Sweden-Number/dlls/winepulse.drv/mmdevdrv.c

3410 lines
101 KiB
C

/*
* Copyright 2011-2012 Maarten Lankhorst
* Copyright 2010-2011 Maarten Lankhorst for CodeWeavers
* Copyright 2011 Andrew Eikum for CodeWeavers
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#define NONAMELESSUNION
#define COBJMACROS
#define _GNU_SOURCE
#include "config.h"
#include <poll.h>
#include <pthread.h>
#include <stdarg.h>
#include <unistd.h>
#include <math.h>
#include <stdio.h>
#include <errno.h>
#include <pulse/pulseaudio.h>
#include "windef.h"
#include "winbase.h"
#include "winnls.h"
#include "winreg.h"
#include "wine/debug.h"
#include "wine/unicode.h"
#include "wine/list.h"
#include "ole2.h"
#include "dshow.h"
#include "dsound.h"
#include "propsys.h"
#include "initguid.h"
#include "ks.h"
#include "ksmedia.h"
#include "propkey.h"
#include "mmdeviceapi.h"
#include "audioclient.h"
#include "endpointvolume.h"
#include "audiopolicy.h"
WINE_DEFAULT_DEBUG_CHANNEL(pulse);
#define NULL_PTR_ERR MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32, RPC_X_NULL_REF_POINTER)
/* From <dlls/mmdevapi/mmdevapi.h> */
enum DriverPriority {
Priority_Unavailable = 0,
Priority_Low,
Priority_Neutral,
Priority_Preferred
};
static const REFERENCE_TIME MinimumPeriod = 30000;
static const REFERENCE_TIME DefaultPeriod = 100000;
static pa_context *pulse_ctx;
static pa_mainloop *pulse_ml;
static HANDLE pulse_thread;
static pthread_mutex_t pulse_lock;
static pthread_cond_t pulse_cond = PTHREAD_COND_INITIALIZER;
static struct list g_sessions = LIST_INIT(g_sessions);
static UINT g_phys_speakers_mask = 0;
/* Mixer format + period times */
static WAVEFORMATEXTENSIBLE pulse_fmt[2];
static REFERENCE_TIME pulse_min_period[2], pulse_def_period[2];
static GUID pulse_render_guid =
{ 0xfd47d9cc, 0x4218, 0x4135, { 0x9c, 0xe2, 0x0c, 0x19, 0x5c, 0x87, 0x40, 0x5b } };
static GUID pulse_capture_guid =
{ 0x25da76d0, 0x033c, 0x4235, { 0x90, 0x02, 0x19, 0xf4, 0x88, 0x94, 0xac, 0x6f } };
BOOL WINAPI DllMain(HINSTANCE dll, DWORD reason, void *reserved)
{
if (reason == DLL_PROCESS_ATTACH) {
pthread_mutexattr_t attr;
DisableThreadLibraryCalls(dll);
pthread_mutexattr_init(&attr);
pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT);
if (pthread_mutex_init(&pulse_lock, &attr) != 0)
pthread_mutex_init(&pulse_lock, NULL);
} else if (reason == DLL_PROCESS_DETACH) {
if (pulse_thread)
SetThreadPriority(pulse_thread, 0);
if (pulse_ctx) {
pa_context_disconnect(pulse_ctx);
pa_context_unref(pulse_ctx);
}
if (pulse_ml)
pa_mainloop_quit(pulse_ml, 0);
if (pulse_thread) {
WaitForSingleObject(pulse_thread, INFINITE);
CloseHandle(pulse_thread);
}
}
return TRUE;
}
typedef struct ACImpl ACImpl;
typedef struct _AudioSession {
GUID guid;
struct list clients;
IMMDevice *device;
float master_vol;
UINT32 channel_count;
float *channel_vols;
BOOL mute;
struct list entry;
} AudioSession;
typedef struct _AudioSessionWrapper {
IAudioSessionControl2 IAudioSessionControl2_iface;
IChannelAudioVolume IChannelAudioVolume_iface;
ISimpleAudioVolume ISimpleAudioVolume_iface;
LONG ref;
ACImpl *client;
AudioSession *session;
} AudioSessionWrapper;
typedef struct _ACPacket {
struct list entry;
UINT64 qpcpos;
BYTE *data;
UINT32 discont;
} ACPacket;
struct ACImpl {
IAudioClient IAudioClient_iface;
IAudioRenderClient IAudioRenderClient_iface;
IAudioCaptureClient IAudioCaptureClient_iface;
IAudioClock IAudioClock_iface;
IAudioClock2 IAudioClock2_iface;
IAudioStreamVolume IAudioStreamVolume_iface;
IUnknown *marshal;
IMMDevice *parent;
struct list entry;
float vol[PA_CHANNELS_MAX];
LONG ref;
EDataFlow dataflow;
DWORD flags;
AUDCLNT_SHAREMODE share;
HANDLE event;
INT32 locked;
UINT32 bufsize_frames, bufsize_bytes, capture_period, pad, started, peek_ofs, wri_offs_bytes, lcl_offs_bytes;
UINT32 tmp_buffer_bytes, held_bytes;
BYTE *local_buffer, *tmp_buffer;
void *locked_ptr;
pa_stream *stream;
pa_sample_spec ss;
pa_channel_map map;
pa_buffer_attr attr;
INT64 clock_lastpos, clock_written;
AudioSession *session;
AudioSessionWrapper *session_wrapper;
struct list packet_free_head;
struct list packet_filled_head;
};
static const WCHAR defaultW[] = {'P','u','l','s','e','a','u','d','i','o',0};
static const IAudioClientVtbl AudioClient_Vtbl;
static const IAudioRenderClientVtbl AudioRenderClient_Vtbl;
static const IAudioCaptureClientVtbl AudioCaptureClient_Vtbl;
static const IAudioSessionControl2Vtbl AudioSessionControl2_Vtbl;
static const ISimpleAudioVolumeVtbl SimpleAudioVolume_Vtbl;
static const IChannelAudioVolumeVtbl ChannelAudioVolume_Vtbl;
static const IAudioClockVtbl AudioClock_Vtbl;
static const IAudioClock2Vtbl AudioClock2_Vtbl;
static const IAudioStreamVolumeVtbl AudioStreamVolume_Vtbl;
static AudioSessionWrapper *AudioSessionWrapper_Create(ACImpl *client);
static inline ACImpl *impl_from_IAudioClient(IAudioClient *iface)
{
return CONTAINING_RECORD(iface, ACImpl, IAudioClient_iface);
}
static inline ACImpl *impl_from_IAudioRenderClient(IAudioRenderClient *iface)
{
return CONTAINING_RECORD(iface, ACImpl, IAudioRenderClient_iface);
}
static inline ACImpl *impl_from_IAudioCaptureClient(IAudioCaptureClient *iface)
{
return CONTAINING_RECORD(iface, ACImpl, IAudioCaptureClient_iface);
}
static inline AudioSessionWrapper *impl_from_IAudioSessionControl2(IAudioSessionControl2 *iface)
{
return CONTAINING_RECORD(iface, AudioSessionWrapper, IAudioSessionControl2_iface);
}
static inline AudioSessionWrapper *impl_from_ISimpleAudioVolume(ISimpleAudioVolume *iface)
{
return CONTAINING_RECORD(iface, AudioSessionWrapper, ISimpleAudioVolume_iface);
}
static inline AudioSessionWrapper *impl_from_IChannelAudioVolume(IChannelAudioVolume *iface)
{
return CONTAINING_RECORD(iface, AudioSessionWrapper, IChannelAudioVolume_iface);
}
static inline ACImpl *impl_from_IAudioClock(IAudioClock *iface)
{
return CONTAINING_RECORD(iface, ACImpl, IAudioClock_iface);
}
static inline ACImpl *impl_from_IAudioClock2(IAudioClock2 *iface)
{
return CONTAINING_RECORD(iface, ACImpl, IAudioClock2_iface);
}
static inline ACImpl *impl_from_IAudioStreamVolume(IAudioStreamVolume *iface)
{
return CONTAINING_RECORD(iface, ACImpl, IAudioStreamVolume_iface);
}
/* Following pulseaudio design here, mainloop has the lock taken whenever
* it is handling something for pulse, and the lock is required whenever
* doing any pa_* call that can affect the state in any way
*
* pa_cond_wait is used when waiting on results, because the mainloop needs
* the same lock taken to affect the state
*
* This is basically the same as the pa_threaded_mainloop implementation,
* but that cannot be used because it uses pthread_create directly
*
* pa_threaded_mainloop_(un)lock -> pthread_mutex_(un)lock
* pa_threaded_mainloop_signal -> pthread_cond_signal
* pa_threaded_mainloop_wait -> pthread_cond_wait
*/
static int pulse_poll_func(struct pollfd *ufds, unsigned long nfds, int timeout, void *userdata) {
int r;
pthread_mutex_unlock(&pulse_lock);
r = poll(ufds, nfds, timeout);
pthread_mutex_lock(&pulse_lock);
return r;
}
static DWORD CALLBACK pulse_mainloop_thread(void *tmp) {
int ret;
pulse_ml = pa_mainloop_new();
pa_mainloop_set_poll_func(pulse_ml, pulse_poll_func, NULL);
pthread_mutex_lock(&pulse_lock);
pthread_cond_signal(&pulse_cond);
pa_mainloop_run(pulse_ml, &ret);
pthread_mutex_unlock(&pulse_lock);
pa_mainloop_free(pulse_ml);
return ret;
}
static void pulse_contextcallback(pa_context *c, void *userdata)
{
switch (pa_context_get_state(c)) {
default:
FIXME("Unhandled state: %i\n", pa_context_get_state(c));
return;
case PA_CONTEXT_CONNECTING:
case PA_CONTEXT_UNCONNECTED:
case PA_CONTEXT_AUTHORIZING:
case PA_CONTEXT_SETTING_NAME:
case PA_CONTEXT_TERMINATED:
TRACE("State change to %i\n", pa_context_get_state(c));
return;
case PA_CONTEXT_READY:
TRACE("Ready\n");
break;
case PA_CONTEXT_FAILED:
ERR("Context failed: %s\n", pa_strerror(pa_context_errno(c)));
break;
}
pthread_cond_signal(&pulse_cond);
}
static void pulse_stream_state(pa_stream *s, void *user)
{
pa_stream_state_t state = pa_stream_get_state(s);
TRACE("Stream state changed to %i\n", state);
pthread_cond_signal(&pulse_cond);
}
static const enum pa_channel_position pulse_pos_from_wfx[] = {
PA_CHANNEL_POSITION_FRONT_LEFT,
PA_CHANNEL_POSITION_FRONT_RIGHT,
PA_CHANNEL_POSITION_FRONT_CENTER,
PA_CHANNEL_POSITION_LFE,
PA_CHANNEL_POSITION_REAR_LEFT,
PA_CHANNEL_POSITION_REAR_RIGHT,
PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER,
PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER,
PA_CHANNEL_POSITION_REAR_CENTER,
PA_CHANNEL_POSITION_SIDE_LEFT,
PA_CHANNEL_POSITION_SIDE_RIGHT,
PA_CHANNEL_POSITION_TOP_CENTER,
PA_CHANNEL_POSITION_TOP_FRONT_LEFT,
PA_CHANNEL_POSITION_TOP_FRONT_CENTER,
PA_CHANNEL_POSITION_TOP_FRONT_RIGHT,
PA_CHANNEL_POSITION_TOP_REAR_LEFT,
PA_CHANNEL_POSITION_TOP_REAR_CENTER,
PA_CHANNEL_POSITION_TOP_REAR_RIGHT
};
static DWORD pulse_channel_map_to_channel_mask(const pa_channel_map *map) {
int i;
DWORD mask = 0;
for (i = 0; i < map->channels; ++i)
switch (map->map[i]) {
default: FIXME("Unhandled channel %s\n", pa_channel_position_to_string(map->map[i])); break;
case PA_CHANNEL_POSITION_FRONT_LEFT: mask |= SPEAKER_FRONT_LEFT; break;
case PA_CHANNEL_POSITION_MONO:
case PA_CHANNEL_POSITION_FRONT_CENTER: mask |= SPEAKER_FRONT_CENTER; break;
case PA_CHANNEL_POSITION_FRONT_RIGHT: mask |= SPEAKER_FRONT_RIGHT; break;
case PA_CHANNEL_POSITION_REAR_LEFT: mask |= SPEAKER_BACK_LEFT; break;
case PA_CHANNEL_POSITION_REAR_CENTER: mask |= SPEAKER_BACK_CENTER; break;
case PA_CHANNEL_POSITION_REAR_RIGHT: mask |= SPEAKER_BACK_RIGHT; break;
case PA_CHANNEL_POSITION_LFE: mask |= SPEAKER_LOW_FREQUENCY; break;
case PA_CHANNEL_POSITION_SIDE_LEFT: mask |= SPEAKER_SIDE_LEFT; break;
case PA_CHANNEL_POSITION_SIDE_RIGHT: mask |= SPEAKER_SIDE_RIGHT; break;
case PA_CHANNEL_POSITION_TOP_CENTER: mask |= SPEAKER_TOP_CENTER; break;
case PA_CHANNEL_POSITION_TOP_FRONT_LEFT: mask |= SPEAKER_TOP_FRONT_LEFT; break;
case PA_CHANNEL_POSITION_TOP_FRONT_CENTER: mask |= SPEAKER_TOP_FRONT_CENTER; break;
case PA_CHANNEL_POSITION_TOP_FRONT_RIGHT: mask |= SPEAKER_TOP_FRONT_RIGHT; break;
case PA_CHANNEL_POSITION_TOP_REAR_LEFT: mask |= SPEAKER_TOP_BACK_LEFT; break;
case PA_CHANNEL_POSITION_TOP_REAR_CENTER: mask |= SPEAKER_TOP_BACK_CENTER; break;
case PA_CHANNEL_POSITION_TOP_REAR_RIGHT: mask |= SPEAKER_TOP_BACK_RIGHT; break;
case PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER: mask |= SPEAKER_FRONT_LEFT_OF_CENTER; break;
case PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER: mask |= SPEAKER_FRONT_RIGHT_OF_CENTER; break;
}
return mask;
}
static void pulse_probe_settings(int render, WAVEFORMATEXTENSIBLE *fmt) {
WAVEFORMATEX *wfx = &fmt->Format;
pa_stream *stream;
pa_channel_map map;
pa_sample_spec ss;
pa_buffer_attr attr;
int ret;
unsigned int length = 0;
pa_channel_map_init_auto(&map, 2, PA_CHANNEL_MAP_ALSA);
ss.rate = 48000;
ss.format = PA_SAMPLE_FLOAT32LE;
ss.channels = map.channels;
attr.maxlength = -1;
attr.tlength = -1;
attr.minreq = attr.fragsize = pa_frame_size(&ss);
attr.prebuf = 0;
stream = pa_stream_new(pulse_ctx, "format test stream", &ss, &map);
if (stream)
pa_stream_set_state_callback(stream, pulse_stream_state, NULL);
if (!stream)
ret = -1;
else if (render)
ret = pa_stream_connect_playback(stream, NULL, &attr,
PA_STREAM_START_CORKED|PA_STREAM_FIX_RATE|PA_STREAM_FIX_CHANNELS|PA_STREAM_EARLY_REQUESTS, NULL, NULL);
