue( prop, kCFNumberSInt32Type, &value );
bs->MaxCapacity = value * voltage;
/* Apple uses "estimated time < 10:00" and "22%" for these, but we'll follow
* Windows for now (5% and 33%). */
bs->DefaultAlert1 = bs->MaxCapacity / 20;
bs->DefaultAlert2 = bs->MaxCapacity / 3;
prop = CFDictionaryGetValue( battery, CFSTR(kIOBatteryCurrentChargeKey) );
CFNumberGetValue( prop, kCFNumberSInt32Type, &value );
bs->RemainingCapacity = value * voltage;
prop = CFDictionaryGetValue( battery, CFSTR(kIOBatteryAmperageKey) );
CFNumberGetValue( prop, kCFNumberSInt32Type, &value );
bs->Rate = value * voltage;
remain = IOPSGetTimeRemainingEstimate();
if (remain != kIOPSTimeRemainingUnknown && remain != kIOPSTimeRemainingUnlimited)
bs->EstimatedTime = (ULONG)remain;
CFRelease( batteries );
return STATUS_SUCCESS;
}
#else
static NTSTATUS fill_battery_state( SYSTEM_BATTERY_STATE *bs )
{
FIXME("SystemBatteryState not implemented on this platform\n");
return STATUS_NOT_IMPLEMENTED;
}
#endif
/******************************************************************************
* NtPowerInformation (NTDLL.@)
*/
NTSTATUS WINAPI NtPowerInformation( POWER_INFORMATION_LEVEL level, void *input, ULONG in_size,
void *output, ULONG out_size )
{
TRACE( "(%d,%p,%d,%p,%d)\n", level, input, in_size, output, out_size );
switch (level)
{
case SystemPowerCapabilities:
{
PSYSTEM_POWER_CAPABILITIES PowerCaps = output;
FIXME("semi-stub: SystemPowerCapabilities\n");
if (out_size < sizeof(SYSTEM_POWER_CAPABILITIES)) return STATUS_BUFFER_TOO_SMALL;
/* FIXME: These values are based off a native XP desktop, should probably use APM/ACPI to get the 'real' values */
PowerCaps->PowerButtonPresent = TRUE;
PowerCaps->SleepButtonPresent = FALSE;
PowerCaps->LidPresent = FALSE;
PowerCaps->SystemS1 = TRUE;
PowerCaps->SystemS2 = FALSE;
PowerCaps->SystemS3 = FALSE;
PowerCaps->SystemS4 = TRUE;
PowerCaps->SystemS5 = TRUE;
PowerCaps->HiberFilePresent = TRUE;
PowerCaps->FullWake = TRUE;
PowerCaps->VideoDimPresent = FALSE;
PowerCaps->ApmPresent = FALSE;
PowerCaps->UpsPresent = FALSE;
PowerCaps->ThermalControl = FALSE;
PowerCaps->ProcessorThrottle = FALSE;
PowerCaps->ProcessorMinThrottle = 100;
PowerCaps->ProcessorMaxThrottle = 100;
PowerCaps->DiskSpinDown = TRUE;
PowerCaps->SystemBatteriesPresent = FALSE;
PowerCaps->BatteriesAreShortTerm = FALSE;
PowerCaps->BatteryScale[0].Granularity = 0;
PowerCaps->BatteryScale[0].Capacity = 0;
PowerCaps->BatteryScale[1].Granularity = 0;
PowerCaps->BatteryScale[1].Capacity = 0;
PowerCaps->BatteryScale[2].Granularity = 0;
PowerCaps->BatteryScale[2].Capacity = 0;
PowerCaps->AcOnLineWake = PowerSystemUnspecified;
PowerCaps->SoftLidWake = PowerSystemUnspecified;
PowerCaps->RtcWake = PowerSystemSleeping1;
PowerCaps->MinDeviceWakeState = PowerSystemUnspecified;
PowerCaps->DefaultLowLatencyWake = PowerSystemUnspecified;
return STATUS_SUCCESS;
}
case SystemBatteryState:
{
if (out_size < sizeof(SYSTEM_BATTERY_STATE)) return STATUS_BUFFER_TOO_SMALL;
memset(output, 0, sizeof(SYSTEM_BATTERY_STATE));