else
ret = pa_stream_connect_record(stream, NULL, &attr, PA_STREAM_START_CORKED|PA_STREAM_FIX_RATE|PA_STREAM_FIX_CHANNELS|PA_STREAM_EARLY_REQUESTS);
if (ret >= 0) {
while (pa_mainloop_iterate(pulse_ml, 1, &ret) >= 0 &&
pa_stream_get_state(stream) == PA_STREAM_CREATING)
{}
if (pa_stream_get_state(stream) == PA_STREAM_READY) {
ss = *pa_stream_get_sample_spec(stream);
map = *pa_stream_get_channel_map(stream);
if (render)
length = pa_stream_get_buffer_attr(stream)->minreq;
else
length = pa_stream_get_buffer_attr(stream)->fragsize;
pa_stream_disconnect(stream);
while (pa_mainloop_iterate(pulse_ml, 1, &ret) >= 0 &&
pa_stream_get_state(stream) == PA_STREAM_READY)
{}
}
}
if (stream)
pa_stream_unref(stream);
if (length)
pulse_def_period[!render] = pulse_min_period[!render] = pa_bytes_to_usec(10 * length, &ss);
if (pulse_min_period[!render] < MinimumPeriod)
pulse_min_period[!render] = MinimumPeriod;
if (pulse_def_period[!render] < DefaultPeriod)
pulse_def_period[!render] = DefaultPeriod;
wfx->wFormatTag = WAVE_FORMAT_EXTENSIBLE;
wfx->cbSize = sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX);
wfx->nChannels = ss.channels;
wfx->wBitsPerSample = 8 * pa_sample_size_of_format(ss.format);
wfx->nSamplesPerSec = ss.rate;
wfx->nBlockAlign = pa_frame_size(&ss);
wfx->nAvgBytesPerSec = wfx->nSamplesPerSec * wfx->nBlockAlign;
if (ss.format != PA_SAMPLE_S24_32LE)
fmt->Samples.wValidBitsPerSample = wfx->wBitsPerSample;
else
fmt->Samples.wValidBitsPerSample = 24;
if (ss.format == PA_SAMPLE_FLOAT32LE)
fmt->SubFormat = KSDATAFORMAT_SUBTYPE_IEEE_FLOAT;
else
fmt->SubFormat = KSDATAFORMAT_SUBTYPE_PCM;
fmt->dwChannelMask = pulse_channel_map_to_channel_mask(&map);
}
static HRESULT pulse_connect(void)
{
int len;
WCHAR path[MAX_PATH], *name;
char *str;
if (!pulse_thread)
{
if (!(pulse_thread = CreateThread(NULL, 0, pulse_mainloop_thread, NULL, 0, NULL)))
{
ERR("Failed to create mainloop thread.\n");
return E_FAIL;
}
SetThreadPriority(pulse_thread, THREAD_PRIORITY_TIME_CRITICAL);
pthread_cond_wait(&pulse_cond, &pulse_lock);
}
if (pulse_ctx && PA_CONTEXT_IS_GOOD(pa_context_get_state(pulse_ctx)))
return S_OK;
if (pulse_ctx)
pa_context_unref(pulse_ctx);
GetModuleFileNameW(NULL, path, sizeof(path)/sizeof(*path));
name = strrchrW(path, '\\');
if (!name)
name = path;
else
name++;
len = WideCharToMultiByte(CP_UNIXCP, 0, name, -1, NULL, 0, NULL, NULL);
str = pa_xmalloc(len);
WideCharToMultiByte(CP_UNIXCP, 0, name, -1, str, len, NULL, NULL);
TRACE("Name: %s\n", str);
pulse_ctx = pa_context_new(pa_mainloop_get_api(pulse_ml), str);
pa_xfree(str);
if (!pulse_ctx) {
ERR("Failed to create context\n");
return E_FAIL;
}
pa_context_set_state_callback(pulse_ctx, pulse_contextcallback, NULL);
TRACE("libpulse protocol version: %u. API Version %u\n", pa_context_get_protocol_version(pulse_ctx), PA_API_VERSION);
if (pa_context_connect(pulse_ctx, NULL, 0, NULL) < 0)
goto fail;
/* Wait for connection */
while (pthread_cond_wait(&pulse_cond, &pulse_lock)) {
pa_context_state_t state = pa_context_get_state(pulse_ctx);
if (state == PA_CONTEXT_FAILED || state == PA_CONTEXT_TERMINATED)
goto fail;
if (state == PA_CONTEXT_READY)
break;
}
TRACE("Connected to server %s with protocol version: %i.\n",
pa_context_get_server(pulse_ctx),
pa_context_get_server_protocol_version(pulse_ctx));
return S_OK;
fail:
pa_context_unref(pulse_ctx);
pulse_ctx = NULL;
return E_FAIL;
}
/* For default PulseAudio render device, OR together all of the
* PKEY_AudioEndpoint_PhysicalSpeakers values of the sinks. */
static void pulse_phys_speakers_cb(pa_context *c, const pa_sink_info *i, int eol, void *userdata)
{
if (i)
g_phys_speakers_mask |= pulse_channel_map_to_channel_mask(&i->channel_map);
}
/* some poorly-behaved applications call audio functions during DllMain, so we
* have to do as much as possible without creating a new thread. this function
* sets up a synchronous connection to verify the server is running and query
* static data. */
static HRESULT pulse_test_connect(void)
{
int len, ret;
WCHAR path[MAX_PATH], *name;
char *str;
pa_operation *o;
pulse_ml = pa_mainloop_new();
pa_mainloop_set_poll_func(pulse_ml, pulse_poll_func, NULL);
GetModuleFileNameW(NULL, path, sizeof(path)/sizeof(*path));
name = strrchrW(path, '\\');
if (!name)
name = path;
else
name++;
len = WideCharToMultiByte(CP_UNIXCP, 0, name, -1, NULL, 0, NULL, NULL);
str = pa_xmalloc(len);
WideCharToMultiByte(CP_UNIXCP, 0, name, -1, str, len, NULL, NULL);
TRACE("Name: %s\n", str);
pulse_ctx = pa_context_new(pa_mainloop_get_api(pulse_ml), str);
pa_xfree(str);
if (!pulse_ctx) {
ERR("Failed to create context\n");
pa_mainloop_free(pulse_ml);
pulse_ml = NULL;
return E_FAIL;
}
pa_context_set_state_callback(pulse_ctx, pulse_contextcallback, NULL);
TRACE("libpulse protocol version: %u. API Version %u\n", pa_context_get_protocol_version(pulse_ctx), PA_API_VERSION);
if (pa_context_connect(pulse_ctx, NULL, 0, NULL) < 0)
goto fail;
/* Wait for connection */
while (pa_mainloop_iterate(pulse_ml, 1, &ret) >= 0) {
pa_context_state_t state = pa_context_get_state(pulse_ctx);
if (state == PA_CONTEXT_FAILED || state == PA_CONTEXT_TERMINATED)
goto fail;
if (state == PA_CONTEXT_READY)
break;
}
TRACE("Test-connected to server %s with protocol version: %i.\n",
pa_context_get_server(pulse_ctx),
pa_context_get_server_protocol_version(pulse_ctx));
pulse_probe_settings(1, &pulse_fmt[0]);
pulse_probe_settings(0, &pulse_fmt[1]);
g_phys_speakers_mask = 0;
o = pa_context_get_sink_info_list(pulse_ctx, &pulse_phys_speakers_cb, NULL);
if (o) {
while (pa_mainloop_iterate(pulse_ml, 1, &ret) >= 0 &&
pa_operation_get_state(o) == PA_OPERATION_RUNNING)
{}
pa_operation_unref(o);
}
pa_context_unref(pulse_ctx);
pulse_ctx = NULL;
pa_mainloop_free(pulse_ml);
pulse_ml = NULL;
return S_OK;
fail:
pa_context_unref(pulse_ctx);
pulse_ctx = NULL;
pa_mainloop_free(pulse_ml);
pulse_ml = NULL;
return E_FAIL;
}
static HRESULT pulse_stream_valid(ACImpl *This) {
if (!This->stream)
return AUDCLNT_E_NOT_INITIALIZED;
if (!This->stream || pa_stream_get_state(This->stream) != PA_STREAM_READY)
return AUDCLNT_E_DEVICE_INVALIDATED;
return S_OK;
}
static void silence_buffer(pa_sample_format_t format, BYTE *buffer, UINT32 bytes)
{
memset(buffer, format == PA_SAMPLE_U8 ? 0x80 : 0, bytes);
}
static void dump_attr(const pa_buffer_attr *attr) {
TRACE("maxlength: %u\n", attr->maxlength);
TRACE("minreq: %u\n", attr->minreq);
TRACE("fragsize: %u\n", attr->fragsize);
TRACE("tlength: %u\n", attr->tlength);
TRACE("prebuf: %u\n", attr->prebuf);
}
static void pulse_op_cb(pa_stream *s, int success, void *user) {
TRACE("Success: %i\n", success);
*(int*)user = success;
pthread_cond_signal(&pulse_cond);
}
static void pulse_attr_update(pa_stream *s, void *user) {
const pa_buffer_attr *attr = pa_stream_get_buffer_attr(s);
TRACE("New attributes or device moved:\n");
dump_attr(attr);
}
/* Here's the buffer setup:
*
* vvvvvvvv sent to HW already
* vvvvvvvv in Pulse buffer but rewindable
* [dddddddddddddddd] Pulse buffer
* [dddddddddddddddd--------] mmdevapi buffer
* ^^^^^^^^^^^^^^^^ pad
* ^ lcl_offs_bytes
* ^^^^^^^^^ held_bytes
* ^ wri_offs_bytes
*
* GetCurrentPadding is pad
*
* During pulse_wr_callback, we decrement pad, fill Pulse buffer, and move
* lcl_offs forward
*
* During Stop, we flush the Pulse buffer
*/
static void pulse_wr_callback(pa_stream *s, size_t bytes, void *userdata)
{
ACImpl *This = userdata;
UINT32 oldpad = This->pad;
if(This->local_buffer){
size_t to_write;
BYTE *buf = This->local_buffer + This->lcl_offs_bytes;
if(This->pad > bytes){
This->clock_written += bytes;
This->pad -= bytes;
}else{
This->clock_written += This->pad;
This->pad = 0;
}
bytes = min(bytes, This->held_bytes);
if(This->lcl_offs_bytes + bytes > This->bufsize_bytes){
to_write = This->bufsize_bytes - This->lcl_offs_bytes;
TRACE("writing small chunk of %u bytes\n", to_write);
pa_stream_write(This->stream, buf, to_write, NULL, 0, PA_SEEK_RELATIVE);
This->held_bytes -= to_write;
to_write = bytes - to_write;
This->lcl_offs_bytes = 0;
buf = This->local_buffer;
}else
to_write = bytes;
TRACE("writing main chunk of %u bytes\n", to_write);
pa_stream_write(This->stream, buf, to_write, NULL, 0, PA_SEEK_RELATIVE);
This->lcl_offs_bytes += to_write;
This->lcl_offs_bytes %= This->bufsize_bytes;
This->held_bytes -= to_write;
}else{
if (bytes < This->bufsize_bytes)
This->pad = This->bufsize_bytes - bytes;
else
This->pad = 0;
if (oldpad == This->pad)
return;
assert(oldpad > This->pad);
This->clock_written += oldpad - This->pad;
TRACE("New pad: %zu (-%zu)\n", This->pad / pa_frame_size(&This->ss), (oldpad - This->pad) / pa_frame_size(&This->ss));
}
if (This->event)
SetEvent(This->event);
}
static void pulse_underflow_callback(pa_stream *s, void *userdata)
{
WARN("Underflow\n");
}
/* Latency is periodically updated even when nothing is played,
* because of PA_STREAM_AUTO_TIMING_UPDATE so use it as timer
*
* Perfect for passing all tests :)
*/
static void pulse_latency_callback(pa_stream *s, void *userdata)
{
ACImpl *This = userdata;
if (!This->pad && This->event)
SetEvent(This->event);
}
static void pulse_started_callback(pa_stream *s, void *userdata)
{
TRACE("(Re)started playing\n");
}
static void pulse_rd_loop(ACImpl *This, size_t bytes)
{
while (bytes >= This->capture_period) {
ACPacket *p, *next;
LARGE_INTEGER stamp, freq;
BYTE *dst, *src;
size_t src_len, copy, rem = This->capture_period;
if (!(p = (ACPacket*)list_head(&This->packet_free_head))) {
p = (ACPacket*)list_head(&This->packet_filled_head);
if (!p->discont) {
next = (ACPacket*)p->entry.next;
next->discont = 1;
} else
p = (ACPacket*)list_tail(&This->packet_filled_head);
assert(This->pad == This->bufsize_bytes);
} else {
assert(This->pad < This->bufsize_bytes);
This->pad += This->capture_period;
assert(This->pad <= This->bufsize_bytes);
}
QueryPerformanceCounter(&stamp);
QueryPerformanceFrequency(&freq);
p->qpcpos = (stamp.QuadPart * (INT64)10000000) / freq.QuadPart;
p->discont = 0;
list_remove(&p->entry);
list_add_tail(&This->packet_filled_head, &p->entry);
dst = p->data;
while (rem) {
pa_stream_peek(This->stream, (const void**)&src, &src_len);
assert(src_len);
assert(This->peek_ofs < src_len);
src += This->peek_ofs;
src_len -= This->peek_ofs;
assert(src_len <= bytes);
copy = rem;
if (copy > src_len)
copy = src_len;
memcpy(dst, src, rem);
src += copy;
src_len -= copy;
dst += copy;
rem -= copy;
if (!src_len) {
This->peek_ofs = 0;
pa_stream_drop(This->stream);
} else
This->peek_ofs += copy;
}
bytes -= This->capture_period;
}
}
static void pulse_rd_drop(ACImpl *This, size_t bytes)
{
while (bytes >= This->capture_period) {
size_t src_len, copy, rem = This->capture_period;
while (rem) {
const void *src;
pa_stream_peek(This->stream, &src, &src_len);
assert(src_len);
assert(This->peek_ofs < src_len);
src_len -= This->peek_ofs;
assert(src_len <= bytes);
copy = rem;
if (copy > src_len)
copy = src_len;
src_len -= copy;
rem -= copy;
if (!src_len) {
This->peek_ofs = 0;
pa_stream_drop(This->stream);
} else
This->peek_ofs += copy;
bytes -= copy;
}
}
}
static void pulse_rd_callback(pa_stream *s, size_t bytes, void *userdata)
{
ACImpl *This = userdata;
TRACE("Readable total: %zu, fragsize: %u\n", bytes, pa_stream_get_buffer_attr(s)->fragsize);
assert(bytes >= This->peek_ofs);
bytes -= This->peek_ofs;
if (bytes < This->capture_period)
return;
if (This->started)
pulse_rd_loop(This, bytes);
else
pulse_rd_drop(This, bytes);
if (This->event)
SetEvent(This->event);
}
static HRESULT pulse_stream_connect(ACImpl *This, UINT32 period_bytes) {
int ret;
char buffer[64];
static LONG number;
pa_buffer_attr attr;
if (This->stream) {
pa_stream_disconnect(This->stream);
while (pa_stream_get_state(This->stream) == PA_STREAM_READY)
pthread_cond_wait(&pulse_cond, &pulse_lock);
pa_stream_unref(This->stream);
}
ret = InterlockedIncrement(&number);
sprintf(buffer, "audio stream #%i", ret);
This->stream = pa_stream_new(pulse_ctx, buffer, &This->ss, &This->map);
if (!This->stream) {
WARN("pa_stream_new returned error %i\n", pa_context_errno(pulse_ctx));
return AUDCLNT_E_ENDPOINT_CREATE_FAILED;
}
pa_stream_set_state_callback(This->stream, pulse_stream_state, This);
pa_stream_set_buffer_attr_callback(This->stream, pulse_attr_update, This);
pa_stream_set_moved_callback(This->stream, pulse_attr_update, This);
/* PulseAudio will fill in correct values */
attr.minreq = attr.fragsize = period_bytes;
attr.maxlength = attr.tlength = This->bufsize_bytes;
attr.prebuf = pa_frame_size(&This->ss);
dump_attr(&attr);
if (This->dataflow == eRender)
ret = pa_stream_connect_playback(This->stream, NULL, &attr,
PA_STREAM_START_CORKED|PA_STREAM_START_UNMUTED|PA_STREAM_AUTO_TIMING_UPDATE|PA_STREAM_INTERPOLATE_TIMING|PA_STREAM_EARLY_REQUESTS, NULL, NULL);
else
ret = pa_stream_connect_record(This->stream, NULL, &attr,
PA_STREAM_START_CORKED|PA_STREAM_START_UNMUTED|PA_STREAM_AUTO_TIMING_UPDATE|PA_STREAM_INTERPOLATE_TIMING|PA_STREAM_EARLY_REQUESTS);
if (ret < 0) {
WARN("Returns %i\n", ret);
return AUDCLNT_E_ENDPOINT_CREATE_FAILED;
}
while (pa_stream_get_state(This->stream) == PA_STREAM_CREATING)
pthread_cond_wait(&pulse_cond, &pulse_lock);
if (pa_stream_get_state(This->stream) != PA_STREAM_READY)
return AUDCLNT_E_ENDPOINT_CREATE_FAILED;
if (This->dataflow == eRender) {
pa_stream_set_write_callback(This->stream, pulse_wr_callback, This);
pa_stream_set_underflow_callback(This->stream, pulse_underflow_callback, This);
pa_stream_set_started_callback(This->stream, pulse_started_callback, This);
} else
pa_stream_set_read_callback(This->stream, pulse_rd_callback, This);
return S_OK;
}
HRESULT WINAPI AUDDRV_GetEndpointIDs(EDataFlow flow, const WCHAR ***ids, GUID **keys,
UINT *num, UINT *def_index)
{
WCHAR *id;
TRACE("%d %p %p %p\n", flow, ids, num, def_index);
*num = 1;
*def_index = 0;
*ids = HeapAlloc(GetProcessHeap(), 0, sizeof(**ids));
*keys = NULL;
if (!*ids)
return E_OUTOFMEMORY;
(*ids)[0] = id = HeapAlloc(GetProcessHeap(), 0, sizeof(defaultW));
*keys = HeapAlloc(GetProcessHeap(), 0, sizeof(**keys));
if (!*keys || !id) {
HeapFree(GetProcessHeap(), 0, id);
HeapFree(GetProcessHeap(), 0, *keys);
HeapFree(GetProcessHeap(), 0, *ids);
*ids = NULL;
*keys = NULL;
return E_OUTOFMEMORY;
}
memcpy(id, defaultW, sizeof(defaultW));
if (flow == eRender)
(*keys)[0] = pulse_render_guid;
else
(*keys)[0] = pulse_capture_guid;
return S_OK;
}
int WINAPI AUDDRV_GetPriority(void)
{
HRESULT hr;
pthread_mutex_lock(&pulse_lock);
hr = pulse_test_connect();
pthread_mutex_unlock(&pulse_lock);
return SUCCEEDED(hr) ? Priority_Preferred : Priority_Unavailable;
}
HRESULT WINAPI AUDDRV_GetAudioEndpoint(GUID *guid, IMMDevice *dev, IAudioClient **out)
{
ACImpl *This;
int i;
EDataFlow dataflow;
HRESULT hr;
TRACE("%s %p %p\n", debugstr_guid(guid), dev, out);
if (IsEqualGUID(guid, &pulse_render_guid))
dataflow = eRender;
else if (IsEqualGUID(guid, &pulse_capture_guid))
dataflow = eCapture;
else
return E_UNEXPECTED;
*out = NULL;
This = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(*This));
if (!This)
return E_OUTOFMEMORY;
This->IAudioClient_iface.lpVtbl = &AudioClient_Vtbl;
This->IAudioRenderClient_iface.lpVtbl = &AudioRenderClient_Vtbl;
This->IAudioCaptureClient_iface.lpVtbl = &AudioCaptureClient_Vtbl;
This->IAudioClock_iface.lpVtbl = &AudioClock_Vtbl;
This->IAudioClock2_iface.lpVtbl = &AudioClock2_Vtbl;
This->IAudioStreamVolume_iface.lpVtbl = &AudioStreamVolume_Vtbl;
This->dataflow = dataflow;
This->parent = dev;
for (i = 0; i < PA_CHANNELS_MAX; ++i)
This->vol[i] = 1.f;
hr = CoCreateFreeThreadedMarshaler((IUnknown*)This, &This->marshal);
if (hr) {
HeapFree(GetProcessHeap(), 0, This);
return hr;
}
IMMDevice_AddRef(This->parent);
*out = &This->IAudioClient_iface;
IAudioClient_AddRef(&This->IAudioClient_iface);
return S_OK;
}
static HRESULT WINAPI AudioClient_QueryInterface(IAudioClient *iface,
REFIID riid, void **ppv)
{
ACImpl *This = impl_from_IAudioClient(iface);
TRACE("(%p)->(%s, %p)\n", iface, debugstr_guid(riid), ppv);
if (!ppv)
return E_POINTER;
*ppv = NULL;
if (IsEqualIID(riid, &IID_IUnknown) || IsEqualIID(riid, &IID_IAudioClient))
*ppv = iface;
if (*ppv) {
IUnknown_AddRef((IUnknown*)*ppv);
return S_OK;
}
if (IsEqualIID(riid, &IID_IMarshal))
return IUnknown_QueryInterface(This->marshal, riid, ppv);
WARN("Unknown interface %s\n", debugstr_guid(riid));
return E_NOINTERFACE;
}
static ULONG WINAPI AudioClient_AddRef(IAudioClient *iface)
{
ACImpl *This = impl_from_IAudioClient(iface);
ULONG ref;
ref = InterlockedIncrement(&This->ref);
TRACE("(%p) Refcount now %u\n", This, ref);
return ref;
}
static ULONG WINAPI AudioClient_Release(IAudioClient *iface)
{
ACImpl *This = impl_from_IAudioClient(iface);
ULONG ref;
ref = InterlockedDecrement(&This->ref);
TRACE("(%p) Refcount now %u\n", This, ref);
if (!ref) {
if (This->stream) {
pthread_mutex_lock(&pulse_lock);
if (PA_STREAM_IS_GOOD(pa_stream_get_state(This->stream))) {
pa_stream_disconnect(This->stream);
while (PA_STREAM_IS_GOOD(pa_stream_get_state(This->stream)))
pthread_cond_wait(&pulse_cond, &pulse_lock);
}
pa_stream_unref(This->stream);
This->stream = NULL;
list_remove(&This->entry);
pthread_mutex_unlock(&pulse_lock);
}
IUnknown_Release(This->marshal);
IMMDevice_Release(This->parent);
HeapFree(GetProcessHeap(), 0, This->tmp_buffer);
HeapFree(GetProcessHeap(), 0, This->local_buffer);
HeapFree(GetProcessHeap(), 0, This);
}
return ref;
}
static void dump_fmt(const WAVEFORMATEX *fmt)
{
TRACE("wFormatTag: 0x%x (", fmt->wFormatTag);
switch(fmt->wFormatTag) {
case WAVE_FORMAT_PCM:
TRACE("WAVE_FORMAT_PCM");
break;
case WAVE_FORMAT_IEEE_FLOAT:
TRACE("WAVE_FORMAT_IEEE_FLOAT");
break;
case WAVE_FORMAT_EXTENSIBLE:
TRACE("WAVE_FORMAT_EXTENSIBLE");
break;
default:
TRACE("Unknown");
break;
}
TRACE(")\n");
TRACE("nChannels: %u\n", fmt->nChannels);
TRACE("nSamplesPerSec: %u\n", fmt->nSamplesPerSec);
TRACE("nAvgBytesPerSec: %u\n", fmt->nAvgBytesPerSec);
TRACE("nBlockAlign: %u\n", fmt->nBlockAlign);
TRACE("wBitsPerSample: %u\n", fmt->wBitsPerSample);
TRACE("cbSize: %u\n", fmt->cbSize);
if (fmt->wFormatTag == WAVE_FORMAT_EXTENSIBLE) {
WAVEFORMATEXTENSIBLE *fmtex = (void*)fmt;
TRACE("dwChannelMask: %08x\n", fmtex->dwChannelMask);
TRACE("Samples: %04x\n", fmtex->Samples.wReserved);
TRACE("SubFormat: %s\n", wine_dbgstr_guid(&fmtex->SubFormat));
}
}
static WAVEFORMATEX *clone_format(const WAVEFORMATEX *fmt)
{
WAVEFORMATEX *ret;
size_t size;
if (fmt->wFormatTag == WAVE_FORMAT_EXTENSIBLE)
size = sizeof(WAVEFORMATEXTENSIBLE);
else
size = sizeof(WAVEFORMATEX);
ret = CoTaskMemAlloc(size);
if (!ret)
return NULL;
memcpy(ret, fmt, size);
ret->cbSize = size - sizeof(WAVEFORMATEX);
return ret;
}
static DWORD get_channel_mask(unsigned int channels)
{
switch(channels) {
case 0:
return 0;
case 1:
return KSAUDIO_SPEAKER_MONO;
case 2:
return KSAUDIO_SPEAKER_STEREO;
case 3:
return KSAUDIO_SPEAKER_STEREO | SPEAKER_LOW_FREQUENCY;
case 4:
return KSAUDIO_SPEAKER_QUAD; /* not _SURROUND */
case 5:
return KSAUDIO_SPEAKER_QUAD | SPEAKER_LOW_FREQUENCY;
case 6:
return KSAUDIO_SPEAKER_5POINT1; /* not 5POINT1_SURROUND */
case 7:
return KSAUDIO_SPEAKER_5POINT1 | SPEAKER_BACK_CENTER;
case 8:
return KSAUDIO_SPEAKER_7POINT1_SURROUND; /* Vista deprecates 7POINT1 */
}
FIXME("Unknown speaker configuration: %u\n", channels);
return 0;
}
static void session_init_vols(AudioSession *session, UINT channels)
{
if (session->channel_count < channels) {
UINT i;
if (session->channel_vols)
session->channel_vols = HeapReAlloc(GetProcessHeap(), 0,
session->channel_vols, sizeof(float) * channels);
else
session->channel_vols = HeapAlloc(GetProcessHeap(), 0,
sizeof(float) * channels);
if (!session->channel_vols)
return;
for(i = session->channel_count; i < channels; ++i)
session->channel_vols[i] = 1.f;
session->channel_count = channels;
}
}
static AudioSession *create_session(const GUID *guid, IMMDevice *device,
UINT num_channels)
{
AudioSession *ret;
ret = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(AudioSession));
if (!ret)
return NULL;
memcpy(&ret->guid, guid, sizeof(GUID));
ret->device = device;
list_init(&ret->clients);
list_add_head(&g_sessions, &ret->entry);
session_init_vols(ret, num_channels);
ret->master_vol = 1.f;
return ret;
}
/* if channels == 0, then this will return or create a session with
* matching dataflow and GUID. otherwise, channels must also match */
static HRESULT get_audio_session(const GUID *sessionguid,
IMMDevice *device, UINT channels, AudioSession **out)
{
AudioSession *session;
if (!sessionguid || IsEqualGUID(sessionguid, &GUID_NULL)) {
*out = create_session(&GUID_NULL, device, channels);
if (!*out)
return E_OUTOFMEMORY;
return S_OK;
}
*out = NULL;
LIST_FOR_EACH_ENTRY(session, &g_sessions, AudioSession, entry) {
if (session->device == device &&
IsEqualGUID(sessionguid, &session->guid)) {
session_init_vols(session, channels);
*out = session;
break;
}
}
if (!*out) {
*out = create_session(sessionguid, device, channels);
if (!*out)
return E_OUTOFMEMORY;
}
return S_OK;
}
static HRESULT pulse_spec_from_waveformat(ACImpl *This, const WAVEFORMATEX *fmt)
{
pa_channel_map_init(&This->map);
This->ss.rate = fmt->nSamplesPerSec;
This->ss.format = PA_SAMPLE_INVALID;
switch(fmt->wFormatTag) {
case WAVE_FORMAT_IEEE_FLOAT:
if (!fmt->nChannels || fmt->nChannels > 2 || fmt->wBitsPerSample != 32)
break;
This->ss.format = PA_SAMPLE_FLOAT32LE;
pa_channel_map_init_auto(&This->map, fmt->nChannels, PA_CHANNEL_MAP_ALSA);
break;
case WAVE_FORMAT_PCM:
if (!fmt->nChannels || fmt->nChannels > 2)
break;
if (fmt->wBitsPerSample == 8)
This->ss.format = PA_SAMPLE_U8;
else if (fmt->wBitsPerSample == 16)
This->ss.format = PA_SAMPLE_S16LE;
else
return AUDCLNT_E_UNSUPPORTED_FORMAT;
pa_channel_map_init_auto(&This->map, fmt->nChannels, PA_CHANNEL_MAP_ALSA);
break;
case WAVE_FORMAT_EXTENSIBLE: {
WAVEFORMATEXTENSIBLE *wfe = (WAVEFORMATEXTENSIBLE*)fmt;
DWORD mask = wfe->dwChannelMask;
DWORD i = 0, j;
if (fmt->cbSize != (sizeof(*wfe) - sizeof(*fmt)) && fmt->cbSize != sizeof(*wfe))
break;
if (IsEqualGUID(&wfe->SubFormat, &KSDATAFORMAT_SUBTYPE_IEEE_FLOAT) &&
(!wfe->Samples.wValidBitsPerSample || wfe->Samples.wValidBitsPerSample == 32) &&
fmt->wBitsPerSample == 32)
This->ss.format = PA_SAMPLE_FLOAT32LE;
else if (IsEqualGUID(&wfe->SubFormat, &KSDATAFORMAT_SUBTYPE_PCM)) {
DWORD valid = wfe->Samples.wValidBitsPerSample;
if (!valid)
valid = fmt->wBitsPerSample;
if (!valid || valid > fmt->wBitsPerSample)
break;
switch (fmt->wBitsPerSample) {
case 8:
if (valid == 8)
This->ss.format = PA_SAMPLE_U8;
break;
case 16:
if (valid == 16)
This->ss.format = PA_SAMPLE_S16LE;
break;
case 24:
if (valid == 24)
This->ss.format = PA_SAMPLE_S24LE;