return fill_battery_state(output);
}
case SystemExecutionState:
{
ULONG *state = output;
WARN("semi-stub: SystemExecutionState\n"); /* Needed for .NET Framework, but using a FIXME is really noisy. */
if (input != NULL) return STATUS_INVALID_PARAMETER;
/* FIXME: The actual state should be the value set by SetThreadExecutionState which is not currently implemented. */
*state = ES_USER_PRESENT;
return STATUS_SUCCESS;
}
case ProcessorInformation:
{
const int cannedMHz = 1000; /* We fake a 1GHz processor if we can't conjure up real values */
PROCESSOR_POWER_INFORMATION* cpu_power = output;
int i, out_cpus;
if ((output == NULL) || (out_size == 0)) return STATUS_INVALID_PARAMETER;
out_cpus = NtCurrentTeb()->Peb->NumberOfProcessors;
if ((out_size / sizeof(PROCESSOR_POWER_INFORMATION)) < out_cpus) return STATUS_BUFFER_TOO_SMALL;
#if defined(linux)
{
char filename[128];
FILE* f;
for(i = 0; i < out_cpus; i++) {
sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/cpuinfo_max_freq", i);
f = fopen(filename, "r");
if (f && (fscanf(f, "%d", &cpu_power[i].MaxMhz) == 1)) {
cpu_power[i].MaxMhz /= 1000;
fclose(f);
cpu_power[i].CurrentMhz = cpu_power[i].MaxMhz;
}
else {
if(i == 0) {
cpu_power[0].CurrentMhz = mhz_from_cpuinfo();
if(cpu_power[0].CurrentMhz == 0)
cpu_power[0].CurrentMhz = cannedMHz;
}
else
cpu_power[i].CurrentMhz = cpu_power[0].CurrentMhz;
cpu_power[i].MaxMhz = cpu_power[i].CurrentMhz;
if(f) fclose(f);
}
sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_max_freq", i);
f = fopen(filename, "r");
if(f && (fscanf(f, "%d", &cpu_power[i].MhzLimit) == 1)) {
cpu_power[i].MhzLimit /= 1000;
fclose(f);
}
else
{
cpu_power[i].MhzLimit = cpu_power[i].MaxMhz;
if(f) fclose(f);
}
cpu_power[i].Number = i;
cpu_power[i].MaxIdleState = 0; /* FIXME */
cpu_power[i].CurrentIdleState = 0; /* FIXME */
}
}
#elif defined(__FreeBSD__) || defined (__FreeBSD_kernel__) || defined(__DragonFly__)
{
int num;
size_t valSize = sizeof(num);
if (sysctlbyname("hw.clockrate", &num, &valSize, NULL, 0))
num = cannedMHz;
for(i = 0; i < out_cpus; i++) {
cpu_power[i].CurrentMhz = num;
cpu_power[i].MaxMhz = num;
cpu_power[i].MhzLimit = num;
cpu_power[i].Number = i;
cpu_power[i].MaxIdleState = 0; /* FIXME */
cpu_power[i].CurrentIdleState = 0; /* FIXME */
}
}
#elif defined (__APPLE__)
{
size_t valSize;
unsigned long long currentMhz;
unsigned long long maxMhz;
valSize = sizeof(currentMhz);
if (!sysctlbyname("hw.cpufrequency", &currentMhz, &valSize, NULL, 0))
currentMhz /= 1000000;
else
currentMhz = cannedMHz;
valSize = sizeof(maxMhz);
if (!sysctlbyname("hw.cpufrequency_max", &maxMhz, &valSize, NULL, 0))
maxMhz /= 1000000;
else
maxMhz = currentMhz;
for(i = 0; i < out_cpus; i++) {
cpu_power[i].CurrentMhz = currentMhz;
cpu_power[i].MaxMhz = maxMhz;
cpu_power[i].MhzLimit = maxMhz;
cpu_power[i].Number = i;
cpu_power[i].MaxIdleState = 0; /* FIXME */
cpu_power[i].CurrentIdleState = 0; /* FIXME */
}
}
#else
for(i = 0; i < out_cpus; i++) {
cpu_power[i].CurrentMhz = cannedMHz;