break;
case 32:
if (valid == 24)
This->ss.format = PA_SAMPLE_S24_32LE;
else if (valid == 32)
This->ss.format = PA_SAMPLE_S32LE;
break;
default:
return AUDCLNT_E_UNSUPPORTED_FORMAT;
}
}
This->map.channels = fmt->nChannels;
if (!mask || (mask & (SPEAKER_ALL|SPEAKER_RESERVED)))
mask = get_channel_mask(fmt->nChannels);
for (j = 0; j < sizeof(pulse_pos_from_wfx)/sizeof(*pulse_pos_from_wfx) && i < fmt->nChannels; ++j) {
if (mask & (1 << j))
This->map.map[i++] = pulse_pos_from_wfx[j];
}
/* Special case for mono since pulse appears to map it differently */
if (mask == SPEAKER_FRONT_CENTER)
This->map.map[0] = PA_CHANNEL_POSITION_MONO;
if (i < fmt->nChannels || (mask & SPEAKER_RESERVED)) {
This->map.channels = 0;
ERR("Invalid channel mask: %i/%i and %x(%x)\n", i, fmt->nChannels, mask, wfe->dwChannelMask);
break;
}
break;
}
case WAVE_FORMAT_ALAW:
case WAVE_FORMAT_MULAW:
if (fmt->wBitsPerSample != 8) {
FIXME("Unsupported bpp %u for LAW\n", fmt->wBitsPerSample);
return AUDCLNT_E_UNSUPPORTED_FORMAT;
}
if (fmt->nChannels != 1 && fmt->nChannels != 2) {
FIXME("Unsupported channels %u for LAW\n", fmt->nChannels);
return AUDCLNT_E_UNSUPPORTED_FORMAT;
}
This->ss.format = fmt->wFormatTag == WAVE_FORMAT_MULAW ? PA_SAMPLE_ULAW : PA_SAMPLE_ALAW;
pa_channel_map_init_auto(&This->map, fmt->nChannels, PA_CHANNEL_MAP_ALSA);
break;
default:
WARN("Unhandled tag %x\n", fmt->wFormatTag);
return AUDCLNT_E_UNSUPPORTED_FORMAT;
}
This->ss.channels = This->map.channels;
if (!pa_channel_map_valid(&This->map) || This->ss.format == PA_SAMPLE_INVALID) {
ERR("Invalid format! Channel spec valid: %i, format: %i\n", pa_channel_map_valid(&This->map), This->ss.format);
return AUDCLNT_E_UNSUPPORTED_FORMAT;
}
return S_OK;
}
static HRESULT WINAPI AudioClient_Initialize(IAudioClient *iface,
AUDCLNT_SHAREMODE mode, DWORD flags, REFERENCE_TIME duration,
REFERENCE_TIME period, const WAVEFORMATEX *fmt,
const GUID *sessionguid)
{
ACImpl *This = impl_from_IAudioClient(iface);
HRESULT hr = S_OK;
UINT period_bytes;
TRACE("(%p)->(%x, %x, %s, %s, %p, %s)\n", This, mode, flags,
wine_dbgstr_longlong(duration), wine_dbgstr_longlong(period), fmt, debugstr_guid(sessionguid));
if (!fmt)
return E_POINTER;
if (mode != AUDCLNT_SHAREMODE_SHARED && mode != AUDCLNT_SHAREMODE_EXCLUSIVE)
return AUDCLNT_E_NOT_INITIALIZED;
if (mode == AUDCLNT_SHAREMODE_EXCLUSIVE)
return AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED;
if (flags & ~(AUDCLNT_STREAMFLAGS_CROSSPROCESS |
AUDCLNT_STREAMFLAGS_LOOPBACK |
AUDCLNT_STREAMFLAGS_EVENTCALLBACK |
AUDCLNT_STREAMFLAGS_NOPERSIST |
AUDCLNT_STREAMFLAGS_RATEADJUST |
AUDCLNT_SESSIONFLAGS_EXPIREWHENUNOWNED |
AUDCLNT_SESSIONFLAGS_DISPLAY_HIDE |
AUDCLNT_SESSIONFLAGS_DISPLAY_HIDEWHENEXPIRED)) {
TRACE("Unknown flags: %08x\n", flags);
return E_INVALIDARG;
}
pthread_mutex_lock(&pulse_lock);
hr = pulse_connect();
if (FAILED(hr)) {
pthread_mutex_unlock(&pulse_lock);
return hr;
}
if (This->stream) {
pthread_mutex_unlock(&pulse_lock);
return AUDCLNT_E_ALREADY_INITIALIZED;
}
hr = pulse_spec_from_waveformat(This, fmt);
TRACE("Obtaining format returns %08x\n", hr);
dump_fmt(fmt);
if (FAILED(hr))
goto exit;
if (mode == AUDCLNT_SHAREMODE_SHARED) {
REFERENCE_TIME def = pulse_def_period[This->dataflow == eCapture];
REFERENCE_TIME min = pulse_min_period[This->dataflow == eCapture];
/* Switch to low latency mode if below 2 default periods,
* which is 20 ms by default, this will increase the amount
* of interrupts but allows very low latency. In dsound I
* managed to get a total latency of ~8ms, which is well below
* default
*/
if (duration < 2 * def)
period = min;
else
period = def;
if (duration < 2 * period)
duration = 2 * period;
/* Uh oh, really low latency requested.. */
if (duration <= 2 * period)
period /= 2;
}
period_bytes = pa_frame_size(&This->ss) * MulDiv(period, This->ss.rate, 10000000);
if (duration < 20000000)
This->bufsize_frames = ceil((duration / 10000000.) * fmt->nSamplesPerSec);
else
This->bufsize_frames = 2 * fmt->nSamplesPerSec;
This->bufsize_bytes = This->bufsize_frames * pa_frame_size(&This->ss);
This->share = mode;
This->flags = flags;
hr = pulse_stream_connect(This, period_bytes);
if (SUCCEEDED(hr)) {
UINT32 unalign;
const pa_buffer_attr *attr = pa_stream_get_buffer_attr(This->stream);
This->attr = *attr;
/* Update frames according to new size */
dump_attr(attr);
if (This->dataflow == eRender) {
if (attr->tlength < This->bufsize_bytes) {
TRACE("PulseAudio buffer too small (%u < %u), using tmp buffer\n", attr->tlength, This->bufsize_bytes);
This->local_buffer = HeapAlloc(GetProcessHeap(), 0, This->bufsize_bytes);
if(!This->local_buffer)
hr = E_OUTOFMEMORY;
}
} else {
UINT32 i, capture_packets;
This->capture_period = period_bytes = attr->fragsize;
if ((unalign = This->bufsize_bytes % period_bytes))
This->bufsize_bytes += period_bytes - unalign;
This->bufsize_frames = This->bufsize_bytes / pa_frame_size(&This->ss);
capture_packets = This->bufsize_bytes / This->capture_period;
This->local_buffer = HeapAlloc(GetProcessHeap(), 0, This->bufsize_bytes + capture_packets * sizeof(ACPacket));
if (!This->local_buffer)
hr = E_OUTOFMEMORY;
else {
ACPacket *cur_packet = (ACPacket*)((char*)This->local_buffer + This->bufsize_bytes);
BYTE *data = This->local_buffer;
silence_buffer(This->ss.format, This->local_buffer, This->bufsize_bytes);
list_init(&This->packet_free_head);
list_init(&This->packet_filled_head);
for (i = 0; i < capture_packets; ++i, ++cur_packet) {
list_add_tail(&This->packet_free_head, &cur_packet->entry);
cur_packet->data = data;
data += This->capture_period;
}
assert(!This->capture_period || This->bufsize_bytes == This->capture_period * capture_packets);
assert(!capture_packets || data - This->bufsize_bytes == This->local_buffer);
}
}
}
if (SUCCEEDED(hr))
hr = get_audio_session(sessionguid, This->parent, fmt->nChannels, &This->session);
if (SUCCEEDED(hr))
list_add_tail(&This->session->clients, &This->entry);
exit:
if (FAILED(hr)) {
if(This->local_buffer)
HeapFree(GetProcessHeap(), 0, This->local_buffer);
This->local_buffer = NULL;
if (This->stream) {
pa_stream_disconnect(This->stream);
pa_stream_unref(This->stream);
This->stream = NULL;
}
}
pthread_mutex_unlock(&pulse_lock);
return hr;
}
static HRESULT WINAPI AudioClient_GetBufferSize(IAudioClient *iface,
UINT32 *out)
{
ACImpl *This = impl_from_IAudioClient(iface);
HRESULT hr;
TRACE("(%p)->(%p)\n", This, out);
if (!out)
return E_POINTER;
pthread_mutex_lock(&pulse_lock);
hr = pulse_stream_valid(This);
if (SUCCEEDED(hr))
*out = This->bufsize_frames;
pthread_mutex_unlock(&pulse_lock);
return hr;
}
static HRESULT WINAPI AudioClient_GetStreamLatency(IAudioClient *iface,
REFERENCE_TIME *latency)
{
ACImpl *This = impl_from_IAudioClient(iface);
const pa_buffer_attr *attr;
REFERENCE_TIME lat;
HRESULT hr;
TRACE("(%p)->(%p)\n", This, latency);
if (!latency)
return E_POINTER;
pthread_mutex_lock(&pulse_lock);
hr = pulse_stream_valid(This);
if (FAILED(hr)) {
pthread_mutex_unlock(&pulse_lock);
return hr;
}
attr = pa_stream_get_buffer_attr(This->stream);
if (This->dataflow == eRender){
lat = attr->minreq / pa_frame_size(&This->ss);
lat += pulse_def_period[0];
}else
lat = attr->fragsize / pa_frame_size(&This->ss);
*latency = 10000000;
*latency *= lat;
*latency /= This->ss.rate;
pthread_mutex_unlock(&pulse_lock);
TRACE("Latency: %u ms\n", (DWORD)(*latency / 10000));
return S_OK;
}
static void ACImpl_GetRenderPad(ACImpl *This, UINT32 *out)
{
*out = This->pad / pa_frame_size(&This->ss);
}
static void ACImpl_GetCapturePad(ACImpl *This, UINT32 *out)
{
ACPacket *packet = This->locked_ptr;
if (!packet && !list_empty(&This->packet_filled_head)) {
packet = (ACPacket*)list_head(&This->packet_filled_head);
This->locked_ptr = packet;
list_remove(&packet->entry);
}
if (out)
*out = This->pad / pa_frame_size(&This->ss);
}
static HRESULT WINAPI AudioClient_GetCurrentPadding(IAudioClient *iface,
UINT32 *out)
{
ACImpl *This = impl_from_IAudioClient(iface);
HRESULT hr;
TRACE("(%p)->(%p)\n", This, out);
if (!out)
return E_POINTER;
pthread_mutex_lock(&pulse_lock);
hr = pulse_stream_valid(This);
if (FAILED(hr)) {
pthread_mutex_unlock(&pulse_lock);
return hr;
}
if (This->dataflow == eRender)
ACImpl_GetRenderPad(This, out);
else
ACImpl_GetCapturePad(This, out);
pthread_mutex_unlock(&pulse_lock);
TRACE("%p Pad: %u ms (%u)\n", This, MulDiv(*out, 1000, This->ss.rate), *out);
return S_OK;
}
static HRESULT WINAPI AudioClient_IsFormatSupported(IAudioClient *iface,
AUDCLNT_SHAREMODE mode, const WAVEFORMATEX *fmt,
WAVEFORMATEX **out)
{
ACImpl *This = impl_from_IAudioClient(iface);
HRESULT hr = S_OK;
WAVEFORMATEX *closest = NULL;
BOOL exclusive;
TRACE("(%p)->(%x, %p, %p)\n", This, mode, fmt, out);
if (!fmt)
return E_POINTER;
if (out)
*out = NULL;
if (mode == AUDCLNT_SHAREMODE_EXCLUSIVE) {
exclusive = 1;
out = NULL;
} else if (mode == AUDCLNT_SHAREMODE_SHARED) {
exclusive = 0;
if (!out)
return E_POINTER;
} else
return E_INVALIDARG;
if (fmt->nChannels == 0)
return AUDCLNT_E_UNSUPPORTED_FORMAT;
closest = clone_format(fmt);
if (!closest)
return E_OUTOFMEMORY;
dump_fmt(fmt);
switch (fmt->wFormatTag) {
case WAVE_FORMAT_EXTENSIBLE: {
WAVEFORMATEXTENSIBLE *ext = (WAVEFORMATEXTENSIBLE*)closest;
if ((fmt->cbSize != sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX) &&
fmt->cbSize != sizeof(WAVEFORMATEXTENSIBLE)) ||
fmt->nBlockAlign != fmt->wBitsPerSample / 8 * fmt->nChannels ||
ext->Samples.wValidBitsPerSample > fmt->wBitsPerSample ||
fmt->nAvgBytesPerSec != fmt->nBlockAlign * fmt->nSamplesPerSec) {
hr = E_INVALIDARG;
break;
}
if (exclusive) {
UINT32 mask = 0, i, channels = 0;
if (!(ext->dwChannelMask & (SPEAKER_ALL | SPEAKER_RESERVED))) {
for (i = 1; !(i & SPEAKER_RESERVED); i <<= 1) {
if (i & ext->dwChannelMask) {
mask |= i;
channels++;
}
}
if (channels != fmt->nChannels || (ext->dwChannelMask & ~mask)) {
hr = AUDCLNT_E_UNSUPPORTED_FORMAT;
break;
}
} else {
hr = AUDCLNT_E_UNSUPPORTED_FORMAT;
break;
}
}
if (IsEqualGUID(&ext->SubFormat, &KSDATAFORMAT_SUBTYPE_IEEE_FLOAT)) {
if (fmt->wBitsPerSample != 32) {
hr = E_INVALIDARG;
break;
}
if (ext->Samples.wValidBitsPerSample != fmt->wBitsPerSample) {
hr = S_FALSE;
ext->Samples.wValidBitsPerSample = fmt->wBitsPerSample;
}
} else if (IsEqualGUID(&ext->SubFormat, &KSDATAFORMAT_SUBTYPE_PCM)) {
if (!fmt->wBitsPerSample || fmt->wBitsPerSample > 32 || fmt->wBitsPerSample % 8) {
hr = E_INVALIDARG;
break;
}
if (ext->Samples.wValidBitsPerSample != fmt->wBitsPerSample &&
!(fmt->wBitsPerSample == 32 &&
ext->Samples.wValidBitsPerSample == 24)) {
hr = S_FALSE;
ext->Samples.wValidBitsPerSample = fmt->wBitsPerSample;
break;
}
} else {
hr = AUDCLNT_E_UNSUPPORTED_FORMAT;
break;
}
break;
}
case WAVE_FORMAT_ALAW:
case WAVE_FORMAT_MULAW:
if (fmt->wBitsPerSample != 8) {
hr = E_INVALIDARG;
break;
}
/* Fall-through */
case WAVE_FORMAT_IEEE_FLOAT:
if (fmt->wFormatTag == WAVE_FORMAT_IEEE_FLOAT && fmt->wBitsPerSample != 32) {
hr = E_INVALIDARG;
break;
}
/* Fall-through */
case WAVE_FORMAT_PCM:
if (fmt->wFormatTag == WAVE_FORMAT_PCM &&
(!fmt->wBitsPerSample || fmt->wBitsPerSample > 32 || fmt->wBitsPerSample % 8)) {
hr = E_INVALIDARG;
break;
}
if (fmt->nChannels > 2) {
hr = AUDCLNT_E_UNSUPPORTED_FORMAT;
break;
}
/*
* fmt->cbSize, fmt->nBlockAlign and fmt->nAvgBytesPerSec seem to be
* ignored, invalid values are happily accepted.
*/
break;
default:
hr = AUDCLNT_E_UNSUPPORTED_FORMAT;
break;
}
if (exclusive && hr != S_OK) {
hr = AUDCLNT_E_UNSUPPORTED_FORMAT;
CoTaskMemFree(closest);
} else if (hr != S_FALSE)
CoTaskMemFree(closest);
else
*out = closest;
/* Winepulse does not currently support exclusive mode, if you know of an
* application that uses it, I will correct this..
*/
if (hr == S_OK && exclusive)
return This->dataflow == eCapture ? AUDCLNT_E_UNSUPPORTED_FORMAT : AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED;
TRACE("returning: %08x %p\n", hr, out ? *out : NULL);
return hr;
}
static HRESULT WINAPI AudioClient_GetMixFormat(IAudioClient *iface,
WAVEFORMATEX **pwfx)
{
ACImpl *This = impl_from_IAudioClient(iface);
WAVEFORMATEXTENSIBLE *fmt = &pulse_fmt[This->dataflow == eCapture];
TRACE("(%p)->(%p)\n", This, pwfx);
if (!pwfx)
return E_POINTER;
*pwfx = clone_format(&fmt->Format);
if (!*pwfx)
return E_OUTOFMEMORY;
dump_fmt(*pwfx);
return S_OK;
}
static HRESULT WINAPI AudioClient_GetDevicePeriod(IAudioClient *iface,
REFERENCE_TIME *defperiod, REFERENCE_TIME *minperiod)
{
ACImpl *This = impl_from_IAudioClient(iface);
TRACE("(%p)->(%p, %p)\n", This, defperiod, minperiod);
if (!defperiod && !minperiod)
return E_POINTER;
if (defperiod)
*defperiod = pulse_def_period[This->dataflow == eCapture];
if (minperiod)
*minperiod = pulse_min_period[This->dataflow == eCapture];
return S_OK;
}
static HRESULT WINAPI AudioClient_Start(IAudioClient *iface)
{
ACImpl *This = impl_from_IAudioClient(iface);
HRESULT hr = S_OK;
int success;
pa_operation *o;
TRACE("(%p)\n", This);
pthread_mutex_lock(&pulse_lock);
hr = pulse_stream_valid(This);
if (FAILED(hr)) {
pthread_mutex_unlock(&pulse_lock);
return hr;
}
if ((This->flags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK) && !This->event) {
pthread_mutex_unlock(&pulse_lock);
return AUDCLNT_E_EVENTHANDLE_NOT_SET;
}
if (This->started) {
pthread_mutex_unlock(&pulse_lock);
return AUDCLNT_E_NOT_STOPPED;
}
if (pa_stream_is_corked(This->stream)) {
o = pa_stream_cork(This->stream, 0, pulse_op_cb, &success);
if (o) {
while(pa_operation_get_state(o) == PA_OPERATION_RUNNING)
pthread_cond_wait(&pulse_cond, &pulse_lock);
pa_operation_unref(o);
} else
success = 0;
if (!success)
hr = E_FAIL;
}
if (SUCCEEDED(hr)) {
This->started = TRUE;
if (This->dataflow == eRender && This->event)
pa_stream_set_latency_update_callback(This->stream, pulse_latency_callback, This);
}
pthread_mutex_unlock(&pulse_lock);
return hr;
}
static HRESULT WINAPI AudioClient_Stop(IAudioClient *iface)
{
ACImpl *This = impl_from_IAudioClient(iface);
HRESULT hr = S_OK;
pa_operation *o;
int success;
TRACE("(%p)\n", This);
pthread_mutex_lock(&pulse_lock);
hr = pulse_stream_valid(This);
if (FAILED(hr)) {
pthread_mutex_unlock(&pulse_lock);
return hr;
}
if (!This->started) {
pthread_mutex_unlock(&pulse_lock);
return S_FALSE;
}
if (This->dataflow == eRender) {
o = pa_stream_cork(This->stream, 1, pulse_op_cb, &success);
if (o) {
while(pa_operation_get_state(o) == PA_OPERATION_RUNNING)
pthread_cond_wait(&pulse_cond, &pulse_lock);
pa_operation_unref(o);
} else
success = 0;
if (!success)
hr = E_FAIL;
}
if (SUCCEEDED(hr)) {
This->started = FALSE;
}
pthread_mutex_unlock(&pulse_lock);
return hr;
}
static HRESULT WINAPI AudioClient_Reset(IAudioClient *iface)
{
ACImpl *This = impl_from_IAudioClient(iface);
HRESULT hr = S_OK;
TRACE("(%p)\n", This);
pthread_mutex_lock(&pulse_lock);
hr = pulse_stream_valid(This);
if (FAILED(hr)) {
pthread_mutex_unlock(&pulse_lock);
return hr;
}
if (This->started) {
pthread_mutex_unlock(&pulse_lock);
return AUDCLNT_E_NOT_STOPPED;
}
if (This->locked) {
pthread_mutex_unlock(&pulse_lock);
return AUDCLNT_E_BUFFER_OPERATION_PENDING;
}
if (This->dataflow == eRender) {
/* If there is still data in the render buffer it needs to be removed from the server */
int success = 0;
if (This->pad) {
pa_operation *o = pa_stream_flush(This->stream, pulse_op_cb, &success);
if (o) {
while(pa_operation_get_state(o) == PA_OPERATION_RUNNING)
pthread_cond_wait(&pulse_cond, &pulse_lock);
pa_operation_unref(o);
}
}
if (success || !This->pad){
This->clock_lastpos = This->clock_written = This->pad = 0;
This->wri_offs_bytes = This->lcl_offs_bytes = This->held_bytes = 0;
}
} else {
ACPacket *p;
This->clock_written += This->pad;
This->pad = 0;
if ((p = This->locked_ptr)) {
This->locked_ptr = NULL;
list_add_tail(&This->packet_free_head, &p->entry);
}
list_move_tail(&This->packet_free_head, &This->packet_filled_head);
}
pthread_mutex_unlock(&pulse_lock);
return hr;
}
static HRESULT WINAPI AudioClient_SetEventHandle(IAudioClient *iface,
HANDLE event)
{
ACImpl *This = impl_from_IAudioClient(iface);
HRESULT hr;
TRACE("(%p)->(%p)\n", This, event);
if (!event)
return E_INVALIDARG;
pthread_mutex_lock(&pulse_lock);
hr = pulse_stream_valid(This);
if (FAILED(hr)) {
pthread_mutex_unlock(&pulse_lock);
return hr;
}
if (!(This->flags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK))
hr = AUDCLNT_E_EVENTHANDLE_NOT_EXPECTED;
else if (This->event)
hr = HRESULT_FROM_WIN32(ERROR_INVALID_NAME);
else
This->event = event;
pthread_mutex_unlock(&pulse_lock);
return hr;
}
static HRESULT WINAPI AudioClient_GetService(IAudioClient *iface, REFIID riid,
void **ppv)
{
ACImpl *This = impl_from_IAudioClient(iface);
HRESULT hr;
TRACE("(%p)->(%s, %p)\n", This, debugstr_guid(riid), ppv);
if (!ppv)
return E_POINTER;
*ppv = NULL;
pthread_mutex_lock(&pulse_lock);
hr = pulse_stream_valid(This);
pthread_mutex_unlock(&pulse_lock);
if (FAILED(hr))
return hr;
if (IsEqualIID(riid, &IID_IAudioRenderClient)) {
if (This->dataflow != eRender)
return AUDCLNT_E_WRONG_ENDPOINT_TYPE;
*ppv = &This->IAudioRenderClient_iface;
} else if (IsEqualIID(riid, &IID_IAudioCaptureClient)) {
if (This->dataflow != eCapture)
return AUDCLNT_E_WRONG_ENDPOINT_TYPE;
*ppv = &This->IAudioCaptureClient_iface;
} else if (IsEqualIID(riid, &IID_IAudioClock)) {
*ppv = &This->IAudioClock_iface;
} else if (IsEqualIID(riid, &IID_IAudioStreamVolume)) {
*ppv = &This->IAudioStreamVolume_iface;
} else if (IsEqualIID(riid, &IID_IAudioSessionControl) ||
IsEqualIID(riid, &IID_IChannelAudioVolume) ||
IsEqualIID(riid, &IID_ISimpleAudioVolume)) {
if (!This->session_wrapper) {
This->session_wrapper = AudioSessionWrapper_Create(This);
if (!This->session_wrapper)
return E_OUTOFMEMORY;
}
if (IsEqualIID(riid, &IID_IAudioSessionControl))
*ppv = &This->session_wrapper->IAudioSessionControl2_iface;
else if (IsEqualIID(riid, &IID_IChannelAudioVolume))
*ppv = &This->session_wrapper->IChannelAudioVolume_iface;
else if (IsEqualIID(riid, &IID_ISimpleAudioVolume))
*ppv = &This->session_wrapper->ISimpleAudioVolume_iface;
}
if (*ppv) {
IUnknown_AddRef((IUnknown*)*ppv);
return S_OK;
}
FIXME("stub %s\n", debugstr_guid(riid));
return E_NOINTERFACE;
}
static const IAudioClientVtbl AudioClient_Vtbl =
{
AudioClient_QueryInterface,
AudioClient_AddRef,
AudioClient_Release,
AudioClient_Initialize,
AudioClient_GetBufferSize,
AudioClient_GetStreamLatency,
AudioClient_GetCurrentPadding,
AudioClient_IsFormatSupported,
AudioClient_GetMixFormat,
AudioClient_GetDevicePeriod,
AudioClient_Start,
AudioClient_Stop,
AudioClient_Reset,
AudioClient_SetEventHandle,
AudioClient_GetService
};
static HRESULT WINAPI AudioRenderClient_QueryInterface(
IAudioRenderClient *iface, REFIID riid, void **ppv)
{
ACImpl *This = impl_from_IAudioRenderClient(iface);
TRACE("(%p)->(%s, %p)\n", iface, debugstr_guid(riid), ppv);
if (!ppv)
return E_POINTER;
*ppv = NULL;
if (IsEqualIID(riid, &IID_IUnknown) ||
IsEqualIID(riid, &IID_IAudioRenderClient))
*ppv = iface;
if (*ppv) {
IUnknown_AddRef((IUnknown*)*ppv);
return S_OK;
}
if (IsEqualIID(riid, &IID_IMarshal))
return IUnknown_QueryInterface(This->marshal, riid, ppv);
WARN("Unknown interface %s\n", debugstr_guid(riid));
return E_NOINTERFACE;
}
static ULONG WINAPI AudioRenderClient_AddRef(IAudioRenderClient *iface)
{
ACImpl *This = impl_from_IAudioRenderClient(iface);
return AudioClient_AddRef(&This->IAudioClient_iface);
}
static ULONG WINAPI AudioRenderClient_Release(IAudioRenderClient *iface)
{
ACImpl *This = impl_from_IAudioRenderClient(iface);
return AudioClient_Release(&This->IAudioClient_iface);
}
static void alloc_tmp_buffer(ACImpl *This, UINT32 bytes)
{
if(This->tmp_buffer_bytes >= bytes)
return;
HeapFree(GetProcessHeap(), 0, This->tmp_buffer);
This->tmp_buffer = HeapAlloc(GetProcessHeap(), 0, bytes);
This->tmp_buffer_bytes = bytes;
}
static HRESULT WINAPI AudioRenderClient_GetBuffer(IAudioRenderClient *iface,
UINT32 frames, BYTE **data)
{
ACImpl *This = impl_from_IAudioRenderClient(iface);
size_t avail, req, bytes = frames * pa_frame_size(&This->ss);
UINT32 pad;
HRESULT hr = S_OK;
int ret = -1;
TRACE("(%p)->(%u, %p)\n", This, frames, data);
if (!data)
return E_POINTER;
*data = NULL;
pthread_mutex_lock(&pulse_lock);
hr = pulse_stream_valid(This);
if (FAILED(hr) || This->locked) {
pthread_mutex_unlock(&pulse_lock);
return FAILED(hr) ? hr : AUDCLNT_E_OUT_OF_ORDER;
}
if (!frames) {
pthread_mutex_unlock(&pulse_lock);
return S_OK;
}
ACImpl_GetRenderPad(This, &pad);
avail = This->bufsize_frames - pad;
if (avail < frames || bytes > This->bufsize_bytes) {
pthread_mutex_unlock(&pulse_lock);
WARN("Wanted to write %u, but only %zu available\n", frames, avail);
return AUDCLNT_E_BUFFER_TOO_LARGE;
}
if(This->local_buffer){
if(This->wri_offs_bytes + bytes > This->bufsize_bytes){
alloc_tmp_buffer(This, bytes);
*data = This->tmp_buffer;
This->locked = -frames;
}else{
*data = This->local_buffer + This->wri_offs_bytes;
This->locked = frames;
}
}else{
req = bytes;
ret = pa_stream_begin_write(This->stream, &This->locked_ptr, &req);
if (ret < 0 || req < bytes) {
FIXME("%p Not using pulse locked data: %i %zu/%u %u/%u\n", This, ret, req/pa_frame_size(&This->ss), frames, pad, This->bufsize_frames);
if (ret >= 0)
pa_stream_cancel_write(This->stream);
alloc_tmp_buffer(This, bytes);
*data = This->tmp_buffer;
This->locked_ptr = NULL;
} else
*data = This->locked_ptr;
This->locked = frames;
}
silence_buffer(This->ss.format, *data, bytes);
pthread_mutex_unlock(&pulse_lock);
return hr;
}
static void pulse_wrap_buffer(ACImpl *This, BYTE *buffer, UINT32 written_bytes)
{
UINT32 chunk_bytes = This->bufsize_bytes - This->wri_offs_bytes;
if(written_bytes <= chunk_bytes){
memcpy(This->local_buffer + This->wri_offs_bytes, buffer, written_bytes);
}else{
memcpy(This->local_buffer + This->wri_offs_bytes, buffer, chunk_bytes);
memcpy(This->local_buffer, buffer + chunk_bytes,
written_bytes - chunk_bytes);
}
}
static void pulse_free_noop(void *buf)
{
}
static HRESULT WINAPI AudioRenderClient_ReleaseBuffer(