cpu_power[i].MaxMhz = cannedMHz;
cpu_power[i].MhzLimit = cannedMHz;
cpu_power[i].Number = i;
cpu_power[i].MaxIdleState = 0; /* FIXME */
cpu_power[i].CurrentIdleState = 0; /* FIXME */
}
WARN("Unable to detect CPU MHz for this platform. Reporting %d MHz.\n", cannedMHz);
#endif
for(i = 0; i < out_cpus; i++) {
TRACE("cpu_power[%d] = %u %u %u %u %u %u\n", i, cpu_power[i].Number,
cpu_power[i].MaxMhz, cpu_power[i].CurrentMhz, cpu_power[i].MhzLimit,
cpu_power[i].MaxIdleState, cpu_power[i].CurrentIdleState);
}
return STATUS_SUCCESS;
}
default:
/* FIXME: Needed by .NET Framework */
WARN( "Unimplemented NtPowerInformation action: %d\n", level );
return STATUS_NOT_IMPLEMENTED;
}
}
/******************************************************************************
* NtLoadDriver (NTDLL.@)
*/
NTSTATUS WINAPI NtLoadDriver( const UNICODE_STRING *name )
{
FIXME( "(%s), stub!\n", debugstr_us(name) );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtUnloadDriver (NTDLL.@)
*/
NTSTATUS WINAPI NtUnloadDriver( const UNICODE_STRING *name )
{
FIXME( "(%s), stub!\n", debugstr_us(name) );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtDisplayString (NTDLL.@)
*/
NTSTATUS WINAPI NtDisplayString( UNICODE_STRING *string )
{
ERR( "%s\n", debugstr_us(string) );
return STATUS_SUCCESS;
}
/******************************************************************************
* NtRaiseHardError (NTDLL.@)
*/
NTSTATUS WINAPI NtRaiseHardError( NTSTATUS status, ULONG count,
UNICODE_STRING *params_mask, void **params,
HARDERROR_RESPONSE_OPTION option, HARDERROR_RESPONSE *response )
{
FIXME( "%08x stub\n", status );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtInitiatePowerAction (NTDLL.@)
*/
NTSTATUS WINAPI NtInitiatePowerAction( POWER_ACTION action, SYSTEM_POWER_STATE state,
ULONG flags, BOOLEAN async )
{
FIXME( "(%d,%d,0x%08x,%d),stub\n", action, state, flags, async );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtCreatePowerRequest (NTDLL.@)
*/
NTSTATUS WINAPI NtCreatePowerRequest( HANDLE *handle, COUNTED_REASON_CONTEXT *context )
{
FIXME( "(%p, %p): stub\n", handle, context );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtSetPowerRequest (NTDLL.@)
*/
NTSTATUS WINAPI NtSetPowerRequest( HANDLE handle, POWER_REQUEST_TYPE type )
{
FIXME( "(%p, %u): stub\n", handle, type );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtClearPowerRequest (NTDLL.@)
*/
NTSTATUS WINAPI NtClearPowerRequest( HANDLE handle, POWER_REQUEST_TYPE type )
{
FIXME( "(%p, %u): stub\n", handle, type );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtSetThreadExecutionState (NTDLL.@)
*/
NTSTATUS WINAPI NtSetThreadExecutionState( EXECUTION_STATE new_state, EXECUTION_STATE *old_state )
{
static EXECUTION_STATE current = ES_SYSTEM_REQUIRED | ES_DISPLAY_REQUIRED | ES_USER_PRESENT;
WARN( "(0x%x, %p): stub, harmless.\n", new_state, old_state );
*old_state = current;
if (!(current & ES_CONTINUOUS) || (new_state & ES_CONTINUOUS)) current = new_state;
return STATUS_SUCCESS;
}