IAudioRenderClient *iface, UINT32 written_frames, DWORD flags)
{
ACImpl *This = impl_from_IAudioRenderClient(iface);
UINT32 written_bytes = written_frames * pa_frame_size(&This->ss);
TRACE("(%p)->(%u, %x)\n", This, written_frames, flags);
pthread_mutex_lock(&pulse_lock);
if (!This->locked || !written_frames) {
if (This->locked_ptr)
pa_stream_cancel_write(This->stream);
This->locked = 0;
This->locked_ptr = NULL;
pthread_mutex_unlock(&pulse_lock);
return written_frames ? AUDCLNT_E_OUT_OF_ORDER : S_OK;
}
if (This->locked < written_frames) {
pthread_mutex_unlock(&pulse_lock);
return AUDCLNT_E_INVALID_SIZE;
}
if(This->local_buffer){
BYTE *buffer;
if(This->locked >= 0)
buffer = This->local_buffer + This->wri_offs_bytes;
else
buffer = This->tmp_buffer;
if(flags & AUDCLNT_BUFFERFLAGS_SILENT)
silence_buffer(This->ss.format, buffer, written_bytes);
if(This->locked < 0)
pulse_wrap_buffer(This, buffer, written_bytes);
This->wri_offs_bytes += written_bytes;
This->wri_offs_bytes %= This->bufsize_bytes;
This->pad += written_bytes;
This->held_bytes += written_bytes;
if(This->held_bytes == This->pad){
int e;
UINT32 to_write = min(This->attr.tlength, written_bytes);
/* nothing in PA, so send data immediately */
TRACE("pre-writing %u bytes\n", to_write);
e = pa_stream_write(This->stream, buffer, to_write, NULL, 0, PA_SEEK_RELATIVE);
if(e)
ERR("pa_stream_write failed: 0x%x\n", e);
This->lcl_offs_bytes += to_write;
This->lcl_offs_bytes %= This->bufsize_bytes;
This->held_bytes -= to_write;
}
}else{
if (This->locked_ptr) {
if (flags & AUDCLNT_BUFFERFLAGS_SILENT)
silence_buffer(This->ss.format, This->locked_ptr, written_bytes);
pa_stream_write(This->stream, This->locked_ptr, written_bytes, NULL, 0, PA_SEEK_RELATIVE);
} else {
if (flags & AUDCLNT_BUFFERFLAGS_SILENT)
silence_buffer(This->ss.format, This->tmp_buffer, written_bytes);
pa_stream_write(This->stream, This->tmp_buffer, written_bytes, pulse_free_noop, 0, PA_SEEK_RELATIVE);
}
This->pad += written_bytes;
}
if (!pa_stream_is_corked(This->stream)) {
int success;
pa_operation *o;
o = pa_stream_trigger(This->stream, pulse_op_cb, &success);
if (o) {
while(pa_operation_get_state(o) == PA_OPERATION_RUNNING)
pthread_cond_wait(&pulse_cond, &pulse_lock);
pa_operation_unref(o);
}
}
This->locked = 0;
This->locked_ptr = NULL;
TRACE("Released %u, pad %zu\n", written_frames, This->pad / pa_frame_size(&This->ss));
assert(This->pad <= This->bufsize_bytes);
pthread_mutex_unlock(&pulse_lock);
return S_OK;
}
static const IAudioRenderClientVtbl AudioRenderClient_Vtbl = {
AudioRenderClient_QueryInterface,
AudioRenderClient_AddRef,
AudioRenderClient_Release,
AudioRenderClient_GetBuffer,
AudioRenderClient_ReleaseBuffer
};
static HRESULT WINAPI AudioCaptureClient_QueryInterface(
IAudioCaptureClient *iface, REFIID riid, void **ppv)
{
ACImpl *This = impl_from_IAudioCaptureClient(iface);
TRACE("(%p)->(%s, %p)\n", iface, debugstr_guid(riid), ppv);
if (!ppv)
return E_POINTER;
*ppv = NULL;
if (IsEqualIID(riid, &IID_IUnknown) ||
IsEqualIID(riid, &IID_IAudioCaptureClient))
*ppv = iface;
if (*ppv) {
IUnknown_AddRef((IUnknown*)*ppv);
return S_OK;
}
if (IsEqualIID(riid, &IID_IMarshal))
return IUnknown_QueryInterface(This->marshal, riid, ppv);
WARN("Unknown interface %s\n", debugstr_guid(riid));
return E_NOINTERFACE;
}
static ULONG WINAPI AudioCaptureClient_AddRef(IAudioCaptureClient *iface)
{
ACImpl *This = impl_from_IAudioCaptureClient(iface);
return IAudioClient_AddRef(&This->IAudioClient_iface);
}
static ULONG WINAPI AudioCaptureClient_Release(IAudioCaptureClient *iface)
{
ACImpl *This = impl_from_IAudioCaptureClient(iface);
return IAudioClient_Release(&This->IAudioClient_iface);
}
static HRESULT WINAPI AudioCaptureClient_GetBuffer(IAudioCaptureClient *iface,
BYTE **data, UINT32 *frames, DWORD *flags, UINT64 *devpos,
UINT64 *qpcpos)
{
ACImpl *This = impl_from_IAudioCaptureClient(iface);
HRESULT hr;
ACPacket *packet;
TRACE("(%p)->(%p, %p, %p, %p, %p)\n", This, data, frames, flags,
devpos, qpcpos);
if (!data || !frames || !flags)
return E_POINTER;
pthread_mutex_lock(&pulse_lock);
hr = pulse_stream_valid(This);
if (FAILED(hr) || This->locked) {
pthread_mutex_unlock(&pulse_lock);
return FAILED(hr) ? hr : AUDCLNT_E_OUT_OF_ORDER;
}
ACImpl_GetCapturePad(This, NULL);
if ((packet = This->locked_ptr)) {
*frames = This->capture_period / pa_frame_size(&This->ss);
*flags = 0;
if (packet->discont)
*flags |= AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY;
if (devpos) {
if (packet->discont)
*devpos = (This->clock_written + This->capture_period) / pa_frame_size(&This->ss);
else
*devpos = This->clock_written / pa_frame_size(&This->ss);
}
if (qpcpos)
*qpcpos = packet->qpcpos;
*data = packet->data;
}
else
*frames = 0;
This->locked = *frames;
pthread_mutex_unlock(&pulse_lock);
return *frames ? S_OK : AUDCLNT_S_BUFFER_EMPTY;
}
static HRESULT WINAPI AudioCaptureClient_ReleaseBuffer(
IAudioCaptureClient *iface, UINT32 done)
{
ACImpl *This = impl_from_IAudioCaptureClient(iface);
TRACE("(%p)->(%u)\n", This, done);
pthread_mutex_lock(&pulse_lock);
if (!This->locked && done) {
pthread_mutex_unlock(&pulse_lock);
return AUDCLNT_E_OUT_OF_ORDER;
}
if (done && This->locked != done) {
pthread_mutex_unlock(&pulse_lock);
return AUDCLNT_E_INVALID_SIZE;
}
if (done) {
ACPacket *packet = This->locked_ptr;
This->locked_ptr = NULL;
This->pad -= This->capture_period;
if (packet->discont)
This->clock_written += 2 * This->capture_period;
else
This->clock_written += This->capture_period;
list_add_tail(&This->packet_free_head, &packet->entry);
}
This->locked = 0;
pthread_mutex_unlock(&pulse_lock);
return S_OK;
}
static HRESULT WINAPI AudioCaptureClient_GetNextPacketSize(
IAudioCaptureClient *iface, UINT32 *frames)
{
ACImpl *This = impl_from_IAudioCaptureClient(iface);
TRACE("(%p)->(%p)\n", This, frames);
if (!frames)
return E_POINTER;
pthread_mutex_lock(&pulse_lock);
ACImpl_GetCapturePad(This, NULL);
if (This->locked_ptr)
*frames = This->capture_period / pa_frame_size(&This->ss);
else
*frames = 0;
pthread_mutex_unlock(&pulse_lock);
return S_OK;
}
static const IAudioCaptureClientVtbl AudioCaptureClient_Vtbl =
{
AudioCaptureClient_QueryInterface,
AudioCaptureClient_AddRef,
AudioCaptureClient_Release,
AudioCaptureClient_GetBuffer,
AudioCaptureClient_ReleaseBuffer,
AudioCaptureClient_GetNextPacketSize
};
static HRESULT WINAPI AudioClock_QueryInterface(IAudioClock *iface,
REFIID riid, void **ppv)
{
ACImpl *This = impl_from_IAudioClock(iface);
TRACE("(%p)->(%s, %p)\n", iface, debugstr_guid(riid), ppv);
if (!ppv)
return E_POINTER;
*ppv = NULL;
if (IsEqualIID(riid, &IID_IUnknown) || IsEqualIID(riid, &IID_IAudioClock))
*ppv = iface;
else if (IsEqualIID(riid, &IID_IAudioClock2))
*ppv = &This->IAudioClock2_iface;
if (*ppv) {
IUnknown_AddRef((IUnknown*)*ppv);
return S_OK;
}
if (IsEqualIID(riid, &IID_IMarshal))
return IUnknown_QueryInterface(This->marshal, riid, ppv);
WARN("Unknown interface %s\n", debugstr_guid(riid));
return E_NOINTERFACE;
}
static ULONG WINAPI AudioClock_AddRef(IAudioClock *iface)
{
ACImpl *This = impl_from_IAudioClock(iface);
return IAudioClient_AddRef(&This->IAudioClient_iface);
}
static ULONG WINAPI AudioClock_Release(IAudioClock *iface)
{
ACImpl *This = impl_from_IAudioClock(iface);
return IAudioClient_Release(&This->IAudioClient_iface);
}
static HRESULT WINAPI AudioClock_GetFrequency(IAudioClock *iface, UINT64 *freq)
{
ACImpl *This = impl_from_IAudioClock(iface);
HRESULT hr;
TRACE("(%p)->(%p)\n", This, freq);
pthread_mutex_lock(&pulse_lock);
hr = pulse_stream_valid(This);
if (SUCCEEDED(hr)) {
*freq = This->ss.rate;
if (This->share == AUDCLNT_SHAREMODE_SHARED)
*freq *= pa_frame_size(&This->ss);
}
pthread_mutex_unlock(&pulse_lock);
return hr;
}
static HRESULT WINAPI AudioClock_GetPosition(IAudioClock *iface, UINT64 *pos,
UINT64 *qpctime)
{
ACImpl *This = impl_from_IAudioClock(iface);
HRESULT hr;
TRACE("(%p)->(%p, %p)\n", This, pos, qpctime);
if (!pos)
return E_POINTER;
pthread_mutex_lock(&pulse_lock);
hr = pulse_stream_valid(This);
if (FAILED(hr)) {
pthread_mutex_unlock(&pulse_lock);
return hr;
}
*pos = This->clock_written;
if (This->share == AUDCLNT_SHAREMODE_EXCLUSIVE)
*pos /= pa_frame_size(&This->ss);
/* Make time never go backwards */
if (*pos < This->clock_lastpos)
*pos = This->clock_lastpos;
else
This->clock_lastpos = *pos;
pthread_mutex_unlock(&pulse_lock);
TRACE("%p Position: %u\n", This, (unsigned)*pos);
if (qpctime) {
LARGE_INTEGER stamp, freq;
QueryPerformanceCounter(&stamp);
QueryPerformanceFrequency(&freq);
*qpctime = (stamp.QuadPart * (INT64)10000000) / freq.QuadPart;
}
return S_OK;
}
static HRESULT WINAPI AudioClock_GetCharacteristics(IAudioClock *iface,
DWORD *chars)
{
ACImpl *This = impl_from_IAudioClock(iface);
TRACE("(%p)->(%p)\n", This, chars);
if (!chars)
return E_POINTER;
*chars = AUDIOCLOCK_CHARACTERISTIC_FIXED_FREQ;
return S_OK;
}
static const IAudioClockVtbl AudioClock_Vtbl =
{
AudioClock_QueryInterface,
AudioClock_AddRef,
AudioClock_Release,
AudioClock_GetFrequency,
AudioClock_GetPosition,
AudioClock_GetCharacteristics
};
static HRESULT WINAPI AudioClock2_QueryInterface(IAudioClock2 *iface,
REFIID riid, void **ppv)
{
ACImpl *This = impl_from_IAudioClock2(iface);
return IAudioClock_QueryInterface(&This->IAudioClock_iface, riid, ppv);
}
static ULONG WINAPI AudioClock2_AddRef(IAudioClock2 *iface)
{
ACImpl *This = impl_from_IAudioClock2(iface);
return IAudioClient_AddRef(&This->IAudioClient_iface);
}
static ULONG WINAPI AudioClock2_Release(IAudioClock2 *iface)
{
ACImpl *This = impl_from_IAudioClock2(iface);
return IAudioClient_Release(&This->IAudioClient_iface);
}
static HRESULT WINAPI AudioClock2_GetDevicePosition(IAudioClock2 *iface,
UINT64 *pos, UINT64 *qpctime)
{
ACImpl *This = impl_from_IAudioClock2(iface);
HRESULT hr = AudioClock_GetPosition(&This->IAudioClock_iface, pos, qpctime);
if (SUCCEEDED(hr) && This->share == AUDCLNT_SHAREMODE_SHARED)
*pos /= pa_frame_size(&This->ss);
return hr;
}
static const IAudioClock2Vtbl AudioClock2_Vtbl =
{
AudioClock2_QueryInterface,
AudioClock2_AddRef,
AudioClock2_Release,
AudioClock2_GetDevicePosition
};
static HRESULT WINAPI AudioStreamVolume_QueryInterface(
IAudioStreamVolume *iface, REFIID riid, void **ppv)
{
ACImpl *This = impl_from_IAudioStreamVolume(iface);
TRACE("(%p)->(%s, %p)\n", iface, debugstr_guid(riid), ppv);
if (!ppv)
return E_POINTER;
*ppv = NULL;
if (IsEqualIID(riid, &IID_IUnknown) ||
IsEqualIID(riid, &IID_IAudioStreamVolume))
*ppv = iface;
if (*ppv) {
IUnknown_AddRef((IUnknown*)*ppv);
return S_OK;
}
if (IsEqualIID(riid, &IID_IMarshal))
return IUnknown_QueryInterface(This->marshal, riid, ppv);
WARN("Unknown interface %s\n", debugstr_guid(riid));
return E_NOINTERFACE;
}
static ULONG WINAPI AudioStreamVolume_AddRef(IAudioStreamVolume *iface)
{
ACImpl *This = impl_from_IAudioStreamVolume(iface);
return IAudioClient_AddRef(&This->IAudioClient_iface);
}
static ULONG WINAPI AudioStreamVolume_Release(IAudioStreamVolume *iface)
{
ACImpl *This = impl_from_IAudioStreamVolume(iface);
return IAudioClient_Release(&This->IAudioClient_iface);
}
static HRESULT WINAPI AudioStreamVolume_GetChannelCount(
IAudioStreamVolume *iface, UINT32 *out)
{
ACImpl *This = impl_from_IAudioStreamVolume(iface);
TRACE("(%p)->(%p)\n", This, out);
if (!out)
return E_POINTER;
*out = This->ss.channels;
return S_OK;
}
struct pulse_info_cb_data {
UINT32 n;
float *levels;
};
static HRESULT WINAPI AudioStreamVolume_SetAllVolumes(
IAudioStreamVolume *iface, UINT32 count, const float *levels)
{
ACImpl *This = impl_from_IAudioStreamVolume(iface);
HRESULT hr;
int i;
TRACE("(%p)->(%d, %p)\n", This, count, levels);
if (!levels)
return E_POINTER;
if (count != This->ss.channels)
return E_INVALIDARG;
pthread_mutex_lock(&pulse_lock);
hr = pulse_stream_valid(This);
if (FAILED(hr))
goto out;
for (i = 0; i < count; ++i)
This->vol[i] = levels[i];
out:
pthread_mutex_unlock(&pulse_lock);
return hr;
}
static HRESULT WINAPI AudioStreamVolume_GetAllVolumes(
IAudioStreamVolume *iface, UINT32 count, float *levels)
{
ACImpl *This = impl_from_IAudioStreamVolume(iface);
HRESULT hr;
int i;
TRACE("(%p)->(%d, %p)\n", This, count, levels);
if (!levels)
return E_POINTER;
if (count != This->ss.channels)
return E_INVALIDARG;
pthread_mutex_lock(&pulse_lock);
hr = pulse_stream_valid(This);
if (FAILED(hr))
goto out;
for (i = 0; i < count; ++i)
levels[i] = This->vol[i];
out:
pthread_mutex_unlock(&pulse_lock);
return hr;
}
static HRESULT WINAPI AudioStreamVolume_SetChannelVolume(
IAudioStreamVolume *iface, UINT32 index, float level)
{
ACImpl *This = impl_from_IAudioStreamVolume(iface);
HRESULT hr;
float volumes[PA_CHANNELS_MAX];
TRACE("(%p)->(%d, %f)\n", This, index, level);
if (level < 0.f || level > 1.f)
return E_INVALIDARG;
if (index >= This->ss.channels)
return E_INVALIDARG;
hr = AudioStreamVolume_GetAllVolumes(iface, This->ss.channels, volumes);
volumes[index] = level;
if (SUCCEEDED(hr))
hr = AudioStreamVolume_SetAllVolumes(iface, This->ss.channels, volumes);
return hr;
}
static HRESULT WINAPI AudioStreamVolume_GetChannelVolume(
IAudioStreamVolume *iface, UINT32 index, float *level)
{
ACImpl *This = impl_from_IAudioStreamVolume(iface);
float volumes[PA_CHANNELS_MAX];
HRESULT hr;
TRACE("(%p)->(%d, %p)\n", This, index, level);
if (!level)
return E_POINTER;
if (index >= This->ss.channels)
return E_INVALIDARG;
hr = AudioStreamVolume_GetAllVolumes(iface, This->ss.channels, volumes);
if (SUCCEEDED(hr))
*level = volumes[index];
return hr;
}
static const IAudioStreamVolumeVtbl AudioStreamVolume_Vtbl =
{
AudioStreamVolume_QueryInterface,
AudioStreamVolume_AddRef,
AudioStreamVolume_Release,
AudioStreamVolume_GetChannelCount,
AudioStreamVolume_SetChannelVolume,
AudioStreamVolume_GetChannelVolume,
AudioStreamVolume_SetAllVolumes,
AudioStreamVolume_GetAllVolumes
};
static AudioSessionWrapper *AudioSessionWrapper_Create(ACImpl *client)
{
AudioSessionWrapper *ret;
ret = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY,
sizeof(AudioSessionWrapper));
if (!ret)
return NULL;
ret->IAudioSessionControl2_iface.lpVtbl = &AudioSessionControl2_Vtbl;
ret->ISimpleAudioVolume_iface.lpVtbl = &SimpleAudioVolume_Vtbl;
ret->IChannelAudioVolume_iface.lpVtbl = &ChannelAudioVolume_Vtbl;
ret->ref = !client;
ret->client = client;
if (client) {
ret->session = client->session;
AudioClient_AddRef(&client->IAudioClient_iface);
}
return ret;
}
static HRESULT WINAPI AudioSessionControl_QueryInterface(
IAudioSessionControl2 *iface, REFIID riid, void **ppv)
{
TRACE("(%p)->(%s, %p)\n", iface, debugstr_guid(riid), ppv);
if (!ppv)
return E_POINTER;
*ppv = NULL;
if (IsEqualIID(riid, &IID_IUnknown) ||
IsEqualIID(riid, &IID_IAudioSessionControl) ||
IsEqualIID(riid, &IID_IAudioSessionControl2))
*ppv = iface;
if (*ppv) {
IUnknown_AddRef((IUnknown*)*ppv);
return S_OK;
}
WARN("Unknown interface %s\n", debugstr_guid(riid));
return E_NOINTERFACE;
}
static ULONG WINAPI AudioSessionControl_AddRef(IAudioSessionControl2 *iface)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
ULONG ref;
ref = InterlockedIncrement(&This->ref);
TRACE("(%p) Refcount now %u\n", This, ref);
return ref;
}
static ULONG WINAPI AudioSessionControl_Release(IAudioSessionControl2 *iface)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
ULONG ref;
ref = InterlockedDecrement(&This->ref);
TRACE("(%p) Refcount now %u\n", This, ref);
if (!ref) {
if (This->client) {
This->client->session_wrapper = NULL;
AudioClient_Release(&This->client->IAudioClient_iface);
}
HeapFree(GetProcessHeap(), 0, This);
}
return ref;
}
static HRESULT WINAPI AudioSessionControl_GetState(IAudioSessionControl2 *iface,
AudioSessionState *state)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
ACImpl *client;
TRACE("(%p)->(%p)\n", This, state);
if (!state)
return NULL_PTR_ERR;
pthread_mutex_lock(&pulse_lock);
if (list_empty(&This->session->clients)) {
*state = AudioSessionStateExpired;
goto out;
}
LIST_FOR_EACH_ENTRY(client, &This->session->clients, ACImpl, entry) {
if (client->started) {
*state = AudioSessionStateActive;
goto out;
}
}
*state = AudioSessionStateInactive;
out:
pthread_mutex_unlock(&pulse_lock);
return S_OK;
}
static HRESULT WINAPI AudioSessionControl_GetDisplayName(
IAudioSessionControl2 *iface, WCHAR **name)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
FIXME("(%p)->(%p) - stub\n", This, name);
return E_NOTIMPL;
}
static HRESULT WINAPI AudioSessionControl_SetDisplayName(
IAudioSessionControl2 *iface, const WCHAR *name, const GUID *session)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
FIXME("(%p)->(%p, %s) - stub\n", This, name, debugstr_guid(session));
return E_NOTIMPL;
}
static HRESULT WINAPI AudioSessionControl_GetIconPath(
IAudioSessionControl2 *iface, WCHAR **path)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
FIXME("(%p)->(%p) - stub\n", This, path);
return E_NOTIMPL;
}
static HRESULT WINAPI AudioSessionControl_SetIconPath(
IAudioSessionControl2 *iface, const WCHAR *path, const GUID *session)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
FIXME("(%p)->(%p, %s) - stub\n", This, path, debugstr_guid(session));
return E_NOTIMPL;
}
static HRESULT WINAPI AudioSessionControl_GetGroupingParam(
IAudioSessionControl2 *iface, GUID *group)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
FIXME("(%p)->(%p) - stub\n", This, group);
return E_NOTIMPL;
}
static HRESULT WINAPI AudioSessionControl_SetGroupingParam(
IAudioSessionControl2 *iface, const GUID *group, const GUID *session)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
FIXME("(%p)->(%s, %s) - stub\n", This, debugstr_guid(group),
debugstr_guid(session));
return E_NOTIMPL;
}
static HRESULT WINAPI AudioSessionControl_RegisterAudioSessionNotification(
IAudioSessionControl2 *iface, IAudioSessionEvents *events)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
FIXME("(%p)->(%p) - stub\n", This, events);
return S_OK;
}
static HRESULT WINAPI AudioSessionControl_UnregisterAudioSessionNotification(
IAudioSessionControl2 *iface, IAudioSessionEvents *events)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
FIXME("(%p)->(%p) - stub\n", This, events);
return S_OK;
}
static HRESULT WINAPI AudioSessionControl_GetSessionIdentifier(
IAudioSessionControl2 *iface, WCHAR **id)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
FIXME("(%p)->(%p) - stub\n", This, id);
return E_NOTIMPL;
}
static HRESULT WINAPI AudioSessionControl_GetSessionInstanceIdentifier(
IAudioSessionControl2 *iface, WCHAR **id)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
FIXME("(%p)->(%p) - stub\n", This, id);
return E_NOTIMPL;
}
static HRESULT WINAPI AudioSessionControl_GetProcessId(
IAudioSessionControl2 *iface, DWORD *pid)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
TRACE("(%p)->(%p)\n", This, pid);
if (!pid)
return E_POINTER;
*pid = GetCurrentProcessId();
return S_OK;
}
static HRESULT WINAPI AudioSessionControl_IsSystemSoundsSession(
IAudioSessionControl2 *iface)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
TRACE("(%p)\n", This);
return S_FALSE;
}
static HRESULT WINAPI AudioSessionControl_SetDuckingPreference(
IAudioSessionControl2 *iface, BOOL optout)
{
AudioSessionWrapper *This = impl_from_IAudioSessionControl2(iface);
TRACE("(%p)->(%d)\n", This, optout);
return S_OK;
}
static const IAudioSessionControl2Vtbl AudioSessionControl2_Vtbl =
{
AudioSessionControl_QueryInterface,
AudioSessionControl_AddRef,
AudioSessionControl_Release,
AudioSessionControl_GetState,
AudioSessionControl_GetDisplayName,
AudioSessionControl_SetDisplayName,
AudioSessionControl_GetIconPath,
AudioSessionControl_SetIconPath,
AudioSessionControl_GetGroupingParam,
AudioSessionControl_SetGroupingParam,
AudioSessionControl_RegisterAudioSessionNotification,
AudioSessionControl_UnregisterAudioSessionNotification,
AudioSessionControl_GetSessionIdentifier,
AudioSessionControl_GetSessionInstanceIdentifier,
AudioSessionControl_GetProcessId,
AudioSessionControl_IsSystemSoundsSession,
AudioSessionControl_SetDuckingPreference
};
typedef struct _SessionMgr {
IAudioSessionManager2 IAudioSessionManager2_iface;
LONG ref;
IMMDevice *device;
} SessionMgr;
static HRESULT WINAPI AudioSessionManager_QueryInterface(IAudioSessionManager2 *iface,
REFIID riid, void **ppv)
{
TRACE("(%p)->(%s, %p)\n", iface, debugstr_guid(riid), ppv);
if (!ppv)
return E_POINTER;
*ppv = NULL;
if (IsEqualIID(riid, &IID_IUnknown) ||
IsEqualIID(riid, &IID_IAudioSessionManager) ||
IsEqualIID(riid, &IID_IAudioSessionManager2))
*ppv = iface;
if (*ppv) {
IUnknown_AddRef((IUnknown*)*ppv);
return S_OK;
}
WARN("Unknown interface %s\n", debugstr_guid(riid));
return E_NOINTERFACE;
}
static inline SessionMgr *impl_from_IAudioSessionManager2(IAudioSessionManager2 *iface)
{
return CONTAINING_RECORD(iface, SessionMgr, IAudioSessionManager2_iface);
}
static ULONG WINAPI AudioSessionManager_AddRef(IAudioSessionManager2 *iface)
{
SessionMgr *This = impl_from_IAudioSessionManager2(iface);
ULONG ref;
ref = InterlockedIncrement(&This->ref);
TRACE("(%p) Refcount now %u\n", This, ref);
return ref;
}
static ULONG WINAPI AudioSessionManager_Release(IAudioSessionManager2 *iface)
{
SessionMgr *This = impl_from_IAudioSessionManager2(iface);
ULONG ref;
ref = InterlockedDecrement(&This->ref);
TRACE("(%p) Refcount now %u\n", This, ref);
if (!ref)
HeapFree(GetProcessHeap(), 0, This);
return ref;
}
static HRESULT WINAPI AudioSessionManager_GetAudioSessionControl(
IAudioSessionManager2 *iface, const GUID *session_guid, DWORD flags,
IAudioSessionControl **out)
{
SessionMgr *This = impl_from_IAudioSessionManager2(iface);
AudioSession *session;
AudioSessionWrapper *wrapper;
HRESULT hr;
TRACE("(%p)->(%s, %x, %p)\n", This, debugstr_guid(session_guid),
flags, out);
hr = get_audio_session(session_guid, This->device, 0, &session);
if (FAILED(hr))
return hr;
wrapper = AudioSessionWrapper_Create(NULL);
if (!wrapper)
return E_OUTOFMEMORY;
wrapper->session = session;
*out = (IAudioSessionControl*)&wrapper->IAudioSessionControl2_iface;
return S_OK;
}
static HRESULT WINAPI AudioSessionManager_GetSimpleAudioVolume(
IAudioSessionManager2 *iface, const GUID *session_guid, DWORD flags,
ISimpleAudioVolume **out)
{
SessionMgr *This = impl_from_IAudioSessionManager2(iface);
AudioSession *session;
AudioSessionWrapper *wrapper;
HRESULT hr;
TRACE("(%p)->(%s, %x, %p)\n", This, debugstr_guid(session_guid),
flags, out);
hr = get_audio_session(session_guid, This->device, 0, &session);
if (FAILED(hr))
return hr;
wrapper = AudioSessionWrapper_Create(NULL);
if (!wrapper)
return E_OUTOFMEMORY;
wrapper->session = session;
*out = &wrapper->ISimpleAudioVolume_iface;
return S_OK;
}
static HRESULT WINAPI AudioSessionManager_GetSessionEnumerator(
IAudioSessionManager2 *iface, IAudioSessionEnumerator **out)
{
SessionMgr *This = impl_from_IAudioSessionManager2(iface);
FIXME("(%p)->(%p) - stub\n", This, out);
return E_NOTIMPL;
}
static HRESULT WINAPI AudioSessionManager_RegisterSessionNotification(
IAudioSessionManager2 *iface, IAudioSessionNotification *notification)
{
SessionMgr *This = impl_from_IAudioSessionManager2(iface);
FIXME("(%p)->(%p) - stub\n", This, notification);
return E_NOTIMPL;
}
static HRESULT WINAPI AudioSessionManager_UnregisterSessionNotification(
IAudioSessionManager2 *iface, IAudioSessionNotification *notification)
{
SessionMgr *This = impl_from_IAudioSessionManager2(iface);
FIXME("(%p)->(%p) - stub\n", This, notification);
return E_NOTIMPL;
}
static HRESULT WINAPI AudioSessionManager_RegisterDuckNotification(
IAudioSessionManager2 *iface, const WCHAR *session_id,
IAudioVolumeDuckNotification *notification)
{
SessionMgr *This = impl_from_IAudioSessionManager2(iface);
FIXME("(%p)->(%p) - stub\n", This, notification);
return E_NOTIMPL;
}
static HRESULT WINAPI AudioSessionManager_UnregisterDuckNotification(
IAudioSessionManager2 *iface,
IAudioVolumeDuckNotification *notification)
{
SessionMgr *This = impl_from_IAudioSessionManager2(iface);
FIXME("(%p)->(%p) - stub\n", This, notification);
return E_NOTIMPL;
}
static const IAudioSessionManager2Vtbl AudioSessionManager2_Vtbl =
{
AudioSessionManager_QueryInterface,
AudioSessionManager_AddRef,
AudioSessionManager_Release,
AudioSessionManager_GetAudioSessionControl,
AudioSessionManager_GetSimpleAudioVolume,
AudioSessionManager_GetSessionEnumerator,
AudioSessionManager_RegisterSessionNotification,
AudioSessionManager_UnregisterSessionNotification,
AudioSessionManager_RegisterDuckNotification,
AudioSessionManager_UnregisterDuckNotification
};
static HRESULT WINAPI SimpleAudioVolume_QueryInterface(
ISimpleAudioVolume *iface, REFIID riid, void **ppv)
{
TRACE("(%p)->(%s, %p)\n", iface, debugstr_guid(riid), ppv);
if (!ppv)
return E_POINTER;
*ppv = NULL;
if (IsEqualIID(riid, &IID_IUnknown) ||
IsEqualIID(riid, &IID_ISimpleAudioVolume))
*ppv = iface;
if (*ppv) {
IUnknown_AddRef((IUnknown*)*ppv);
return S_OK;
}
WARN("Unknown interface %s\n", debugstr_guid(riid));
return E_NOINTERFACE;
}
static ULONG WINAPI SimpleAudioVolume_AddRef(ISimpleAudioVolume *iface)
{
AudioSessionWrapper *This = impl_from_ISimpleAudioVolume(iface);
return AudioSessionControl_AddRef(&This->IAudioSessionControl2_iface);
}
static ULONG WINAPI SimpleAudioVolume_Release(ISimpleAudioVolume *iface)
{
AudioSessionWrapper *This = impl_from_ISimpleAudioVolume(iface);
return AudioSessionControl_Release(&This->IAudioSessionControl2_iface);
}
static HRESULT WINAPI SimpleAudioVolume_SetMasterVolume(
ISimpleAudioVolume *iface, float level, const GUID *context)
{
AudioSessionWrapper *This = impl_from_ISimpleAudioVolume(iface);
AudioSession *session = This->session;
TRACE("(%p)->(%f, %s)\n", session, level, wine_dbgstr_guid(context));
if (level < 0.f || level > 1.f)
return E_INVALIDARG;
if (context)
FIXME("Notifications not supported yet\n");
TRACE("PulseAudio does not support session volume control\n");
pthread_mutex_lock(&pulse_lock);
session->master_vol = level;
pthread_mutex_unlock(&pulse_lock);
return S_OK;
}
static HRESULT WINAPI SimpleAudioVolume_GetMasterVolume(
ISimpleAudioVolume *iface, float *level)
{
AudioSessionWrapper *This = impl_from_ISimpleAudioVolume(iface);
AudioSession *session = This->session;
TRACE("(%p)->(%p)\n", session, level);
if (!level)
return NULL_PTR_ERR;
*level = session->master_vol;
return S_OK;
}
static HRESULT WINAPI SimpleAudioVolume_SetMute(ISimpleAudioVolume *iface,
BOOL mute, const GUID *context)
{
AudioSessionWrapper *This = impl_from_ISimpleAudioVolume(iface);
AudioSession *session = This->session;
TRACE("(%p)->(%u, %p)\n", session, mute, context);
if (context)
FIXME("Notifications not supported yet\n");
session->mute = mute;
return S_OK;
}
static HRESULT WINAPI SimpleAudioVolume_GetMute(ISimpleAudioVolume *iface,
BOOL *mute)
{
AudioSessionWrapper *This = impl_from_ISimpleAudioVolume(iface);
AudioSession *session = This->session;
TRACE("(%p)->(%p)\n", session, mute);
if (!mute)
return NULL_PTR_ERR;
*mute = session->mute;
return S_OK;
}
static const ISimpleAudioVolumeVtbl SimpleAudioVolume_Vtbl =
{
SimpleAudioVolume_QueryInterface,
SimpleAudioVolume_AddRef,
SimpleAudioVolume_Release,
SimpleAudioVolume_SetMasterVolume,
SimpleAudioVolume_GetMasterVolume,
SimpleAudioVolume_SetMute,
SimpleAudioVolume_GetMute
};
static HRESULT WINAPI ChannelAudioVolume_QueryInterface(
IChannelAudioVolume *iface, REFIID riid, void **ppv)
{
TRACE("(%p)->(%s, %p)\n", iface, debugstr_guid(riid), ppv);
if (!ppv)
return E_POINTER;
*ppv = NULL;
if (IsEqualIID(riid, &IID_IUnknown) ||
IsEqualIID(riid, &IID_IChannelAudioVolume))
*ppv = iface;
if (*ppv) {
IUnknown_AddRef((IUnknown*)*ppv);
return S_OK;
}
WARN("Unknown interface %s\n", debugstr_guid(riid));
return E_NOINTERFACE;
}
static ULONG WINAPI ChannelAudioVolume_AddRef(IChannelAudioVolume *iface)
{
AudioSessionWrapper *This = impl_from_IChannelAudioVolume(iface);
return AudioSessionControl_AddRef(&This->IAudioSessionControl2_iface);
}
static ULONG WINAPI ChannelAudioVolume_Release(IChannelAudioVolume *iface)
{
AudioSessionWrapper *This = impl_from_IChannelAudioVolume(iface);
return AudioSessionControl_Release(&This->IAudioSessionControl2_iface);
}
static HRESULT WINAPI ChannelAudioVolume_GetChannelCount(
IChannelAudioVolume *iface, UINT32 *out)
{
AudioSessionWrapper *This = impl_from_IChannelAudioVolume(iface);
AudioSession *session = This->session;
TRACE("(%p)->(%p)\n", session, out);
if (!out)
return NULL_PTR_ERR;
*out = session->channel_count;
return S_OK;
}
static HRESULT WINAPI ChannelAudioVolume_SetChannelVolume(
IChannelAudioVolume *iface, UINT32 index, float level,
const GUID *context)
{
AudioSessionWrapper *This = impl_from_IChannelAudioVolume(iface);
AudioSession *session = This->session;
TRACE("(%p)->(%d, %f, %s)\n", session, index, level,
wine_dbgstr_guid(context));
if (level < 0.f || level > 1.f)
return E_INVALIDARG;
if (index >= session->channel_count)
return E_INVALIDARG;
if (context)
FIXME("Notifications not supported yet\n");
TRACE("PulseAudio does not support session volume control\n");
pthread_mutex_lock(&pulse_lock);
session->channel_vols[index] = level;
pthread_mutex_unlock(&pulse_lock);
return S_OK;
}
static HRESULT WINAPI ChannelAudioVolume_GetChannelVolume(
IChannelAudioVolume *iface, UINT32 index, float *level)
{
AudioSessionWrapper *This = impl_from_IChannelAudioVolume(iface);
AudioSession *session = This->session;
TRACE("(%p)->(%d, %p)\n", session, index, level);
if (!level)
return NULL_PTR_ERR;
if (index >= session->channel_count)
return E_INVALIDARG;
*level = session->channel_vols[index];
return S_OK;
}
static HRESULT WINAPI ChannelAudioVolume_SetAllVolumes(
IChannelAudioVolume *iface, UINT32 count, const float *levels,
const GUID *context)
{
AudioSessionWrapper *This = impl_from_IChannelAudioVolume(iface);
AudioSession *session = This->session;
int i;
TRACE("(%p)->(%d, %p, %s)\n", session, count, levels,
wine_dbgstr_guid(context));
if (!levels)
return NULL_PTR_ERR;
if (count != session->channel_count)
return E_INVALIDARG;
if (context)
FIXME("Notifications not supported yet\n");
TRACE("PulseAudio does not support session volume control\n");
pthread_mutex_lock(&pulse_lock);
for(i = 0; i < count; ++i)
session->channel_vols[i] = levels[i];
pthread_mutex_unlock(&pulse_lock);
return S_OK;
}
static HRESULT WINAPI ChannelAudioVolume_GetAllVolumes(
IChannelAudioVolume *iface, UINT32 count, float *levels)
{
AudioSessionWrapper *This = impl_from_IChannelAudioVolume(iface);
AudioSession *session = This->session;
int i;
TRACE("(%p)->(%d, %p)\n", session, count, levels);
if (!levels)
return NULL_PTR_ERR;
if (count != session->channel_count)
return E_INVALIDARG;
for(i = 0; i < count; ++i)
levels[i] = session->channel_vols[i];
return S_OK;
}
static const IChannelAudioVolumeVtbl ChannelAudioVolume_Vtbl =
{
ChannelAudioVolume_QueryInterface,
ChannelAudioVolume_AddRef,
ChannelAudioVolume_Release,
ChannelAudioVolume_GetChannelCount,
ChannelAudioVolume_SetChannelVolume,
ChannelAudioVolume_GetChannelVolume,
ChannelAudioVolume_SetAllVolumes,
ChannelAudioVolume_GetAllVolumes
};
HRESULT WINAPI AUDDRV_GetAudioSessionManager(IMMDevice *device,
IAudioSessionManager2 **out)
{
SessionMgr *This = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(SessionMgr));
*out = NULL;
if (!This)
return E_OUTOFMEMORY;
This->IAudioSessionManager2_iface.lpVtbl = &AudioSessionManager2_Vtbl;
This->device = device;
This->ref = 1;
*out = &This->IAudioSessionManager2_iface;
return S_OK;
}
HRESULT WINAPI AUDDRV_GetPropValue(GUID *guid, const PROPERTYKEY *prop, PROPVARIANT *out)
{
TRACE("%s, (%s,%u), %p\n", wine_dbgstr_guid(guid), wine_dbgstr_guid(&prop->fmtid), prop->pid, out);
if (IsEqualGUID(guid, &pulse_render_guid) && IsEqualPropertyKey(*prop, PKEY_AudioEndpoint_PhysicalSpeakers)) {
out->vt = VT_UI4;
out->u.ulVal = g_phys_speakers_mask;
return out->u.ulVal ? S_OK : E_FAIL;
}
return E_NOTIMPL;
}